JP2012092396A - Vapor deposition method, and vapor deposition apparatus - Google Patents

Vapor deposition method, and vapor deposition apparatus Download PDF

Info

Publication number
JP2012092396A
JP2012092396A JP2010240760A JP2010240760A JP2012092396A JP 2012092396 A JP2012092396 A JP 2012092396A JP 2010240760 A JP2010240760 A JP 2010240760A JP 2010240760 A JP2010240760 A JP 2010240760A JP 2012092396 A JP2012092396 A JP 2012092396A
Authority
JP
Japan
Prior art keywords
vapor deposition
chamber
film
film formation
dummy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010240760A
Other languages
Japanese (ja)
Inventor
Hiroto Yamaguchi
裕人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010240760A priority Critical patent/JP2012092396A/en
Publication of JP2012092396A publication Critical patent/JP2012092396A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vapor deposition method in which impurities in a deposition material that has the getter action are prevented from depositing to a substrate or in a deposition film, the inside of a deposition chamber is made high vacuum in a short period of time, and the film deposition rate stability of vapor deposition in a short period of time after evacuation is achieved, and to provide a vapor deposition apparatus.SOLUTION: A dummy member 7 provided with at least a surface opposed to vapor deposition sources 4a and 4b is carried in the deposition chamber 1 during a process of evacuating the deposition chamber 1, a vapor deposition film of a prescribed thickness is formed on the dummy member 7, and then the vapor deposition to an actual substrate 2 is performed. Thus, the impurities emitted from the vapor deposition sources 4a and 4b and moisture that remains in the deposition chamber 1 are taken into the vapor deposition film deposited on the dummy member 7, the impurities that mix in the film deposited on the actual substrate 2 is reduced, and a time required to reach the pressure when the vapor deposition is performed on the actual substrate 2 is shortened.

Description

本発明はゲッター作用を有する蒸着材料を基板上に成膜する蒸着方法及び蒸着装置に関する。   The present invention relates to a deposition method and a deposition apparatus for forming a deposition material having a getter action on a substrate.

蒸着法は様々なデバイス等に必要な薄膜を形成する方法として広く使用されている。蒸着法では、膜中への不純物の混入の防止や成膜速度の安定性を高めるために成膜チャンバー内を高真空としてから基板への蒸着を行っている。一般的に蒸着材料が酸化物系、特にプラズマディスプレイで保護膜として使用する酸化マグネシウムのようにゲッター作用の大きい材料を蒸着する場合、成膜チャンバー内の水分圧が成膜速度に大きく影響し、水分圧を低い状態にしないと成膜速度が安定しない。このような材料を、蒸着法を用いて製品の量産に使用する場合、蒸着装置のメンテナンス後に成膜チャンバー内を成膜速度が安定する高真空に到達させるまでの排気時間が生産性に大きく影響してしまう。現在開発が進められている低分子型の有機EL(エレクトロルミネッセンス)素子においても、様々な有機材料及び無機の金属材料を真空蒸着法で成膜しデバイス化されている。一部の薄膜ではゲッター作用が極めて大きい材料も使用されており、メンテナンス後の排気時間の短縮が課題である。   The vapor deposition method is widely used as a method for forming a thin film necessary for various devices. In the vapor deposition method, deposition is performed on a substrate after the inside of the deposition chamber is set to a high vacuum in order to prevent impurities from being mixed into the film and to improve the stability of the deposition rate. In general, when depositing a material with a large getter action, such as magnesium oxide used as a protective film in plasma displays, the water pressure in the deposition chamber has a significant effect on the deposition rate. The film forming speed is not stable unless the water pressure is lowered. When such a material is used for mass production of products using the vapor deposition method, the exhaust time until reaching a high vacuum where the film formation speed is stable after maintenance of the vapor deposition system is greatly affected by productivity. Resulting in. Even in a low molecular type organic EL (electroluminescence) element that is currently being developed, various organic materials and inorganic metal materials are formed into a device by vacuum deposition. Some thin films also use materials with extremely large getter action, and the problem is to reduce the exhaust time after maintenance.

特許文献1には、真空装置において揮発性有機溶剤をキャリアガスに混入しチャンバー内に導入する、または揮発性有機溶剤を単体で導入して真空排気することにより、水分を効率的に除去し高真空に早く到達させる蒸着方法が開示されている。   In Patent Document 1, a volatile organic solvent is mixed into a carrier gas in a vacuum apparatus and introduced into a chamber, or a volatile organic solvent is introduced alone and evacuated to efficiently remove moisture. A vapor deposition method for quickly reaching a vacuum is disclosed.

また、特許文献2には、蒸着方法の一つである近接昇華法で基板上に半導体膜を形成する方法が開示されている。特許文献2には、ダミー基板上に所定の厚みの半導体膜を形成し蒸着初期の不純物が混じった結晶性の悪い膜を着けた後、実基板上に半導体膜を形成し結晶性の良い膜を得る方法が提案されている。   Patent Document 2 discloses a method of forming a semiconductor film on a substrate by proximity sublimation, which is one of vapor deposition methods. In Patent Document 2, a semiconductor film having a predetermined thickness is formed on a dummy substrate, a film having poor crystallinity mixed with impurities at the initial stage of deposition is formed, and then a semiconductor film is formed on the actual substrate to form a film having good crystallinity. The method of obtaining is proposed.

