JP2005167044A - Forming method of low dielectric constant film - Google Patents

Forming method of low dielectric constant film Download PDF

Info

Publication number
JP2005167044A
JP2005167044A JP2003405416A JP2003405416A JP2005167044A JP 2005167044 A JP2005167044 A JP 2005167044A JP 2003405416 A JP2003405416 A JP 2003405416A JP 2003405416 A JP2003405416 A JP 2003405416A JP 2005167044 A JP2005167044 A JP 2005167044A
Authority
JP
Japan
Prior art keywords
group
compound
film
dielectric constant
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003405416A
Other languages
Japanese (ja)
Other versions
JP3966273B2 (en
Inventor
Teruhiko Kumada
輝彦 熊田
Atsuko Fujino
敦子 藤野
Eiji Nobutoki
英治 信時
Shigeru Matsuno
繁 松野
Norihisa Matsumoto
紀久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003405416A priority Critical patent/JP3966273B2/en
Publication of JP2005167044A publication Critical patent/JP2005167044A/en
Application granted granted Critical
Publication of JP3966273B2 publication Critical patent/JP3966273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low dielectric constant film which is excellent in the reproducibility of a formed film thickness in a film formation process and has a uniform property by preventing the lowering of film formation velocity in the film formation process and stabilizing film formation velocity. <P>SOLUTION: A borazine compound has a borazine frame expressed by a chemical formula (1). In the formula, X<SB>1</SB>, X<SB>2</SB>and X<SB>3</SB>can be the same or differ from one another and are hydrogen atoms, an amino group, a 1-4 C alkyl group, an alkenyl group, an alkynyl group, and a monoalkyl amino group or a dialkyl amino group, Y<SB>1</SB>, Y<SB>2</SB>and Y<SB>3</SB>can be the same or differ from one another and are hydrogen atoms, a 1-4 C alkyl group, an alkenyl group, an alkynyl group or a 3-12 C trialkylsilyl group each, and all of X<SB>1</SB>, X<SB>2</SB>, X<SB>3</SB>, Y<SB>1</SB>, Y<SB>2</SB>and Y<SB>3</SB>are not hydrogen atoms. The compound is dissolved and a film is formed by chemical vapor deposition by using a mixture with liquid which does not react with the compound and whose boiling temperature under atmospheric pressure is less than a gasification temperature of the compound as a raw material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子の層間などに用いられる絶縁膜や電気回路部品の基板などに用いられる低誘電率膜を化学的気相成長(以下CVDと略す)法により成膜する低誘電率膜の形成方法に関するものである。   The present invention relates to a low dielectric constant film formed by a chemical vapor deposition (hereinafter abbreviated as CVD) method for a low dielectric constant film used for an insulating film used between layers of a semiconductor element or a substrate of an electric circuit component. The present invention relates to a forming method.

半導体素子の高速化、高集積化につれて、信号遅延の問題が深刻になりつつある。信号遅延は配線の抵抗と、配線間および層間の容量との積で表されるものであり、信号遅延を最小に抑えるためには、配線抵抗を低下させることと並んで、層間絶縁膜の誘電率を下げることが有効な手段である。
最近では、被処理体の表面に、ハイドロカーボン系ガスとボラジンとプラズマ系ガスとを含む雰囲気でプラズマCVDにより、B−C−N結合を含む層間絶縁膜を形成する方法が開示されている。なお、上記層間絶縁膜は誘電率が低いことも開示されている(例えば、特許文献1参照)。
As the speed and integration of semiconductor devices increase, the problem of signal delay is becoming serious. The signal delay is expressed by the product of the wiring resistance and the capacitance between the wirings and between the layers. In order to minimize the signal delay, in addition to reducing the wiring resistance, the dielectric of the interlayer insulating film Lowering the rate is an effective means.
Recently, a method for forming an interlayer insulating film including a B—C—N bond on a surface of an object to be processed by plasma CVD in an atmosphere including a hydrocarbon gas, a borazine, and a plasma gas has been disclosed. It is also disclosed that the interlayer insulating film has a low dielectric constant (see, for example, Patent Document 1).

