JP2012095220A - 無線通信装置、無線通信システム及び送信電力制御方法 - Google Patents

無線通信装置、無線通信システム及び送信電力制御方法 Download PDF

Info

Publication number
JP2012095220A
JP2012095220A JP2010242522A JP2010242522A JP2012095220A JP 2012095220 A JP2012095220 A JP 2012095220A JP 2010242522 A JP2010242522 A JP 2010242522A JP 2010242522 A JP2010242522 A JP 2010242522A JP 2012095220 A JP2012095220 A JP 2012095220A
Authority
JP
Japan
Prior art keywords
wireless communication
transmission power
link
route
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010242522A
Other languages
English (en)
Inventor
Hiroshi Nishimura
弘志 西村
Masanori Nozaki
正典 野崎
Yuki Kubo
祐樹 久保
Kentaro Yanagihara
健太郎 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2010242522A priority Critical patent/JP2012095220A/ja
Priority to US13/245,238 priority patent/US8825104B2/en
Publication of JP2012095220A publication Critical patent/JP2012095220A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Abstract

【課題】 無線ネットワークの接続性を保証しつつ、電波の干渉やパケットの衝突を防止できる無線通信装置を提供する。
【解決手段】 本発明は、マルチホップネットワークを構成する無線通信装置に関する。そして、無線信号を送信する送信電力が変更可能な無線送信手段と、隣接する他の無線通信装置とのリンクに係るリンク情報と、マルチホップネットワーク上の他の無線通信装置との通信経路の経路情報とを少なくとも管理、更新する情報管理記憶手段と、情報管理記憶手段に管理されている情報に基づき、経路情報に記述されているリンクであって、当該無線通信装置を送信元とする全てのリンクの送受信を確保できる全てのリンクに共通な送信電力を算出し、無線送信手段に設定する送信電力算出手段とを備えることを特徴とする。
【選択図】 図1

