JP2012091164A - Method for making colored turbid water purifying functional water and method for using the same - Google Patents

Method for making colored turbid water purifying functional water and method for using the same Download PDF

Info

Publication number
JP2012091164A
JP2012091164A JP2011211155A JP2011211155A JP2012091164A JP 2012091164 A JP2012091164 A JP 2012091164A JP 2011211155 A JP2011211155 A JP 2011211155A JP 2011211155 A JP2011211155 A JP 2011211155A JP 2012091164 A JP2012091164 A JP 2012091164A
Authority
JP
Japan
Prior art keywords
water
electrode
electrolytic
functional water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211155A
Other languages
Japanese (ja)
Inventor
Nozomi Kuroda
のぞみ 黒田
Seiki Nakajima
清貴 中嶋
Isao Joko
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUTA DENSHI KOGYO KK
Original Assignee
OMUTA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUTA DENSHI KOGYO KK filed Critical OMUTA DENSHI KOGYO KK
Priority to JP2011211155A priority Critical patent/JP2012091164A/en
Publication of JP2012091164A publication Critical patent/JP2012091164A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for making electrolytic functional water having a function capable of efficiently decoloring and purifying colored turbid water without producing sludge, and a simple and economical colored turbid water purifying treatment method for decoloring and purifying the colored turbid water by adding the made functional water to the colored turbid water.SOLUTION: A method for the purifying treatment of organic colored turbid water employs a system for passing an aqueous solution containing an electrolyte through an electrolytic reaction tank as an ascending flow to subject the obtained electrolytic water to gas-liquid separation and adding electrolytic functional water effective for discoloration and purification to wastewater. An iridium oxide or conductive diamond type electrode is used as an anode.

Description

本発明は、着色汚濁水の脱色浄化処理に関するものである。具体的には有機着色物質を含む汚濁水の脱色に有効な機能水の製造方法及び使用方法に関するものである。   The present invention relates to a decolorizing and purifying treatment for colored polluted water. Specifically, the present invention relates to a method for producing and using functional water effective for decolorizing contaminated water containing organic coloring substances.

着色排水による公共水域の汚濁は美観を損なう。特に着色原因物質が有機物の場合、汚濁状態が進むと溶存酸素濃度が低下し、水中に生息する生き物を死滅させたり、不快臭が発生して周辺の住環境を悪くするため早急な改善が望まれている。   Pollution of public water areas due to colored wastewater impairs aesthetics. In particular, when the color-causing substance is an organic substance, the dissolved oxygen concentration decreases as the pollution progresses, killing living creatures that live in the water, or generating an unpleasant odor and deteriorating the surrounding living environment. It is rare.

従来からの有機着色汚濁水の脱色方法には、活性炭や活性アルミナあるいはイオン交換
体を用いた吸着法やイオン交換法、あるいは硫酸アルミニウムや鉄塩等の凝集剤を用いた
凝集沈殿法がある。
吸着法やイオン交換法では除去効果の低下した吸着剤あるいはイオン交換体は新品に交
換するか、もしくは再生して繰り返し使用する必要がある。新品と交換した場合にはその取替え費用が必要になりランニングコストが高くなる問題がある。また、再生して用いる場合には、再生操作に伴って高濃度の再生廃液が排出されるため、その処理処分が必要になり更なる経費が必要となる上、操作が煩雑になる問題がある。
凝集沈殿法では反応に伴い汚泥が生成するためその処理処分が必要になる課題がある。
Conventional methods for decolorizing organic colored polluted water include an adsorption method using activated carbon, activated alumina or an ion exchanger, an ion exchange method, or a coagulation precipitation method using a coagulant such as aluminum sulfate or iron salt.
In the adsorption method or ion exchange method, it is necessary to replace the adsorbent or ion exchanger having a reduced removal effect with a new one or regenerate and use it repeatedly. When it is replaced with a new one, there is a problem that the replacement cost is required and the running cost becomes high. In addition, when regenerated and used, high-concentration regenerated waste liquid is discharged along with the regenerating operation, which necessitates disposal of the processing and further costs, and makes the operation complicated. .
In the coagulation sedimentation method, there is a problem in that sludge is generated along with the reaction and the disposal is required.