特開平11−354956号公報(第1頁)Japanese Patent Laid-Open No. 11-354958 (first page)

しかしながら、上記従来の方法では、ボラジンをCVD原料として用いるため、低誘電率で高機械強度の膜を成膜できるが、耐水性に乏しいために、これらの特性が持続しないという課題があった。   However, in the above conventional method, since borazine is used as a CVD raw material, a film having a low dielectric constant and a high mechanical strength can be formed. However, since the water resistance is poor, there is a problem that these characteristics are not sustained.

本発明は、かかる課題を解決するためになされたものであり、低誘電率と高機械強度を長期にわたり安定して得られるとともに、成膜工程中の成膜速度の低下が防止されて成膜速度が安定することにより、成膜工程中の成膜厚の再現性に優れ、均一な特性の低誘電率膜が得られる低誘電率膜の形成方法を得ることを目的とする。   The present invention has been made to solve such a problem, and can stably obtain a low dielectric constant and a high mechanical strength over a long period of time, and prevents a decrease in film formation rate during the film formation process. It is an object of the present invention to provide a method for forming a low dielectric constant film, which is excellent in the reproducibility of the film thickness during the film forming process and can obtain a low dielectric constant film having uniform characteristics by stabilizing the speed.

本発明に係る第1の低誘電率膜の形成方法は、下記化学式(1)で示されるボラジン骨格を有する化合物   The first low dielectric constant film forming method according to the present invention includes a compound having a borazine skeleton represented by the following chemical formula (1):

Figure 2005167044
(上式中、X、X、Xは同一でも異なっていてもよく、それぞれ水素原子、アミノ基、炭素数1〜4のアルキル基、アルケニル基、アルキニル基、モノアルキルアミノ基またはジアルキルアミノ基、Y、Y、Yは同一でも異なっていてもよく、それぞれ水素原子、炭素数1〜4のアルキル基、アルケニル基、アルキニル基または炭素数3〜12のトリアルキルシリル基で、X、X、X、Y、YおよびYの全てが水素原子ではない。)
と、この化合物を溶解し、かつこの化合物と反応せず、大気圧下の沸点が上記化合物の気化温度未満である液体との混合物を原料として、化学的気相成長法により成膜することを特徴とするものである。
Figure 2005167044
(In the above formula, X 1 , X 2 and X 3 may be the same or different, and each is a hydrogen atom, amino group, alkyl group having 1 to 4 carbon atoms, alkenyl group, alkynyl group, monoalkylamino group or dialkyl. The amino group, Y 1 , Y 2 and Y 3 may be the same or different, and each is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group, an alkynyl group or a trialkylsilyl group having 3 to 12 carbon atoms. , X 1 , X 2 , X 3 , Y 1 , Y 2 and Y 3 are not all hydrogen atoms.)
And a chemical vapor deposition method using, as a raw material, a mixture of the compound with a liquid that dissolves the compound and does not react with the compound and has a boiling point under atmospheric pressure that is lower than the vaporization temperature of the compound. It is a feature.

本発明の第1の低誘電率膜の形成方法は、上記化学式(1)で示されるボラジン骨格を有する化合物と、この化合物を溶解し、かつこの化合物と反応せず、大気圧下の沸点が上記化合物の気化温度未満である液体との混合物を原料として、化学的気相成長法により成膜することにより、成膜工程中の成膜速度の低下が防止されて成膜速度が安定することにより、成膜工程中の成膜厚の再現性が優れ、均一な特性の低誘電率膜が得られるという効果がある。   The first method for forming a low dielectric constant film of the present invention comprises a compound having a borazine skeleton represented by the above chemical formula (1), a compound that dissolves the compound and does not react with the compound, and has a boiling point under atmospheric pressure. Film formation by chemical vapor deposition using a mixture of the above compound with a liquid having a temperature lower than the vaporization temperature as a raw material prevents a decrease in film formation rate during the film formation process and stabilizes the film formation rate. As a result, the reproducibility of the film thickness during the film formation process is excellent, and a low dielectric constant film having uniform characteristics can be obtained.