Description

本発明は無線通信装置、無線通信システム及び送信電力制御方法に関し、例えば、マルチホップ通信を行うアドホックネットワークに適用し得るものである。
マルチホップ通信を行うアドホックネットワークにおいては、例えば、通信要求が行われる前に予め経路を作成するプロアクティブ型のルーティングプロトコルであるOLSR(Optimized Link State Routing Protocol)を適用して、無線通信装置間で定期的に制御パケットを授受することにより、各無線通信装置が、隣接する無線通信装置の情報を記述したネイバテーブルや、宛先の無線通信装置までの経路を記述したルーティングテーブルを作成する(非特許文献1参照)。
そして、送信元の無線通信装置は、このようにして作成されたネイバテーブルやルーティングテーブルを参照して、宛先の無線通信装置の情報などを設定したデータパケットを送信し、このデータパケットが適宜中継ノードを介して宛先の無線通信装置へ送信される。
IETF RFC3626
ところで、無線通信装置の設置密度が高く隣接する無線通信装置が多い場合は、電波の干渉やパケット(制御パケットやデータパケット)の衝突が多発し、経路が不安定になったりパケットのロスが発生したりする。このような問題を解決する方法の1つとして、少なくとも設置密度が高いエリアでは送信電力を下げて電波の到達範囲を狭くする方法がある。なお、送信電力を下げることで無線通信装置の消費電力を下げることができるというメリットがある。
しかし、一方、各無線通信装置からの送信電力を下げると、電波の到達範囲を狭くなるため、無線ネットワークの接続性が維持できなくなる恐れがある。
そのため、無線ネットワークの接続性を保証しつつ、電波の干渉やパケットの衝突を防止できる無線通信装置、無線通信システム及び送信電力制御方法が望まれている。
第1の本発明は、マルチホップネットワークを構成する無線通信装置において、(1)無線信号を送信する送信電力が変更可能な無線送信手段と、(2)隣接する他の無線通信装置とのリンクに係るリンク情報と、マルチホップネットワーク上の他の無線通信装置との通信経路の経路情報とを少なくとも管理、更新する情報管理記憶手段と、(3)上記情報管理記憶手段に管理されている情報に基づき、上記経路情報に記述されているリンクであって、当該無線通信装置を送信元とする全てのリンクの送受信を確保できる上記全てのリンクに共通な送信電力を算出し、上記無線送信手段に設定する送信電力算出手段とを備えることを特徴とする。
第2の本発明の無線通信システムは、第1の本発明の無線通信装置を分散配置していることを特徴とする。
第3の本発明は、マルチホップネットワークを構成する無線通信装置における送信電力制御方法において、(1)隣接する他の無線通信装置とのリンクに係るリンク情報と、マルチホップネットワーク上の他の無線通信装置との通信経路の経路情報とを、情報管理記憶手段が少なくとも更新しながら管理し、(2)送信電力算出手段が、上記情報管理記憶手段に管理されている情報に基づき、上記経路情報に記述されているリンクであって、当該無線通信装置を送信元とする全てのリンクの送受信を確保できる上記全てのリンクに共通な送信電力を算出し、無線送信手段に設定することを特徴とする。
本発明によれば、無線ネットワークの接続性を保証しつつ、電波の干渉やパケットの衝突を防止できる無線通信装置、無線通信システム及び送信電力制御方法を提供できる。
第1の実施形態の無線通信装置の機能的な構成を示すブロック図である。 第1の実施形態のネイバテーブルの構成例を、ネットワークのトポロジと共に示す説明図である。 第1の実施形態の制御パケットの受信時におけるネイバテーブルの更新動作を示すフローチャートである。 第1の実施形態の送信電力の算出動作を示すフローチャートである。 第2の実施形態の無線通信装置の機能的な構成を示すブロック図である。 第2の実施形態のネイバテーブル及び2ホップネイバテーブルの構成例を、ネットワークのトポロジと共に示す説明図である。 第2の実施形態の2ホップネイバテーブルを参照した経路変更動作を示すフローチャートである。 他の実施形態の説明に用いるネットワークのトポロジ例(1)を示す説明図である。 他の実施形態の説明に用いるネットワークのトポロジ例(2)を示す説明図である。
(A)第1の実施形態
以下、本発明による無線通信装置、無線通信システム及び送信電力制御方法の第1の実施形態を、図面を参照しながら説明する。
(A−1)第1の実施形態の構成
第1の実施形態の無線通信システムは、第1の実施形態の無線通信装置が分散して配置され、第1の実施形態の無線通信装置間で直接パケットを授受し合うアドホックネットワークになっている(後述する図2(A)参照)。
図1は、第1の実施形態の無線通信装置の機能的な構成を示すブロック図である。第1の実施形態の無線通信装置の一部構成が、CPUと、CPUが実行するプログラムとによるソフトウェア構成で実現された場合であっても機能的には、図1で表わすことができる。
図1において、第1の実施形態の無線通信装置100は、無線送受信部101、パケット処理部102、ネイバテーブル103、ルーティングテーブル104、送信電力算出部105を有する。パケット処理部102は、テーブル編集部102aを内蔵している。
無線送受信部101は、パケット処理部102から与えられたパケット(制御パケットやデータパケット)をアンテナから無線空間に放射させるための送信処理を行うと共に、アンテナが捕捉した信号から受信パケットを得てパケット処理部102に与える受信処理とを実行するものである。
無線送受信部101における送信処理構成としては、パケットのビット列をデジタル変調して無線信号を形成するデジタル変調部や、無線信号を電力増幅してアンテナに与える電力増幅部などを有する。ここで、電力増幅部として、ゲインを外部からのゲイン制御信号によって変化できるものを適用して送信電力を切り替えられるものを適用する。若しくは、電力増幅部として、送信電力が異なる複数の電力増幅回路を備え、外部からの選択信号に応じて、いずれかの電力増幅回路だけを有効として送信電力を切り替えられるようにしておいたものを適用する。