特開平6−99051号公報JP-A-6-99051 特開2008−71961号公報JP 2008-71961 A

しかしながら、特許文献1の真空装置では揮発性有機溶剤を導入するため危険性を伴い、場合によっては蒸着装置に防爆構造が必要となるためコストがかかるという問題がある。   However, the vacuum apparatus of Patent Document 1 involves a risk because a volatile organic solvent is introduced. In some cases, the vapor deposition apparatus requires an explosion-proof structure, and thus there is a problem that costs are increased.

特許文献2の蒸着方法は、蒸着源材料中の不純物が基板へ付着することを防止する方法であり、実基板に成膜する際、先に成膜したダミー基板を成膜チャンバーに滞留させておく、または成膜チャンバーを大気開放しダミー基板と実基板を交換している。そのため、蒸着源材料中の不純物が基板へ付着することを防止することはできるが、成膜チャンバー内を短時間で高真空に到達させ蒸着の成膜速度安定性を得ることは実現できない。また、ダミー基板、及びシールドが成膜チャンバー内に滞留することから、材料によってはそれらからの水分や不純物の再離脱が問題となる可能性がある。   The vapor deposition method of Patent Document 2 is a method for preventing impurities in the vapor deposition source material from adhering to the substrate. When a film is formed on an actual substrate, the previously formed dummy substrate is retained in the film formation chamber. Alternatively, the deposition chamber is opened to the atmosphere, and the dummy substrate and the actual substrate are exchanged. Therefore, it is possible to prevent the impurities in the deposition source material from adhering to the substrate, but it is impossible to achieve deposition rate stability in deposition by reaching the high vacuum in the deposition chamber in a short time. In addition, since the dummy substrate and the shield stay in the film formation chamber, depending on the material, re-detachment of moisture and impurities from them may cause a problem.

本発明の課題は、蒸着材料中の不純物の基板及び堆積膜中への付着を防止すると共に、成膜チャンバー内を短時間で高真空に到達させ、真空排気後短時間で蒸着の成膜速度安定性を実現した蒸着方法、及び蒸着装置を提供することである。即ち、良好なデバイスの特性が得られる量産対応の蒸着方法、蒸着装置を提供することである。   The object of the present invention is to prevent impurities in the vapor deposition material from adhering to the substrate and the deposited film, to reach a high vacuum in the deposition chamber in a short time, and to deposit the deposition rate in a short time after evacuation. It is to provide a vapor deposition method and a vapor deposition apparatus that realize stability. In other words, it is to provide a vapor deposition method and vapor deposition apparatus that can be used for mass production and that can provide good device characteristics.

本発明の第1は、基板上にゲッター作用を有する材料の薄膜を形成する蒸着方法において、
成膜チャンバーを大気開放した際、
前記成膜チャンバー内が第1の圧力になるまで排気する工程と、
少なくとも蒸着源に対向する面を備えたダミー部材を前記成膜チャンバー内に投入し、所定の厚みの蒸着膜を形成する工程と、
前記ダミー部材を前記成膜チャンバー内より取り出した後、前記成膜チャンバー内を第2の圧力に達するまで排気する工程と、
実基板を前記成膜チャンバーに投入して前記実基板上へ薄膜を形成する工程と、
を前記順序で行うことを特徴とする。
A first aspect of the present invention is a vapor deposition method for forming a thin film of a material having a getter action on a substrate.
When the film formation chamber is opened to the atmosphere,
Evacuating the film formation chamber to a first pressure;
Throwing a dummy member having at least a surface facing the vapor deposition source into the film formation chamber, and forming a vapor deposition film having a predetermined thickness;
Evacuating the film formation chamber until a second pressure is reached after removing the dummy member from the film formation chamber;
Placing a real substrate into the film formation chamber and forming a thin film on the real substrate;
Are performed in the above order.

本発明の第2は、基板上にゲッター作用を有する材料の薄膜を形成する蒸着装置において、
蒸着源を備えた成膜チャンバーと、
少なくとも前記蒸着源に対向する面を備えたダミー部材と、
前記ダミー部材を前記成膜チャンバー内を大気開放することなく投入、取り出し可能な手段と、を有することを特徴とする。
A second aspect of the present invention is a vapor deposition apparatus for forming a thin film of a material having a getter action on a substrate.
A deposition chamber with a deposition source;
A dummy member having at least a surface facing the vapor deposition source;
Means for allowing the dummy member to be loaded and unloaded without opening the film formation chamber to the atmosphere.

本発明においては、成膜チャンバーを大気開放した際、成膜チャンバー内を所定の圧力にまで真空排気する過程において、蒸着材料を加熱してダミー部材に対して成膜を行い、その後、所定の圧力になるまで排気を行った後、実基板に対して成膜を行う。これにより、加熱初期に蒸着材料から放出される不純物を含んだ蒸着膜をダミー部材に堆積させ、実基板表面及び実基板上に堆積する膜中への不純物の付着が防止される。また、成膜チャンバー内に残留する水分をダミー部材に堆積した膜中に効率的に取り込むことができ、排気開始から実基板への成膜が開始できる圧力に短時間で到達することを可能としている。よって、本発明によれば、実基板表面及び実基板上に形成する膜中への不純物混入が極めて少なくなり、良好なデバイス特性が得られると共に、装置メンテナンス後の立上げ排気時間を大幅に短縮することが可能となり、量産性の向上が実現する。   In the present invention, when the film formation chamber is opened to the atmosphere, in the process of evacuating the film formation chamber to a predetermined pressure, the vapor deposition material is heated to form a film on the dummy member. After exhausting until the pressure is reached, film formation is performed on the actual substrate. Thereby, a vapor deposition film containing impurities released from the vapor deposition material in the initial stage of heating is deposited on the dummy member, and the adhesion of impurities to the surface of the actual substrate and the film deposited on the actual substrate is prevented. In addition, moisture remaining in the film formation chamber can be efficiently taken into the film deposited on the dummy member, and the pressure at which film formation on the actual substrate can be started from the start of exhaust can be reached in a short time. Yes. Therefore, according to the present invention, the contamination of impurities on the surface of the actual substrate and the film formed on the actual substrate is extremely reduced, and good device characteristics can be obtained, and the start-up exhaust time after equipment maintenance is greatly shortened. It becomes possible to improve mass productivity.

