JP2012094900A - Bcn based insulating film, method of producing the same and semiconductor device - Google Patents

Bcn based insulating film, method of producing the same and semiconductor device Download PDF

Info

Publication number
JP2012094900A
JP2012094900A JP2012014596A JP2012014596A JP2012094900A JP 2012094900 A JP2012094900 A JP 2012094900A JP 2012014596 A JP2012014596 A JP 2012014596A JP 2012014596 A JP2012014596 A JP 2012014596A JP 2012094900 A JP2012094900 A JP 2012094900A
Authority
JP
Japan
Prior art keywords
insulating film
film
bcn
gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014596A
Other languages
Japanese (ja)
Inventor
Takashi Sugino
隆 杉野
Hidemitsu Aoki
秀充 青木
Chiharu Kimura
千春 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watanabe Shoko KK
M Watanabe and Co Ltd
Original Assignee
Watanabe Shoko KK
M Watanabe and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe Shoko KK, M Watanabe and Co Ltd filed Critical Watanabe Shoko KK
Priority to JP2012014596A priority Critical patent/JP2012094900A/en
Publication of JP2012094900A publication Critical patent/JP2012094900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device in which a BCN film can be deposited using a non-corrosive organic aminoboron based gas in place of a conventional BClgas, for example, a BCN film having a stabilized low dielectric constant and a high hardness (Young's modulus) can be deposited using tris(dimethylamino)boron by plasma CVD.SOLUTION: In a method of producing an insulating film, a boron carbon nitride (BCN) based insulating film is deposited using an organic aminoboron based gas. The organic aminoboron based gas is tris(dimethylamino)boron. The BCN based insulating film has a dielectric constant of 2.5 or lower and an elastic modulus (Young's modulus) of 8 GPa or higher.

Description

本発明は、BCN系の絶縁膜及びその製造方法並びに半導体装置に係り、より詳しくは、低誘電率を有するBCN系の絶縁膜及びその製造方法並びに半導体装置に関する。  The present invention relates to a BCN-based insulating film, a manufacturing method thereof, and a semiconductor device, and more particularly to a BCN-based insulating film having a low dielectric constant, a manufacturing method thereof, and a semiconductor device.

シリコン半導体集積回路では、65nm世代のシステムLSI、1Gbitメモリがす
でに生産され、45nmから32nm世代へと、更に微細なデバイスの開発が進められて
いる。このデバイス開発はトランジスタの縮小化によって高速動作が改善できるという利
点を兼ね備えて進められてきたが、近年、集積度の向上でデバイス内の配線が長大になり
多層化して配線抵抗と配線間を分離する絶縁層が持つ容量による電気信号の遅延現象がデ
バイスの高速動作を劣化させるという課題に遭遇している。
これを解決するため従来用いられてきた配線金属(アルミニウム)および配線層間絶縁膜
(SiO2(比誘電率k〜4))を更に低い電気抵抗率を持つ金属および低い誘電率を持
つ絶縁体材料に変更するための研究開発が進められている。配線金属はアルミニウムから
銅に変更された。一方、層間絶縁体膜の低誘電率化についてはSiOにフッ素や炭素を
添加したSiOFやSiOCそしてSiCが注目されて研究開発がなされ、現状、配線層
間絶縁体膜としてk〜2.5を有するSiOCが主に用いられている。
In silicon semiconductor integrated circuits, 65-nm generation system LSIs and 1-Gbit memories have already been produced, and further finer devices are being developed from 45 nm to 32 nm generation. This device development has progressed with the advantage that high-speed operation can be improved by reducing the size of the transistor, but in recent years, the wiring within the device has become longer due to the increased degree of integration and the wiring resistance is separated from the wiring. An electrical signal delay phenomenon due to the capacitance of the insulating layer that has been encountered has encountered the problem of degrading the high-speed operation of the device.
In order to solve this problem, wiring metal (aluminum) and wiring interlayer insulating film (SiO2 (relative dielectric constant k to 4)), which has been conventionally used, are made into a metal having a lower electric resistivity and an insulator material having a lower dielectric constant. Research and development is underway to make changes. The wiring metal was changed from aluminum to copper. On the other hand, with regard to lowering the dielectric constant of the interlayer dielectric film, SiOF, SiOC, and SiC in which fluorine or carbon is added to SiO 2 have been attracting attention and research and development have been conducted. SiOC is mainly used.

次世代シリコン集積デバイス開発のためにk<2.2を有する低誘電率膜の実用化が熱
望されている。Cu配線を用いたシステムLSIの低誘電率膜(Low−K膜)に対する
実用年のトレンドから、2006年度は45nm世代向けのLow−K膜の開発が進めら
れ、その多くは、SiOC系や有機系の絶縁体膜内に空孔(ポア)を形成し、低誘電率化
を図ることで検討されている。しかしながら、このようなポーラス系Low−K膜は、成
膜法の開発はもとより、シリコン集積デバイスへの導入に対して様々な解決すべき課題を
残している。
The development of a low dielectric constant film having k <2.2 is eagerly desired for the development of next-generation silicon integrated devices. Due to the trend of practical years for low dielectric constant film (Low-K film) of system LSI using Cu wiring, development of Low-K film for 45 nm generation was promoted in FY2006. It has been studied by forming pores in the insulating film of the system to reduce the dielectric constant. However, such a porous Low-K film has various problems to be solved with respect to introduction into a silicon integrated device as well as development of a film forming method.