無線送受信部101における受信処理構成としては、アンテナが電波を捕捉して得た無線信号を増幅する前置増幅部や、無線信号を帯域濾波するフィルタや、無線信号に対してデジタル復調してビット列を再生するデジタル復調部などを有する。また、無線送受信部101における受信処理構成には、受信した電波の強さを捉える構成が設けられている。例えば、受信電界強度(RSSI)の検知部が設けられている。なお、デジタル復調部がAGC(自動利得制御)回路を有する場合であれば、AGC制御信号を受信電波の大きさを表す信号として利用することができる。
パケット処理部102は、制御パケットやデータパケットの送信処理や、制御パケットやデータパケットの受信処理や、制御パケットやデータパケットの中継処理を行うものである。パケット処理部102は、自己に係るノード情報を周囲に通知するためにHelloパケットを定期的に送信したり、ネットワークのトポロジを把握させるためにTC(Topology Control)パケットを送信、中継したりする。パケット処理部102は、HelloパケットやTCパケットを受信したりする。また、パケット処理部102は、当該無線通信装置に接続されている情報処理部からデータが与えられたときにはデータパケットを組み立てて送信し、当該無線通信装置宛のデータパケットを受信したときにはそのデータパケットを分解してデータを取出して情報処理部へ与え、さらに、他の無線通信装置宛のデータパケットを受信したときにはそのデータパケットを中継送信する。
パケット処理部102は、テーブル編集部102aを備えており、テーブル編集部102aは、ネイバテーブル103やルーティングテーブル104を適宜更新する。
図2(B)は、ネイバテーブル103の構成例を示す説明図であり、図2(A)に示すようなネットワークのトポロジを有する場合におけるノード(無線通信装置を適宜ノードとも呼ぶ)N11のネイバテーブル103を示している。
ネイバテーブル103は、隣接ノードの識別情報(例えば、そのノードのアドレス)、その隣接ノードとのリンク状態、その隣接ノードからの無線信号の減衰量、その隣接ノードとのリンクが経路で使用されているか否か(経路での使用有無)などの項目の情報を少なくとも含んでいる。なお、経路での使用有無を、ネイバテーブル103に記述しておかずに、経路での使用有無が必要となったときに、ルーティングテーブル104を参照してその情報を得るようにしても良い。
隣接ノードの識別情報は、その隣接ノードからの制御パケット(例えばHelloパケット)が受信された際に記述され、ネイバテーブル103の1行が割り当てられる。隣接ノードからの制御パケット(例えばHelloパケット)には、その隣接ノードに隣接するノードの情報も含まれている。隣接ノードからの制御パケットは受信できるが、その制御パケットに、当該無線通信装置が隣接ノードとして記述されていない場合には、リンク状態に「片方向」と記述し、受信できた隣接ノードからの制御パケットに、当該無線通信装置が隣接ノードとして記述されている場合には、リンク状態に「双方向」と記述する。各ノードは、制御パケット(例えばHelloパケット)を送信する際には、送信電力算出部105から、その制御パケットを送信する際の送信電力を表している情報を取り込んで制御パケットに挿入するようになっている。隣接ノードからの制御パケットを受信した際の受信電波の強度を無線送受信部101から取り込み、制御パケットに挿入されている送信電力情報からの差として減衰量を求めることができ、求めた減衰量をネイバテーブル103に記述する。ルーティングテーブル104の記述内容から、その隣接ノードとのリンクを通信経路として利用しているか否かを捉えることができ、その把握結果を経路での使用有無に記述する。
制御パケット(例えば、TCパケット)を授受し合って、ネットワークのトポロジを得る方法や、得られたトポロジや隣接ノード情報に基づいて、当該ノードから各ノードへの経路を決定する方法は、いかなる方法を適用しても良く、決定された経路の情報をルーティングテーブル104に記述する態様も任意である。ルーティングテーブル104の構成は、第1の実施形態の特徴から離れているので、その説明は省略する。
送信電力算出部105は、ネイバテーブル103に格納されている情報を基に、制御パケットやデータパケットの送信時の送信電力を算出し、無線送受信部101に設定するものである。送信電力算出部105は、送信電力の算出を定期的に実行するものであっても良く、また、ネイバテーブル103が更新される毎に実行するものであっても良く、さらに、制御パケットやデータパケットを送信する直前に実行するものであっても良い。
(A−2)第1の実施形態の動作
次に、第1の実施形態に係る無線通信装置の動作を、制御パケットの受信によるネイバテーブル103の見直し動作、送信電力の算出動作の順に説明する。
各ノードは、自己の存在を隣接ノードに通知するために、制御パケット(例えばHelloパケット)を定期的に送信する。このような制御パケットを受信した際には、パケット処理部102は、図3のフローチャートに示す処理を開始する。
パケット処理部102は、まず、受信した制御パケットの送信元である隣接ノードがネイバテーブル103に記述されているか否かを判別する(ステップS101)。ネイバテーブル103にその隣接ノードが記述されていなければ、パケット処理部102は、その隣接ノードの行をネイバテーブル103に追加させた上で、そのノードの識別情報を記述する(ステップS102)。
受信時に送信元である隣接ノードがネイバテーブル103に記述されている場合や、行追加を行った場合には、パケット処理部102は、受信した制御パケットの隣接ノード情報に、当該ノードの識別情報が含まれているか否かを判別する(ステップS103)。当該ノードの識別情報が含まれていると、パケット処理部102は、リンク状態に「双方向」を書込み(ステップS104)、当該ノードの識別情報が含まれていないと、パケット処理部102は、リンク状態に「片方向」を書込む(ステップS105)。
パケット処理部102は、リンク状態の書込みが終了すると、隣接ノードからの制御パケットを受信した際の受信電波強度を無線送受信部101から取り込み、制御パケットに挿入されている送信電力情報からの差として減衰量を求めて求めた減衰量をネイバテーブル103に記述する(ステップS106)。
その後、パケット処理部102は、ルーティングテーブル104の記述内容から、その隣接ノードとのリンクを通信経路として利用しているか否かを判別し(S107)、利用していれば、経路の使用有無に使用を表す符号「○」を記述し(ステップS108)、利用していなければ、経路の使用有無に不使用を表す符号「×」を記述し(ステップS109)、図3に示す制御パケットの一連の受信処理を終了する。