本発明の蒸着装置の一実施形態を模式的に示す断面図とダミー部材の斜視図である。It is sectional drawing which shows typically one Embodiment of the vapor deposition apparatus of this invention, and a perspective view of a dummy member. 本発明の蒸着装置の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the vapor deposition apparatus of this invention.

本発明の蒸着方法及び蒸着装置は、ゲッター作用(水分を吸収する作用)を有する材料を蒸着する方法及び装置に関し、蒸着装置を大気開放した後、再び蒸着を開始する場合に、以下の工程を以下の順序で有することを特徴とする。
・前記成膜チャンバー内が第1の圧力になるまで排気する工程
・少なくとも蒸着源に対向する面を備えたダミー部材を前記成膜チャンバー内に投入し、所定の厚みの蒸着膜を形成する工程
・前記ダミー部材を前記成膜チャンバー内より取り出した後、前記成膜チャンバー内を第2の圧力に達するまで排気する工程
・実基板を前記成膜チャンバーに投入して前記実基板上へ薄膜を形成する工程
以下、図面を参照して本発明の実施形態を詳細に説明する。
The vapor deposition method and vapor deposition apparatus of the present invention relates to a method and apparatus for vapor depositing a material having a getter action (action to absorb moisture), and when vapor deposition is started again after the vapor deposition apparatus is opened to the atmosphere, the following steps are performed. It has the following order.
A step of evacuating the film formation chamber until the first pressure is reached. A step of introducing a dummy member having at least a surface facing the vapor deposition source into the film formation chamber to form a vapor deposition film having a predetermined thickness. A step of removing the dummy member from the film formation chamber and then evacuating the film formation chamber until the second pressure is reached; a real substrate is put into the film formation chamber and a thin film is formed on the real substrate Forming Steps Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〈実施形態1〉
図1(a)は、本発明の蒸着装置の一実施形態の主要構成を模式的に示す断面図であり、図中、1は成膜チャンバー、6はマスクストックチャンバー、8は搬送チャンバーである。それぞれのチャンバーには個々に不図示の真空ポンプが接続されており、ゲートバルブ9,10により雰囲気が完全に遮断できる構造である。また、図1(b)は成膜チャンバー1から実基板2及びマスク3が取り出され、成膜チャンバー1内にダミー部材7を投入した状態を示している。尚、本発明において「実基板」とは、本来の蒸着を行う被成膜基板を意味する。通常、実基板2はガラス基板である。
<Embodiment 1>
FIG. 1A is a cross-sectional view schematically showing the main configuration of one embodiment of the vapor deposition apparatus of the present invention, in which 1 is a film forming chamber, 6 is a mask stock chamber, and 8 is a transfer chamber. . A vacuum pump (not shown) is connected to each chamber individually, and the atmosphere can be completely shut off by the gate valves 9 and 10. FIG. 1B shows a state where the actual substrate 2 and the mask 3 are taken out from the film forming chamber 1 and a dummy member 7 is put into the film forming chamber 1. In the present invention, the “real substrate” means a film formation substrate on which original vapor deposition is performed. Usually, the actual substrate 2 is a glass substrate.

本例の蒸着装置は、成膜チャンバー1内に蒸着源4a,4bが配置されており、それぞれ別材料を同時に、いわゆる共蒸着が可能な構造となっている。蒸着源4a及び蒸着源4bと実基板2の間にはメインシャッター5が配置されており、実基板2への成膜開始、終了を制御すると共に、実基板2及びマスク3を交換する際等に不図示の実基板2を保持する機構へ蒸着粒子が堆積することを防止している。   In the vapor deposition apparatus of this example, vapor deposition sources 4a and 4b are arranged in the film forming chamber 1, and have a structure that allows so-called co-vapor deposition of different materials at the same time. A main shutter 5 is disposed between the vapor deposition source 4a and the vapor deposition source 4b and the actual substrate 2 to control the start and end of film formation on the actual substrate 2 and when the actual substrate 2 and the mask 3 are exchanged. The deposition particles are prevented from being deposited on a mechanism that holds the actual substrate 2 (not shown).

成膜チャンバー1は、実基板2、マスク3及びダミー部材7が、それぞれ独立して搬入搬出できるようになっており、それぞれの部材を所定の位置に位置決めできる構造である。実基板2の搬送は、搬送チャンバー8にある不図示のロボットにより行う構造であり、成膜チャンバー1と、不図示のロードチャンバー及び他のプロセスチャンバーとの間の搬送が可能である。成膜チャンバー1とマスクストックチャンバー6との間のマスク3の搬送は、成膜チャンバー1とマスクストックチャンバー6内にある不図示のローラ搬送機構により行う構造である。成膜チャンバー1とマスクストックチャンバー6との間のダミー部材7の搬送は、マスク3の搬送と同様に成膜チャンバー1とマスクストックチャンバー6内にある不図示のローラ搬送機構により行う構造である。   The film forming chamber 1 has a structure in which the actual substrate 2, the mask 3 and the dummy member 7 can be loaded / unloaded independently and each member can be positioned at a predetermined position. The actual substrate 2 is transported by a robot (not shown) in the transport chamber 8 and can be transported between the film forming chamber 1 and a load chamber and other process chambers (not shown). The mask 3 is transported between the film forming chamber 1 and the mask stock chamber 6 by a roller transport mechanism (not shown) in the film forming chamber 1 and the mask stock chamber 6. The dummy member 7 is transported between the film forming chamber 1 and the mask stock chamber 6 by a roller transport mechanism (not shown) in the film forming chamber 1 and the mask stock chamber 6 in the same manner as the transport of the mask 3. .