ポーラス系Low−k膜の問題点は、1)機械的強度が低い、2)吸水性が高い、3)
熱伝導性が低い、4)熱膨張率が他の絶縁膜に比べて大きいなどが挙げられる。それぞれ
の問題点について、以下に詳しく述べる。
1)機械的強度が低いことにより、Cu配線を形成する際に用いられるCMP(化学的機
械研磨)プロセスにおいて、加重に耐えられずLow−K膜が変形し、下地膜との密着性
不良で剥がれ等の問題を生じる。
2)ポーラス化により吸水しやすくなるため、誘電率が高くなる。これは、水の誘電率が
80程度と非常に高いためである。また、Cu配線形成時にCuのめっき液が、バリア膜
で十分被覆されていない部分を通ってポーラス膜内部まで侵入する問題も生じる。
3)高性能CPU内部では、105A/cm程度の電流密度となるため、配線層間膜に
は、ヒートシンクとしての役割も果たすべく、高い熱伝導性材料が望まれる。しかしなが
ら、ポーラス化により、材料の熱伝導率は10分の1程度に低下する可能性がある。
4)LSIを製造時のアニーリング工程において、層間絶縁膜と配線素材Cuの熱膨張率
の違いから、Cu配線の周囲にボイド(隙間)が生じる。多層配線を形成する場合各層ご
とに熱処理が加わるため、膨張、収縮を繰り返し、配線ストレスマイグレーションが発生
しやすくなる。
その他、溝加工時のドライエッチングガスやポリマー除去処理の薬液によって加工表面
のLow−k膜が変質するなど、現状のポーラス膜への課題は多い。
このような中で、BCN膜材料は、ポーラスLow−kで課題となっている上記の4つの
項目に対して、いずれも優れた物性を有し、有望な材料である。特に、ホウ素(B)を含
むBN膜は硬く、切削用材料としても広く使用され、Cを含むBCN膜もヤング率が10
0GPa以上になることが報告されている(非特許文献1)。
そして、BCN系材料の誘電率を考える場合もSiOC系のLow−k膜と同様に、分
子の分極率体積が参考になる。誘電率を低減するためには、配向分極の成分を小さくする
必要があり、例えばC=Cの二重結合よりC−Cの単結合の方が分極率は小さく、低誘電
率材料に適していることになる。したがって、低誘電率化するためには単結合で膜を形成
することが望ましい。
The problems with porous Low-k films are: 1) low mechanical strength, 2) high water absorption, 3)
The thermal conductivity is low, and 4) the coefficient of thermal expansion is higher than that of other insulating films. Each problem is described in detail below.
1) Due to the low mechanical strength, in the CMP (Chemical Mechanical Polishing) process used when forming the Cu wiring, the Low-K film is deformed without being able to withstand the load, and the adhesion with the base film is poor. This causes problems such as peeling.
2) Since it becomes easy to absorb water by making it porous, the dielectric constant increases. This is because the dielectric constant of water is as high as about 80. In addition, when the Cu wiring is formed, there also arises a problem that the Cu plating solution penetrates into the porous film through a portion not sufficiently covered with the barrier film.
3) Since the current density is about 105 A / cm 2 inside the high-performance CPU, a highly heat-conductive material is desired for the wiring interlayer film to also serve as a heat sink. However, the porous material may reduce the thermal conductivity of the material to about 1/10.
4) In an annealing process when manufacturing an LSI, a void (gap) is generated around the Cu wiring due to a difference in thermal expansion coefficient between the interlayer insulating film and the wiring material Cu. When a multilayer wiring is formed, heat treatment is applied to each layer, so that expansion and contraction are repeated and wiring stress migration is likely to occur.
In addition, there are many problems with the current porous film such that the low-k film on the processed surface is altered by a dry etching gas at the time of groove processing or a chemical solution for polymer removal treatment.
Under such circumstances, the BCN film material is a promising material having excellent physical properties with respect to the above-mentioned four items which are problems in porous low-k. In particular, a BN film containing boron (B) is hard and widely used as a cutting material, and a BCN film containing C also has a Young's modulus of 10
It has been reported that it becomes 0 GPa or more (Non-Patent Document 1).
When considering the dielectric constant of the BCN-based material, the molecular polarizability volume is also a reference, as in the case of the SiOC-based Low-k film. In order to reduce the dielectric constant, it is necessary to reduce the component of orientation polarization. For example, a single bond of C—C has a smaller polarizability than a double bond of C═C, and is suitable for a low dielectric constant material. Will be. Therefore, it is desirable to form a film with a single bond in order to reduce the dielectric constant.

C. Morant, D.Caceres, J.M. Sanz and E. Elizalde, Diamond and Relat. Mater.16(2007)1441.C. Morant, D.M. Caseres, J .; M.M. Sanz and E.M. Elizalde, Diamond and Relat. Mater. 16 (2007) 1441. 特開2005−210136号公報Japanese Patent Laying-Open No. 2005-210136

これまで、SiOC系のポーラスLowK膜が検討されているが、機械的強度や硬度が
低いために、CMPの機械的強度やワイヤボンディングの際の機械的ダメージに耐えられ
ない問題がある。したがって、硬度も保ちつつ(ヤング率で10Gpa以上)誘電率が2
.3以下のLow−k材料が望まれている。
So far, SiOC-based porous LowK films have been studied. However, since the mechanical strength and hardness are low, there is a problem that the mechanical strength of CMP and mechanical damage during wire bonding cannot be tolerated. Therefore, the dielectric constant is 2 while maintaining the hardness (10 Gpa or more in Young's modulus).
. Less than 3 Low-k materials are desired.