なお、ステップS106からステップS107への移行は、今回の制御パケットの受信に伴うルーティングテーブル104の更新後に行うようにしても良い。
また、フローチャートの図示は省略しているが、例えば、所定時間以上の長時間、当該ノードに制御パケットが到達しなかった隣接ノードの行は、ネイバテーブル103から削除される。
次に、送信電力算出部105が実行する送信電力の算出動作を説明する。送信電力算出部105は、所定の起動条件が成立すると、図4のフローチャートに示す処理を開始する。
送信電力算出部105は、図4に示す処理を開始すると、まず、ネイバテーブル103に記載されている隣接ノードとのリンクの中に、リンクの状態が「片方向」であるものが少なくとも1つ存在するか否かを判定する(S201)。図2(B)のネイバテーブル103の構成例の場合であれば、「片方向」であるリンクN12が存在すると判定される。
送信電力算出部105は、「片方向」であるリンクが1つでも存在すると、ネイバテーブル103に記載されている、そのリンクの減衰量を参照して当該ノードからのパケットが到達するように(言い換えると、「片方向」から「双方向」へ変化するように)大きくした送信電力を算出して無線送受信部101に設定させ(S202)、図4に示す一連の処理を終了する。ここでは、リンクの減衰量は双方向で同じであるとみなして更新後の送信電力を決定している。「片方向」であるリンクが1つの場合、「更新後の送信電力」−「このリンクの減衰量」が所定の送信電力以上となるように、更新後の送信電力を算出する。「片方向」であるリンクが2以上の場合、それらリンクの減衰量のうち、最大減衰量を検出し、「更新後の送信電力」−「最大減衰量」が所定の送信電力以上となるように、更新後の送信電力を算出する。ここで、所定の送信電力とは、無線規格、ハードウェアなどの制限で定まる下限の送信電力、若しくは、上限及び下限の送信電力の中間値を適用することができる。
送信電力算出部105は、「片方向」であるリンクが1つも存在しないと、ネイバテーブル103の経路の使用有無を参照し、双方向のリンクであって経路で使用されていないリンクが存在するか否かを判定する(ステップS203)。図2(B)のネイバテーブル103の構成例の場合であれば、リンクN13が双方向のリンクであって経路で使用されていないリンクである。なお、図2(B)のネイバテーブル103の構成例の場合、「片方向」のリンクが存在するため、ステップS203の処理に移行することはない。
送信電力算出部105は、双方向のリンクであって経路で使用されていないリンクが1つでも存在すると、送信電力を見直して必要に応じて更新した送信電力を無線送受信部101に設定させ(ステップS204)、図4に示す一連の処理を終了する。一方、送信電力算出部105は、双方向のリンクであって経路で使用されていないリンクが1つも存在しないと、送信電力の見直しを行うことなく、今までの送信電力を維持することとし、図4に示す一連の処理を終了する。
ステップS203に移行してくるのは、上述したように、全ての隣接ノードとのリンク状態が「双方向」の場合であり、当該ノードからの送信電力は適切若しくは過剰である。経路として利用されないリンクは、ルーティング方法にもよるが、リンク長が長く、そのリンクが不安定になることがあるからである。例えば、図2(A)のノードN13は、ノードN11から1ホップでパケットを転送することも可能であるが、ノードN11及びN13間の距離が長く転送が不安定となり易く、そのため、ノードN11からノードN13へはノードN14を介した2ホップ転送が好ましいこともある。このようなノードN13に対しては、ノードN11からの制御パケットが到達するぎりぎりの送信電力で到達するようにし、隣接ノードとしての存在が認識できる最小限の送信電力にするようにすれば良い。すなわち、第1の実施形態の場合、双方向のリンクであって経路で使用されていないリンクが存在する場合には、送信電力が過剰であるとみなして、送信電力の見直しを行うこととした。
送信電力算出部105がステップS204で行う送信電力の更新方法としては、例えば、以下の方法を適用することができる。リンクが経路として利用されている隣接ノードについての減衰量の中から、最大減衰量を検出する。次に、「最大減衰量」+「受信電力の基準値」=更新候補送信電力を計算する。現在の送信電力が、この計算された更新候補送信電力より大きい場合には、この計算された更新候補送信電力を無線送受信部101に設定させる。すなわち、「現在の送信電力」−「更新候補送信電力」分だけ送信電力を下げることができる。なお、現在の送信電力が、この計算された更新候補送信電力以下の場合には、現在の送信電力を維持するようにしても良く、また、この場合でも、計算された更新候補送信電力に切り替えるようにしても良い(この場合には送信電力は増大する)。
図4に示す送信電力の算出処理は間欠的に繰り返し実行され、これにより、「片方向」のリンク状態が生じない送信電力であって、できるだけ小さな送信電力に、無線送受信部101の送信電力が設定される。
(A−3)第1の実施形態の効果
第1の実施形態によれば、経路に使用しているリンクが双方向であることを維持するように送信電力を制御することで、ネットワークの接続性を維持したまま送信電力を小さくし、電波の干渉やパケットの衝突を減らすことができる。
また、第1の実施形態によれば、経路の変更が起こらないように無線通信装置の送信電力を変化させているので、経路を維持したまま送信電力を小さくすることができる。
(B)第2の実施形態
次に、本発明による無線通信装置、無線通信システム及び送信電力制御方法の第2の実施形態を、図面を参照しながら説明する。第2の実施形態は、経路制御と第1の実施形態の動作を組み合わせることにより、ネットワークの接続性を維持したまま送信電力を小さくしようとしたものである。
(B−1)第2の実施形態の構成
図5は、第2の実施形態の無線通信装置の機能的な構成を示すブロック図であり、第1の実施形態に係る図1との同一、対応部分には同一、対応符号を付して示している。