汚泥が生成しない脱色法として電解脱色法がある。電解反応槽に必要量の電流を投入した条件で着色排水を通液させて脱色する方法である。電解脱色法では着色排水の汚濁状態に応じて投入電気量や電解反応槽での滞留時間を設定して処理することで着色汚濁水の浄化が可能である。しかし、汚濁排水中の各種共存物の影響で電極表面の劣化を引き起こす場合が多く使用電極の耐久性が短くなり、極端な例では一ヶ月程度の短期間での連続使用で電解効率が低下し使用できなくなる例もある。したがって実用化にあたっては着色汚濁水中の懸濁物質を事前にろ別除去するなどの慎重な対応が必要である。 There is an electrolytic decolorization method as a decolorization method that does not generate sludge. In this method, the colored wastewater is passed under the condition that a necessary amount of current is supplied to the electrolytic reaction tank to decolorize. In the electrolytic decolorization method, colored polluted water can be purified by setting the amount of electricity charged and the residence time in the electrolytic reaction tank according to the state of contamination of the colored waste water. However, the surface of the electrode often deteriorates due to the influence of various coexisting substances in the polluted wastewater, and the durability of the electrode used is shortened. In some cases, it cannot be used. Therefore, for practical use, it is necessary to take careful measures such as filtering and removing suspended substances in the colored polluted water in advance.

また、着色溶液に電解質を含む水の電気分解によって生成した機能水を光照射下で着色液と接触させて脱色する方法も開発されている(特許文献1参照)。この方法では照射する光の着色溶液中への透過深度に限界があるため着色溶液と照射する光との接触効率が低く多量の着色汚濁水の浄化には長時間を要するなどの課題が残されている。 In addition, a method has been developed in which functional water generated by electrolysis of water containing an electrolyte in a colored solution is brought into contact with the colored liquid under light irradiation to remove the color (see Patent Document 1). In this method, since there is a limit to the depth of penetration of the irradiated light into the colored solution, the contact efficiency between the colored solution and the irradiated light is low, and there remains a problem that it takes a long time to purify a large amount of colored polluted water. ing.

また、電極の耐久性を改善したものとして、白金及び酸化イリジウムを電極活性物質として用いて調製した特殊な電極を陽極と陰極に用いた電解装置で、塩化物イオンを含有する水溶液中に一対の電極として浸漬し、一定時間ごとに極性を変換しながら直流電解して次亜塩素酸水を生成する方法も検討されている。この方法で生成した次亜塩素酸水の利用方法の1つに脱色が挙げられている(特許文献2参照)。この方法では電極の耐久性の改善は期待されるものの、一対の電極を一定時間ごとに極性変換するための電源操作回路が複雑になる等の課題がある。 In addition, as an improvement in the durability of the electrode, an electrolysis apparatus using a special electrode prepared using platinum and iridium oxide as an electrode active material for an anode and a cathode, and a pair of aqueous solutions containing chloride ions in an aqueous solution. A method of generating hypochlorous acid water by immersing it as an electrode and subjecting it to direct current electrolysis while changing the polarity at regular intervals has also been studied. Decolorization is mentioned as one of the utilization methods of the hypochlorous acid water produced | generated by this method (refer patent document 2). Although this method is expected to improve the durability of the electrodes, there is a problem that the power supply operation circuit for converting the polarity of the pair of electrodes every predetermined time becomes complicated.

さらに、電解反応槽の処理済水を気液分離した後、後段の電解反応槽に通液処理することを特徴とする排水の処理方法がある(特許文献3参照)。この方法は被酸化性物質と電解質物質を含む排水を、導電性ダイヤモンド電極を用いた電解処理法であり、排水を直接電解反応槽に通液し、その処理済水の気液分離をすることで後段の電解反応槽での抵抗を下げるものである。これは排水を直接電極表面に接触させるため電極の早期劣化、コストがかさむ等の課題が考えられる。 Further, there is a wastewater treatment method characterized by gas-liquid separation of treated water in an electrolytic reaction tank, and then liquid passing treatment in a subsequent electrolytic reaction tank (see Patent Document 3). This method is an electrolytic treatment method using a conductive diamond electrode for wastewater containing an oxidizable substance and an electrolyte substance. The wastewater is directly passed through an electrolytic reaction tank to separate the treated water from gas and liquid. Thus, the resistance in the subsequent electrolytic reaction tank is reduced. This is because the drainage is brought into direct contact with the surface of the electrode, so that problems such as early deterioration of the electrode and increased cost can be considered.