図1(c)は本例のダミー部材7の斜視図であり、図中の矢印Aで示される方向が図1(a)中の矢印Aで示される方向に相当する。本発明で用いられるダミー部材は、少なくとも蒸着源に対向する面を備えていればよい。本例では、蒸着源4a,4bに対向する平板状の天板以外に、四方の側面を備え、成膜チャンバー内の空間を覆う形である。そして、マスクストックチャンバー6からの搬送時に蒸着源4a、4bとの衝突を防止するため、搬送チャンバー8側の側面の下部を欠いた構造である。ダミー部材7の材質は特に制約はないが、軽量で強度が保てるアルミ、ステンレス等が望ましく、例えばSUS304が好ましく用いられる。ダミー部材7としては、蒸着膜を堆積させて成膜チャンバー1内に残留する水分を堆積した膜中に効率的に取り込むため、表面積が可能な限り大きい方が好ましい。従って、大型化はもちろんであるが、ダミー部材7の内面にブラスト処理や、エンボス加工等を施すと好適である。   FIG. 1C is a perspective view of the dummy member 7 of this example, and the direction indicated by the arrow A in the drawing corresponds to the direction indicated by the arrow A in FIG. The dummy member used in the present invention only needs to have at least a surface facing the vapor deposition source. In this example, in addition to the flat top plate facing the vapor deposition sources 4a and 4b, it has four side surfaces and covers the space in the film forming chamber. In order to prevent collision with the vapor deposition sources 4a and 4b during transport from the mask stock chamber 6, the lower portion of the side surface on the transport chamber 8 side is omitted. The material of the dummy member 7 is not particularly limited, but is preferably aluminum, stainless steel or the like that is lightweight and can maintain strength. For example, SUS304 is preferably used. As the dummy member 7, it is preferable that the surface area be as large as possible in order to efficiently incorporate moisture remaining in the deposition chamber 1 by depositing a vapor deposition film into the deposited film. Therefore, it is preferable to blast or emboss the inner surface of the dummy member 7 as well as increase the size.

また、ダミー部材7を低温の状態として蒸着膜を堆積させた方が堆積膜中への水分の取り込み効率が向上するので、本例ではマスクストックチャンバー6内にダミー部材7を冷却する手段(不図示)を設けてある。係る冷却手段として具体的には、冷却媒体を充満させた冷却ブロックをダミー部材7の上面に押し当てて冷却する構造が挙げられる。   Further, when the vapor deposition film is deposited with the dummy member 7 in a low temperature state, the efficiency of moisture incorporation into the deposited film is improved. Therefore, in this example, means for cooling the dummy member 7 in the mask stock chamber 6 (not suitable) (Shown) is provided. Specific examples of such cooling means include a structure in which a cooling block filled with a cooling medium is pressed against the upper surface of the dummy member 7 for cooling.

本例における動作としては、先ず、成膜チャンバー1内を第1の圧力になるまで排気する。成膜チャンバー1内が第1の圧力に達したら、マスクストックチャンバー6内の冷却機構により冷却されたダミー部材7を成膜チャンバー1に投入し、蒸着源4a,4bを、所望の成膜速度が得られる温度まで加熱する。蒸着源4a、4bが所定の温度に達したら、ダミー部材7上への蒸着膜の堆積を開始する。ダミー部材7上の蒸着膜が所定の厚さに達したら、メインシャッター5を閉じ、成膜チャンバー1よりマスクストックチャンバー6にダミー部材7を取り出す。次いで、成膜チャンバー1内が第2の圧力に到達するまで排気し、成膜チャンバー1内が第2の圧力に達したら、成膜チャンバー1内に実基板2を投入し、マスク3を実基板2に取り付ける。次に、メインシャッター5を開いて実基板2に対して成膜を開始する。尚、本発明において、第1の圧力>第2の圧力であり、第2の圧力が実基板への成膜を行う際の圧力である。また、ダミー部材7上に堆積させる膜の厚さとしては、予め実験を行い、加熱初期に蒸着材料から放出される不純物や成膜チャンバー1内の水分が充分に取り込める厚さを測定して、設定しておく。   As an operation in this example, first, the film formation chamber 1 is evacuated until the first pressure is reached. When the inside of the film forming chamber 1 reaches the first pressure, the dummy member 7 cooled by the cooling mechanism in the mask stock chamber 6 is put into the film forming chamber 1, and the vapor deposition sources 4a and 4b are set to a desired film forming speed. Is heated to a temperature at which is obtained. When the vapor deposition sources 4a and 4b reach a predetermined temperature, deposition of the vapor deposition film on the dummy member 7 is started. When the deposited film on the dummy member 7 reaches a predetermined thickness, the main shutter 5 is closed and the dummy member 7 is taken out from the film forming chamber 1 to the mask stock chamber 6. Next, the inside of the film forming chamber 1 is evacuated until it reaches the second pressure. When the inside of the film forming chamber 1 reaches the second pressure, the actual substrate 2 is put into the film forming chamber 1 and the mask 3 is mounted. Attach to the substrate 2. Next, the main shutter 5 is opened to start film formation on the actual substrate 2. In the present invention, the first pressure> the second pressure, and the second pressure is a pressure at the time of film formation on the actual substrate. In addition, as the thickness of the film deposited on the dummy member 7, an experiment is performed in advance, and a thickness at which impurities released from the vapor deposition material in the initial stage of heating and moisture in the film formation chamber 1 can be sufficiently taken in is measured. Set it.