実施の形態1.
上記化学式(1)で示されるボラジン骨格を有する化合物{以下ボラジン化合物(1)と略す}を原料としてCVD法により成膜したものは、誘電率が低く、高機械強度で、しかも耐水性に優れているため上記特性が長期にわたり持続することができる。しかし、CVD法において、固体状のボラジン化合物(1)をCVD原料とし、これを加熱溶融して得た蒸気を反応容器に導入して成膜を行う場合、成膜を繰り返し継続して行うと上記ボラジン化合物(1)の劣化が起こり、成膜工程中に成膜速度が低下して均一な特性の膜が得られない。
Embodiment 1 FIG.
A film formed by CVD using a compound having a borazine skeleton represented by the above chemical formula (1) {hereinafter abbreviated as borazine compound (1)} as a raw material has a low dielectric constant, high mechanical strength, and excellent water resistance. Therefore, the above characteristics can be maintained for a long time. However, in the CVD method, when the solid borazine compound (1) is used as a CVD raw material and the vapor obtained by heating and melting it is introduced into a reaction vessel to form a film, Degradation of the borazine compound (1) occurs, and the film formation rate decreases during the film formation process, so that a film having uniform characteristics cannot be obtained.

そこで、本発明の第1の実施の形態の低誘電率膜の形成方法は、CVD原料としてボラジン化合物(1)を下記液体に溶解した混合物を用いて成膜するもので、上記混合物を原料とすることにより、ボラジン化合物(1)を気化させるために必要な温度を、上記ボラジン化合物(1)固体を直接溶融気化する温度より低くすることができるため、成膜に用いられる前にボラジン化合物(1)が分解されることを防止でき、成膜工程中の成膜速度の低下が防止され、形成された膜の特性を一定に保つことができる。   Therefore, the method for forming a low dielectric constant film according to the first embodiment of the present invention is to form a film using a mixture obtained by dissolving borazine compound (1) in the following liquid as a CVD raw material. By doing so, the temperature necessary for vaporizing the borazine compound (1) can be made lower than the temperature at which the borazine compound (1) solid is directly melted and vaporized, so that the borazine compound ( 1) can be prevented from being decomposed, the film forming speed during the film forming process is prevented from being lowered, and the characteristics of the formed film can be kept constant.

そこで、本実施の形態に係わる上記液体としては、上記ボラジン化合物(1)を溶解し、かつボラジン化合物(1)と反応せず、大気圧下の沸点が上記化合物の気化温度未満であるものを用いることにより上記効果を得ることができる。
なお、上記液体としてはボラジン化合物(1)と反応しないものであるが、具体的には上記化合物(1)は例えば酸性条件下での分解反応が進みやすいため、酸性度を高くするような電子吸引性基(CO基、CN基、NO基等)を含んでいない溶剤、および酸性度を高くするような活性水素となる基(例えばOH基)を含んでいない液体を用いることができる。つまり、上記液体としては酢酸、プロピオン酸等のカルボン酸やこれらのエステル化合物、並びにアセチルアセトン等のα、γ−ジケトン化合物、アルコール類は使用することができない。
以上のことから、本実施の形態に係わる液体として、芳香族炭化水素類、脂肪族炭化水素、環状脂肪族炭化水素、脂肪族エーテル、アルキル置換アミン、アルキル置換ボラン、アルキルアミノ置換ボラン類の中から任意に選択すると、上記条件を満たすものとして、例えばテトラヒドロフラン、キシレン、シクロヘキサン、ヘキサン、トリエチルアミンまたはトリスジメチルアミノボランが用いられる。
Therefore, the liquid according to the present embodiment is one that dissolves the borazine compound (1) and does not react with the borazine compound (1), and has a boiling point under atmospheric pressure that is lower than the vaporization temperature of the compound. By using this, the above effect can be obtained.
Although the liquid does not react with the borazine compound (1), specifically, the compound (1) easily undergoes a decomposition reaction under acidic conditions. A solvent that does not contain an attractive group (CO group, CN group, NO 2 group, etc.), and a liquid that does not contain a group that becomes active hydrogen (for example, an OH group) that increases the acidity can be used. That is, as the liquid, carboxylic acids such as acetic acid and propionic acid, ester compounds thereof, α, γ-diketone compounds such as acetylacetone, and alcohols cannot be used.
Based on the above, liquids according to the present embodiment include aromatic hydrocarbons, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aliphatic ethers, alkyl-substituted amines, alkyl-substituted boranes, and alkylamino-substituted boranes. When arbitrarily selected from the above, for example, tetrahydrofuran, xylene, cyclohexane, hexane, triethylamine, or trisdimethylaminoborane is used as a material that satisfies the above conditions.