特開平2000−79386号 広報JP 2000-79386 特開平2004−204328号 広報Japanese Laid-Open Patent Publication No. 2004-204328 特開平2003−236552号 広報JP 2003-236552 A

水環境学会誌,22(6),498−504(1999)Journal of Japan Society on Water Environment, 22 (6), 498-504 (1999) 水環境学会誌,22(11),938(1999)Journal of Japan Society on Water Environment, 22 (11), 938 (1999) 火力原子力発電,51(12),1712(2000)Thermal nuclear power generation, 51 (12), 1712 (2000)

本発明は、上記のような従来技術の問題を解決するために、電極の劣化がほとんど生じない着色汚濁水の脱色浄化に有効な電解機能水の製造方法と、製造した電解機能水を用いた脱色処理法を提供するものである。
In order to solve the problems of the prior art as described above, the present invention uses a method for producing electrolyzed functional water effective for decolorizing and purifying colored contaminated water that hardly causes electrode degradation, and the produced electrolyzed functional water. A decolorization method is provided.

陽極に酸化イリジウム電極または導電性ダイヤモンド電極を用い、陰極にSUS電極を用い、両極を所定の間隔に設定して構成した流通型電解反応装置に電解質を含む水溶液を上向流で通液し、電解処理水の流出部に電解処理水と電解反応で発生したガス成分を分離する気液分離槽を設け、ガス成分分離後の電解機能水のみを有機着色排水に所定の割合で添加し反応させることで脱色と有機物の分解を行うことを特徴とするものである。
An iridium oxide electrode or a conductive diamond electrode is used as the anode, a SUS electrode is used as the cathode, and an aqueous solution containing an electrolyte is passed through a flow-type electrolytic reaction apparatus configured by setting both electrodes at a predetermined interval. A gas-liquid separation tank that separates the gas components generated from the electrolytic treatment water and the electrolytic reaction is installed at the outflow part of the electrolytic treatment water, and only the electrolyzed functional water after the separation of the gas components is added to the organic colored waste water at a predetermined rate and reacted Thus, decolorization and decomposition of organic substances are performed.

本発明のガス成分分離電解反応装置図の概略図である。It is the schematic of the gas component separation electrolysis reaction apparatus figure of this invention. 実施例1〜5と比較例1〜5の残留塩素濃度測定結果のグラフである。It is a graph of the residual chlorine concentration measurement result of Examples 1-5 and Comparative Examples 1-5. ノリ着色排水(比較例10)と実施例11の吸光度測定結果のグラフである。It is a graph of the absorbance measurement result of paste coloring waste water (comparative example 10) and Example 11.

陽極に用いる電極を酸化イリジウム電極とする場合、電極基材としては厚み1〜5mmのチタン材の表面に0.5〜5μmの厚みに酸化イリジウムの薄膜をコートしたものを用いることができる。基材に用いるチタン材の厚みは電解装置に用いる電極の大きさによってその強度を考慮して任意に選定できるが、実用上は厚み1〜5mmの範囲で用いられる。酸化イリジウム薄膜の厚みは0.5μm以上であれば良いが長期間の使用中での消耗を考慮すると1〜5μmが適している。しかし、製造コストが高くなることを容認すれば5μm以上としても性能上は問題ない。 When the electrode used for the anode is an iridium oxide electrode, an electrode base material having a surface of a titanium material having a thickness of 1 to 5 mm coated with a thin film of iridium oxide to a thickness of 0.5 to 5 μm can be used. The thickness of the titanium material used for the base material can be arbitrarily selected in consideration of its strength depending on the size of the electrode used for the electrolysis apparatus, but is practically used in a thickness range of 1 to 5 mm. The thickness of the iridium oxide thin film may be 0.5 μm or more, but 1 to 5 μm is suitable in consideration of wear during long-term use. However, if it is allowed to increase the manufacturing cost, there is no problem in performance even if the thickness is 5 μm or more.