BCN膜の作成において、従来、ホウ素(B)の導入には、BClガスを用いられて
きた(例えば特許文献1)。しかし、LSI配線の層間絶縁膜として利用する際、含有す
る塩素(Cl)成分がCu配線等を腐食する可能性がある。また、従来の混合ガス系では
B−Nの単結合以外に、成膜条件によってはC−Cの二重結合やB−N三重結合(分極体
積率が高いため誘電率が高くなる)を生じ、誘電率の低い膜を安定に成膜することが難し
い。
In the preparation of a BCN film, conventionally, BCl 3 gas has been used to introduce boron (B) (for example, Patent Document 1). However, when used as an interlayer insulating film for LSI wiring, the contained chlorine (Cl) component may corrode Cu wiring or the like. Further, in the conventional mixed gas system, in addition to the BN single bond, depending on the film forming conditions, a CC double bond or a BN triple bond (the dielectric constant increases because the polarization volume ratio is high) occurs. It is difficult to stably form a film having a low dielectric constant.

本発明は、配線(例えばCu配線)を腐食することはなく配線の信頼性を保つことが可
能な絶縁膜及びその製造方法を提供することを目的とする。
An object of the present invention is to provide an insulating film capable of maintaining the reliability of wiring without corroding wiring (for example, Cu wiring) and a method for manufacturing the same.

本発明は、低い誘電率を安定して保つことができる絶縁膜及びその製造方法を提供する
ことを目的とする。
An object of this invention is to provide the insulating film which can maintain a low dielectric constant stably, and its manufacturing method.

本発明は、高い機械的強度を有する絶縁膜及びその製造方法を提供することを目的とす
る。
An object of this invention is to provide the insulating film which has high mechanical strength, and its manufacturing method.

本発明は、BClガスに代わる、腐食性のない有機アミノボロン系ガスを用いてBC
N膜を成膜ことが特徴である。有機アミノボロン系ガスとしては、例えばトリスジメチル
アミノボロン(TMAB)、ジメチルアミノボロンが挙げられる。TMABは、CH
メチル基を比較的安定に膜中に取り込める可能性があるため好ましい。
The present invention uses a non-corrosive organic aminoboron-based gas instead of BCl 3 gas to make BC
It is characterized by forming an N film. Examples of the organic aminoboron gas include trisdimethylaminoboron (TMAB) and dimethylaminoboron. TMAB is preferable because the methyl group of CH 3 may be incorporated into the film relatively stably.

成膜方法としては、例えば、プラズマCVDにより成膜を行えばよい。   As a film formation method, for example, film formation may be performed by plasma CVD.

なお、トリスジメチルアミノボロン(TMAB)の化学式は、B[N(CH
であり、ガスを構成する各原子間の結合エネルギーは、B−N<C−N<C−Hの順に強
い。したがって、プラズマにて分解した際に、B−N、C−N結合部分がまず切断され、
CH3(メチル基)が残された状態で、BCN膜中に取り込まれる。これにより、膜中で
CH3近傍には空間が生まれ、安定して誘電率を低減できることができる。
In addition, the chemical formula of trisdimethylaminoboron (TMAB) is B [N (CH 3 ) 2 ] 3
The bond energy between the atoms constituting the gas is strong in the order of BN <CN <CH. Therefore, when decomposed by plasma, the BN and CN bond portions are first cut,
In the state where CH3 (methyl group) remains, it is taken into the BCN film. Thereby, a space is created in the vicinity of CH3 in the film, and the dielectric constant can be stably reduced.

請求項1に係る発明は、トリスジメチルアミノボロンとNを用いて窒化ホウ素炭素(BCN)系絶縁膜を形成する絶縁膜の製造方法である。 The invention according to claim 1 is an insulating film manufacturing method for forming a boron nitride carbon (BCN) -based insulating film using trisdimethylaminoboron and N 2 .

請求項2に係る発明は、前記BCN膜は、PACVD法を用いて形成する請求項1記載の絶縁膜の製造方法である。   The invention according to claim 2 is the method for manufacturing an insulating film according to claim 1, wherein the BCN film is formed by using a PACVD method.

請求項3に係る発明は、前記トリスジメチルアミノボロンはガスボンベおよびガス配管、マスフロコントローラを50℃以上に加熱してガスを供給する請求項1又は2記載の絶縁膜の製造方法である。   The invention according to claim 3 is the method for manufacturing an insulating film according to claim 1 or 2, wherein the trisdimethylaminoboron supplies gas by heating a gas cylinder, gas piping, and mass flow controller to 50 ° C. or higher.

請求項4に係る発明は、前記ガスとして供給するNとTMABとの流量比は2:1〜1:1である請求項1乃至3のいずれか1項記載の請求項1記載の絶縁膜の製造方法である。 The invention according to claim 4, the flow rate ratio of N 2 and TMAB supplied as the gas 2: 1 to 1: 1 an insulating film according to claim 1, wherein any one of claims 1 to 3, It is a manufacturing method.

請求項5に係る発明は、前記CVD法におけるRFパワーは40W以下である請求項1乃至4のいずれか1項記載の請求項1記載の絶縁膜の製造方法である。   The invention according to claim 5 is the insulating film manufacturing method according to any one of claims 1 to 4, wherein the RF power in the CVD method is 40 W or less.

請求項6に係る発明は、Nガス雰囲気中で30分間、300〜400℃のアニールを施す請求項1乃至5のいずれか1項記載の請求項1記載の絶縁膜の製造方法である。 The invention according to claim 6 is the method for producing an insulating film according to any one of claims 1 to 5, wherein annealing at 300 to 400 ° C. is performed in an N 2 gas atmosphere for 30 minutes.

請求項7に係る発明は、BCN膜の作成には、CHガスを混合する請求項1乃至6のいずれか1項記載の請求項1記載の絶縁膜の製造方法である。 The invention according to claim 7 is the method for manufacturing an insulating film according to any one of claims 1 to 6, wherein CH 4 gas is mixed for forming the BCN film.

請求項8に係る発明は、前記アニール処理には、Hガスを用いる請求項6項記載の絶縁膜の製造方法である。 The invention according to claim 8 is the method for manufacturing an insulating film according to claim 6, wherein H 2 gas is used for the annealing treatment.

請求項9に係る発明は、請求項1乃至8のいずれか1項記載の請求項1記載の方法により製造されたBCN系の絶縁膜である。   The invention according to claim 9 is a BCN-based insulating film manufactured by the method according to claim 1 according to any one of claims 1 to 8.

請求項10に係る発明は、請求項9記載の絶縁膜を配線層間の絶縁膜として有する半導体装置である。   The invention according to claim 10 is a semiconductor device having the insulating film according to claim 9 as an insulating film between wiring layers.

請求項11に係る発明は、請求項9記載の絶縁膜に設けられた配線溝と、該配線溝に対応して前記BCN系絶縁膜に設けられたビアホールとに導電層が充填された構造を有する半導体装置である。
請求項12に係る発明は、前記ビアホールは、フッ化炭素ガスを用いてドライエッチングにより形成されている請求項11記載の半導体装置である。
According to an eleventh aspect of the present invention, there is provided a structure in which a conductive layer is filled in the wiring groove provided in the insulating film according to claim 9 and the via hole provided in the BCN-based insulating film corresponding to the wiring groove. It is a semiconductor device having.
The invention according to claim 12 is the semiconductor device according to claim 11, wherein the via hole is formed by dry etching using a fluorocarbon gas.

本発明により、層間絶縁膜中にBCl3ガス起因の残留Clが存在しなくなるため、Cu
配線を腐食することはなく配線の信頼性を保つことが可能である。また、BCN膜中にC
H3を構造的に取り込んだ状態になるため、低い誘電率を安定して保つことができる。
According to the present invention, residual Cl due to BCl3 gas does not exist in the interlayer insulating film, so that Cu
Wiring reliability can be maintained without corroding the wiring. In addition, C in the BCN film
Since H3 is structurally incorporated, a low dielectric constant can be stably maintained.

BCN膜は、PACVD(Plasma−assisted chemical va
por deposition)法を用いて成膜した。トリスジメチルアミノボロン(T
MAB)ガスの流量を0.5〜5sccm、N2ガス流量を0.5〜5sccm、成膜温
度を300℃〜400℃、成膜圧力を0.1〜0.5Torr、 RF powerを1
0〜100Wの範囲にて実験した。TMABガスは、配管内部で液化することを防止する
ために、ガスボンベおよびガス配管、マスフロコントローラを50℃以上に加熱してガス
を供給することが望ましい。
The BCN film is formed by PACVD (Plasma-assisted chemical va
The film was formed using a por deposition method. Trisdimethylaminoboron (T
MAB) The gas flow rate is 0.5 to 5 sccm, the N2 gas flow rate is 0.5 to 5 sccm, the film formation temperature is 300 ° C. to 400 ° C., the film formation pressure is 0.1 to 0.5 Torr, and the RF power is 1
Experiments were performed in the range of 0 to 100W. In order to prevent the TMAB gas from being liquefied inside the pipe, it is desirable to supply the gas by heating the gas cylinder, the gas pipe, and the mass flow controller to 50 ° C. or higher.

実験では、Nが2ccm、TMABを1ccm、成長圧は0.2Torr、成膜温度
を350℃、RF powerを10〜1000Wの範囲で成膜した。組成比は、Bが3
5〜40%、Cが20〜25%、Nが30〜40%である(%は重量%)。なお、原子%
では、B:33〜47% C:13〜28% N:14〜32%である。
In the experiment, N 2 was deposited at 2 ccm, TMAB at 1 ccm, the growth pressure was 0.2 Torr, the deposition temperature was 350 ° C., and the RF power was 10 to 1000 W. The composition ratio is 3 for B
5 to 40%, C is 20 to 25%, and N is 30 to 40% (% is% by weight). In addition, atomic%
Then, B: 33 to 47% C: 13 to 28% N: 14 to 32%.

なお、NとTMABとの流量比は2:1〜1:1が好ましい。この範囲とすることに
より、安定にプラズマ化でき、目的の膜組成がより確実に得られるという利点がある。
また、N2ガスをはじめに導入してプラズマが安定(30〜60sec程度)してからT
MABを導入することもより確実に目的の膜組成を得る上で好ましい。
The flow rate ratio between N 2 and TMAB is preferably 2: 1 to 1: 1. By setting it within this range, there is an advantage that the plasma can be stably formed and the target film composition can be obtained more reliably.
Also, after N2 gas is first introduced and the plasma is stabilized (about 30 to 60 seconds), T
Introducing MAB is also preferable for obtaining a desired film composition more reliably.

実験から、BCN膜の比誘電率(k値)は、RFパワーが低い方がk値が小さくなる傾
向があった。図1は、従来のBCl3ガスと本発明のTMABガス(RFパワー:20W
)を用いて成膜した比誘電率(k値)を示す。TMABガスを用いた成膜は20Wで行っ
た結果で、k=2.08を中心に±0.5程度しか変動がない。これに対して、従来のB
Cl3膜は、最小値ではk=1.9台もあるが、全体としてはk=2.14を中心に±2
.0程度のバラツキがあり、k値がバラツいている。
From the experiments, the relative permittivity (k value) of the BCN film tended to be smaller as the RF power was lower. FIG. 1 shows a conventional BCl3 gas and a TMAB gas of the present invention (RF power: 20 W).
) Shows the relative dielectric constant (k value). The film formation using the TMAB gas was performed at 20 W, and there was only a change of about ± 0.5 around k = 2.08. In contrast, the conventional B
The Cl3 film has k = 1.9 units at the minimum value, but as a whole, ± 2 around k = 2.14.
. There is a variation of about 0, and the k value varies.

RFパワーの好まし範囲は、20W〜60Wである。この範囲においては、TMABの
CH3が分解されずに膜中に取り込まれやすく、また分極体積率が大きい二重や三重結合
が形成されにくいというメリットが得られる。より好ましくは40W以下、さらに好まし
くは30W以下である。
The preferred range of RF power is 20W-60W. In this range, there is an advantage that the CH3 of TMAB is easily taken into the film without being decomposed, and a double or triple bond having a large polarization volume fraction is difficult to be formed. More preferably, it is 40W or less, More preferably, it is 30W or less.

また、Nガス雰囲気中で30分間、350℃のアニールを施すことによって、TMA
Bガスで作成したBCN膜のk値は、バラツキが少ない状態で中心値k=1.94まで低
減した。
In addition, by performing annealing at 350 ° C. for 30 minutes in an N 2 gas atmosphere, TMA
The k value of the BCN film made of B gas was reduced to the center value k = 1.94 with little variation.

なお、従来のBCN膜の成長条件は、N(1.0sccm)、CH(0.5scc
m)、BCl(0.8sccm)、H(1.0sccm)、RFパワー(80W)、
成膜温度は390℃で行った。
The conventional BCN film growth conditions are N 2 (1.0 sccm), CH 4 (0.5 scc).
m), BCl 3 (0.8 sccm), H 2 (1.0 sccm), RF power (80 W),
The film forming temperature was 390 ° C.

TMABガスによるBCN膜中の元素組成比は、RFパワーを小さくするにしたがって
、B、Nの割合が減少し、Cが増えることが分析より明らかになっている。低RFパワー
でCの比率が高くなる理由は、RFパワーが小さいとC−H結合が分解せずにメチル基(
CH3)の状態で、膜中に取り込まれていることが推察される。そこで、従来のBCl
ガス成膜のBCN膜とTMABガス成膜のBCN膜のFT−IR(Fourier tr
ansform Infrared Spectrophotometer)で測定した
結果を図2に示す。
The analysis reveals that the elemental composition ratio in the BCN film by the TMAB gas decreases as the RF power decreases, and the ratio of B and N decreases and C increases. The reason for the high C ratio at low RF power is that when the RF power is low, the C—H bond is not decomposed and the methyl group (
In the state of CH3), it is presumed to be taken into the film. Therefore, conventional BCl 3
FT-IR (Fourier tr) of BCN film for gas deposition and BCN film for TMAB gas deposition
FIG. 2 shows the result of measurement with an infrared Infrared Spectrophotometer.

メチル基のC−H伸縮モード(メチル基CHに起因)を示す2962cm−1付近に
TMABガスではピークが見られるが、BClガスを用いた場合にはこのピークは見ら
ない。このピークの存在は、C−H結合のメチル基が分解されることなく膜中に取り込こ
まれていることを示唆しており、比較的空間的が多い安定な構造になっていると推察され
る。これに対し、BCl3ガスを用いた場合は、メチル基は存在せず、逆に膜中にC−C
の二重結合やB−N三重結合が形成されている場合がある。BCl3ガス系の成膜では、
条件によっては、FT−IRでこのような多重結合が観察されている場合が多い。
A peak is observed in the TMAB gas in the vicinity of 2962 cm −1 indicating the C—H stretching mode of the methyl group (due to the methyl group CH 3 ), but this peak is not observed when the BCl 3 gas is used. The presence of this peak suggests that the methyl group of the C—H bond has been incorporated into the film without being decomposed, and it is assumed that the structure is relatively stable with a large amount of space. Is done. On the other hand, when BCl3 gas is used, there is no methyl group, and conversely, C—C is present in the film.
In some cases, a double bond or a BN triple bond is formed. In film formation of BCl3 gas system,
Depending on conditions, such multiple bonds are often observed by FT-IR.

BCN膜の作成には、TMABガスとNガス以外に膜中のC濃度を制御するためにC
ガスを混合しても良い。また、アニール処理には、Hガスを用いても良い。
In preparation of the BCN film, in order to control the C concentration in the film in addition to TMAB gas and N 2 gas,
H 4 gas may be mixed. Further, H 2 gas may be used for the annealing treatment.

次に、BCN膜の強度をナノインデンターを用いて測定をした。図3は、縦軸を比誘電
率、横軸をヤング率とし、その関係を示したものである。現在使われているSiOC系の
ポーラス膜や有機膜は、ヤング率が10Gpa以下であるが、今回作成したBCN膜は、
ヤング率が26.5Gpaと32.1Gpaで、成膜条件を変化させてもほぼ20〜40
Gpaの範囲にある。しがって、このBCN膜はk値も2.5以下でヤング率も10Gp
a以上を保つことは十分可能である。ただ、あまり高すぎる(硬すぎる)と、Cu配線に
対してストレスがかかりすぎて、配線にストレスマイグレーションを生じてしまう。10
0Gpa以下が好ましく、80Gpa以下がより好ましい。
Next, the strength of the BCN film was measured using a nanoindenter. FIG. 3 shows the relationship with the relative dielectric constant on the vertical axis and the Young's modulus on the horizontal axis. Currently used SiOC-based porous films and organic films have a Young's modulus of 10 Gpa or less.
Young's modulus is 26.5 Gpa and 32.1 Gpa, even if the film forming conditions are changed, it is almost 20-40.
It is in the range of Gpa. Therefore, this BCN film has a k value of 2.5 or less and a Young's modulus of 10 Gp.
It is possible to keep a above a. However, if it is too high (too hard), too much stress is applied to the Cu wiring and stress migration occurs in the wiring. 10
0 Gpa or less is preferable, and 80 Gpa or less is more preferable.

本発明の実施に形態に係る層間絶縁膜を用いてデュアルダマシン法による形成した配線
構造を図4に示す。デュアルダマシン法は、ビア11と溝配線12の部分を同時に開口し
、導電材料の埋め込みもビア11と溝配線12とに対し同時に行い、平坦化工程を1回で
済ませる方式である。
FIG. 4 shows a wiring structure formed by the dual damascene method using the interlayer insulating film according to the embodiment of the present invention. The dual damascene method is a method in which the via 11 and the trench wiring 12 are simultaneously opened, and the conductive material is buried in the via 11 and the trench wiring 12 at the same time, so that the planarization process is completed once.

まず、ビア11及び溝配線12を埋め込む層となる絶縁層14を準備する。絶縁層14
は低誘電率材料(Low−k材料)として、本発明のBCN膜を用いる。
次に、絶縁層14上にフォトリソグラフィ技術でビア部開口のためのレジストパターニン
グを施し、CF系のガス(Cガス:n,mは整数)、例えばCガスにて絶
縁層14をドライエッチング加工する。その他、CF、CHF、CH、CH
F等のエッチングガスを用いても良い。更に、溝配線12部もレジストパターニングを施
し、CF系のガスにて絶縁層14をドライエッチング加工する。この場合は、溝の深さ
までエッチングし、途中でエッチングを停止することになる。ビア11および配線溝12
を形成した後、薬液によるクリーニング処理で残渣を除去する。
First, an insulating layer 14 to be a layer in which the via 11 and the trench wiring 12 are embedded is prepared. Insulating layer 14
Uses the BCN film of the present invention as a low dielectric constant material (Low-k material).
Next, resist patterning for opening the via portion is performed on the insulating layer 14 by photolithography, and CF x -based gas (C n F m gas: n and m are integers), for example, C 4 F 8 gas The insulating layer 14 is dry etched. Other than these, CF 4 , CHF 3 , CH 2 F 2 , CH 3
An etching gas such as F may be used. Further, the trench wiring 12 is also subjected to resist patterning, and the insulating layer 14 is dry-etched with a CF x gas. In this case, etching is performed up to the depth of the groove, and the etching is stopped halfway. Via 11 and wiring trench 12
After forming, the residue is removed by a cleaning process using a chemical solution.

バイアメタル13としてTaN膜、Ru膜またはTaN/Taの積層膜を、絶縁層14
が露出している全面にスパッタ法またはCVD法にて堆積する。シードとなるCu膜をス
パッタ法にて堆積し、めっきCu膜12をビアおよび溝配線に埋設する。平坦化のために
、余剰のめっきCu膜は化学的機械研磨法(Chemical Mechanical
Polishing Method、以下CMP法という。)にて研磨除去され、図4に
示す構造が形成される。埋設する金属は、Cu−Alの合金、Cu−Mg合金、Ag、A
g合金でもよい。
A TaN film, Ru film or TaN / Ta laminated film is used as the via metal 13 and the insulating layer 14.
Is deposited on the entire exposed surface by sputtering or CVD. A Cu film to be a seed is deposited by sputtering, and the plated Cu film 12 is embedded in the via and the trench wiring. For planarization, the surplus plated Cu film is removed by chemical mechanical polishing (Chemical Mechanical Polishing).
Polishing Method, hereinafter referred to as CMP method. 4), the structure shown in FIG. 4 is formed. The buried metal is Cu-Al alloy, Cu-Mg alloy, Ag, A
g alloy may also be used.

CMPを用いた平坦化加工時に、摩擦力、せん断力などに対して軟弱であると、幅広い
配線パターンを有する部分ではいわゆる“ディッシング”と呼ばれるくぼみの形成を招く
。また、配線の密集した領域においては“エロージョン”を招く。このため平坦化加工が
良好に行われるためには、絶縁層14が適正な機械的強度を有しなければならない。
When the planarizing process using CMP is soft against frictional force, shearing force, etc., a so-called “dishing” indentation is formed in a portion having a wide wiring pattern. Further, “erosion” is caused in a densely packed region. For this reason, in order for the flattening process to be performed satisfactorily, the insulating layer 14 must have an appropriate mechanical strength.

CMPプロセスの場合、平坦化加工に晒される表面膜に要求される機械的特性は、おお
よそヤング率は10GPa以上程度と見積もられるが、本発明の実施の形態に係るBCN
膜はヤング率25GPa以上の機械的強度を有し、十分な耐性を有している。加えて誘電
率も2.2程度と通常のポーラスLowK膜などと比較し十分小さく、デバイスの一部と
しても十分な電気的特性を発揮すると期待できる。
In the case of the CMP process, the mechanical properties required for the surface film exposed to the flattening process are estimated to have a Young's modulus of about 10 GPa or more, but the BCN according to the embodiment of the present invention is used.
The film has a mechanical strength of Young's modulus of 25 GPa or more and has a sufficient resistance. In addition, the dielectric constant is about 2.2, which is sufficiently smaller than that of a normal porous Low K film and the like, and can be expected to exhibit sufficient electrical characteristics as a part of the device.

以上、本発明の実施の形態について説明したが、本発明はこれに限られること無く、本
発明の趣旨の範囲で種々変形、改良されたダマシン法による配線形成方法が、本発明の範
囲内において実行できることは言うまでもない。
The embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications and improvements of the damascene method for forming a wiring within the scope of the present invention are within the scope of the present invention. Needless to say, it can be done.

従来法および本発明によるBCN膜の誘電率の違いを示す図である。It is a figure which shows the difference in the dielectric constant of the BCN film | membrane by a conventional method and this invention. 従来法(BCl)および本発明の実施例(TMAB)によるBCN膜のFT−IRスペクトルの違いを示す図である。It is a diagram illustrating the difference in FT-IR spectra of the BCN film according to Example (TMAB) conventional method (BCl 3) and the present invention. 各種低誘電率膜のヤング率と比誘電率を示す図である。It is a figure which shows the Young's modulus and relative dielectric constant of various low dielectric constant films. 本発明の実施例に係る配線構造を説明する模式図である。It is a schematic diagram explaining the wiring structure which concerns on the Example of this invention.

11:ビア部に埋設した金属 (Cu膜)
12:配線溝に埋設した金属 (Cu膜)
13:バリアメタル膜 (TaN膜)
14:配線層間絶縁膜(BCN膜)
15: バリア絶縁膜(SiCN膜)
16:配線層間絶縁膜(BCN膜)
17:配線部(Cu膜)
11: Metal embedded in via (Cu film)
12: Metal embedded in wiring trench (Cu film)
13: Barrier metal film (TaN film)
14: Wiring interlayer insulating film (BCN film)
15: Barrier insulating film (SiCN film)
16: Wiring interlayer insulating film (BCN film)
17: Wiring part (Cu film)

Claims (12)

トリスジメチルアミノボロンとNを用いて窒化ホウ素炭素(BCN)系絶縁膜を形成する絶縁膜の製造方法。 An insulating film manufacturing method for forming a boron nitride carbon (BCN) -based insulating film using trisdimethylaminoboron and N 2 . 前記BCN膜は、PACVD法を用いて形成する請求項1記載の絶縁膜の製造方法。 The method for manufacturing an insulating film according to claim 1, wherein the BCN film is formed using a PACVD method. 前記トリスジメチルアミノボロンはガスボンベおよびガス配管、マスフロコントローラを50℃以上に加熱してガスを供給する請求項1又は2記載の絶縁膜の製造方法。 The insulating film manufacturing method according to claim 1, wherein the trisdimethylaminoboron is supplied with gas by heating a gas cylinder, a gas pipe, and a mass flow controller to 50 ° C. or more. 前記ガスとして供給するNとTMABとの流量比は2:1〜1:1である請求項1乃至3のいずれか1項記載の請求項1記載の絶縁膜の製造方法。 Method for producing 1 an insulating film according to claim 1, wherein any one of claims 1 to 3 is: flow ratio 2 of N 2 and TMAB supplied as the gas: 1 to 1. 前記CVD法におけるRFパワーは40W以下である請求項1乃至4のいずれか1項記載の請求項1記載の絶縁膜の製造方法。 The method for manufacturing an insulating film according to claim 1, wherein an RF power in the CVD method is 40 W or less. ガス雰囲気中で30分間、300〜400℃のアニールを施す請求項1乃至5のいずれか1項記載の請求項1記載の絶縁膜の製造方法。 The insulating film manufacturing method according to claim 1, wherein annealing is performed at 300 to 400 ° C. for 30 minutes in an N 2 gas atmosphere. BCN膜の作成には、CHガスを混合する請求項1乃至6のいずれか1項記載の請求項1記載の絶縁膜の製造方法。 The method for manufacturing an insulating film according to any one of claims 1 to 6, wherein CH 4 gas is mixed for forming the BCN film. 前記アニール処理には、Hガスを用いる請求項6項記載の絶縁膜の製造方法。 The method for manufacturing an insulating film according to claim 6, wherein H 2 gas is used for the annealing treatment. 請求項1乃至8のいずれか1項記載の請求項1記載の方法により製造されたBCN系の絶縁膜。 A BCN-based insulating film manufactured by the method according to claim 1. 請求項9記載の絶縁膜を配線層間の絶縁膜として有する半導体装置。 A semiconductor device comprising the insulating film according to claim 9 as an insulating film between wiring layers. 請求項9記載の絶縁膜に設けられた配線溝と、該配線溝に対応して前記BCN系絶縁膜に設けられたビアホールとに導電層が充填された構造を有する半導体装置。 10. A semiconductor device having a structure in which a conductive layer is filled in a wiring groove provided in an insulating film according to claim 9 and a via hole provided in the BCN insulating film corresponding to the wiring groove. 前記ビアホールは、フッ化炭素ガスを用いてドライエッチングにより形成されている請求項11記載の半導体装置。 The semiconductor device according to claim 11, wherein the via hole is formed by dry etching using a fluorocarbon gas.
JP2012014596A 2012-01-26 2012-01-26 Bcn based insulating film, method of producing the same and semiconductor device Pending JP2012094900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014596A JP2012094900A (en) 2012-01-26 2012-01-26 Bcn based insulating film, method of producing the same and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014596A JP2012094900A (en) 2012-01-26 2012-01-26 Bcn based insulating film, method of producing the same and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007247585A Division JP5134326B2 (en) 2007-09-25 2007-09-25 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2012094900A true JP2012094900A (en) 2012-05-17

Family

ID=46387834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014596A Pending JP2012094900A (en) 2012-01-26 2012-01-26 Bcn based insulating film, method of producing the same and semiconductor device

Country Status (1)

Country Link
JP (1) JP2012094900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950015A (en) * 2012-09-21 2013-03-06 燕山大学 Method for preparing boron carbon nitride nanotube with high oxygen reduction catalytic activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226478A (en) * 1991-10-29 1993-09-03 Internatl Business Mach Corp <Ibm> Method for formation of stud for semiconductor structure use and semiconductor device
JP2000100803A (en) * 1998-09-21 2000-04-07 Nec Corp Manufacturing equipment of polymer film and film- forming method using the same
JP2005005584A (en) * 2003-06-13 2005-01-06 Mitsubishi Electric Corp Low dielectric constant thin film and semiconductor device with same
JP2005167044A (en) * 2003-12-04 2005-06-23 Mitsubishi Electric Corp Forming method of low dielectric constant film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226478A (en) * 1991-10-29 1993-09-03 Internatl Business Mach Corp <Ibm> Method for formation of stud for semiconductor structure use and semiconductor device
JP2000100803A (en) * 1998-09-21 2000-04-07 Nec Corp Manufacturing equipment of polymer film and film- forming method using the same
JP2005005584A (en) * 2003-06-13 2005-01-06 Mitsubishi Electric Corp Low dielectric constant thin film and semiconductor device with same
JP2005167044A (en) * 2003-12-04 2005-06-23 Mitsubishi Electric Corp Forming method of low dielectric constant film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950015A (en) * 2012-09-21 2013-03-06 燕山大学 Method for preparing boron carbon nitride nanotube with high oxygen reduction catalytic activity

Similar Documents

Publication Publication Date Title
US9960117B2 (en) Air gap semiconductor structure with selective cap bilayer
JP4656147B2 (en) Method for forming porous insulating film and semiconductor device
TWI222170B (en) Interconnect structures containing stress adjustment cap layer
JP5093479B2 (en) Method for forming porous insulating film
JP2011166106A (en) Semiconductor device manufacturing method, and semiconductor device
US9059259B2 (en) Hard mask for back-end-of-line (BEOL) interconnect structure
US20070059919A1 (en) Method of manufacturing semiconductor device
TWI528454B (en) Semiconductor device and method of manufacturing semiconductor device
TW201042706A (en) Structures and methods for integration of ultralow-k dielectrics with improved reliability
JP2010093235A (en) Semiconductor device and method of manufacturing the same
JP5349789B2 (en) Method for forming multilayer wiring
JP2010278330A (en) Semiconductor device and method of manufacturing semiconductor device
JP2007221039A (en) Insulation film and insulation film material
TWI295485B (en) Method of improving low-k film property and damascene process using the same
KR20140065450A (en) Method for forming air gap interconnect structure
JP2007027347A (en) Semiconductor device and manufacturing method thereof
US6576545B1 (en) Semiconductor devices with dual nature capping/ARC layers on fluorine doped silica glass inter-layer dielectrics and method of forming capping/ARC layers
JP5134326B2 (en) Manufacturing method of semiconductor device
CN106158729B (en) The forming method of semiconductor structure
JP2012094900A (en) Bcn based insulating film, method of producing the same and semiconductor device
JP4523351B2 (en) Manufacturing method of semiconductor device
JP2007294967A (en) Interconnecting structure of longer lifetime, and manufacturing method therefor
US20110081503A1 (en) Method of depositing stable and adhesive interface between fluorine-based low-k material and metal barrier layer
JP2005223195A (en) Method for forming interlayer insulating film and method for manufacturing semiconductor device
JP2009094123A (en) Method of manufacturing semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140716