また、本実施の形態に係わるCVD原料はボラジン化合物(1)を上記本実施の形態に係わる液に溶解させたものであるが、ボラジン化合物(1)が1〜10mol/lの濃度範囲で溶解させたものを用いることが望ましい。1mol/l未満では十分な成膜速度が得られなかったり、誘電率が高くなり、10mol/lを越えると溶液の粘度が高くなることから、原料の供給速度が不安定になる。   The CVD raw material according to the present embodiment is obtained by dissolving the borazine compound (1) in the liquid according to the present embodiment, but the borazine compound (1) is dissolved in a concentration range of 1 to 10 mol / l. It is desirable to use those that have been prepared. If it is less than 1 mol / l, a sufficient film formation rate cannot be obtained, or the dielectric constant increases, and if it exceeds 10 mol / l, the viscosity of the solution increases, so that the material supply rate becomes unstable.

本実施の形態に係わるCVD法において、キャリアガスとしてヘリウム、アルゴンまたは窒素等を用い、ボラジン化合物(1)を溶解した原料を上記キャリアガスが流れている配管中に導入してボラジン化合物(1)を成膜させる基板近傍へ移動させる。
この時、上記キャリアガスにメタン、アンモニアまたはアルキルアミン類の化合物を混合して成膜される膜の特性を所望のものにコントロールすることもできる。
上記キャリアガスの流量は100〜1000sccm、メタンまたはアミン類ガスの流量は5〜100sccmの範囲で任意に設定する。ここで、上記キャリアガスの流量が100sccm未満では所望の膜厚を得るための時間が極端に遅くなり、膜の形成が進まない場合もある。また、1000sccmを越えると基板面内の膜厚均一性が悪化する傾向がある。メタンまたはアミン類ガスの流量が100sccmを越えると得られた膜の誘電率が大きくなる。
In the CVD method according to this embodiment, helium, argon, nitrogen, or the like is used as a carrier gas, and a raw material in which the borazine compound (1) is dissolved is introduced into the pipe through which the carrier gas flows, and the borazine compound (1). Is moved to the vicinity of the substrate on which the film is formed.
At this time, the characteristics of the film formed by mixing the carrier gas with a compound of methane, ammonia or an alkylamine can be controlled to a desired value.
The flow rate of the carrier gas is arbitrarily set in the range of 100 to 1000 sccm, and the flow rate of methane or amines gas is in the range of 5 to 100 sccm. Here, when the flow rate of the carrier gas is less than 100 sccm, the time for obtaining a desired film thickness becomes extremely slow, and the film formation may not proceed. On the other hand, if it exceeds 1000 sccm, the film thickness uniformity in the substrate surface tends to deteriorate. When the flow rate of methane or amine gas exceeds 100 sccm, the dielectric constant of the obtained film increases.

上記のようにして基板近傍に運ばれた上記ガス化された原料が、化学反応を伴って基板上に堆積することにより膜が形成されるが、化学反応を効率よく起こすために熱、プラズマまたはレーザー光等を用いることができ、これらを複合させて用いてもよい。熱を用いる場合は、ガス温度および基板温度を室温から400℃までの間でコントロールする。ここで、原料ガスおよび基板温度が400℃を越えると所望の膜厚を得るための時間が極端に遅くなり、膜の形成が進まない場合もある。
また、プラズマを用いる場合は、平行平板型のプラズマ発生器内に基板を設置してその中へ上記原料ガスを導入する。このとき用いるRFの周波数は13.56MHzまたは400kHzで、パワーは5〜1000Wの範囲で任意に設定することができる。これら異なる周波数のRFを混合して用いることもできる。ここで、プラズマCVDを行うために用いるRFのパワーが1000Wを越えると、ボラジン化合物(1)のプラズマによる分解の頻度が増し、所望のボラジン構造を有する膜を得ることができ難くなる。
さらに光を用いる場合は原料ガスの導入経路中または基板面上にKrFエシキマレーザや低圧水銀ランプから得られるdeepUV光等を使用する。
The gasified raw material carried in the vicinity of the substrate as described above is deposited on the substrate with a chemical reaction to form a film, but in order to cause the chemical reaction efficiently, heat, plasma or Laser light or the like can be used, and these may be used in combination. When heat is used, the gas temperature and substrate temperature are controlled between room temperature and 400 ° C. Here, if the source gas and the substrate temperature exceed 400 ° C., the time for obtaining a desired film thickness becomes extremely slow, and the film formation may not proceed.
When plasma is used, a substrate is placed in a parallel plate type plasma generator, and the source gas is introduced into the substrate. The RF frequency used at this time is 13.56 MHz or 400 kHz, and the power can be arbitrarily set within a range of 5 to 1000 W. It is also possible to use a mixture of RFs having different frequencies. Here, if the RF power used for plasma CVD exceeds 1000 W, the frequency of decomposition of the borazine compound (1) by plasma increases, and it becomes difficult to obtain a film having a desired borazine structure.
Further, when using light, deep UV light obtained from a KrF excimer laser or a low-pressure mercury lamp is used in the introduction path of the source gas or on the substrate surface.