陽極に用いる電極を導電性ダイヤモンド電極とする場合の電極基材としては厚み1〜5mmのニオブ材の表面に2〜20μmの厚みに導電性ダイヤモンド薄膜をコートしたものを用いることができる。ニオブ基材の厚みは特に限定されないが通常は2〜3mmのものが用いられる。導電性ダイヤモンド薄膜の厚みは製造コストと性能の安定性を考慮すると3〜10μmのものが適している。
なお、電極基材にはニオブに代わってシリコーンを用いることもできる。シリコーンを基材に用いる場合は一枚の電極面積が400cm 以下の比較的小型の電極を用いる場合に限られ、それ以上の大型電極を用いる場合には電極強度の点でニオブを基材に用いる方が適している。
When the electrode used for the anode is a conductive diamond electrode, an electrode base material having a surface of a niobium material having a thickness of 1 to 5 mm and a conductive diamond thin film coated to a thickness of 2 to 20 μm can be used. The thickness of the niobium substrate is not particularly limited, but usually a niobium substrate having a thickness of 2 to 3 mm is used. The thickness of the conductive diamond thin film is suitably 3 to 10 μm considering the manufacturing cost and the stability of performance.
Silicone can also be used for the electrode substrate instead of niobium. When silicone is used as a base material, it is limited to the case of using a relatively small electrode having a single electrode area of 400 cm 2 or less, and when using a larger electrode than that, niobium is used as the base material in terms of electrode strength. It is better to use it.

電解質溶液としては塩化物イオンまたは硫酸イオンあるいはその両者を含む水溶液が用いられる。具体的には塩化物イオンと硫酸イオンを含む海水を用いることができる。海水の入手しがたい場所では塩化ナトリウムや硫酸ナトリウムを所定濃度に溶かした水溶液を用いても対応できる。これらの水溶液中の塩類濃度は0.5〜5wt.%の範囲であればよいが電流効率を考慮すると1〜3wt.%の範囲が実用的である。   As the electrolyte solution, an aqueous solution containing chloride ions and / or sulfate ions is used. Specifically, seawater containing chloride ions and sulfate ions can be used. In places where it is difficult to obtain seawater, an aqueous solution in which sodium chloride or sodium sulfate is dissolved to a predetermined concentration can be used. The salt concentration in these aqueous solutions is 0.5-5 wt. %, But considering the current efficiency, 1 to 3 wt. % Range is practical.

電解質溶液を電解反応槽に通液する条件は上向流で行い。出来るだけ高流速の条件が望ましい。流速が遅い場合、電解反応によって生成したガスが電解反応槽内に留まる時間が長くなり、両極間の通電抵抗を高めて極間電圧が大きくなり使用電力量が増えるためランニングコストの上昇となり望ましくない。 The condition for passing the electrolyte solution through the electrolytic reaction tank is an upward flow. High flow rate conditions are desirable. When the flow rate is slow, the time that the gas generated by the electrolytic reaction stays in the electrolytic reaction tank becomes longer, and the current resistance between both electrodes is increased to increase the voltage between the electrodes and increase the power consumption. .