図5において、第2の実施形態の無線通信装置100Aは、無線送受信部101、パケット処理部102、ネイバテーブル103、ルーティングテーブル104、送信電力算出部105に加え、2ホップネイバテーブル106を有する。図5では、ネイバテーブル103と2ホップネイバテーブル106とを別個に示しているが、これらネイバテーブル103及び2ホップネイバテーブル106が1個のテーブルに統合されたものであっても良い。
図6(B)及び(C)はそれぞれ、ネイバテーブル103、2ホップネイバテーブル106の構成例を示す説明図であり、図6(A)に示すようなネットワークのトポロジを有する場合におけるノードN21のネイバテーブル103、2ホップネイバテーブル106を示している。
2ホップネイバテーブル106は、隣接ノードの識別情報に対応付けて、その隣接ノードに隣接しているノードの識別情報を記述している。例えば、隣接ノードからの制御パケット(例えばHelloパケット)には、その隣接ノードに隣接しているノードの識別情報が挿入されており、この挿入されている情報を取り出すことにより、パケット処理部102は、2ホップネイバテーブル106を生成、編集することができる。
図6(C)においては、隣接ノードN22にはノードN21及びN23が隣接し、隣接ノードN23にはノードN21及びN22が隣接し、隣接ノードN24にはノードN21が隣接しているように、2ホップネイバテーブル106に記述されている。
第2の実施形態の場合、無線通信装置100Aは、この2ホップネイバテーブル106の情報を参照しながら経路の変更やネイバテーブル103の更新を行い、この変更や更新が送信電力の算出にも影響を与える。
なお、ネイバテーブル103と2ホップネイバテーブル106との行数は、第2の実施形態の場合、必ずしも一致しない。動作の項で説明するように、ネイバテーブル103から、ある条件を満たす隣接ノードの行が削除されることがあり得るからである。
(B−2)第2の実施形態の動作
次に、第2の実施形態に係る無線通信装置100Aの動作を説明する。第2の実施形態においても、制御パケットの受信によるネイバテーブル103の見直し動作、送信電力の算出動作は第1の実施形態と同様である。2ホップネイバテーブル106の生成、編集動作については、構成の項の説明で明らかにしたので、その説明は省略する。
以下では、2ホップネイバテーブル106を参照した経路変更動作を、図7のフローチャートを参照しながら説明する。
パケット処理部102は、経路変更動作を、定期的に実行するものであっても良く、また、2ホップネイバテーブル106が更新される毎に実行するものであっても良く、さらに、ルーティングテーブル104が更新された直後に実行するものであっても良く、さらにまた、送信電力の算出動作の直前に実行するものであっても良く、その実行タイミングは任意である。
パケット処理部102は、図7に示す処理を開始すると、まず、ネイバテーブル103を参照し、隣接ノード数が基準値以上か否かを判定する(ステップS301)。この判定は、当該ノードの近傍がノードの密集エリアになっているか否かの判定になっている。
パケット処理部102は、隣接ノード数が基準値より少ない場合には、図7に示す一連の処理を終了する。これに対して、隣接ノード数が基準値以上の場合には、パケット処理部102は、ネイバテーブル103と2ホップネイバテーブル106を参照し、経路で使用しているリンクの先の隣接ノードの中で隣接ノード同士が隣接しているノードの組が存在するかどうかを判定する(ステップS302)。例えば、図6の場合、ノードN21の2ホップネイバテーブル106からノードN22とノードN23とが隣接していることが分かり、また、ノードN21のネイバテーブル103からノードN22とのリンク及びノードN23とのリンクが共に、経路で使用されていることが分かる。すなわち、ノードN21のパケット処理部102が、上述したステップS302を実行した場合には、存在すると判定することになる。
パケット処理部102は、経路で使用しているリンクの先の隣接ノードの中で隣接ノード同士が隣接しているノードの組が存在しない場合には、図7に示す一連の処理を終了する。一方、そのようなノードの組が存在する場合には、パケット処理部102は、その組に属する隣接ノードのそれぞれの、ネイバテーブル103に記載の減衰量を比較して最も大きな減衰量の隣接ノードを検出し、その隣接ノードの経路を2ホップ転送の経路に変更すると共に、その隣接ノードの行をネイバテーブル103から削除し(ステップS503)、図7に示す一連の処理を終了する。
例えば、図6に示す例の場合、ノードN11のパケット処理部102は、当該ノードN21と隣接しており、しかも、相互にも隣接しているノードN22及びN23のうち、減衰量が大きいノードN22の行をネイバテーブル103から削除する。送信電力の算出動作において、削除前であれば、隣接ノードN22〜N24のうち、隣接ノードN22の減衰量が最大減衰量として検出されて、隣接ノードN22との接続性を確保するように送信電力が過剰かの見直しが実行されるが、削除後であれば、隣接ノードN23及びN24のうち、隣接ノードN23の減衰量が最大減衰量として検出されて、隣接ノードN23との接続性を確保するように送信電力が過剰かの見直しが実行され、送信電力を下げる可能性がより高まることとなる。
ネイバテーブル103から削除された隣接ノードも、削除したノードの経路変更に対応する経路変更を行うことが好ましい。例えば、図6のノードN21がノードN22への経路を、直接の経路から、ノードN23を経由する経路に変更した場合、ノードN22も、ノードN21への経路を、直接の経路から、ノードN23を経由する経路に変更することが好ましい。
このような経路変更を、ネイバテーブル103から削除された隣接ノードが自律的に行うようにしても良く、ネイバテーブル103から削除された隣接ノードが削除したノードからの通知に基づいて行うようにしても良い。以下では、削除したノードがノードN21、削除されたノードがN22とする。例えば、ノードN21がノードN22宛の制御パケットで、経路をノードN23経由にしたことを伝えて、ノードN22におけるノードN21への経路をノードN23経由に変更させるようにしても良い。また例えば、ノードN21が送信する全ての隣接ノード宛の制御パケットにおける隣接ノード情報にノードN22の情報を挿入しないように切替え、ノードN22がこの制御パケットの受信により、「双方向」から「片方向」への切替えを認識して自律的にノードN21への経路を2ホップ転送の経路に切替えることにより、ノードN23経由に切り替えるようにしても良い(他のノード経由になることもあり得る)。後者の場合、図7の処理が終了した後に送信する1回又は2回程度の、隣接ノード情報にノードN22の情報を挿入しない制御パケットを、それ以前の送信電力と同じにして、ノードN22への到達を確保することが望まれる。