なお、本実施の形態に係わるボラジン化合物(1)において、ほう素上の水素原子に置換される基としてはアミノ基、炭素数1〜4のアルキル基、アルケニル基、アルキニル基、モノアルキルアミノ基またはジアルキルアミノ基が挙げられ、炭素を含む基において炭素数が4より大きくなると成膜された膜中の炭素原子含有量が多くなり、膜の耐熱性、機械強度が劣化する。
一方、窒素原子上の水素原子に置換される基としては炭素数1〜4のアルキル基、アルケニル基、アルキニル基、炭素数3〜12のトリアルキルシリル基が挙げられる。ほう素原子上の置換基と同様に炭素を含む基において炭素数が記載の炭素数より大きくなると成膜された膜中の炭素原子含有量が多くなり、膜の耐熱性、機械強度が劣化する。
In the borazine compound (1) according to the present embodiment, the group substituted with a hydrogen atom on boron is an amino group, an alkyl group having 1 to 4 carbon atoms, an alkenyl group, an alkynyl group, or a monoalkylamino group. Or a dialkylamino group is mentioned, and when the number of carbon atoms in a group containing carbon is larger than 4, the carbon atom content in the formed film increases, and the heat resistance and mechanical strength of the film deteriorate.
On the other hand, examples of the group substituted with a hydrogen atom on the nitrogen atom include an alkyl group having 1 to 4 carbon atoms, an alkenyl group, an alkynyl group, and a trialkylsilyl group having 3 to 12 carbon atoms. In the group containing carbon as in the substituent on the boron atom, if the carbon number is larger than the number of carbons described, the carbon atom content in the formed film increases, and the heat resistance and mechanical strength of the film deteriorate. .

実施例1.
キャリアガスとして窒素ガスを用いて、B,B,B−トリエチルボラジンを1mol/lの濃度となるように溶解させたテトラヒドロフラン溶液からなるCVD原料溶液を、加熱された導入管を通じて基板が置かれた反応容器中に5分間導入して成膜を行ない(これを1回の成膜とする)、基板に形成された膜の膜厚とその特性(誘電率)を表1の成膜回数1回目の欄に示す。この時、反応容器に到るまでの配管温度は23℃とし、基板温度を300℃に加熱し、B,B,B−トリエチルボラジンの蒸気温度は反応容器内で150℃とした。また、原料ガスの流量は100sccmとし、反応容器中は周波数13.56MHzのRFを100Wで稼動させて反応ガスをプラズマ化させるようにした。
次に、基板をさらに29枚用意し、上記反応容器中で、上記「1回の成膜」を上記各基板に順次継続して施し、2回目、10回目、30回目に成膜された基板における膜の膜厚とその特性(誘電率)を表1に示す。
Example 1.
A substrate was placed through a heated introduction tube with a CVD raw material solution comprising a tetrahydrofuran solution in which B, B, B-triethylborazine was dissolved to a concentration of 1 mol / l using nitrogen gas as a carrier gas. The film is introduced into the reaction vessel for 5 minutes to form a film (this is referred to as one film formation), and the film thickness and characteristics (dielectric constant) of the film formed on the substrate are shown in Table 1. It is shown in the column. At this time, the piping temperature to reach the reaction vessel was 23 ° C., the substrate temperature was heated to 300 ° C., and the vapor temperature of B, B, B-triethylborazine was 150 ° C. in the reaction vessel. The flow rate of the source gas was 100 sccm, and the reaction gas was turned into plasma by operating RF with a frequency of 13.56 MHz at 100 W in the reaction vessel.
Next, 29 more substrates were prepared, and in the reaction vessel, the above-mentioned “one film formation” was successively performed on each of the above substrates, and the substrates formed on the second, tenth, and thirty times. Table 1 shows the film thickness and characteristics (dielectric constant) thereof.