電解反応槽出口の電解処理水中には酸化活性物質の他に反応生成物であるガス成分を含んでいる。このガス中には陰極表面で生成した水素ガスが含まれており、陽極表面で生成し電解処理水中に含まれる酸化活性物質の活性を低下させる。したがって、電解槽出口の電解処理水は速やかに気液分離槽で分離し、酸化活性物質を含む電解処理水と分離した後液相部分を電解機能水として使用することが重要である。
気液分離槽の構造は気体と液体部分を効率よく分離する構造であれば特に制限されないが、最も簡単な構造は電解反応槽の上部に電解処理水の流出部を密閉構造とし、上部にガスの排出口を設け、下部に電解処理水が一定量貯留する構造とし、その液貯留部から液のみを流出させる液流出口を設置した構造とすれば良い。液の貯槽部の気液分離効果を高めるための不活性粒子を充填した構造(図1)とすればより有効であるが、より単純構造とするためには必ずしも充填物は充填しない構造でも目的を達成できる。
The electrolytically treated water at the outlet of the electrolytic reaction tank contains a gas component which is a reaction product in addition to the oxidation active substance. This gas contains hydrogen gas generated on the cathode surface, and reduces the activity of the oxidation active substance generated on the anode surface and contained in the electrolytically treated water. Therefore, it is important that the electrolytically treated water at the outlet of the electrolytic cell is promptly separated in the gas-liquid separation tank, and the liquid phase portion separated from the electrolytically treated water containing the oxidation active substance is used as electrolytic functional water.
The structure of the gas-liquid separation tank is not particularly limited as long as it is a structure that efficiently separates the gas and the liquid part, but the simplest structure has an electrolysis water outlet at the top of the electrolytic reaction tank and a gas at the top. It is sufficient to adopt a structure in which a certain amount of electrolytically treated water is stored in the lower part and a liquid outlet that allows only the liquid to flow out from the liquid storage part is provided. It is more effective if the structure (Fig. 1) is filled with inert particles to enhance the gas-liquid separation effect of the liquid storage tank, but the structure is not necessarily filled with a filler in order to make the structure simpler. Can be achieved.

実施例1〜5
陽極に厚さ2mmのチタン材料(サイズ:50mm×50mm)の表面に1〜3μmの厚みの酸化イリジウムをコートした電極材料を、陰極には同様サイズのSUS316Lを用い、電極間距離を5mmとなるように設定した電解反応セル内に塩化ナトリウム濃度を0.25〜3.0wt.%の範囲の所定濃度に調整した水溶液を3L/hで一過式で通液する方法で、投入電流を3Aの定電流条件で電解実験を行い、電解処理水を気液分離して得られた電解機能水を採取して残留塩素濃度を測定した。測定結果を表1に示す。











Examples 1-5
An electrode material in which a surface of a titanium material (size: 50 mm × 50 mm) having a thickness of 2 mm is coated on the anode and iridium oxide having a thickness of 1 to 3 μm is coated, and SUS316L having the same size is used for the cathode, and the distance between the electrodes is 5 mm. In the electrolytic reaction cell set as described above, the sodium chloride concentration was 0.25 to 3.0 wt. Obtained by conducting an electrolysis experiment under a constant current condition of 3A, and subjecting the electrolyzed water to gas-liquid separation. Electrolytic functional water was collected and the residual chlorine concentration was measured. The measurement results are shown in Table 1.











比較例1〜5
実施例1で用いた電極の代わりに厚さ2mmのチタン材料(サイズ:50mm×50mm)の表面に2〜3μmの厚みの白金をコートした電極材料を陽極に、陰極には同様サイズのSUS316Lを用い、他は実施例1と同様な条件で塩化ナトリウムを含む水溶液の電解実験を行い、電解機能水中の残留塩素濃度を測定した。測定結果を表2に示す。











表1を見て分かるように、電解質として用いたNaCl濃度が高くなるにつれて残留塩素濃度も高くなる傾向を示している。生成した残留塩素濃度を比較するとNaCl濃度0.5wt.%以上、なかでも1〜3wt.%の条件での濃度が高くなっていることが分かる。
また、白金電極を用いた場合では、酸化イリジウム電極を用いた場合に比べて電解反応で生成する残留塩素濃度が低いことが分かった。実施例1〜5の結果と比較例1〜5の結果を図2に示す。これらの結果より、電解質に塩化物イオンを含む電解質を用いる場合には白金電極よりも酸化イリジウム電極を用いる方が残留塩素の生成効率を高めるのに有効であることが分かった。
Comparative Examples 1-5
Instead of the electrode used in Example 1, a surface of a titanium material (size: 50 mm × 50 mm) having a thickness of 2 mm was coated with platinum having a thickness of 2 to 3 μm on the anode, and SUS316L of the same size was used on the cathode. Otherwise, the electrolysis experiment of the aqueous solution containing sodium chloride was conducted under the same conditions as in Example 1, and the residual chlorine concentration in the electrolysis functional water was measured. The measurement results are shown in Table 2.