本発明で蒸着材料として用いられるゲッター作用を有する材料としては、特に限定されないが、例えば、ゲッター作用の大きい酸化マグネシウムや酸化バリウム、有機EL素子の電子注入層の構成材料である炭酸セシウムなどが好ましく挙げられる。また、有機EL素子の陰極として用いられるAlなども挙げられる。   The material having a getter function used as a vapor deposition material in the present invention is not particularly limited. For example, magnesium oxide or barium oxide having a large getter function, cesium carbonate that is a constituent material of an electron injection layer of an organic EL element is preferable. Can be mentioned. Moreover, Al etc. which are used as a cathode of an organic EL element are also mentioned.

また、本発明の蒸着装置は成膜チャンバー1以外のプロセスチャンバーを備え、係るプロセスチャンバーにおいて、本発明に係るゲッター作用を有する材料以外の材料を用いた蒸着等の成膜工程や、成膜以外の基板処理工程を行っても良い。   Further, the vapor deposition apparatus of the present invention includes a process chamber other than the film formation chamber 1, and in such a process chamber, a film formation process such as vapor deposition using a material other than the material having a getter function according to the present invention, or other than film formation The substrate processing step may be performed.

〈実施形態2〉
図2(a)は本発明の蒸着装置の第2の実施形態の主要構成を模式的に示す断面図であり、実施形態1との違いは、ダミー部材の形状を平板状とした点である。図2(b)は成膜チャンバー1から実基板2及びマスク3が取り出され、成膜チャンバー1にダミー部材27を投入した状態を示している。本例においては、ダミー部材27として実基板2と同様のガラス基板を用いることも可能である。
<Embodiment 2>
FIG. 2A is a cross-sectional view schematically showing the main configuration of the second embodiment of the vapor deposition apparatus of the present invention. The difference from the first embodiment is that the shape of the dummy member is a flat plate. . FIG. 2B shows a state where the actual substrate 2 and the mask 3 are taken out from the film forming chamber 1 and a dummy member 27 is put into the film forming chamber 1. In this example, a glass substrate similar to the actual substrate 2 can be used as the dummy member 27.

図1,図2においては、ダミー部材27はマスクストックチャンバー6から成膜チャンバー1内に投入されていたが、本発明は当該構成に限定されるものではない。ダミー部材27が、実基板2を装置内に投入する不図示のロードチャンバーから投入され、不図示の実基板2の搬送機構にて成膜チャンバー1内に搬送される形態であってもよい。そして、成膜チャンバー1内で所望の厚さの膜を堆積させた後、実基板2の搬送機構で不図示のアンロードチャンバーに搬送し、ベントして装置より取り出す。   In FIG. 1 and FIG. 2, the dummy member 27 is introduced from the mask stock chamber 6 into the film forming chamber 1, but the present invention is not limited to this configuration. The dummy member 27 may be loaded from a load chamber (not shown) for loading the actual substrate 2 into the apparatus, and transported into the film forming chamber 1 by a transport mechanism for the actual substrate 2 (not illustrated). Then, after a film having a desired thickness is deposited in the film forming chamber 1, the film is transferred to an unload chamber (not shown) by the transfer mechanism of the actual substrate 2, vented, and taken out from the apparatus.

本発明においては、成膜チャンバー1に配置される蒸着源の個数に制限はなく、複数の蒸着源を配置することが可能である。また、蒸着源としてはヒーター加熱式、誘導過熱式、抵抗加熱式等の様々なタイプが使用可能であり、特に制限はない。さらに、成膜チャンバー1内にダミー部材7を冷却する機構を設けることも可能である。   In the present invention, the number of vapor deposition sources arranged in the film forming chamber 1 is not limited, and a plurality of vapor deposition sources can be arranged. Various types such as a heater heating type, an induction heating type, and a resistance heating type can be used as the evaporation source, and there is no particular limitation. Further, it is possible to provide a mechanism for cooling the dummy member 7 in the film forming chamber 1.

(実施例1)
図1(a)に例示した蒸着装置で成膜チャンバー1をメンテナンス後、有機EL素子を作製した。作製フローは下記の通りである。
Example 1
After maintaining the film forming chamber 1 with the vapor deposition apparatus illustrated in FIG. The production flow is as follows.

成膜チャンバー1内の蒸着源4aにフェナントロリン化合物材料を、蒸着源4bに炭酸セシウムの材料をセットし排気を開始した。成膜チャンバー1内の圧力が7×10-4Pa(第1の圧力)に到達したところでゲートバルブ10を開き、マスクストックチャンバー6に投入して真空排気し冷却しておいたダミー部材7を、成膜チャンバー1に搬送しセットした。ダミー部材7セット後、直ちに蒸着源4a、4bの加熱を開始し、所望の成膜速度が得られるまで昇温した。水晶振動式の蒸着モニターで実基板2上に堆積した合計膜厚がおよそ1.0μmに達したところでメインシャッター5を閉じ、ゲートバルブ10を開いてダミー部材7をマスクストックチャンバー6に搬送した。 The phenanthroline compound material was set in the vapor deposition source 4a in the film forming chamber 1 and the cesium carbonate material was set in the vapor deposition source 4b. When the pressure in the film forming chamber 1 reaches 7 × 10 −4 Pa (first pressure), the gate valve 10 is opened, and the dummy member 7 which has been put into the mask stock chamber 6 and evacuated and cooled is removed. Then, the film was transferred to the film forming chamber 1 and set. Immediately after 7 dummy members were set, heating of the vapor deposition sources 4a and 4b was started, and the temperature was raised until a desired film formation rate was obtained. The main shutter 5 was closed when the total film thickness deposited on the actual substrate 2 reached about 1.0 μm with a quartz vibration type vapor deposition monitor, the gate valve 10 was opened, and the dummy member 7 was transferred to the mask stock chamber 6.

成膜チャンバー1を続けて真空排気しながら、成膜チャンバー1内が所望の到達圧力1×10-4Pa(第2の圧力)に到達した後、マスクストックチャンバー6よりマスク3を搬送し、成膜チャンバー1内にセットした(成膜チャンバー1の成膜準備完了)。また、成膜チャンバー1が成膜準備完了する前までに、ガラス基板上に薄膜トランジスタ、下部電極、隔壁が形成された実基板2をロードチャンバーより蒸着装置内に投入し、他のプロセスチャンバーで正孔輸送層、発光層、電子輸送層を形成した。 While the film formation chamber 1 is continuously evacuated, the inside of the film formation chamber 1 reaches a desired ultimate pressure of 1 × 10 −4 Pa (second pressure), and then the mask 3 is transferred from the mask stock chamber 6. The film was set in the film formation chamber 1 (preparation for film formation in the film formation chamber 1 was completed). In addition, before the film formation chamber 1 is ready for film formation, the actual substrate 2 on which a thin film transistor, a lower electrode, and a partition wall are formed on a glass substrate is introduced into the vapor deposition apparatus from the load chamber, and the normal process chamber 2 is properly processed in another process chamber. A hole transport layer, a light emitting layer, and an electron transport layer were formed.

成膜チャンバー1の成膜準備完了後、他のプロセスチャンバーで正孔輸送層、発光層、電子輸送層を形成しておいた実基板2を、ゲートバルブ9を開いて成膜チャンバー1に搬送し、マスク3上にセットした。メインシャッター5を開いて、実基板2上に所望の膜厚の電子注入層を形成した後、メインシャッター5を閉じた。電子注入層形成後、ゲートバルブ9を開き、実基板2を他のプロセスチャンバーに搬送して陰極層を形成した。さらに、実基板2を他のプロセスチャンバーに搬送し、ガラス封止をした。そして、ガラス封止まで終了した実基板2をアンロードチャンバーに搬送して、蒸着装置より取り出し後、切断装置に移送しパネル毎に切断した。   After the film formation chamber 1 is ready for film formation, the actual substrate 2 on which the hole transport layer, the light emitting layer, and the electron transport layer are formed in another process chamber is opened to the film formation chamber 1 by opening the gate valve 9. And set on the mask 3. The main shutter 5 was opened, an electron injection layer having a desired film thickness was formed on the actual substrate 2, and then the main shutter 5 was closed. After forming the electron injection layer, the gate valve 9 was opened, and the actual substrate 2 was transferred to another process chamber to form a cathode layer. Further, the actual substrate 2 was transferred to another process chamber and sealed with glass. And the real board | substrate 2 complete | finished to glass sealing was conveyed to the unload chamber, and after taking out from the vapor deposition apparatus, it transferred to the cutting device and cut | disconnected for every panel.

得られた有機EL素子の発光特性を発光評価装置で評価した。その結果、電子輸送層と電子注入層の界面及び電子注入層中への不純物付着がなく、高輝度で高寿命の良好な発光特性が得られた。   The light emission characteristics of the obtained organic EL element were evaluated with a light emission evaluation apparatus. As a result, there was no adhesion of impurities to the interface between the electron transport layer and the electron injection layer and to the electron injection layer, and good emission characteristics with high brightness and long life were obtained.

本例の作製フローでは、成膜チャンバー1内の真空排気を開始してから実基板2が成膜開始可能となる(成膜チャンバー1内が第2の圧力に達する)までの時間が4時間であり、メンテナンス終了後短時間で実基板2への成膜を開始することができた。   In the manufacturing flow of this example, the time from when the vacuum exhaust in the film forming chamber 1 is started until the actual substrate 2 can start forming a film (the inside of the film forming chamber 1 reaches the second pressure) is 4 hours. Thus, film formation on the actual substrate 2 could be started in a short time after the end of the maintenance.

(実施例2)
ダミー部材7として、図2(a)に例示したような平板状のダミー部材27を用いた以外は実施例1と同様の条件で有機ELパネルを作製した。
(Example 2)
An organic EL panel was produced under the same conditions as in Example 1 except that the flat dummy member 27 illustrated in FIG. 2A was used as the dummy member 7.

本例では、成膜チャンバー1の排気を開始してから実基板2が成膜開始可能となる(成膜チャンバー1内が第2の圧力1×10-4Paに達する)までの時間が6時間であり、メンテナンス終了後短時間で実基板2への成膜を開始することができた。実施例1と比較して、成膜チャンバー1の排気を開始してから実基板2の成膜開始可能となるまでの時間が長くなったのは、ダミー部材27の表面積が実施例1のダミー部材7場合と比較して小さく、堆積した膜中に取り込める水分量が減少したためである。 In this example, the time from when the film forming chamber 1 is evacuated until the actual substrate 2 can start film formation (the inside of the film forming chamber 1 reaches the second pressure 1 × 10 −4 Pa) is 6 hours. It was time, and the film formation on the actual substrate 2 could be started in a short time after the maintenance was completed. Compared to the first embodiment, the time from the start of the evacuation of the deposition chamber 1 to the start of the deposition of the actual substrate 2 is increased because the surface area of the dummy member 27 is the dummy surface of the first embodiment. This is because the amount of water that is smaller than that of the member 7 and can be taken into the deposited film is reduced.

尚、本例において作製した有機ELパネルは、電子輸送層と電子注入層の界面及び電子注入層中への不純物付着がなく、高輝度で高寿命の良好な発光特性が得られた。   In addition, the organic EL panel produced in this example did not have impurities attached to the interface between the electron transport layer and the electron injection layer and to the electron injection layer, and good emission characteristics with high luminance and long life were obtained.

(実施例3)
ダミー部材27を予め冷却しなかった以外は、実施例2と同様の条件で有機ELパネルを作製した。
(Example 3)
An organic EL panel was produced under the same conditions as in Example 2 except that the dummy member 27 was not cooled in advance.

本例では、成膜チャンバー1の排気を開始してから実基板2が成膜開始可能(成膜チャンバー1内が第2の圧力に達する)となるまでの時間が7時間であり、メンテナンス終了後短時間で実基板2への成膜を開始することができた。実施例2と比較して、成膜チャンバー1の排気を開始してから実基板2の成膜開始可能となるまでの時間が長くなったのは、ダミー部材27を予め冷却しなかったことによるものである。   In this example, the time from the start of the exhaust of the film forming chamber 1 until the actual substrate 2 can start film formation (the inside of the film forming chamber 1 reaches the second pressure) is 7 hours, and the maintenance is completed. After a short time, film formation on the actual substrate 2 could be started. Compared to the second embodiment, the time from the start of the evacuation of the deposition chamber 1 to the time when the deposition of the actual substrate 2 can be started is increased because the dummy member 27 was not cooled in advance. Is.

尚、本例において作製した有機ELパネルは、電子輸送層と電子注入層の界面及び電子注入層中への不純物付着がなく、高輝度で高寿命の良好な発光特性が得られた。   In addition, the organic EL panel produced in this example did not have impurities attached to the interface between the electron transport layer and the electron injection layer and to the electron injection layer, and good emission characteristics with high luminance and long life were obtained.

(比較例1)
下記の条件を除き実施例1と同様の条件で有機ELパネルを製作した。
(Comparative Example 1)
An organic EL panel was manufactured under the same conditions as in Example 1 except for the following conditions.

ダミー部材7を成膜チャンバー1に投入せず、成膜チャンバー1が実施例1の第2の圧力に達するまで真空排気した後、蒸着源4a、4bの加熱を開始した。蒸着源4a、4bの加熱直後から蒸着源4a、4b及び周囲からガス放出により成膜チャンバー1の圧力が上昇し第2の圧力を大きく超えてしまった。そのため、所望の成膜速度が得られた後、成膜チャンバー1内が第2の圧力に到達するまでそのまま排気し、その後マスクストックチャンバー6よりマスク3を搬送しセットし、実基板2を成膜チャンバー1に搬送して電子注入層を形成した。   The dummy member 7 was not put into the film forming chamber 1, and after evacuating until the film forming chamber 1 reached the second pressure in Example 1, heating of the vapor deposition sources 4a and 4b was started. Immediately after the deposition sources 4a and 4b were heated, the pressure in the film forming chamber 1 was increased by the gas release from the deposition sources 4a and 4b and the surroundings, and greatly exceeded the second pressure. Therefore, after the desired film formation speed is obtained, the inside of the film formation chamber 1 is evacuated as it reaches the second pressure, and then the mask 3 is transported and set from the mask stock chamber 6 to form the actual substrate 2. It was conveyed to the film chamber 1 to form an electron injection layer.

本例では、成膜チャンバー1の排気を開始してから蒸着源を加熱する前に第2の圧力となるまでの時間が6時間かかった。また、蒸着源加熱後、再び第2の圧力となるまでの時間が8時間かかった。即ち、メンテナンス終了から実基板2への成膜開始となる圧力になるまでに14時間と長時間の排気が必要であった。   In this example, it took 6 hours from the start of evacuation of the film forming chamber 1 to the second pressure before heating the vapor deposition source. Moreover, it took 8 hours until the second pressure was reached again after heating the vapor deposition source. In other words, it took 14 hours to exhaust the gas from the end of the maintenance to the pressure at which the film formation on the actual substrate 2 was started.

尚、本例で作製した有機ELパネルの特性においては、電子輸送層と電子注入層の界面及び電子注入層中への不純物付着がなく、高輝度で高寿命の良好な発光特性が得られた。   In addition, in the characteristics of the organic EL panel produced in this example, there was no impurity adhesion to the interface between the electron transport layer and the electron injection layer and to the electron injection layer, and good emission characteristics with high brightness and long life were obtained. .

(比較例2)
蒸着源4a、4bの加熱の開始後、成膜チャンバー1内が第2圧力に到達するのを待たずに、所望の成膜速度が得られた後ただちにマスク3、実基板2を成膜チャンバー1に搬送し電子注入層を形成したことを除き、比較例1の条件で有機ELパネルを製作した。実基板2への成膜開始時の成膜チャンバー1内の圧力は7×10-4Paであった。
(Comparative Example 2)
After starting the heating of the vapor deposition sources 4a and 4b, the mask 3 and the actual substrate 2 are placed in the film forming chamber immediately after a desired film forming speed is obtained without waiting for the inside of the film forming chamber 1 to reach the second pressure. The organic EL panel was manufactured under the conditions of Comparative Example 1 except that the electron injection layer was formed. The pressure in the film formation chamber 1 at the start of film formation on the actual substrate 2 was 7 × 10 −4 Pa.

本例において作製した有機ELパネルの特性は、蒸着源から放出された不純物及び、蒸着源の輻射により周囲から放出された水分が電子輸送層と電子注入層の界面及び電子注入層中に混入してしまい、駆動電圧の上昇が発生したと共に、寿命が低下した。   The characteristics of the organic EL panel fabricated in this example are that impurities released from the evaporation source and moisture released from the surroundings due to the radiation of the evaporation source are mixed into the interface between the electron transport layer and the electron injection layer and the electron injection layer. As a result, the drive voltage increased and the service life decreased.

1:成膜チャンバー、2:実基板、4a,4b:蒸着源、7:ダミー部材   1: deposition chamber, 2: actual substrate, 4a, 4b: vapor deposition source, 7: dummy member

Claims (3)

基板上にゲッター作用を有する材料の薄膜を形成する蒸着方法において、
成膜チャンバーを大気開放した際、
前記成膜チャンバー内が第1の圧力になるまで排気する工程と、
少なくとも蒸着源に対向する面を備えたダミー部材を前記成膜チャンバー内に投入し、所定の厚みの蒸着膜を形成する工程と、
前記ダミー部材を前記成膜チャンバー内より取り出した後、前記成膜チャンバー内を第2の圧力に達するまで排気する工程と、
実基板を前記成膜チャンバーに投入して前記実基板上へ薄膜を形成する工程と、
を前記順序で行うことを特徴とする蒸着方法。
In a vapor deposition method for forming a thin film of a material having a getter action on a substrate,
When the film formation chamber is opened to the atmosphere,
Evacuating the film formation chamber to a first pressure;
Throwing a dummy member having at least a surface facing the vapor deposition source into the film formation chamber, and forming a vapor deposition film having a predetermined thickness;
Evacuating the film formation chamber until a second pressure is reached after removing the dummy member from the film formation chamber;
Placing a real substrate into the film formation chamber and forming a thin film on the real substrate;
Are performed in the above order.
基板上にゲッター作用を有する材料の薄膜を形成する蒸着装置において、
蒸着源を備えた成膜チャンバーと、
少なくとも前記蒸着源に対向する面を備えたダミー部材と、
前記ダミー部材を前記成膜チャンバー内を大気開放することなく投入、取り出し可能な手段と、を有することを特徴とする蒸着装置。
In a vapor deposition apparatus for forming a thin film of a material having a getter action on a substrate,
A deposition chamber with a deposition source;
A dummy member having at least a surface facing the vapor deposition source;
Vapor deposition apparatus comprising means for allowing the dummy member to be loaded and unloaded without opening the film formation chamber to the atmosphere.
前記ダミー部材を冷却する手段を備えた請求項2に記載の蒸着装置。   The vapor deposition apparatus of Claim 2 provided with the means to cool the said dummy member.
JP2010240760A 2010-10-27 2010-10-27 Vapor deposition method, and vapor deposition apparatus Withdrawn JP2012092396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240760A JP2012092396A (en) 2010-10-27 2010-10-27 Vapor deposition method, and vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240760A JP2012092396A (en) 2010-10-27 2010-10-27 Vapor deposition method, and vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2012092396A true JP2012092396A (en) 2012-05-17

Family

ID=46386071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240760A Withdrawn JP2012092396A (en) 2010-10-27 2010-10-27 Vapor deposition method, and vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2012092396A (en)

Similar Documents

Publication Publication Date Title
KR100991445B1 (en) Manufacturing method of a light emitting device
EP1113087B1 (en) Film formation apparatus and method for forming a film
US8158012B2 (en) Film forming apparatus and method for manufacturing light emitting element
US20080233283A1 (en) Apparatus for depositing protective layer and depositing method using the apparatus
TW200303700A (en) Fabrication system and a fabrication method of a light emitting device
US20120068169A1 (en) Organic el display device and method for manufacturing the same
KR20030004112A (en) Method of handling organic material in making an organic light-emitting device
JP2011065967A (en) Heating and drying device for organic el
JP2008115416A (en) Vacuum vapor-deposition source and vacuum vapor-deposition apparatus
US20110143033A1 (en) Vacuum processing apparatus and vacuum processing method
JP5798452B2 (en) Evaporation source
WO2009157228A1 (en) Sputtering apparatus, sputtering method and light emitting element manufacturing method
JP4368633B2 (en) Manufacturing equipment
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP4439827B2 (en) Manufacturing apparatus and light emitting device manufacturing method
KR102456282B1 (en) Vacuum apparatus, deposition apparatus, and gate valve
JP7296204B2 (en) Film forming apparatus, organic device manufacturing apparatus, and organic device manufacturing method
JP4515060B2 (en) Manufacturing apparatus and method for producing layer containing organic compound
JP2012092396A (en) Vapor deposition method, and vapor deposition apparatus
JP2002056773A (en) Film forming method for plasma display panel, and film forming equipment for plasma display panel
JP2004204289A (en) Apparatus and method for forming film, and apparatus and method for manufacturing display panel
US20050241585A1 (en) System for vaporizing materials onto a substrate surface
JP2010135505A (en) Vacuum apparatus
JP3775909B2 (en) Organic thin film manufacturing method and organic vapor deposition apparatus
JP3791450B2 (en) Deposition method of organic thin film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107