Figure 2005167044
Figure 2005167044

比較例1.
実施例1において、原料ガスの導入を、B,B,B−トリエチルボラジン単体を150℃に加熱することにより気化して得た上記ボラジンの蒸気をキャリアガスによって行う他は実施例1と同様にして成膜を行ない結果を表1に示す。
Comparative Example 1
In Example 1, the raw material gas was introduced in the same manner as in Example 1 except that the vapor of the borazine obtained by evaporating the B, B, B-triethylborazine simple substance to 150 ° C. was used as the carrier gas. The results are shown in Table 1.

表1から明らかなように、実施例1では、ボラジン化合物(1)を溶液状態で反応容器中に導入することで、成膜を繰り返し継続して行った場合でも安定した膜形成が可能となる。
一方、比較例1のように、ボラジン化合物(1)を加熱して直接反応容器内に導入する方法では、繰り返し成膜を行なっていくと成膜速度および誘電率等の特性が変化してしまうことが分かる。これはボラジン化合物(1)が熱により反応し、原料組成に変化等が起こることで安定した成膜ができなくなることを示している。
As is apparent from Table 1, in Example 1, the borazine compound (1) is introduced into the reaction vessel in a solution state, so that stable film formation can be achieved even when film formation is repeatedly performed. .
On the other hand, in the method in which the borazine compound (1) is heated and directly introduced into the reaction vessel as in Comparative Example 1, characteristics such as film formation rate and dielectric constant change when film formation is repeated. I understand that. This indicates that the borazine compound (1) reacts with heat and changes in the raw material composition cause stable film formation.

実施例2〜6.
表2に示すように、各ボラジン化合物を各液体に所定濃度で溶解したものを、CVD法の原料とする他は実施例1と同様に基板上に成膜を行い、実施例1と同様に膜厚と特性を測定して上記表に示す。
Examples 2-6.
As shown in Table 2, film formation was performed on the substrate in the same manner as in Example 1 except that each borazine compound dissolved in each liquid at a predetermined concentration was used as a raw material for the CVD method. The film thickness and characteristics are measured and shown in the table above.

Figure 2005167044
Figure 2005167044

比較例2〜4.
表3に示すように、各ボラジン化合物(1)を各液体に所定濃度で溶解したものを、CVD法の原料とする他は実施例1と同様に基板上に成膜を行い、実施例1と同様に膜厚と特性を測定して上記表に示す。
Comparative Examples 2-4.
As shown in Table 3, a film was formed on a substrate in the same manner as in Example 1 except that each borazine compound (1) dissolved in each liquid at a predetermined concentration was used as a raw material for the CVD method. Similarly to the above, the film thickness and characteristics are measured and shown in the above table.

Figure 2005167044
Figure 2005167044

表2、3から明らかなように、実施例2〜6では成膜を繰り返した場合でも安定した膜形成が可能となるが、比較例2〜4では、ボラジン化合物が溶剤と反応して分解するため、成膜工程中に、大幅に成膜される膜厚が減少するとともに特性も低下することが示される。
また、実施例2と比較例2〜4とでは、同じボラジン化合物を用いているが、1回目の成膜から実施例2のほうが膜の誘電率が低いことも示され、これは比較例では溶媒中に含まれる活性水素によりボラジン化合物が一部分解したことによるものと考えられる。
As is clear from Tables 2 and 3, in Examples 2 to 6, stable film formation is possible even when the film formation is repeated, but in Comparative Examples 2 to 4, the borazine compound reacts with the solvent and decomposes. Therefore, during the film forming process, it is shown that the film thickness to be formed greatly decreases and the characteristics also deteriorate.
Further, Example 2 and Comparative Examples 2 to 4 use the same borazine compound, but it is also shown that Example 2 has a lower dielectric constant than Example 1 from the first film formation. This is considered to be due to partial decomposition of the borazine compound by active hydrogen contained in the solvent.