As can be seen from Table 1, the residual chlorine concentration tends to increase as the NaCl concentration used as the electrolyte increases. When the generated residual chlorine concentration is compared, the NaCl concentration is 0.5 wt. % Or more, especially 1-3 wt. It can be seen that the concentration under the condition of% is high.
It was also found that the concentration of residual chlorine produced by the electrolytic reaction was lower when a platinum electrode was used than when an iridium oxide electrode was used. The result of Examples 1-5 and the result of Comparative Examples 1-5 are shown in FIG. From these results, it has been found that when an electrolyte containing chloride ions is used as the electrolyte, it is more effective to use the iridium oxide electrode than the platinum electrode to increase the generation efficiency of residual chlorine.

比較例6
実施例1〜5の条件のうち、塩化ナトリウムを硫酸ナトリウムに変え、同様の実験を行い、得られた電解機能水1mlをノリ排水(波長560nmでの吸光度0.103)50mlに添加して撹拌混合した後、約1時間静置後の吸光度を測定する方法で脱色効果の比較を行った。
この条件では脱色効果が得られなかった。これより電解質に硫酸イオンを含む水溶液を用いた場合、酸化イリジウム電極は適していないことが分かった。
Comparative Example 6
Of the conditions of Examples 1 to 5, sodium chloride was changed to sodium sulfate, the same experiment was performed, and 1 ml of the obtained electrolyzed functional water was added to 50 ml of waste water (absorbance 0.103 at a wavelength of 560 nm) and stirred. After mixing, the decolorization effect was compared by measuring the absorbance after standing for about 1 hour.
Under this condition, no decolorization effect was obtained. This indicates that the iridium oxide electrode is not suitable when an aqueous solution containing sulfate ions is used as the electrolyte.

実施例6〜7、比較例7〜9
厚さ3mmのニオブ材料(サイズ:50mm×50mm)の表面に2.5〜3μmの厚みの導電性ダイヤモンドをコートした電極材料を陽極に、陰極にはSUS316Lを用いて、電解質を塩化ナトリウムから硫酸ナトリウムに、通液速度を3L/hから0.3L/hに変え、他は実施例1〜5と同様の条件で実験を行った。そこで得られた電解機能水1mlをノリ排水(波長560nmでの吸光度0.088)50mlに添加して撹拌混合した後、約1時間静置後の波長560nmでの吸光度を測定し、吸光度の変化量よりその減少率を求めた。結果を表3に示す。











表3を見て分かるように、電解質濃度を高くしていくと脱色率が高くなっていることが分かる。これより、導電性ダイヤモンド電極を陽極に用い、電解質として硫酸ナトリウムを用いた電解反応により製造された電解機能水を用いることで脱色出来ることが分かった。また、比較例6、実施例6〜7より電解質に硫酸イオンを適量含む水溶液を用いる場合は陽極に導電性ダイヤモンドを用いることが適していることが分かった。
Examples 6-7, Comparative Examples 7-9
A surface of a niobium material (size: 50 mm × 50 mm) having a thickness of 3 mm is coated with 2.5 to 3 μm thick conductive diamond on the anode, and SUS316L is used on the cathode. The experiment was conducted under the same conditions as in Examples 1 to 5, except that the flow rate of sodium was changed from 3 L / h to 0.3 L / h. Then, 1 ml of the electrolyzed functional water obtained was added to 50 ml of waste water (absorbance 0.088 at a wavelength of 560 nm), mixed with stirring, and then the absorbance at a wavelength of 560 nm was measured after standing for about 1 hour to change the absorbance. The rate of decrease was determined from the amount. The results are shown in Table 3.