(B−3)第2の実施形態の効果
第2の実施形態によっても、第1の実施形態と同様な効果を奏することができる。第2の実施形態によれば、さらに、電波の減衰量が大きいリンクであって代替可能な使用経路を2ホップ以上の経路へ切替え、送信電力の制御で考慮するリンクから除外するようにしたので、ネットワークの接続性を維持したまま送信電力をより一段と小さくすることが期待できる。
(C)他の実施形態
上記各実施形態では、減衰量を、送信電力から無線信号の受信時の強度(受信電力)を減算した量として捉えるものを示したが、減衰量を、送信電力に対する無線信号の受信時の強度(受信電力)の比として検出してテーブルに書き出すようにしても良い。この場合であれば、ステップS202においては、「更新後の送信電力」×「減衰量」が所定の送信電力以上となるように、更新後の送信電力を算出すれば良く、ステップS204においては、「受信電力の基準値」÷「最大減衰量」=更新候補送信電力で求めた更新候補送信電力を利用するようにすれば良い。
上記各実施形態では、ステップS202において、計算から得られた送信電力に一気に上昇させるものを示したが、予め定めた単位分を上昇させ、そのような単位分の上昇を繰り返して「片方向」を解消できる送信電力に到達させるようにしても良い。
上記各実施形態においては、通常の制御パケットの授受によって減衰量を検出するものを示したが、制御パケットの種類として、減衰量検出用の制御パケットを設けて減衰量を検出するようにしても良い。このような減衰量検出用の制御パケットを、システム全体で定まっている固定の送信電力で送信させることとし、送信電力の情報を制御パケット内に挿入しないようにしても良い。
上記各実施形態においては、制御パケットの1回の授受で得られた減衰量をネイバテーブルに記述するものを示したが、制御パケットの複数回の授受で得られた減衰量の平均値(直前側の重みを大きくした重み付け平均値であっても良い)をネイバテーブルに記述するようにしても良い。
上記各実施形態においては、減衰量を、送信電力から無線信号の受信時の強度(受信電力)を減算した量として捉えるものを示したが、接続性を維持する方向にマージンを加えて、ネイバテーブルに記述する減衰量としても良い。減衰量を比にした場合も同様である。
上記各実施形態においては、制御パケットの送信時もデータパケットの送信時も、上述のように制御された送信電力で送信するものを示したが、一部のパケットだけ、上述のように制御された送信電力で送信するようにしても良い。例えば、制御パケットの送信では上述のように制御された送信電力で送信し、データパケットの送信では、その宛先のノードで定まる隣接ノード(宛先ノード又は中継ノード)とのリンクの減衰量に基づいて、個別に送信電力を決定し、その送信電力で送信するようにしても良い。また例えば、制御パケットかデータパケットかを問わず、マルチキャスト又はブロードキャストのパケットについては、上述のように制御された送信電力で送信し、ある1つのノードを宛先としたパケットについては、その宛先のノードで定まる隣接ノード(宛先ノード又は中継ノード)とのリンクの減衰量に基づいて、個別に送信電力を決定し、その送信電力で送信するようにしても良い。
上記第2の実施形態では、隣接ノード数が基準値以上の場合にのみ、当該ノードからの経路で使用する隣接ノードを、経路で使用しないように変更するか否かを判定するものを示したが、隣接ノード数が基準値以上であることを、判定の前提条件としないようにしても良い。
上記第2の実施形態では、経路で使用しているリンクの先の隣接ノードの中で隣接ノード同士が隣接しているノードの組が存在する場合には、その組に属する最大減衰量の隣接ノードの行をネイバテーブルから削除するものを示したが、その組に属する複数の隣接ノードを削除するようにしても良い。例えば、図8に示すようなネットワークトポロジの場合であれば、ノードN31のパケット処理部は隣接ノードN33及びN35を共にネイバテーブルから削除するようにしても良い。例えば、減衰量が最大減衰量の所定割合(例えば90%)以上の、組に属する隣接ノード(但し、組に属する最小減衰量の隣接ノードは除く)を、最大減衰量の隣接ノードと共にネイバテーブルから削除するようにしても良い。
上記第2の実施形態では、経路で使用しているリンクの先の隣接ノードの中で隣接ノード同士が隣接しているノードの組が存在する場合には、その組に属する隣接ノードの行をネイバテーブルから削除するものを示したが、複数の組の情報から、削除する隣接ノードを決定するようにしても良い。例えば、図9に示すようなネットワークトポロジの場合、ノードN43及びN45は隣接していないが、ノードN44はノードN43及びN45に隣接しているので、2組に共通なノードN44をネイバテーブルに残し、1又は複数の他のノードをネイバテーブルから削除するか否かを決定するようにしても良い。
上記第2の実施形態は、上記第1の実施形態の技術思想をベースとし、それに新たな技術思想を追加する形でなされたものであるが、第1の実施形態及び第2の実施形態の技術思想の組み合わせを、別の観点から行うようにしても良い。例えば、第1の実施形態の場合、隣接ノードへのリンクで「片方向」のものがあれば、直ちに、送信電力を上げる処理を実行するが、これに代え、「片方向」のリンクがあれば、そのリンクに係る隣接ノードと隣接し、かつ、当該ノードと隣接する経由候補のノードがあるか否かを確認し、そのような経由候補のノードがなければ送信電力を上げ、そのような経由候補のノードがあれば「片方向」に係る隣接ノードへの経路を、経由候補のノードを経由する経路に変更すると共に、ネイバテーブルから「片方向」のリンクに係る隣接ノードの行を削除するようにしても良い。
100、100A…無線通信装置(ノード)、101…無線送受信部、102…パケット処理部、103…ネイバテーブル、104…ルーティングテーブル、105…送信電力算出部、106…2ホップネイバテーブル。

Claims (7)

  1. マルチホップネットワークを構成する無線通信装置において、
    無線信号を送信する送信電力が変更可能な無線送信手段と、
    隣接する他の無線通信装置とのリンクに係るリンク情報と、マルチホップネットワーク上の他の無線通信装置との通信経路の経路情報とを少なくとも管理、更新する情報管理記憶手段と、
    上記情報管理記憶手段に管理されている情報に基づき、上記経路情報に記述されているリンクであって、当該無線通信装置を送信元とする全てのリンクの送受信を確保できる上記全てのリンクに共通な送信電力を算出し、上記無線送信手段に設定する送信電力算出手段と
    を備えることを特徴とする無線通信装置。
  2. 上記情報管理記憶手段が管理する情報として、隣接する他の無線通信装置毎に、他の無線通信装置との間のリンクで現在転送が可能な方向は双方向か当該無線通信装置へ向かう片方向かを表すリンク状態と、他の無線通信装置とのリンクにおける電波の減衰量と、他の無線通信装置とのリンクが経路で使用されているか否かを表す経路での使用有無とを含み、
    上記送信電力算出手段は、
    経路での使用有無が使用のリンクの中で、リンク状態が片方向であるリンクが存在する場合には、該当するリンクが双方向になるような送信電力を算出し、
    経路での使用有無が使用のリンクの中で、リンク状態が片方向であるリンクが存在しない場合には、経路での使用有無が使用であるリンク状態が双方向の全てのリンクだけを考慮し、双方向から片方向への変化を引き起こさない送信電力を算出する
    ことを特徴とする請求項1に記載の無線通信装置。
  3. 上記情報管理記憶手段は、他の無線通信装置とのリンクのうち電波の減衰量が大きいリンクであって、このリンクを用いずに、このリンクに係る他の無線通信装置との経路を確保できる場合には、このリンクを経路に使用しないように経路を設定することを特徴とする請求項2に記載の無線通信装置。
  4. 上記情報管理記憶手段は、2ホップで通信可能な他の無線通信装置の情報を管理し、この2ホップで通信可能な他の無線通信装置の情報に基づいて、電波の減衰量が大きい経路で使用しないリンクを認識し、2ホップ経路を採択する
    ことを特徴とする請求項3に記載の無線通信装置。
  5. 請求項1〜4のいずれかに記載の無線通信装置を分散配置していることを特徴とする無線通信システム。
  6. マルチホップネットワークを構成する無線通信装置における送信電力制御方法において、
    隣接する他の無線通信装置とのリンクに係るリンク情報と、マルチホップネットワーク上の他の無線通信装置との通信経路の経路情報とを、情報管理記憶手段が少なくとも更新しながら管理し、
    送信電力算出手段が、上記情報管理記憶手段に管理されている情報に基づき、上記経路情報に記述されているリンクであって、当該無線通信装置を送信元とする全てのリンクの送受信を確保できる上記全てのリンクに共通な送信電力を算出し、無線送信手段に設定する
    ことを特徴とする送信電力制御方法。
  7. 上記情報管理記憶手段が管理する情報として、隣接する他の無線通信装置毎に、他の無線通信装置との間のリンクで現在転送が可能な方向は双方向か当該無線通信装置へ向かう片方向かを表すリンク状態と、他の無線通信装置とのリンクにおける電波の減衰量と、他の無線通信装置とのリンクが経路で使用されているか否かを表す経路での使用有無とを含み、
    上記送信電力算出手段は、
    経路での使用有無が使用のリンクの中で、リンク状態が片方向であるリンクが存在する場合には、該当するリンクが双方向になるような送信電力を算出し、
    経路での使用有無が使用のリンクの中で、リンク状態が片方向であるリンクが存在しない場合には、経路での使用有無が使用であるリンク状態が双方向の全てのリンクだけを考慮し、双方向から片方向への変化を引き起こさない送信電力を算出する
    ことを特徴とする請求項6に記載の送信電力制御方法。
JP2010242522A 2010-10-28 2010-10-28 無線通信装置、無線通信システム及び送信電力制御方法 Pending JP2012095220A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010242522A JP2012095220A (ja) 2010-10-28 2010-10-28 無線通信装置、無線通信システム及び送信電力制御方法
US13/245,238 US8825104B2 (en) 2010-10-28 2011-09-26 Wireless communication apparatus, wireless communication system and transmitting power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242522A JP2012095220A (ja) 2010-10-28 2010-10-28 無線通信装置、無線通信システム及び送信電力制御方法

Publications (1)

Publication Number Publication Date
JP2012095220A true JP2012095220A (ja) 2012-05-17

Family

ID=45997288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242522A Pending JP2012095220A (ja) 2010-10-28 2010-10-28 無線通信装置、無線通信システム及び送信電力制御方法

Country Status (2)

Country Link
US (1) US8825104B2 (ja)
JP (1) JP2012095220A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003435A (ja) * 2012-06-18 2014-01-09 Oki Electric Ind Co Ltd 無線通信端末及び無線ネットワークシステム、並びに、送信電力制御方法及びプログラム
JP2014178937A (ja) * 2013-03-15 2014-09-25 Hochiki Corp 警報システム
KR20190023313A (ko) * 2017-08-28 2019-03-08 광운대학교 산학협력단 무선 인체 영역 네트워크에서의 통신 방법 및 그 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164001B2 (ja) * 2013-09-24 2017-07-19 沖電気工業株式会社 無線ノード、マルチホップ無線ネットワーク及び無線ノードプログラム
CN106162578B (zh) * 2015-04-24 2020-03-17 北京智谷睿拓技术服务有限公司 转发控制方法、移动终端信息发送方法、及其装置
US20170019863A1 (en) * 2015-07-14 2017-01-19 Intel IP Corporation Uplink power control for user devices at varying distances from an access point

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003435A (ja) * 2012-06-18 2014-01-09 Oki Electric Ind Co Ltd 無線通信端末及び無線ネットワークシステム、並びに、送信電力制御方法及びプログラム
JP2014178937A (ja) * 2013-03-15 2014-09-25 Hochiki Corp 警報システム
KR20190023313A (ko) * 2017-08-28 2019-03-08 광운대학교 산학협력단 무선 인체 영역 네트워크에서의 통신 방법 및 그 장치
KR101977297B1 (ko) * 2017-08-28 2019-05-10 광운대학교 산학협력단 무선 인체 영역 네트워크에서의 통신 방법 및 그 장치

Also Published As

Publication number Publication date
US20120108286A1 (en) 2012-05-03
US8825104B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
US8243603B2 (en) Method and system for improving a wireless communication route
US8031720B2 (en) Packet transfer system, radio base station, and packet transfer route optimization method
JP4214960B2 (ja) 無線通信ネットワークシステム
US20080298304A1 (en) Routing method in wireless multi-hop network and communication terminal
US8213352B2 (en) Wireless communication system, wireless communication device, wireless communication method, and program
WO2013031314A1 (ja) 無線センサーネットワークシステム
JP4918900B2 (ja) 無線マルチホップネットワーク、ノード、マルチキャスト経路制御方法及びプログラム
JP4689630B2 (ja) 通信端末及び通信制御方法
JP2007228083A (ja) 通信ノード及びルーティング方法
JP2012095220A (ja) 無線通信装置、無線通信システム及び送信電力制御方法
JP4627465B2 (ja) 無線通信端末およびQoS情報収集方法
US20080107033A1 (en) Radio communication network capable of radio communication with reduced overhead
JP5353576B2 (ja) 無線通信装置及び無線通信プログラム
JP5851020B2 (ja) 通信システム、及び通信方法
JP2008167362A (ja) 無線通信システム
KR101762696B1 (ko) 이동 애드혹 네트워크에서 목적지 개시 기반 플러딩을 이용한 경로 유지관리 프로토콜
JP7326230B2 (ja) 通信システム、ノード、通信方法及びプログラム
JP4765997B2 (ja) 通信ルート構築方法、及び通信端末装置
JP5006264B2 (ja) 無線通信装置
JP4855176B2 (ja) アドホック・ネットワークを構成するノード
JP6593474B2 (ja) 無線通信装置、プログラム及び方法、並びに、無線通信システム
KR100505132B1 (ko) Ad-hoc망에서의 전력 구별 플래그를 사용하는 경로설정 메시지 및 경로 설정 방법
KR100597409B1 (ko) 모바일 애드혹 네트워크에서의 라우팅 경로 설정 방법 및장치
Mohammed Performance Study of AODV and DSDV Routing Protocols for Mobile Ad Hoc Networks Based on Network Simulator NS2
JP2021040206A (ja) 通信制御装置および中継ノード選択方法