実施例7.
表4に示すように、B,B,B−トリエチルボラジンをシクロヘキサンに各濃度に溶媒希釈したものをCVD原料とする他は実施例1と同様に基板上に1回の成膜を行い、実施例1と同様に膜厚と特性を測定して上記表に示す。ただし、本実施例ではRFを300Wにして成膜を行った。
Example 7
As shown in Table 4, the film was formed once on the substrate in the same manner as in Example 1 except that B, B, B-triethylborazine was diluted with cyclohexane in various concentrations to obtain a CVD raw material. The film thickness and characteristics were measured in the same manner as in Example 1 and shown in the above table. However, in this example, the film was formed with RF of 300 W.

Figure 2005167044
Figure 2005167044

なお、溶媒希釈していないB,B,B−トリエチルボラジンについても同様に1回の成膜成膜を行なったものも表4に「希釈なし」として示す。   For the B, B, B-triethylborazine that has not been diluted with the solvent, the same film formed once is also shown as “no dilution” in Table 4.

表4中、膜厚均一性は面内膜厚の標準偏差値×3として示すが、溶剤にボラジン化合物を溶解したものが、ボラジン単体を加熱して気化したものに比べて、膜厚の均一性が大幅に優れていることが示されるが、特に1〜10mol/lの濃度範囲のものの均一性が優れていることが解る。
In Table 4, the film thickness uniformity is shown as the standard deviation value x3 of the in-plane film thickness, but the borazine compound dissolved in the solvent has a more uniform film thickness than that obtained by heating and vaporizing the borazine alone. It can be seen that the uniformity is particularly excellent in the concentration range of 1 to 10 mol / l.

Claims (4)

下記化学式(1)で示されるボラジン骨格を有するボラジン化合物
Figure 2005167044
(上式中、X、X、Xは同一でも異なっていてもよく、それぞれ水素原子、アミノ基、炭素数1〜4のアルキル基、アルケニル基、アルキニル基、モノアルキルアミノ基またはジアルキルアミノ基、Y、Y、Yは同一でも異なっていてもよく、それぞれ水素原子、炭素数1〜4のアルキル基、アルケニル基、アルキニル基または炭素数3〜12のトリアルキルシリル基で、X、X、X、Y、YおよびYの全てが水素原子ではない。)
と、この化合物を溶解し、かつこの化合物と反応せず、大気圧下の沸点が上記化合物の気化温度未満である液体との混合物を原料として、化学的気相成長法により成膜することを特徴とする低誘電率膜の形成方法。
A borazine compound having a borazine skeleton represented by the following chemical formula (1)
Figure 2005167044
(In the above formula, X 1 , X 2 and X 3 may be the same or different, and each is a hydrogen atom, amino group, alkyl group having 1 to 4 carbon atoms, alkenyl group, alkynyl group, monoalkylamino group or dialkyl. The amino group, Y 1 , Y 2 and Y 3 may be the same or different, and each is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group, an alkynyl group or a trialkylsilyl group having 3 to 12 carbon atoms. , X 1 , X 2 , X 3 , Y 1 , Y 2 and Y 3 are not all hydrogen atoms.)
And a chemical vapor deposition method using, as a raw material, a mixture of the compound with a liquid that dissolves the compound and does not react with the compound and has a boiling point under atmospheric pressure that is lower than the vaporization temperature of the compound. A method for forming a low dielectric constant film.
液体がその分子構造に電子吸引基を含まないことを特徴とする請求項1に記載の低誘電率膜の形成方法。 2. The method for forming a low dielectric constant film according to claim 1, wherein the liquid does not contain an electron withdrawing group in its molecular structure. 液体がその分子構造に活性水素を発生する基を含まないことを特徴とする請求項1に記載の低誘電率膜の形成方法。 2. The method of forming a low dielectric constant film according to claim 1, wherein the liquid does not contain a group that generates active hydrogen in its molecular structure. 混合物におけるボラジン化合物の濃度が、1〜10mol/lであることを特徴とする請求項1ないし請求項3のいずれかに記載の低誘電率膜の形成方法。
4. The method for forming a low dielectric constant film according to claim 1, wherein the concentration of the borazine compound in the mixture is 1 to 10 mol / l.
JP2003405416A 2003-12-04 2003-12-04 Method for forming low dielectric constant film Expired - Fee Related JP3966273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405416A JP3966273B2 (en) 2003-12-04 2003-12-04 Method for forming low dielectric constant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405416A JP3966273B2 (en) 2003-12-04 2003-12-04 Method for forming low dielectric constant film