As can be seen from Table 3, it can be seen that the decolorization rate increases as the electrolyte concentration increases. From this, it was found that decolorization can be achieved by using electroconductive functional water produced by an electrolytic reaction using sodium sulfate as an electrolyte using a conductive diamond electrode as an anode. Further, it was found from Comparative Example 6 and Examples 6 to 7 that it is suitable to use conductive diamond for the anode when an aqueous solution containing an appropriate amount of sulfate ion is used for the electrolyte.

実施例8〜11、比較例10
陽極に厚さ3mmのニオブ材料(サイズ:50mm×50mm)の表面に2.5〜3μmの厚みの導電性ダイヤモンドをコートした電極材料を、陰極には同様サイズのSUS316Lを用いた。電極間距離を10mmに設定した電解反応セル内を塩化ナトリウム濃度3.0wt.%の濃度に調整した水溶液を0.3L/hで一過式で通液する方法で、投入電気量を0.25〜1.5Aの投入電流で電解実験を行い、得られた電解機能水5mlをノリ着色排水40mlに添加して撹拌混合した後、約1時間静置後のTOC、T‐N、560nmでの吸光度を測定した。結果を表4に示す。












表4を見てわかるように、電流値を上げていくと脱色率が高くなっていることが分かる。しかし、0.25〜1Aでの脱色率の上昇傾向に比べると電流値を1Aから1.5Aに上げた条件での脱色率の上昇率は低い。これより合理的に脱色するためには適切な電流値があることが分かった。また、電解機能水を添加することでTOC、T‐Nも減少していることより、有機物の分解、脱窒が行われており、電流値を上げることで減少率も高くなることが分かった。
Examples 8-11, Comparative Example 10
An electrode material in which 2.5 to 3 μm thick conductive diamond was coated on the surface of a 3 mm thick niobium material (size: 50 mm × 50 mm) was used for the anode, and SUS316L of the same size was used for the cathode. Inside the electrolytic reaction cell in which the distance between the electrodes was set to 10 mm, the sodium chloride concentration was 3.0 wt. % Of the aqueous solution adjusted to a concentration of 0.3% / h, and the electrolytic function water was obtained by conducting an electrolysis experiment with an input current of 0.25 to 1.5 A. After adding 5 ml to 40 ml of waste-colored waste water and stirring and mixing, the absorbance at TOC, TN, and 560 nm after standing for about 1 hour was measured. The results are shown in Table 4.












As can be seen from Table 4, it can be seen that the bleaching rate increases as the current value is increased. However, the increase rate of the decolorization rate under the condition that the current value is increased from 1A to 1.5A is lower than the increase tendency of the decolorization rate at 0.25 to 1A. From this, it was found that there is an appropriate current value for decolorizing reasonably. In addition, TOC and TN were reduced by adding electrolyzed functional water, so organic substances were decomposed and denitrified, and it was found that increasing the current value increased the reduction rate. .

1.電解質溶液
2.排出ガス
3.電解機能水
4.陽極
5.陰極
6.気液分離槽
7.気液分離促進剤充填層
8.生成ガス
9.酸化イリジウム電極を用いた場合の電解機能水の残留塩素濃度測定結果
10.白金電極を用いた場合の電解機能水の残留塩素濃度測定結果
11.ノリ着色排水
12.3wt.%NaCl電解機能水添加後処理水
1. 1. Electrolyte solution 2. exhaust gas Electrolytic functional water 4. Anode 5. Cathode 6. 6. Gas-liquid separation tank Gas-liquid separation accelerator packed bed 8. Product gas9. 9. Measurement result of residual chlorine concentration in electrolyzed functional water when using iridium oxide electrode 11. Measurement result of residual chlorine concentration in electrolyzed functional water when platinum electrode is used Nori-colored waste water 12.3 wt. Treatment water after addition of% NaCl electrolytic functional water

Claims (5)

酸化イリジウム電極または導電性ダイヤモンド電極を陽極に用いた電解反応装置に電解質を含む水溶液を上向流で通液した後、発生したガス成分と電解水を分離することを特徴とする電解機能水の製造方法と製造した電解機能水を有機着色排水に添加して所定時間反応させることを特徴とする有機着色排水の脱色浄化処理方法。 An electrolytic functional water characterized by separating the generated gas component and the electrolyzed water after passing an aqueous solution containing an electrolyte upward through an electrolytic reactor using an iridium oxide electrode or a conductive diamond electrode as an anode A method for decolorizing and purifying organic colored wastewater, characterized in that the manufacturing method and the produced electrolyzed functional water are added to organic colored wastewater and allowed to react for a predetermined time. 酸化イリジウム電極がチタン基材表面に0.5〜5μmの薄膜の酸化イリジウムをコートした電極材料であることを特徴とする請求項1に記載する電解機能水の製造方法とその機能水を用いた有機着色排水の浄化処理方法。  The method for producing electrolyzed functional water according to claim 1, wherein the iridium oxide electrode is an electrode material having a titanium base surface coated with a thin iridium oxide film having a thickness of 0.5 to 5 µm. Purification method for organic colored wastewater. 導電性ダイヤモンド電極がニオブ基材表面に2〜20μmの薄膜の導電性ダイヤモンドをコートした電極材料であることを特徴とする請求項1に記載する有機着色排水の脱色浄化処理方法。 2. The method for decolorizing and purifying organic colored wastewater according to claim 1, wherein the conductive diamond electrode is an electrode material having a surface of a niobium base material coated with a thin conductive diamond of 2 to 20 [mu] m. 電解質を含む水溶液が塩化物イオン又は硫酸イオンあるいはその両イオンを含む水溶液、陽極に導電性ダイヤモンドを用いることを特徴とする請求項3記載の有機着色排水の脱色浄化処理方法。 4. The method for decolorizing and purifying organic colored wastewater according to claim 3, wherein the aqueous solution containing the electrolyte is an aqueous solution containing chloride ions or sulfate ions or both ions, and conductive diamond is used for the anode. 電解質に塩化物イオンを含む水溶液を用いた請求項1及び2記載の有機着色排水の脱色浄化処理方法。
The method for decolorizing and purifying organic colored wastewater according to claim 1 and 2, wherein an aqueous solution containing chloride ions is used as an electrolyte.
JP2011211155A 2010-10-01 2011-09-27 Method for making colored turbid water purifying functional water and method for using the same Withdrawn JP2012091164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211155A JP2012091164A (en) 2010-10-01 2011-09-27 Method for making colored turbid water purifying functional water and method for using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010235900 2010-10-01
JP2010235900 2010-10-01
JP2011211155A JP2012091164A (en) 2010-10-01 2011-09-27 Method for making colored turbid water purifying functional water and method for using the same

Publications (1)

Publication Number Publication Date
JP2012091164A true JP2012091164A (en) 2012-05-17

Family

ID=46385134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211155A Withdrawn JP2012091164A (en) 2010-10-01 2011-09-27 Method for making colored turbid water purifying functional water and method for using the same

Country Status (1)

Country Link
JP (1) JP2012091164A (en)

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
JP3913923B2 (en) Water treatment method and water treatment apparatus
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
CA2638656C (en) Miniature ozone generator, uses thereof for purifying water and methods for doing the same
JP2003293177A (en) Electrolytic cell for generating ozone
JP2002317287A (en) Electrolytic cell for preparation of hydrogen peroxide and method for producing hydrogen peroxide
JPH06134465A (en) Water treatment process
CN101891331A (en) Integrated treatment device for active carbon adsorption and electrochemical regeneration and use method thereof
JP2012091162A (en) Method for purifying organic colored waste water containing suspended substance
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
KR20060007369A (en) High electric field electrolysis cell
JP2012213764A (en) Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater
JP2012024711A (en) Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
Farissi et al. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review
JPH07256297A (en) Purification treatment of livestock excretion
JP2012091164A (en) Method for making colored turbid water purifying functional water and method for using the same
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
KR20070041948A (en) Method and device for regenerating of regenerative slop in ion exchange resin
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JPS59127691A (en) Advanced treatment of secondary treated water of night soil
JP2015501923A (en) Waste fluid treatment through generation and utilization of oxyhydrogen gas
JP2000061470A (en) Injection water containing electrolytic liquid
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JPH11221570A (en) Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202