Publications (2)

Publication Number Publication Date
JP2005167044A true JP2005167044A (en) 2005-06-23
JP3966273B2 JP3966273B2 (en) 2007-08-29

Family

ID=34728089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405416A Expired - Fee Related JP3966273B2 (en) 2003-12-04 2003-12-04 Method for forming low dielectric constant film

Country Status (1)

Country Link
JP (1) JP3966273B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058365A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Electric Corporation Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film
JP2007318136A (en) * 2007-05-21 2007-12-06 Mitsubishi Electric Corp Method of forming thin film, and semiconductor device
JP2008024679A (en) * 2006-07-25 2008-02-07 Nippon Shokubai Co Ltd Method for treating borazine compound
JP2012094900A (en) * 2012-01-26 2012-05-17 Watanabe Shoko:Kk Bcn based insulating film, method of producing the same and semiconductor device
KR101735372B1 (en) 2014-03-20 2017-05-16 (주)디엔에프 composition comprising boron-containing compound, boron-containing thin film and method for manufacturing boron-containing thin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058365A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Electric Corporation Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film
JP2009516069A (en) * 2005-11-17 2009-04-16 三菱電機株式会社 Chemical vapor deposition film forming composition and method for producing low dielectric constant film
US8846148B2 (en) 2005-11-17 2014-09-30 Nippon Shokubai Co., Ltd. Composition for chemical vapor deposition film-formation and method for production of low dielectric constant film
JP2008024679A (en) * 2006-07-25 2008-02-07 Nippon Shokubai Co Ltd Method for treating borazine compound
JP2007318136A (en) * 2007-05-21 2007-12-06 Mitsubishi Electric Corp Method of forming thin film, and semiconductor device
JP4600427B2 (en) * 2007-05-21 2010-12-15 三菱電機株式会社 Thin film forming method and semiconductor device
JP2012094900A (en) * 2012-01-26 2012-05-17 Watanabe Shoko:Kk Bcn based insulating film, method of producing the same and semiconductor device
KR101735372B1 (en) 2014-03-20 2017-05-16 (주)디엔에프 composition comprising boron-containing compound, boron-containing thin film and method for manufacturing boron-containing thin film

Also Published As

Publication number Publication date
JP3966273B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP0920435B1 (en) Random access memory device and platinum chemical vapour deposition process used in its preparation
US7294528B2 (en) Supercritical fluid-assisted deposition of materials on semiconductor substrates
TWI565822B (en) Methods for depositing silicon nitride films
JP5013353B2 (en) Film forming method and film forming apparatus
KR101367827B1 (en) Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film
US20060084281A1 (en) Novel deposition of high-k MSiON dielectric films
US20100227476A1 (en) Atomic layer deposition processes
KR20020089381A (en) Methods for preparing ruthenium metal films
KR20080066031A (en) Titanium complexes, process for production thereof, titanium-containing thin films, and method for formation thereof
US20060051975A1 (en) Novel deposition of SiON dielectric films
JP3966273B2 (en) Method for forming low dielectric constant film
JP3778164B2 (en) Method for forming low dielectric constant film
JP4888999B2 (en) Ruthenium film forming composition
US5906861A (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
KR100863063B1 (en) Organometallic precursors solution for chemical deposition of metal thin films and preparation method there of
JP2012526919A (en) Solution-based lanthanides and group III precursors for atomic layer deposition
JP2019065377A (en) Storage method of ruthenium precursor
US6204402B1 (en) Indium source reagent compositions, and use thereof for deposition of indium-containing films on substrates and ion implantation of indium-doped shallow junction microelectronics structures
JP2014118605A (en) Method of producing ruthenium-containing thin film and ruthenium-containing thin film
JP2008187186A (en) Device for depositing film of low dielectric constant
JP2002289616A (en) Method and apparatus for forming film
JP3729350B2 (en) Method and apparatus for forming organic insulating film
JP2004183046A (en) Raw material for chemical vapor deposition, and method for manufacturing thin film containing aluminum element using it
TW202134457A (en) Methods of selectively forming metal-containing films
Si I4 PCl I

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R151 Written notification of patent or utility model registration

Ref document number: 3966273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees