JP2012090280A - 無線通信システムのためのパワー制御 - Google Patents

無線通信システムのためのパワー制御 Download PDF

Info

Publication number
JP2012090280A
JP2012090280A JP2011246456A JP2011246456A JP2012090280A JP 2012090280 A JP2012090280 A JP 2012090280A JP 2011246456 A JP2011246456 A JP 2011246456A JP 2011246456 A JP2011246456 A JP 2011246456A JP 2012090280 A JP2012090280 A JP 2012090280A
Authority
JP
Japan
Prior art keywords
transmission
pilot
sector
power
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011246456A
Other languages
English (en)
Other versions
JP5313321B2 (ja
Inventor
Gorokhov Alexei
アレクセイ・ゴロコブ
Aamod Khandekar
アーモド・クハンデカー
Tamer Kadous
タマー・カドウス
J Bolland Mohammed
モハマド・ジェイ.・ボーラン
Rajat Prakash
ラジャット・プラカシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2012090280A publication Critical patent/JP2012090280A/ja
Application granted granted Critical
Publication of JP5313321B2 publication Critical patent/JP5313321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

【課題】端末の送信パワーを制御して干渉を低減する。
【解決手段】端末は、リバースリンク上の(たとえば、パイロットやシグナリングについて)第1の伝送へ送られ、第1の伝送に対するフィードバック(たとえば、パワー制御命令や消去インディケータ)を受信し、そして、フィードバックに基づき基準パワーレベルを調整する。端末は、干渉情報と、セクタからのパイロット品質インディケータ(PQI)、オフセット要素、ブースト要素のような可能性のある他のパラメータも受信することができる。端末はまた、干渉情報、基準パワーレベル、および/または、他のパラメータに基づいてセクタへの第2の伝送に対して送信パワーを決定することができる。端末は、あるセクタからのフィードバックを受信し、CDMAあるいはOFDMAにより第2の伝送を同じセクタあるいは異なるセクタへ送信することができる。
【選択図】図1

Description

本出願は、この被譲渡者に譲渡され、引用によってここに組み込まれる、「無線通信システムのためのパワー制御」と表題を付けられ、2006年6月13日に出願された、米国の仮特許出願60/813484号の優先権を主張する。
本出願は、一般に通信に関する、そして、特に無線通信システムにおけるパワー制御を行なうための技法に関する。
無線通信システムは、音声、ビデオ、パケットデータ、メッセージ、ブロードキャスト等のようなさまざまな通信サービスを提供するために幅広く配置される。これらシステムは、利用可能なシステム資源を共有することにより、複数のユーザに対する通信をサポートすることが可能な多重接続システムであってもよい。そのような多重接続システムの例は、符号分割多重接続(CDMA)システム、時分割多重接続(TDMA)システム、周波数分割多重接続(FDMA)システム、直交FDMA(OFDMA)システム、そして、単一キャリアFDMA(SC−FDMA)システムを含む。
無線多重接続通信システムは、フォワードとリバースリンク上で複数の端末と通信することが可能である。フォワードリンク(つまり、ダウンリンク)は、基地局から端末への通信リンクを指し、リバースリンク(つまり、アップリンク)は、端末から基地局への通信リンクを指す。
複数の端末は、同時に、フォワードリンク上でデータを受信し、および/または、リバースリンク上でデータを送信することができる。これは、時間、周波数、および/または、符号ドメインにおいて、互いに直交(orthogonal)するように、各リンク上の伝送を多重化することにより達成され得る。リバースリンク上で、完全直交(complete orthogonal)が達成されると、結果的に、受信する基地局において他の端末からの送信と干渉しない各端末からの送信を生じる。しかしながら、異なる端末からの送信間の完全な直交性は、チャンネル状態、受信器の不完全性等により、しばしば実現されない。直交性の損失は、結果的に、各端末が同じ基地局と通信する他の端末へある程度の量の干渉を引き起こす原因となる。さらに、異なる基地局と通信する端末からの送信は、一般に、互いに直交ではない。このように、各端末は、近接する基地局と通信する他の端末に干渉を引き起こす場合がある。各端末のパフォーマンスは、そのシステムにおける他の端末からの干渉により劣化させられる。
従って、干渉を減らし、良好なパフォーマンスを達成するために、端末の送信パワーを制御する技法の当該技術においてニーズが存在する。
端末の送信パワーを制御するための技法が、ここに説明される。ある設計において、端末は、リバースリンク上で第1の伝送(たとえば、パイロット、チャンネル品質インディケータ(CQI)等について)を送信し、そして、第1の伝送に対するフィードバック(たとえば、パワー制御コマンド、消去インディケータ(erasure indicator))を受信することができる。端末は、フィードバックに基づいて基準パワーレベル(reference power level)を調整し得る。端末は、セクタから干渉情報を受信する可能性もある。干渉情報は、セクタにおける、ライズオーバサーマル比(rise over thermal ratio)(RoT)、干渉オーバサーマル比(interference over thermal ratio)(IoT)等を含み得る。端末は、パイロット品質インディケータ(PQI)、オフセット要素、ブースト要素等のような、他のパラメータを受信する可能性もある。端末は、干渉情報、基準パワーレベル、および/または、他のパラメータに基づいてセクタへの第2の伝送(たとえば、データやシグナリング(signaling)について)のための送信パワーを決定することができる。端末は、あるセクタからフィードバックを受信し、同じセクタや異なるセクタへ第2の伝送を送信し得る。
ある設計において、干渉情報は、RoTを含み、そして、第2の伝送に対する送信パワーはRoTと基準パワーレベルに基づいて決定される。第2の伝送は、CDMAで決定される送信パワーにおいて送信され得る。他の設計において、干渉情報はIoTを含み、第2の伝送に対する送信パワーはIoTと基準パワーレベルに基づいて決定される。第2の伝送は、OFDMAで決定された送信パワーにおいて送信され得る。
本開示の種々の態様および特徴は、下記においてさらに詳細に説明される。
無線通信システムを示す。 リバースリンクのフレーム構造を示す。 CDMAとOFDMAチャンネルのパワー制御メカニズムを示す。 フォワードリンク(FL)供給セクタとリバースリンク(RL)供給セクタによる個別の閉ループパワー制御のためのパワー制御メカニズムを示す。 干渉情報に基づく端末のパワー制御のためのプロセスを示す。 干渉情報に基づく端末のパワー制御ための装置を示す。 干渉情報に基づく端末のパワー制御に対するセクタのためのプロセスを示す。 干渉情報に基づく端末のパワー制御に対するセクタのための装置を示す。 パイロット品質インディケータ(PQI)に基づく端末のパワー制御のためのプロセスを示す。 パイロット品質インディケータ(PQI)に基づく端末のパワー制御のための装置を示す。 PQIに基づく端末のパワー制御に対するセクタのためのプロセスを示す。 PQIに基づく端末のパワー制御に対するセクタのための装置を示す。 1つの端末と2つの基地局/セクタのブロック図を示す。
詳細な説明
図1は、無線通信システム100を示す。単純化のために、3つの基地局110、112、そして114と1つの端末120だけが図1に示されている。基地局は端末と通信する局である。基地局は、アクセスポイント、ノードB、発展したノードBとも呼ばれ、そして、これらの機能のいくつかあるいは全てを含み得る。各基地局は、特定の地理的エリアに対して通信サービスエリアを提供する。“セル”という用語は、その用語が使用される文脈に応じて、基地局、および/または、そのカバレージエリアを指すことができる。システム能力を改善するためには、基地局は複数の(たとえば、3つ)小エリアに分割され得る。各小エリアは、別々の基地送受信局(BTS)により提供され得る。“セクタ”という用語は、その用語が使用される文脈に応じて、BTS、および/または、そのカバレージエリアを指すことが可能である。セクタ化されたセルの場合、そのセルのすべてのセクタのためのBTSは、一般に、セルに対する基地局内に共同設置される。
集約化されたアーキテクチャーの場合、システム制御器130は基地局へ結合し、これらの基地局のために調整と制御を提供することができる。システム制御器130は、単一ネットワークエンティティ、あるいはネットワークエンティティの集合体であってもよい。分散化されたアーキテクチャーの場合、基地局は、必要に応じて互いに通信することができる。
一般に、多くの端末は、システム100の全体にわたって分散していてもよく、各端末は、固定式または移動式であってもよい。端末120は、アクセス端末、移動局、ユーザ設備、加入者ユニット、局等とも呼ばれ、そして、それらの機能のいくつかあるいは全てを含むことができる。端末120は、携帯電話、携帯情報端末(PDA)、無線デバイス、無線モデム、ハンドヘルド・デバイス、ラップトップ・コンピュータ等であってもよい。端末120は、任意の与えられた瞬間において、フォワード、および/または、リバースリンク上で、ゼロ、1つ、あるいは複数の基地局と通信を行うことができる。図1は、基地局へRL伝送を送信し、これらの基地局からFL伝送を受信する端末120を示す。図1における各種タイプの伝送は、下記において説明される。
ここにおいて説明されるパワー制御の技法は、セクタ化されていないセルを持つシステムと同様に、セクタ化されたセルを持つシステムに対して使用され得る。明確さために、技法は、セクタ化されたセルを持つシステムについて、下記において説明される。“基地局”と“セクタ”という用語は同義語であり、ここにおいて交換可能に使用される。図1で示される例においては、セクタ110は端末120に対するRL供給セクタ(RL serving sector)であり、セクタ112は端末120に対するFL供給セクタ(FL serving sector)であり、セクタ114は端末120と通信していてもよく、または、通信していなくてもよい。
ここにおいて説明される技法は、CDMA、TDMA、FDMA、OFDMA、および、SC−FDMAシステムのような各種の無線通信システムに対して使用される可能性もある。CDMAシステムは、符号分割多重化(CDM)を利用し、伝送は、種々の直交符号、擬似ランダムシーケンス(pseudo−random sequences)等で送信される。TDMAシステムは、時分割多重化(TDM)を利用し、伝送は異なるタイムスロット内で送信される。FDMAシステムは、周波数分割多重化(FDM)を利用し、伝送は異なるサブキャリア上で送信される。OFDMAシステムは直交周波数分割多重化(OFDM)を利用し、SC−FDMAシステムは単一キャリア周波数分割多重化(SC−FDM)を利用する。OFDMとSC−FDMは、トーン(tone), ビン(bin)等としても呼ばれる複数の直交サブキャリアにシステム帯域幅を分割する。各サブキャリアはデータで変調され得る。一般に、変調シンボルは、OFDMで周波数ドメイン内に、およびSC−FDMで時間ドメイン内に送信される。技法は、たとえば、CDMA、OFDMA、OFDMA、およびSC−FDMA等の多重化方式の組み合わせを利用する無線通信システムに対して使用される可能性もある。明確さのために、技法のある種の態様は、リバースリンク上のCDMAとOFDMAを利用するシステムについて下記において説明される。
図2は、リバースリンクに対して使用される可能性のあるフレーム構造200の設計を示す。伝送のタイムラインは、物理層(PHY)フレーム、タイムスロット等としても呼ばれるフレームに分割され得る。図2に示されるように、フレームは、連続するインデックスが割り当てられることができる。各フレームは、固定化されているか、あるいは、設定が可能である、特定の時間持続期間にわたっていてもよい。たとえば、各フレームは、N個のシンボル期間にわたっていてもよい。ここで、一般に、N≧1であり、1つの設計ではN=8となる。
図2は、サブキャリア構造も示す。システム帯域幅は、1からKまでのインデックスを割り当てられる複数(K個)の直交サブキャリアに分割され得る。スペクトル的にまるめられたシステムでは、K個の総サブキャリアのサブセットだけが、伝送に対して使用され、残りのサブキャリアは、システムがスペクトルのマスク要件を満たすようにガードサブキャリアとしてサービス提供することができる。
図2は、また、リバースリンク上で、シグナリングとパイロットの伝送をサポートし得るCDMAセグメントの設計も示す。CDMAセグメントは、任意の固定された、あるいは、設定可能な次元の時間周波数ブロックを占有することができる。図2に示される設計では、CDMAセグメントは、M個の連続するサブキャリアをカバーし、N個のシンボル期間の1フレームにわたる。N=8とM=128の設計の場合、CDMAセグメントは、L=M・N=1024個の伝送単位をカバーする。各伝送単位は、1つのシンボル期間内に1つのサブキャリアであり、1つの変調シンボルを送信するために使用されることができる。一般に、CDMAセグメントは、S個のCDMAサブセグメントを含むことができる、ここで、S≧1。そして、各CDMAサブセグメントは、1セットの端末のためのシグナリングとパイロットをサポートすることができる。各CDMAサブセグメントは、N個のシンボル期間の1つのフレーム内に、M個の連続するサブキャリアをカバーし、M×Nの次元を有することができる。単純化のために、以下の説明の多くは、CDMAセグメントが、1つのCDMAサブセグメントを含むことを仮定している。CDMAセグメントは任意のレートで送信され得る。図2で示される設計では、CDMAセグメントは、Qフレーム毎に送信される。ここで、一般にQ≧1であり、いくつかの例として、Q=4、6、8等である。CDMAセグメントは、(図2に示されるように)CDMAフレームからCDMAフレームまでのシステム帯域幅を横切ってホップするか、あるいは、サブキャリアの固定セット上で送信され得る(図2に示されていない)。CDMAフレームは、CDMAセグメントが送信されるフレームである。下記に説明されるように、CDMAセグメントは、各種の制御チャンネルをサポートし、端末により共有され得る。
図2は、また、トラフィックデータ、シグナリング等を運ぶことができるOFDMAの設計も示す。OFDMAチャンネルは、図2に示されるように、周波数ダイバーシティを達成するために、時間を通して周波数を横切ってホップする、時間周波数ブロックのシーケンスにマップされ得る。OFDMAチャンネルのための各時間周波数ブロックは、任意の大きさであってもよい。それは、OFDMAチャンネル上で送信する情報量に依存し得る。
各種のチャンネルは、リバースリンク上でデータ、パイロット、シグナリングを運ぶために定義されることができる。表1は、ある設計に従ったチャネルのセットを示す。表1の第1列は、異なるチャンネルをリストしている。第2列は、たとえば、CDMA やOFDMAといった各チャンネルについて使用される多重化方式を与える。第3列は、各チャンネルについての受信(recipient)セクタを与える。それはRL供給セクタ(RLSS)、FL供給セクタ(FLSS)、あるいは、すべてのセクタであってもよい。第4列は、各チャンネルについて短い説明を与える。
Figure 2012090280
表1は、1つの設計例である。チャンネルは、表1にリストされるものより多くのセクタに送信され得る。たとえば、CQICHは、単なるFL供給セクタの代わりに、すべてのセクタへ送信され得る。ACHとREQCHはハンドオフ指示を伝える際に、すべてのセクタにも送信され得る。一般に、システムは、リバースリンク上の任意のタイプのチャンネルと任意の数のチャンネルをサポートすることができる。たとえば、OFDMA専用制御チャンネル(ODCCH)は、MIMO、CQI、BFCH、SFCH情報をFL供給セクタへ伝えることができる。各チャンネルは、CDMA、OFDMA等で送信されることができる。以下の説明では、CDMAチャンネルは、CDMAで送信されるチャンネルであり、OFDMAチャンネルは、OFDMAで送信されるチャンネルである。CDMAチャンネルは、CDMAセグメント上で送信されることができる。OFDMAチャンネルは、CDMAセグメントのために使用されていないか、または、他の目的のために予約されていた、時間・周波数資源上で送信されることができる。
CDMAチャンネルは、各種の方式で、処理され、送信され得る。ある設計では、メッセージ(たとえば、CQI値)は、符号化されたメッセージ(たとえば、Walshシーケンス)を獲得するために、メッセージを符号化することにより、CDMAチャンネル上で送信され得る。符号化されたメッセージは、次に、CDMAチャンネルのためのチャンネル化シーケンス(channelization sequence)で乗算され、そして、さらに、出力シーケンスを得るために、利得に応じて拡大・縮小される(scale)ことができる。その利得はCDMAチャンネルのための送信パワーに基づいて決定され得る、そして、それは、たとえば、目標誤り率、目標削除レート等の性能の目標レベルを達成するためにセットされ得る。出力シーケンスは、CDMAチャンネルが送信されるCDMAフレームのインデックス、メッセージを送信する端末に対する識別子、メッセージが送信される目標セクタに対する識別子等に基づき生成されるスクランブルシーケンスでスクランブルされ得る。スクランブルシーケンスは、CDMAフレームの各シンボル期間に対して1つのサブシーケンスというように、M個のチップのN個のサブシーケンスに分割され得る。各サブシーケンスは、CDMAセグメントに対して使用されるM個のサブキャリアへマップされるMシンボルを得るために、高速フーリエ変換(FFT)により周波数ドメインに変換され得る。
異なるCDMAチャンネルに対するメッセージは、符号化され、異なるチャンネル化(channelization)符号で乗算され、これらのCDMAチャンネルに対する送信パワーに基づきスケール(scale)され、結合され、スクランブルされ、周波数ドメインに変換され、そして、CDMAセグメントに対するサブキャリアにマップされ得る。各CDMAチャンネルに対するメッセージは、CDMAセグメント内のL個すべての送信ユニット上で送信され得る。異なるCDMAチャンネルは、異なるチャンネル化符号を割り当てられ、これらのCDMAチャンネルは、CDMを介してCDMAセグメントを共有し得る。
OFDMAチャンネルもまた、各種の方式で送信され得る。ある設計では、パケットは、データシンボルを得るために処理(たとえば、符号化、交互インターリーブ、シンボルマップ)され得る。データシンボルは、次に、OFDMAチャンネルに対する時間・周波数ブロックへマップされ得る。
与えられたセクタに対するリバースリンクに対するOFDMAチャンネルは、異なる時間・周波数資源を割り当てられ、次に周波数と時間において互いに直交であり得る。つまり、OFDMAチャンネルは、セクタで互いに最小限度の干渉を行い、これらのOFDMAチャンネル上で送信する端末間のセクタ内干渉(intra−sector interference)がほとんどない場合がある。結果的に、セクタにより近くに位置した端末は、遠近(near−far)効果がないために、同じセクタ内の他の端末に対してほとんど影響を与えない高パワースペクトル密度(power spectral density)(PSD)で、もしかすると受信され得る。
しかしながら、OFDMAチャンネルのパフォーマンスは、他のセクタからの干渉であるセクタ間干渉(inter−sector interference)により影響を受ける可能性がある。セクタ間干渉は、次のように与えられる干渉オーバサーマル比(IoT)により定量化されることができる:
Figure 2012090280
システム帯域幅は、1つまたは複数のサブバンドあるいはサブゾーンに分割され、そして、1つのIoT値は各サブバンドあるいはサブゾーンに対して決定され得る。セクタは、IoTを推定し、そのIoTを端末へ送信し得る。それは、望ましいパフォーマンスを達成するために、適宜に、OFDMAチャンネルの送信パワーを調整することができる。
複数の端末に対するCDMAチャンネルは、与えられたセクタに対する同じCDMAセグメントを共有することができる。これらの複数の端末の各々からのCDMA送信は、それゆえ、セクタで同じCDMAセグメントを共有する他の端末からCDMA送信に対する干渉として、作用することができる。CMDAセグメントの容量(capacity)と安定性は、ライズオーバサーマル比(rise over thermal ratio)(RoT)によって定量化されることができ、それは以下のように表現され得る。
Figure 2012090280
CDMAセグメントが、複数のCDMAサブセグメントを含む場合には、1つのRoT値は、各CDMAサブセグメントについて決定されることができる。
一般に、容量は、RoTが高くなるにつれて増加する。しかしながら、容量の利得は、特定のRoT値を超えると減少する。セクタは、RoTを推定し、そのRoTを端末へ送信することができる。それは望ましいパフォーマンスを達成するために、適宜に、CDMAチャンネルの送信パワーを調整する。
図3は、たとえば、図1に示されるチャンネルのように、リバースリンク上で送信されるCDMAとOFDMAチャンネルのためのパワー制御メカニズム300の設計を示す。パワー制御メカニズム300は、図1のRL供給セクタ110と端末120の間で動作する。端末120は、CDMAセグメント上のパイロットチャンネルと他のCDMAチャンネルをセクタ110へ送信し、そして、セクタ110によって端末120へ割り当てられる時間周波数資源上でOFDMAチャンネルも送信することができる。
セクタ110は、リバースリンク上で端末120と他の端末からの伝送を受信することができる。セクタ110において、パイロットプロセッサ310は、端末120からのパイロットを順番に検出するために、パイロットチャンネルに対して、端末120により実行される処理に相補的な方法で、受信される伝送を処理することができる。プロセッサ310は、セクタ110においてすべてのアンテナを横断する端末120と、パイロットを検出するために使用されるすべてのチャンネルタップについての、受信パイロットパワーを結合することができる。プロセッサ310は、次に、受信パイロットパワーに基づいて端末120のパイロット品質(PQ)を決定することができる。
ある設計では、パイロット品質は、以下のように表現される、パイロット・キャリア・オーバ・サーマル比(pilot carrier−over−thermal ratio)(PCoT)により与えられ得る:
Figure 2012090280
PcoTは、セクタ110における、セクタ間およびセクタ内干渉を考慮しない。
他の設計では、パイロット品質は、以下のように表現されるパイロットのキャリアと干渉の比(C/I)により与えられ得る:
Figure 2012090280
総ノイズと干渉は、セクタ110における総受信パワーであり、セクタ内干渉、セクタ間干渉、および、サーマルノイズ(thermal noise)を含む。パイロット品質は他のパラメータにより与えられる可能性もある。
パワー制御(PC)命令生成器312は、プロセッサ310から測定パイロット品質を受信し、PQ閾値に対して測定PQを比較し、そして、以下のようにPC命令を供給する:
Figure 2012090280
ある設計では、端末120に対するPC命令は、測定PCoTとPCoT閾値に基づいて生成され得る。この設計では、パイロットチャンネルの送信パワーは、測定PCoTが、セクタ110においてPCoT閾値にほぼ等しくなるようなPC命令に基づいて調整されることができる。他のCDMAとOFDMAチャンネルの送信パワーは、下記で説明されるように、パイロット送信パワーに基づいてセットされ得る。測定PCoTは、セクタ間とセクタ内干渉を考慮していない。セクタ間とセクタ内干渉は、OFDMAチャンネルについてごくわずかなので、OFDMAチャンネルの送信パワーは、OFDMAチャンネルに対して所望の受信信号品質を達成するために、パイロット送信パワーに基づいてより精確にセットされ得る。このように、この設計は、OFDMAチャンネルのための改善されたパフォーマンスを提供することができる。
他の設計では、端末120に対するPC命令は、測定パイロットC/IとパイロットC/I閾値に基づき生成され得る。この設計では、パイロットチャンネルの送信パワーは、測定パイロットC/IがパイロットC/I閾値にほぼ等しくなるようなPC命令に基づいて調整され得る。他のCDMAとOFDMAチャンネルの送信パワーは、パイロット送信パワーに基づいてセットされ得る。測定パイロットC/Iは、セクタ間およびセクタ内干渉を考慮に入れ、セクタ内干渉はCDMAセグメントについて比較的高い可能性がある。それゆえに、測定パイロットC/Iは、測定PCoTより変動が少なく、そして、パイロット送信パワーは、パイロットC/Iに基づいて調整される場合には、変動が少ない可能性がある。
パイロット品質インディケータ(PQI)生成器314は、プロセッサ310からパイロット品質を受信し、端末120に対するPQIを生成することができる。ある設計では、生成器314は、測定PCoTを予定されたビット数に量子化し、端末120に対するPQIとして量子化したPCoTを供給し得る。他の設計では、生成器314は、パイロットC/I、あるいはパイロット品質の何か他の測定に基づいてPQIを生成し得る。
CDMA干渉推定器320は、セクタ110においてCDMAセグメントのRoTを推定することができる。推定器320は、CDMAセグメントに対するすべての受信サンプルのパワーを合計することにより、時間ドメインにおけるCDMAセグメントの総受信パワーを測定することができる。推定器320は、また、CDMAセグメントに対して使用されるすべてのサブキャリアからの受信シンボルのパワーを合計することにより、周波数ドメインにおけるCDMAセグメントの総受信パワーを測定してもよい。推定器320は、たとえば、送信される伝送が存在しない静寂なインターバルの間に、あるいは、伝送のために使用されないガードサブキャリアで、サーマルノイズを推定してもよい。推定器320は、それから、式(2)に示されるようなCDMAセグメントのRoTを導出することができる。
OFDMA干渉推定器322は、セクタ110においてIoTを推定することができる。推定器322は、たとえば、セクタ110への伝送のために使用されないサブキャリア上で、セクタ110におけるセクタ間干渉を測定することができる。推定器322は、サーマルノイズを推定するか、あるいは、推定器320からこの情報を得ることができる。推定器322は、次に、式(1)に示されるようにセクタ110におけるIoTをそこから導出することができる。推定器322は、IoTを1つ以上のIoT閾値と比較することができ、そして比較結果に基づいて他のセクタ干渉(OSI)値を生成することができる。たとえば、OSI値は、IoTが目標IoT以下にあるならば、‘0’ にセットされ、IoTが目標IoTより大きいが、高IoT以下であるならば、‘1’にセットされ、そして、IoTが高IoTより大きいならば、‘2’にセットされることができる。
送信シグナリングプロセッサ330は、生成器312からPC命令を、生成器314からPQIを、推定器320からRoTを、推定器322からIoTとOSIを、そして、オフセット要素、ブースト要素等のような可能性のある他のパラメータを受信することができる。これら各種のパラメータはCDMAとOFDMAチャンネルの送信パワーをセットするために、端末120により使用されることができる。プロセッサ330は、PC命令、PQI、そして、他のパラメータを、処理し、たとえば、1つ以上のFLシグナリングチャンネル上で端末120へ送信することができる。一般に、PC命令、PQI、そして、他のパラメータは、同じレートあるいは異なるレートで送信されることができる。ある設計では、PC命令は、約140ヘルツのレートで送信され、PQIは約70ヘルツの率で送信され、そして、他のパラメータは、それらが更新されたときにはいつも送信され得る。プロセッサ330は、RoTとIoTを処理し、たとえば、放送(broadcast)チャンネル、FL制御チャンネル等を介して、セクタ内の他の端末と端末120へ送信することができる。たとえば、RoTおよび/またはIoTは、25フレームをカバーするすべてのスーパーフレームのプリアンブル(preamble)で、放送され、シグナリングメッセージ等を介して、Qフレーム(ここでQ≧1)毎に、FL制御チャンネル上で送信されることができる。
端末120は、セクタ110からの各種のパラメータを受信し、これらのパラメータに基づいてCDMAとOFDMAチャンネルの送信パワーをセットすることができる。端末120において、受信シグナリングプロセッサ340は、端末120に対するPC命令、PQI、および他のパラメータ、セクタ110に対するRoTとIoTを獲得するために、セクタ110からのFL伝送を受信し、処理することができる。ユニット342は、以下のように、PC命令を受信し、パイロットチャンネルの送信パワーを調整することができる。
Figure 2012090280
ただし、Ppilot(n)は、更新インターバルnのパイロットチャンネルの送信パワー、
ΔPpilotは、パイロット送信パワーを調整するためにステップサイズである。
更新インターバルnは、ある与えられたチャンネルに対する送信インターバルと一致していてもよいし、または、一致していなくてもよい。チャンネルが送信される場合はいつでも、一番最近の更新のインターバルからのPpilot(n)値が、そのチャンネルに対する送信パワーを決定するために使用され得る。
パイロット送信パワーPpilot(n)とそのステップサイズΔPpilotは、デシベル(dB)の単位で与えられ得る。式(6)に示される設計では、パイロット送信パワーは、良いパフォーマンスを提供するために選択される、たとえば0.5dB、1.0dB等のような、同じステップサイズにより増加させられ得る、あるいは減少させられ得る。他の設計では、パイロット送信パワーは、種々のアップとダウン・ステップサイズにより調整され得る。送信プロセッサ350は、Ppilot(n)の送信パワーレベルでCDMAセグメント上にパイロットを生成し、送信することができる。
ユニット344は、ユニット342からのパイロット送信パワー、およびプロセッサ344からのPQI、RoT、および/または、他のパラメータを受信することができる。ユニット344は、各種の方式でCDMAチャンネルの送信パワーをセットすることができる。
ある設計では、ユニット344は、以下のように、与えられたCDMAチャンネルの送信パワーをセットすることができる:

PSDCDMA(n)=PSDpilot(n)+オフセット+ブースト 式(7)

ただし、PSDpilot(n)は、更新インターバルnのパイロットチャンネルのPSD、
PSDCDMA(n)は、更新インターバルnのCDMAチャンネルのPSD、
オフセットは、CDMAチャンネル上で送信されるすべての送信に適用される値、
ブーストは、CDMAチャンネル上で送信されるある送信に適用される値。
パイロットPSDは、パイロット送信パワーを、パイロットを送信するために使用される送信ユニットの数によって割ることにより得られることができる。つまり、PSDpilot(n)=PSDCDMA(n)/Lである。逆に、CDMAチャンネルの送信パワーは、そのPSDを、CDMAチャンネルを送信するために使用される送信ユニットの数で、乗算することにより得られることができる。つまり、CDMAチャンネルが同様にL個の送信ユニットで送信されるならば、PCDMA(n)=L・PSDCDMA(n)である。
オフセットとブースト要素は、セクタ110によって端末120へ送信されることができる。オフセット要素は、パイロットチャンネルに対する目標SNR,CDMAチャンネルに対する目標SNR、等に基づいてセットされることができる。オフセット要素は、負の値、正の値、あるいはゼロであってもよい。ブースト要素は、送信されているメッセージの重要性に基づいてセットされ、ゼロに等しくてもよく、または、ゼロよりも大きくてもよい。たとえば、ハンドオフ指示、負荷制御情報(たとえば、ヌル(null)のCQI)、そして、他の重要な情報は、その情報を正確に受信する可能性を改善するために、正のブースト値とともに送信されることができる。種々のブースト値は、たとえば、高QoSデータに対して送信される要求メッセージに対するより多くのブースト(そして、逆も同様)、のように、種々のサービス品質(QoS)のクラスに対してREQCH上で送信される要求メッセージのために使用されることができる。
他の設計では、ユニット344は、以下のように、CDMAチャンネルの送信パワーをセットすることができる:

PSDCDMA(n)=PSDpilot(n)+RoT+オフセット+ブースト 式(8)

さらに他の設計では、ユニット344は、以下のように、CDMAチャンネルの送信パワーをセットすることができる:

PSDCDMA(n)=PSDpilot(n)−PCoT+RoT+目標C/I+オフセット+ブースト 式(9)

ただし、目標C/Iは、CDMAチャンネルに対する。式(9)では、PSDpilot(n)−PCoTの量は、端末120からセクタ110までの伝播路損失にほぼ相当する。CDMAチャンネルの送信パワーは、このように、CDMAチャンネルに対する目標C/Iを達成するために、伝播路損失に基づいてセットされる。
さらに他の設計では、ユニット344は、以下のように、CDMAチャンネルの送信パワーをセットすることができる:

PSDCDMA(n)=PSDpilot(n)−PCoT+目標CoT+オフセット+ブースト
式(10)

ただし、目標CoTはCDMAチャンネルに対する。セクタ110は、固定RoTでの動作を仮定することができる。それゆえに、RoTは式(10)から省略され得る。
ユニット344は、他の方式でCDMAの送信パワーをセットすることができる。一般に、ユニット344は、目標セクタでの干渉(たとえばRoT)、CDMAチャンネルに対する望ましいパフォーマンスに関連し得るあるゼロ以上のパラメータ、および基準パワーレベル(たとえば、パイロットについて)等に基づいて、ある与えられるCDMAチャンネルの送信パワーをセットすることができる。
異なるCDMAチャンネルは、異なるオフセット、ブースト、および/または、目標C/I値と関係付けられていてもよい。セクタ110は、そのCDMAチャンネルに対する所望のパフォーマンスを達成するために、各CDMAチャンネルに対するオフセット、ブースト、および/またはC/I値をセットし、更新値を端末120へ送信することができる。端末120は、CDMAチャンネルと対するオフセット、ブースト、および/または目標C/I値に基づいて、そして、上記で説明された設計のいずれかを使用して、各CDMAチャンネルの送信パワーをセットすることができる。
端末120は、図1に示されるように、たとえば、RL供給セクタ110、FL供給セクタ112、および/または、他のセクタのような、1つより多くのセクタにCDMAチャンネルを送信することができる。異なるセクタは、異なるRoT、PCoT、および/または目標C/I値と関係付けられていてもよい、それらは、仮にも呼(call)間であるならば、緩やかに変化し得る準静的パラメータであってもよい。端末120は、各セクタの、RoT、PCoT、および/または目標C/I値を得て(たとえば、レイヤ3シグナリングメッセージを介して)、そのセクタの、RoT、PCoT、および/または、目標C/I値に基づいて、そのセクタへ送信されるCDMAチャンネルの送信パワーをセットすることができる。
ユニット346は、ユニット342からのパイロット送信パワー、およびプロセッサからのPQI、IoT、および/または他のパラメータを受信することができる。ユニット346は、各種の方式で、OFDMAチャンネルの送信パワーをセットすることができる。
ある設計では、ユニット346は、以下のように、与えられるOFDMAチャンネルの送信パワーをセットすることができる:

PSDOFDMA(n)=PSDpilot(n)+オフセット+ブースト 式(11)

ただし、PSDOFDMA(n)は、更新インターバルnにおけるOFDMAチャンネルのPSDである。
他の設計では、ユニット346は、以下のように、OFDMAの送信パワーをセットすることができる:

PSDOFDMA(n)=PSDpilot(n)+IoT+オフセット+ブースト 式(12)

さらに他の設計では、ユニット346は、以下のように、OFDMAの送信パワーをセットすることができる:

PSDOFDMA(n)=PSDpilot(n)−PCoT+IoT+目標C/I+オフセット+ブースト 式(13)

さらに他の設計では、ユニット346は、以下のように、OFDMAの送信パワーをセットすることができる:

PSDOFDMA(n)=PSDpilot(n)−PCoT+目標CoT+オフセット+ブースト
式(14)

ユニット346は、他の方式で、OFDMAの送信パワーをセットすることができる。ユニット346は、付近のセクタから受信されるOSI値に基づいてOFDMAチャンネルの送信パワーを制限する可能性もある。一般に、ユニット346は、基準パワーレベル(たとえば、パイロットについて)と、OFDMAチャンネルに対する所望のパフォーマンスに関係するゼロ以上のパラメータと、目標セクタにおける干渉(たとえば、IoT)等に基づいて、与えられたOFDMAチャンネルの送信パワーをセットすることができる。
トラフィックデータを伝えるOFDMAチャンネルについて、このOFDMAチャンネルに対する最小あるいは最大PSDは、上記に説明される設計のいずれかに基づいてセットされることができる。
異なるOFDMAチャンネルは、異なるオフセット、ブースト、および/または、目標C/I値に関係付けられていてもよい。セクタ110は、そのOFDMAチャンネルに対する所望のパフォーマンスを達成するために、各OFDMAチャンネルに対するオフセット、ブースト、および/または目標C/I値をセットし、更新された値を端末120へ送信することができる。端末120は、そのOFDMAチャンネルに対するオフセット、ブースト、および/または、C/I値に基づき、そして、上記で説明された設計のいずれかを使用して、各OFDMAチャンネルの送信パワーをセットすることができる。
端末120は、1より多くのセクタにOFDMAチャンネルを送信することができる。異なるセクタは、異なるIoT、PcoT、および/または目標C/I値に関係付けられていてもよい。端末120は、各セクタに対するIoT、PcoT、および/または、目標C/I値を獲得し、そして、各セクタに対するIoT、PcoT、および/または、目標C/I値に基づいて、そのセクタに送信されるOFDMAチャンネルの送信パワーをセットすることができる。
端末120は、フォワードとリバースリンクの両方に対する単一供給セクタを有し得る。この場合には、端末120は、CDMAとOFDMAチャンネルのすべてを1つのセクタへ送信し、たとえば、上記で説明されたように、このセクタから受信されるパラメータに基づいて、これらのチャンネルの送信パワーをセットすることができる。
端末120は、たとえば、図1に示されるように、ディスジョイント(disjoint)リンクとして呼ばれるフォワードとリバースリンクに対する異なる供給セクタを有し得る。この場合には、端末120は、いくつかのCDMAとOFDMAチャンネルをRL供給セクタへ送信し、このセクタから受信されるパラメータに基づいてこれらのチャンネルの送信パワーをセットすることができる。端末120は、他のCDMAとOFDMAチャンネルをFL供給セクタへ送信し、このセクタから受信されるパラメータに基づいてこれらのチャンネルの送信パワーをセットすることができる。
ある設計では、閉ループパワー制御は、RL供給セクタを介して、第1のチャンネル(たとえば、パイロットチャンネル)に対して実行され、そして、閉ループパワー制御は、FL供給セクタを介して第2のチャンネル(たとえば、CQIチャンネル)に対して実行されることができる。第1のチャンネルの送信パワーは、RL供給セクタへ送信される他のチャンネルの送信パワーをセットするために使用されることができる。第2のチャンネルの送信パワーは、FL供給セクタへ送信される他のチャンネルの送信パワーをセットするために使用されることができる。この設計は、異なるセクタに送信される異なる送信に対して良好なパフォーマンスを確実にすることができる。
図4は、FLとRL供給セクタによる個別の閉ループパワー制御に対するパワー制御メカニズム400の設計を示す。この設計では、FL供給セクタ112は、CQIチャンネル上で閉ループパワー制御を実行する。端末120は、リバースリンク上でパイロットチャンネルと他のCDMAとOFDMAチャンネルを送信することができる。RL供給セクタ110は、その受信した送信を処理し、そして、たとえば、図3について上で説明したように、PC命令、PQI,RoT、IoT、および他のパラメータを、端末120へ送信することができる。
FL供給セクタ112は、リバースリンク上で端末120と他の端末から伝送を受信する可能性もある。セクタ112において、CQIプロセッサ410は、端末120により送信されるCQI値を検出するために、CQIチャンネルに対して端末120により実行される処理と相補的な方式で伝送を処理することができる。プロセッサ410は、CQIチャンネル上で受信される各符号ワード(あるいは各CQI値)に対する測定基準(metric)を計算することができる。各種タイプの測定基準は、削除検出に使用され得る。ある設計では、エネルギーは、FL供給セクタ112においてアンテナを横切って、非コヒーレントに結合される。 そして、測定基準は、チャンネルタップおよびデータ仮説(data hypotheses)間で最大の結合エネルギーである。この設計では、より大きな測定基準は、修正されている受信符号ワードにおけるより大きな信頼性に対応する。逆もまた同じである。
消去インディケータ生成器412は、プロセッサ410から測定基準を受信し、削除閾値に対して測定基準を比較し、消去インディケータを以下のように供給することができる:
Figure 2012090280
削除閾値は、所望のパフォーマンスを達成するように選択されることができる。
CDMA干渉推定器420は、セクタ112に対するCDMAセグメントのRoTを推定することができる。OFDMA干渉推定器422は、セクタ112においてIoTを推定することができる。送信シグナリングプロセッサ430は、生成器412から消去インディケータを、推定器420からRoTを、推定器422からIoTを、そして、おそらく、端末120に対する他のパラメータを受信することができる。プロセッサ430は、消去インディケータと他のパラメータを処理し、端末120へ送信することができる。プロセッサ430は、RoTとIoTを処理し、セクタ112内の端末120と他の端末へ送信することができる。
端末120は、RL供給セクタ110とFL供給セクタ112の両方から、FL伝送を受信することができる。受信シグナリングプロセッサ340は、セクタ110と112により送信されるパラメータを再生するために、受信された伝送を処理することができる。プロセッサ340は、RL供給セクタ110からユニット342、344、346へパラメータを供給し、FL供給セクタ112からユニット352、354、356へパラメータを供給することができる。ユニット342、344、および346は、図3について上で説明されたように、セクタ110から受信されるパラメータに基づき、RL供給セクタ110へ送信されるCDMAとOFDMAチャンネルとパイロットチャンネルの送信パワーをセットすることができる。
FL供給セクタ112へ送信されるCDMAとOFDMAチャンネルについて、ユニト352は、消去インディケータを受信し、以下のように、CQIの送信パワーを調整する:
Figure 2012090280
ただし、PCQI(n)は、更新インターバルnのCQIチャンネルの送信パワー
ΔPCQIは、CQI送信パワーを調整するためのステップサイズである。
CQI送信パワーは、式(16)に示されるように、等しいアップおよびダウン・ステップサイズにより、あるいは、異なるアップおよびダウン・ステップサイズにより調整され得る。プロセッサ350は、PCQI(n)の送信パワーレベルでCQIチャンネル上にCQI値を生成し、送信することができる。CQI送信パワーは、FL供給セクタ112へ送信されるCDMAとOFDMAチャンネルに対する基準パワーレベルとして使用されることができる。ユニット354は、ユニット352からのCQI送信パワーとプロセッサ340からのRoT、および/または、他のパラメータを受信することができる。ユニット354は、上で説明された設計のいずれかに基づいて、セクタ112へ送信されるCDMAチャンネルの送信パワーをセットすることができる。ユニット356は、ユニット352からのCQI送信パワーとプロセッサ340からのIoT、および/または他のパラメータを受信することができる。ユニット356は、上に説明される設計のいずれかに基づいて、セクタ112へ送信されるOFDMAチャンネル(たとえば、ACKチャンネル)の送信パワーをセットすることができる。
図4に示される設計において、閉ループパワー制御は、FL供給セクタ112によりCQIチャンネル上で実行される。一般に、閉ループパワー制御は、FL供給セクタ112へ送信される任意のチャンネル上で実行されることができる。FL供給セクタ112からのフィードバックは、パワー制御されているチャンネルに依存し得る。セクタ112は、図4に示されるように消去インディケータ、PC命令、あるいは、パワー制御されているチャンネルの送信パワーを調整するために、端末120によって使用され得る他のフィードバックを送信することができる。
一般に、FL供給セクタ112へ送信されるCDMAとOFDMAチャンネルの送信パワーは、(1)FL供給セクタ112によりパワー制御されるチャンネルの送信パワー、あるいは、(2)RL供給セクタ110によりパワー制御されるチャンネルの送信パワー、に基づいてセットされることができる。たとえば、FL供給セクタ112へ送信されるACKチャンネルの送信パワーは、セクタ112により制御されるCQIチャンネルの送信パワーか、あるいは、セクタ110により制御されるパイロットチャンネルの送信パワーに基づいてセットされることができる。
図5は、干渉情報に基づくパワー制御のために端末により実行されるプロセス500の設計を示す。第1の伝送は、リバースリンク上で送信されることができる(ブロック512)。第1の伝送に対するフィードバックは、受信されることができる(ブロック514)。基準パワーレベルは、フィードバックに基づいて調整されることができる(ブロック516)。干渉情報(たとえば、RoT、IoT等について)は、セクタから受信されることができる(ブロック518)。セクタへの第2の伝送に対する送信パワーは、干渉情報、基準パワーレベル、および、おそらく、他のパラメータに基づいて決定されることができる(ブロック520)。たとえば、第2の伝送に対する送信パワーは、第2の伝送の送信に使用されるチャンネルに対するオフセット要素にさらに基づいて決定されることができる。オフセット要素は、チャンネルに対する目標パフォーマンスを達成するためにセットされることができる。その代わりに、あるいは、追加として、第2の伝送に対する送信パワーは、第2の伝送に対するブースト要素にさらに基づいて決定されることができる。ブースト要素は、たとえば、第2の伝送がハンドオフ情報を伝える場合の高いブーストのように、第2の伝送において送信されている情報のタイプに依存し得る。第2の伝送は、CDMAあるいはOFDMAにより、決定された送信パワーで送信されることができる(ブロック522)。
ある設計では、第1の伝送は、パイロットに対するものであり、フィードバックはパイロットに対するPC命令を含む。パイロットに対する送信パワーは、PC命令に基づいて調整され、基準パワーレベルとして使用されることができる。他の設計では、第1の伝送は、CQIに対するものであり、フィードバックは、CQIに対する消去インディケータを含む。CQIに対する送信パワーは、消去インディケータに基づいて調整され、基準パワーレベルとして使用されることができる。第1の伝送は、他のタイプの伝送(たとえば、他のシグナリング)に対するものでも有り得るし、他のタイプのフィードバックは、基準パワーレベルの調整のために、受信され、使用されることができる。そのフィードバックは、あるセクタ(たとえば、RLやFL供給セクタ)から受信され、第2の伝送はその同じセクタへ送信されることができる。あるいは、フィードバックは、あるセクタ(たとえば、RL供給セクタ)から受信されてもよく、第2の伝送は他のセクタ(たとえば、FL供給セクタ)へ送信されてもよい。
ある設計では、干渉情報はRoTを含み、第2の伝送に対する送信パワーは、RoTと基準パワーレベルに基づいて決定される。第2の伝送は、決定された送信パワーでCDMAにより送信されることができる。他の設計では、干渉情報はIoTを含み、第2の伝送に対する送信パワーは、IoTと基準パワーレベルに基づき決定される。第2の伝送は、決定された送信パワーでOFDMAにより送信されることができる。第2の伝送は、データ、シグナリング等に対するものであってもよい。
図6は端末に対する装置600の設計を示す。装置600は、リバースリンク上で第1の伝送を送信する手段(モジュール612)、第1の伝送に対するフィードバックを受信する手段(モジュール614)、フィードバックに基づき基準パワーレベルを調整する手段(モジュール616)、セクタから干渉情報を受信する手段(モジュール618)、干渉情報、基準パワーレベル、および、おそらく、他のパラメータに基づきセクタへの第2の伝送に対する送信パワーを決定する手段(モジュール620)、そして、CDMAあるいはOFDMAにより決定された送信パワーで第2の伝送を送信する手段(モジュール622)を含む。
図7は、端末に対して、セクタ(たとえば、RL供給セクタ、あるいはFL供給セクタ)により、実行されるプロセス700の設計を示す。第1の伝送はリバースリンク上で端末から受信されることができる(ブロック712)。フードバックは第1の伝送に基づき生成されることができる(ブロック714)。セクタでの干渉は干渉情報を獲得するために推定されることができる(ブロック716)。フィードバックと干渉情報は、端末へ送信されることができる(ブロック718)。その後、セクタは、フィードバック、干渉情報、そして、おそらく他のパラメータに基づいて決定される送信パワーで端末により送信される第2の伝送を受信することができる(ブロック720)。他のパラメータは、第2の伝送、第2の伝送に対するブースト要素等を送信するために使用されるチャンネルに対するオフセット要素を含むことができる。第2の伝送はCDMAあるいはOFDMAに基づいて処理されることができる(ブロック722)。
ある設計では、第1の伝送はパイロットに対するものであり、PCoTは受信パイロットに基づき決定され、PC命令はPCoTに基づき生成され、フィードバックとして端末へ送信される。他の設計では、第1の伝送はパイロットに対するものであり、パイロットC/Iは受信パイロットに基づいて決定され、PC命令はパイロットC/Iに基づいて生成され、フィードバックとして端末へ送信される。さらに他の設計では、第1の伝送はCQIに対するものであり、消去インディケータは受信CQIに基づいて生成され、フィードバックとして端末へ送信される。
ある設計では、セクタにおけるRoTは推定され、端末へ送信されることができる。CDMA復調は、第2の伝送に対して実行されることができる。他の設計では、セクタにおけるIoTは推定され、端末へ送信されることができる。OFDMA復調は、第2の伝送に対して実行されることができる。
図8は、セクタに対する装置800の設計を示す。装置800は、リバースリンク上で端末から第1の伝送を受信するための手段(モジュール812)、第1の端末に基づいてフィードバックを生成する手段(モジュール814)、干渉情報を獲得するためにセクタで干渉を推定する手段(モジュール816)、フィードバックと干渉情報を端末へ送信する手段(モジュール818)、フィードバック、干渉情報、および、おそらく、他のパラメータに基づき決定される送信パワーで端末により送信される第2の伝送を受信する手段(モジュール820)、そして、CDMAあるいはOFDMAに基づき第2の伝送を処理する手段を含む(モジュール822)。
図9は端末により実行される処理900の設計を示す。パイロットはリバースリンク上で送信されることができる(ブロック912)。PC命令は受信され、パイロットに対する送信パワーは、PC命令に基づいて調整されることができる。端末は、リバースリンク上で送信されるパイロットに基づいて、セクタにより決定されるPQIを受信することができる(ブロック914)。PQIは、PCoT、パイロットC/I等を含むことができる。リバースリンク上の送信に対する送信パワーは、PQIとパイロットに対する送信パワーに基づき決定されることができる(ブロック916)。干渉情報は、セクタから受信され、送信に対する送信パワーの決定に使用される可能性もある。
ある設計では、RoTはセクタから受信され、伝送に対する送信パワーはさらに、RoTに基づき決定され、伝送はCDMAにより決定された送信パワーで送信されることができる。他の設計では、IoTはセクタから受信され、伝送に対する送信パワーは、さらにIoTに基づき決定され、伝送はOFDMAにより決定された送信パワーで送信され得る。
図10は、端末に対する装置1000の設計を示す。装置1000は、リバースリンク上でパイロットを送信する手段(モジュール1012)、リバースリンク上で送信されるパイロットに基づいてセクタにより決定されるPQIを受信する手段(モジュール1014)、そして、PQIとパイロットの送信パワーに基づいて、リバースリンク上の伝送に対する送信パワーを決定する手段(モジュール1016)を含む。
図11は、セクタ(たとえば、RL供給セクタあるいはFL供給セクタ)により、端末に対して実行されるプロセス1100の設計を示す。パイロットは、リバースリンク上の端末から受信されることができる(ブロック1112)。PQIは受信パイロットに基づき決定され(ブロック1114)、端末へ送信されることができる(ブロック1116)。干渉情報(たとえば、RoT、IoT等について)もまた決定され、端末へ送信され得る。セクタは、次に、PQIと、おそらく他の情報に基づいて決定される送信パワーで端末によって送信される伝送を受信することができる(ブロック1118)。セクタは、CDMAあるいはOFDMAに基づく伝送を処理することができる。
図12は、セクタのための装置1200の設計を示す。装置1200は、リバースリンク上で端末からのパイロットを受信する手段(モジュール1212)、受信したパイロットに基づいてPQIを決定する手段(モジュール1214)、PQIを端末へ送信する手段(モジュール1216)、そして、PQIと、おそらく他の情報に基づいて決定される送信パワーで端末により送信される伝送を受信する手段(モジュール1218)を含む。
図6、8、10、および12のモジュールは、プロセッサ、電子デバイス、ハードウェアデバイス、電子部品、論理回路、メモリ等、あるいはそれらの組み合わせを備えることができる。
図13は、図1における、端末120、RL供給セクタ/基地局110、およびFL供給セクタ/基地局112の設計のブロック図を示す。セクタ110において、送信プロセッサ1314aは、データソース1312aからのトラフィックデータと、制御器/プロセッサ1330aと、スケジューラ1334aからのシグナリングを受信することができる。たとえば、制御器/プロセッサ1330aは、端末120に対するPC命令、PQIs、および他のパラメータ、ならびに、セクタ110に対するRoTおよびIoTを供給することができる。スケジューラ1334aは、端末120に対する時間・周波数資源の割り当てを供給することができる。送信プロセッサ1314aは、データ、シグナリング、そしてパイロットを処理(たとえば、符号化、インターリーブ、および、シンボルマップ)し、データシンボル、シグナリングシンボル、そして、パイロットシンボルをそれぞれ供給することができる。変調器(MOD)1316aは、OFDM変調を実行し、出力チップを供給することができる。送信器(TMTR)1318aは、出力チップを調整(condition)(たとえば、アナログへの変換、増幅、フィルタ、アップコンバート)し、アンテナ1320aを介して送信されるフォワードリンク信号を生成することができる。
セクタ112は、セクタ112により供給される端末のためのトラフィックデータとシグナリングを、同様に処理することができる。データ、シグナリング、およびパイロットは、送信プロセッサ1314bにより処理され、変調器1316bにより変調され、送信器1318Bにより調整され、アンテナ1320bを介して送信されることができる。
端末120において、アンテナ1352は、セクタ110と、112と、そして、おそらく他のセクタから、フォワードリンク信号を受信することができる。受信機(RCVR)1354は、アンテナ1352からの受信信号を調整(たとえば、フィルタ、増幅、ダウンコンバート、およびデジタル化)し、サンプルを供給することができる。復調器(DEMOD)1356は、OFDM復調を実行し、シンボル推定を供給することができる。受信プロセッサ1358は、シンボル推定を処理(たとえば、シンボルデマップ、デインターリブ(deinterleave)、復号)し、復号データをデータシンク(sink)1360へ供給し、復号シグナリング(たとえば、PC命令、PQIs,消去インディケータ、RoT、IoT等)を制御器/プロセッサ1370へ供給することができる。
リバースリンクに関して、送信プロセッサ1382は、データソース1380からトラフィックデータを、そして制御器/プロセッサ1370からシグナリング(たとえば、CQI値あるいはACKs等)を受信し、処理することができる。変調器1384は、OFDMAチャンネルに対するOFDM変調と、パイロットとCDMAチャンネルに対するCDMA変調を実行し、すべてのチャンネルのために出力チップを供給することができる。送信機1386は、出力チップを調整し、アンテナ1352を介して送信されるリバースリンク信号を生成することができる。
各セクタにおいて、端末120と他の端末からのリバースリンク信号は、アンテナ1320により受信され、受信機1340により調整され、復調器1342により復調され、受信プロセッサ1344により処理されることができる。プロセッサ1344は、復号データをデータシンク1346に、復号シグナリングを制御器/プロセッサ1330に供給することができる。RL供給セクタ110において、復調器1342aは端末120に対するパイロット品質を推定し、制御器/プロセッサ1330aにこの情報を供給することができる。制御器/プロセッサ1330aは、上記で説明されたように、端末120に対するPC命令、PQIs、および/または、他のパラメータを生成することができる。FL供給セクタ112において、受信プロセッサ1344bは、端末120に対するCQI測定基準を決定し、この情報を制御器/プロセッサ1330bに供給することができる。制御器/プロセッサ1330bは、上記で説明されたように、端末120に対する消去インディケータ、および/または、他のパラメータを生成することができる。
制御器/プロセッサ1330a、1330b、および1370は、それぞれ、セクタ110、112、および端末120における動作を、指示することができる。メモリ1332a、1332b、および1372は、それぞれ、セクタ110、112、および端末120に対するデータとプログラムコードを格納することができる。スケジューラ1334aおよび1334bは、それぞれ、セクタ110と112と通信する端末をスケジュールし、そして、チャンネル、および/または、時間・周波数資源を端末に割り当てることができる。
図13のプロセッサは、ここにおいて説明される技法のための各種の機能を実行することが可能である。たとえば、プロセッサ1330a、および/または、1334aは、RL供給セクタ110に対する図3のユニット310から330までの部分あるいはすべてを実行することができる。プロセッサ1330b、および/または、1334bはFL供給セクタ112に対して、図4のユニット410から430までの部分あるいはすべてを実行することができる。プロセッサ1358、1370、および/または、1382は、端末120に対して、図3と4のユニット340から356までの部分およびすべてを実現することができる。これらのプロセッサは、図5から12を通じての処理の部分あるいはすべてを実現することができる。
ここで説明される技法は、各種の手段で実現され得る。たとえば、これらの技法は、ハードウェア、ファームウェア、ソフトウェア、あるいは、それらの組み合わせで実現され得る。ハードウェア・インプリメンテーションについては、技法を実行するために使用される処理ユニットは、1以上の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラマブル論理デバイス(PLD)、フィールドプログラマブルゲートアレー(FPGA)、プロセッサ、制御器、マイクロ制御器、マイクロプロセッサ、電子デバイス、ここにおいて説明される機能を実行するために設計される他の電子ユニット、コンピュータ、および、それらの組み合わせ、でインプリメントされ得る。
ファームウェアおよび/またはソフトウェア・インプリメンテーションについては、技法は、ここで説明される機能を実行するモジュール(たとえば、手順、機能等)でインプリメントされ得る。ファームウェア、および/または、ソフトウェアは、メモリ(たとえば、図13のメモリ1332a、1332b、または1372)に格納され、プロセッサ(たとえば、プロセッサ1330a、1330b、または1370)により実行され得る。メモリは、プロセッサの内部、あるいはプロセッサの外部でインプリメントされ得る。ファームウェア、および/または、ソフトウェア命令は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブル読み取り専用メモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、コンパクトディスク(CD)、磁界および光学データ記憶デバイス等のような、他のプロセッサ可読媒体に格納され得る。
本開示の前の説明によって、当業者であれば、本開示の製造と使用は可能である。本開示へのさまざまな修正は、当業者にとっては容易に明白になり、そして、ここで定義される一般的な原理は、本開示の範囲から逸脱することなく、他の変形に応用され得る。このように、本開示は、ここで示される例示や設計に限定されることを意図するものではなく、ここで開示される原理と新規な特徴と一致する最も広い範囲を与えられることを意図するものである。
本開示の前の説明によって、当業者であれば、本開示の製造と使用は可能である。本開示へのさまざまな修正は、当業者にとっては容易に明白になり、そして、ここで定義される一般的な原理は、本開示の範囲から逸脱することなく、他の変形に応用され得る。このように、本開示は、ここで示される例示や設計に限定されることを意図するものではなく、ここで開示される原理と新規な特徴と一致する最も広い範囲を与えられることを意図するものである。
以下に本件出願当初の特許請求の範囲に記載された発明を付記する。
[1]
リバースリンク上で送信される第1の伝送に対するフィードバックを受信するように、前記フィードバックに基づいて基準パワーレベルを調整するように、セクタからの干渉情報を受信するように、および、前記干渉情報と前記基準パワーレベルに基づいて前記セクタへの第2の伝送に対する送信パワーを決定するように、構成される少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに結合されるメモリ、
を含む装置。
[2]
前記干渉情報は、少なくとも1つのライズオーバサーマル比(RoT)と、干渉オーバサーマル比(IoT)を含む、[1]の装置。
[3]
前記少なくとも1つのプロセッサは、前記リバースリンク上で前記第1の伝送としてパイロットを送信するように、前記フィードバックとして前記パイロットに対するパワー制御(PC)命令を受信するように、前記PC命令に基づいて前記パイロットに対する送信パワーを調整するように、および、前記基準パワーレベルとして前記パイロットに対する前記送信パワーを使用するように、構成される、[1]の装置。
[4]
前記セクタは、リバースリンク供給セクタであり、前記少なくとも1つのプロセッサは、前記セクタから前記PC命令を受信するように、および、前記セクタへ前記第2の伝送を送信するように、構成される、[3]の装置。
[5]
前記セクタは、フォワードリンク供給セクタであり、前記少なくとも1つのプロセッサは、リバースリンク供給セクタから前記PC命令を受信するように、および、前記フォワードリンク供給セクタへ前記第2の伝送を送信するように、構成される、[3]の装置。
[6]
前記少なくとも1つのプロセッサは、前記リバースリンク上の前記第1の伝送としてチャンネル品質インディケータ(CQI)を送信するように、前記フィードバックとして前記CQIに対する消去インディケータを受信するように、前記消去インディケータに基づいて前記CQIに対する送信パワーを調整するように、および、前記基準パワーレベルとして前記CQIに対する前記送信パワーを使用するように、構成される、[1]の装置。
[7]
前記少なくとも1つのプロセッサは、前記セクタからライズオーバサーマル比(RoT)を受信するように、そして、前記RoTと前記基準パワーレベルに基づいて前記第2の伝送に対する前記送信パワーを決定するように、構成される、[1]の装置。
[8]
前記少なくとも1つのプロセッサは、符号分割多重接続(CDMA)により決定された送信パワーで前記第2の伝送を送信するように、構成される、[7]の装置。
[9]
前記少なくとも1つのプロセッサは、前記セクタ干渉オーバサーマル比(IoT)を受信するように、および、前記IoTと前記基準パワーレベルに基づいて前記第2の伝送に対する前記送信パワーを決定するように、構成される、[1]の装置。
[10]
前記少なくとも1つのプロセッサは、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記第2の伝送を送信するように、構成される、[9]の装置。
[11]
前記少なくとも1つのプロセッサは、さらに前記第2の伝送を送信するために使用されるチャンネルに対するオフセット要素に基づいて、前記第2の伝送に対する前記送信パワーを決定するように、構成される、[1]の装置。
[12]
前記オフセット要素は、前記チャンネルに対する目標パフォーマンスを達成するようにセットされる、[11]の装置。
[13]
前記少なくとも1つのプロセッサは、さらに、前記第2の伝送に対するブースト要素に基づいて、前記第2の伝送に対する前記送信パワーを決定するように、構成される、[1]の装置。
[14]
前記ブースト要素は、前記第2の伝送で送信される情報のタイプに依存しており、そして、前記第2の伝送がハンドオフ情報を伝える場合に、より高くセットされる、[13]の装置。
[15]
リバースリンク上で送信される第1の伝送に対するフィードバックを受信することと、
前記フィードバックに基づいて基準パワーレベルを調整することと、
セクタから干渉情報を受信することと、
前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定すること、
を含む方法。
[16]
前記第1の伝送はパイロットに対するものであり、前記フィードバックは前記パイロットに対するパワー制御(PC)命令を含み、そして、
前記基準パワーレベルを調整することは、
前記PC命令に基づいて前記パイロットに対する送信パワーを調整することと、
前記基準パワーレベルとして前記パイロットに対する前記送信パワーを使用すること、
を含む、[15]の方法。
[17]
前記第1の伝送はチャンネル品質インディケータ(CQI)に対するものであり、前記フィードバックは前記CQIに対する消去インディケータを含み、そして、
前記基準パワーレベルを調整することは、
前記消去インディケータに基づいて前記CQIに対する送信パワーを調整することと、
前記基準パワーレベルとして前記CQIに対する前記送信パワーを使用すること、
を含む、[15]の方法。
[18]
前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記方法は、符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を送信すること、
をさらに含む、[15]の方法。
[19]
前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記方法は、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記第2の伝送を送信すること、
をさらに含む、[15]の方法。
[20]
前記第2の伝送に対する前記送信パワーを決定することは、
前記第2の伝送の送信に使用されるチャンネルに対するオフセット要素と、前記第2の伝送に対するブースト要素の、少なくとも1つに、さらに、基づいて、前記第2の伝送に対する前記送信パワーを決定すること、
を含む、[15]の方法。
[21]
リバースリンク上で送信される第1の伝送に対するフィードバックを受信する手段と、
前記フィードバックに基づいて基準パワーレベルを調整する手段と、
セクタから干渉情報を受信する手段と、
前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定する手段、
を備える装置。
[22]
前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記装置は、
符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を送信する手段、
をさらに備える、[21]の装置。
[23]
前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記装置は、
直交周波数分割多重接続(OFDMA)により前記決定される送信パワーで前記第2の伝送を送信する手段、
をさらに備える、[21]の装置。
[24]
前記第2の伝送に対する前記送信パワーを決定する前記手段は、
前記第2の伝送を送信するために使用されるチャンネルに対するオフセット要素と、前記第2の伝送に対するブースト要素の、少なくとも1つに、さらに基づき、前記第2の伝送に対する前記送信パワーを決定する手段、
を備える、[21]の方法。
[25]
リバースリンク上で送信される第1の伝送に対するフィードバックの受信に関する第1の命令セットと、
前記フィードバックに基づいて、基準パワーレベルの調整に関する第2の命令セットと、
セクタからの干渉情報の受信に関する第3の命令セットと、
前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定するための第4の命令セット、
を含む、そこにおいて格納される命令を含むプロセッサ可読媒体。
[26]
前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記プロセッサ可読媒体は、
符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を生成するための第5の命令セット、
をさらに含む、[25]のプロセッサ可読媒体。
[27]
前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記プロセッサ可読媒体は、
直交周波数分割多重接続(OFDMA)により前記決定される送信パワーで前記第2の伝送を生成するための第5の命令セット、
をさらに含む、[25]のプロセッサ可読媒体。
[28]
前記第4の命令セットは、前記第2の伝送の送信に使用されるチャンネルに対する少なくとも1つのオフセット要素と、前記第2の伝送に対するブースト要素に、さらに基づいて、前記第2の伝送に対する前記送信パワーをさらに決定する、[25]のプロセッサ可読媒体。
[29]
リバースリンク上で端末から第1の伝送を受信するように、前記第1の伝送に基づいてフィードバックを生成するように、セクタで干渉を推定し、かつ干渉情報を得るように、前記フィードバックと前記干渉情報を前記ターミナルへ送信するように、そして、前記フィードバックと前記干渉情報に基づいて決定された送信パワーで前記端末により送信される第2の伝送を受信するように、構成される少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに結合されるメモリ、
を備える、装置。
[30]
前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパワー制御(PC)命令を生成するように、なそして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、
[29]の装置。
[31]
前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパイロットキャリア・オーバ・サーマル比(PCoT)を決定するように、前記PCoTに基づいてパワー制御(PC)命令を生成するように、そして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、[29]の装置。
[32]
前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパイロットのキャリアと干渉の比(C/I)を決定するように、前記パイロットC/Iに基づいてパワー制御(PC)命令を生成するように、そして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、[29]の装置。
[33]
前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてシグナリングを受信するように、前記受信されたシグナリングに基づいて消去インディケータを生成するように、そして、前記フィードバックとして前記消去インディケータを前記端末へ送信するように、構成される、[29]の装置。
[34]
前記少なくとも1つのプロセッサは、前記セクタでライズオーバサーマル比(RoT)を推定するように、前記RoTを含む前記干渉情報を送信するように、そして、前記端末からの前記第2の伝送に対する符号分割多重接続(CDMA)の復調を実行するように、構成される、[29]の装置。
[35]
前記少なくとも1つのプロセッサは、前記セクタで干渉オーバサーマル比(IoT)を推定するように、前記IoTを含む前記干渉情報を送信するように、および、前記端末から前記第2の伝送に対する直交周波数分割多重接続(OFDMA)の復調を実行するように、構成される、[29]の装置。
[36]
前記少なくとも1つのプロセッサは、第2の伝送を送信するために使用されるチャンネルに対するオフセット要素を決定するように、そして、前記端末へ前記オフセット要素を送信するように構成され、および、前記第2の伝送に対する前記送信パワーは、前記オフセット要素に、さらに基づいて決定される、[29]の装置。
[37]
前記少なくとも1つのプロセッサは、第2の伝送に対するブースト要素を決定するように、そして、前記端末へ前記ブースト要素を送信するように構成され、および、前記第2の伝送に対する前記送信パワーは、前記ブースト要素に、さらに基づいて決定される、[29]の装置。
[38]
リバースリンク上でパイロットを送信するように、リバースリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信するように、および、前記PQIと前記パイロットに対する送信パワーに基づいてリバースリンク上の伝送に対する送信パワーを決定するように、構成される少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに結合されるメモリ、
を備える、装置。
[39]
前記PQIは、パイロットキャリア・オーバ・サーマル比(PCoT)、あるいは、パイロットのキャリアと干渉の比(C/I)を含む、[38]の装置。
[40]
前記少なくとも1つのプロセッサは、前記パイロットに対するパワー制御(PC)命令を受信するように、および、前記PC命令に基づいて前記パイロットに対する前記送信パワーを調整するように、構成される、[38]の装置。
[41]
前記少なくとも1つのプロセッサは、前記セクタからの干渉情報を受信するように、および、前記干渉情報にさらに基づいて前記伝送に対する前記送信パワーを決定するように、構成される、[38]の装置。
[42]
前記少なくとも1つのプロセッサは、前記セクタからライズオーバサーマル比(RoT)を受信するように、前記RoTにさらに基づいて前記伝送に対する前記送信パワーを決定するように、および、符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信するように、構成される、[38]の装置。
[43]
前記少なくとも1つのプロセッサは、前記セクタから干渉オーバサーマル比(IoT)を受信するように、前記IoTにさらに基づいて前記伝送に対する前記送信パワーを決定するように、および、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信するように、構成される、[38]の装置。
[44]
リバースリンク上でパイロットを送信すること、
前記リバースリンクリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信すること、および、
前記PQIと前記パイロットに対する送信パワーに基づいて前記リバースリンク上の伝送に対する送信パワーを決定すること、
を含む方法。
[45]
前記セクタからライズオーバサーマル比(RoT)を受信すること、そこにおいて、前記伝送に対する前記送信パワーは前記RoTにさらに基づいて決定される、および、
符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信すること、
をさらに含む、[44]の方法。
[46]
前記セクタから干渉オーバサーマル比(IoT)を受信すること、そこにおいて、前記伝送に対する前記送信パワーは前記IoTにさらに基づいて決定される、および、
直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信すること、
をさらに含む、[44]の方法。
[47]
リバースリンク上でパイロットを送信する手段と、
前記リバースリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信する手段と、
前記PQIと前記パイロットに対する送信パワーに基づいて前記リバースリンク上の伝送に対する送信パワーを決定する手段、
を備える装置。
[48]
前記セクタからライズオーバサーマル比(RoT)を受信する手段、そこにおいて、前記伝送に対する前記送信パワーは前記RoTにさらに基づいて決定される、および、
符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信する手段、
をさらに備える、[47]の装置。
[49]
前記セクタから干渉オーバサーマル比(IoT)を受信する手段、そこにおいて、前記伝送に対する前記送信パワーは前記IoTにさらに基づいて決定される、および、
直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信する手段、
をさらに備える、[47]の装置。
[50]
リバースリンク上で端末からパイロットを受信するように、前記受信されたパイロットに基づいてパイロット品質インディケータ(PQI)を決定するように、前記PQIを前記端末へ送信するように、および、前記PQIに基づいて決定された送信パワーで、前記端末により送信される伝送を受信するように、構成される、少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに結合されるメモリ、
を備える装置。
[51]
前記少なくとも1つのプロセッサは、前記受信されるパイロットに基づいてパイロットキャリア・オーバ・サーマル比(PCoT)を決定するように、および、前記パイロットのPCoTに基づいて前記PQIを決定するように、構成される、[50]の装置。
[52]
前記少なくとも1つのプロセッサは、前記受信されるパイロットに基づきパイロットのキャリアと干渉の比(C/I)を決定するように、および、前記パイロットのC/Iに基づいて前記PQIを決定するように、構成される、[50]の装置。

Claims (52)

  1. リバースリンク上で送信される第1の伝送に対するフィードバックを受信するように、前記フィードバックに基づいて基準パワーレベルを調整するように、セクタからの干渉情報を受信するように、および、前記干渉情報と前記基準パワーレベルに基づいて前記セクタへの第2の伝送に対する送信パワーを決定するように、構成される少なくとも1つのプロセッサと、
    前記少なくとも1つのプロセッサに結合されるメモリ、
    を含む装置。
  2. 前記干渉情報は、少なくとも1つのライズオーバサーマル比(RoT)と、干渉オーバサーマル比(IoT)を含む、請求項1の装置。
  3. 前記少なくとも1つのプロセッサは、前記リバースリンク上で前記第1の伝送としてパイロットを送信するように、前記フィードバックとして前記パイロットに対するパワー制御(PC)命令を受信するように、前記PC命令に基づいて前記パイロットに対する送信パワーを調整するように、および、前記基準パワーレベルとして前記パイロットに対する前記送信パワーを使用するように、構成される、請求項1の装置。
  4. 前記セクタは、リバースリンク供給セクタであり、前記少なくとも1つのプロセッサは、前記セクタから前記PC命令を受信するように、および、前記セクタへ前記第2の伝送を送信するように、構成される、請求項3の装置。
  5. 前記セクタは、フォワードリンク供給セクタであり、前記少なくとも1つのプロセッサは、リバースリンク供給セクタから前記PC命令を受信するように、および、前記フォワードリンク供給セクタへ前記第2の伝送を送信するように、構成される、請求項3の装置。
  6. 前記少なくとも1つのプロセッサは、前記リバースリンク上の前記第1の伝送としてチャンネル品質インディケータ(CQI)を送信するように、前記フィードバックとして前記CQIに対する消去インディケータを受信するように、前記消去インディケータに基づいて前記CQIに対する送信パワーを調整するように、および、前記基準パワーレベルとして前記CQIに対する前記送信パワーを使用するように、構成される、請求項1の装置。
  7. 前記少なくとも1つのプロセッサは、前記セクタからライズオーバサーマル比(RoT)を受信するように、そして、前記RoTと前記基準パワーレベルに基づいて前記第2の伝送に対する前記送信パワーを決定するように、構成される、請求項1の装置。
  8. 前記少なくとも1つのプロセッサは、符号分割多重接続(CDMA)により決定された送信パワーで前記第2の伝送を送信するように、構成される、請求項7の装置。
  9. 前記少なくとも1つのプロセッサは、前記セクタ干渉オーバサーマル比(IoT)を受信するように、および、前記IoTと前記基準パワーレベルに基づいて前記第2の伝送に対する前記送信パワーを決定するように、構成される、請求項1の装置。
  10. 前記少なくとも1つのプロセッサは、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記第2の伝送を送信するように、構成される、請求項9の装置。
  11. 前記少なくとも1つのプロセッサは、さらに前記第2の伝送を送信するために使用されるチャンネルに対するオフセット要素に基づいて、前記第2の伝送に対する前記送信パワーを決定するように、構成される、請求項1の装置。
  12. 前記オフセット要素は、前記チャンネルに対する目標パフォーマンスを達成するようにセットされる、請求項11の装置。
  13. 前記少なくとも1つのプロセッサは、さらに、前記第2の伝送に対するブースト要素に基づいて、前記第2の伝送に対する前記送信パワーを決定するように、構成される、請求項1の装置。
  14. 前記ブースト要素は、前記第2の伝送で送信される情報のタイプに依存しており、そして、前記第2の伝送がハンドオフ情報を伝える場合に、より高くセットされる、請求項13の装置。
  15. リバースリンク上で送信される第1の伝送に対するフィードバックを受信することと、
    前記フィードバックに基づいて基準パワーレベルを調整することと、
    セクタから干渉情報を受信することと、
    前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定すること、
    を含む方法。
  16. 前記第1の伝送はパイロットに対するものであり、前記フィードバックは前記パイロットに対するパワー制御(PC)命令を含み、そして、
    前記基準パワーレベルを調整することは、
    前記PC命令に基づいて前記パイロットに対する送信パワーを調整することと、
    前記基準パワーレベルとして前記パイロットに対する前記送信パワーを使用すること、
    を含む、請求項15の方法。
  17. 前記第1の伝送はチャンネル品質インディケータ(CQI)に対するものであり、前記フィードバックは前記CQIに対する消去インディケータを含み、そして、
    前記基準パワーレベルを調整することは、
    前記消去インディケータに基づいて前記CQIに対する送信パワーを調整することと、
    前記基準パワーレベルとして前記CQIに対する前記送信パワーを使用すること、
    を含む、請求項15の方法。
  18. 前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記方法は、符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を送信すること、
    をさらに含む、請求項15の方法。
  19. 前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記方法は、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記第2の伝送を送信すること、
    をさらに含む、請求項15の方法。
  20. 前記第2の伝送に対する前記送信パワーを決定することは、
    前記第2の伝送の送信に使用されるチャンネルに対するオフセット要素と、前記第2の伝送に対するブースト要素の、少なくとも1つに、さらに、基づいて、前記第2の伝送に対する前記送信パワーを決定すること、
    を含む、請求項15の方法。
  21. リバースリンク上で送信される第1の伝送に対するフィードバックを受信する手段と、
    前記フィードバックに基づいて基準パワーレベルを調整する手段と、
    セクタから干渉情報を受信する手段と、
    前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定する手段、
    を備える装置。
  22. 前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記装置は、
    符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を送信する手段、
    をさらに備える、請求項21の装置。
  23. 前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記装置は、
    直交周波数分割多重接続(OFDMA)により前記決定される送信パワーで前記第2の伝送を送信する手段、
    をさらに備える、請求項21の装置。
  24. 前記第2の伝送に対する前記送信パワーを決定する前記手段は、
    前記第2の伝送を送信するために使用されるチャンネルに対するオフセット要素と、前記第2の伝送に対するブースト要素の、少なくとも1つに、さらに基づき、前記第2の伝送に対する前記送信パワーを決定する手段、
    を備える、請求項21の方法。
  25. リバースリンク上で送信される第1の伝送に対するフィードバックの受信に関する第1の命令セットと、
    前記フィードバックに基づいて、基準パワーレベルの調整に関する第2の命令セットと、
    セクタからの干渉情報の受信に関する第3の命令セットと、
    前記干渉情報と前記基準パワーレベルに基づいて、前記セクタへの第2の伝送に対する送信パワーを決定するための第4の命令セット、
    を含む、そこにおいて格納される命令を含むプロセッサ可読媒体。
  26. 前記干渉情報は、ライズオーバサーマル比(RoT)を含み、前記第2の伝送に対する前記送信パワーは前記RoTと前記基準パワーレベルに基づいて決定され、そして、前記プロセッサ可読媒体は、
    符号分割多重接続(CDMA)により前記決定された送信パワーで前記第2の伝送を生成するための第5の命令セット、
    をさらに含む、請求項25のプロセッサ可読媒体。
  27. 前記干渉情報は、干渉オーバサーマル比(IoT)を含み、前記第2の伝送に対する前記送信パワーは前記IoTと前記基準パワーレベルに基づいて決定され、そして、前記プロセッサ可読媒体は、
    直交周波数分割多重接続(OFDMA)により前記決定される送信パワーで前記第2の伝送を生成するための第5の命令セット、
    をさらに含む、請求項25のプロセッサ可読媒体。
  28. 前記第4の命令セットは、前記第2の伝送の送信に使用されるチャンネルに対する少なくとも1つのオフセット要素と、前記第2の伝送に対するブースト要素に、さらに基づいて、前記第2の伝送に対する前記送信パワーをさらに決定する、請求項25のプロセッサ可読媒体。
  29. リバースリンク上で端末から第1の伝送を受信するように、前記第1の伝送に基づいてフィードバックを生成するように、セクタで干渉を推定し、かつ干渉情報を得るように、前記フィードバックと前記干渉情報を前記ターミナルへ送信するように、そして、前記フィードバックと前記干渉情報に基づいて決定された送信パワーで前記端末により送信される第2の伝送を受信するように、構成される少なくとも1つのプロセッサと、
    前記少なくとも1つのプロセッサに結合されるメモリ、
    を備える、装置。
  30. 前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパワー制御(PC)命令を生成するように、なそして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、
    請求項29の装置。
  31. 前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパイロットキャリア・オーバ・サーマル比(PCoT)を決定するように、前記PCoTに基づいてパワー制御(PC)命令を生成するように、そして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、請求項29の装置。
  32. 前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてパイロットを受信するように、前記受信されたパイロットに基づいてパイロットのキャリアと干渉の比(C/I)を決定するように、前記パイロットC/Iに基づいてパワー制御(PC)命令を生成するように、そして、前記フィードバックとして前記PC命令を前記端末へ送信するように、構成される、請求項29の装置。
  33. 前記少なくとも1つのプロセッサは、前記端末から前記第1の伝送としてシグナリングを受信するように、前記受信されたシグナリングに基づいて消去インディケータを生成するように、そして、前記フィードバックとして前記消去インディケータを前記端末へ送信するように、構成される、請求項29の装置。
  34. 前記少なくとも1つのプロセッサは、前記セクタでライズオーバサーマル比(RoT)を推定するように、前記RoTを含む前記干渉情報を送信するように、そして、前記端末からの前記第2の伝送に対する符号分割多重接続(CDMA)の復調を実行するように、構成される、請求項29の装置。
  35. 前記少なくとも1つのプロセッサは、前記セクタで干渉オーバサーマル比(IoT)を推定するように、前記IoTを含む前記干渉情報を送信するように、および、前記端末から前記第2の伝送に対する直交周波数分割多重接続(OFDMA)の復調を実行するように、構成される、請求項29の装置。
  36. 前記少なくとも1つのプロセッサは、第2の伝送を送信するために使用されるチャンネルに対するオフセット要素を決定するように、そして、前記端末へ前記オフセット要素を送信するように構成され、および、前記第2の伝送に対する前記送信パワーは、前記オフセット要素に、さらに基づいて決定される、請求項29の装置。
  37. 前記少なくとも1つのプロセッサは、第2の伝送に対するブースト要素を決定するように、そして、前記端末へ前記ブースト要素を送信するように構成され、および、前記第2の伝送に対する前記送信パワーは、前記ブースト要素に、さらに基づいて決定される、請求項29の装置。
  38. リバースリンク上でパイロットを送信するように、リバースリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信するように、および、前記PQIと前記パイロットに対する送信パワーに基づいてリバースリンク上の伝送に対する送信パワーを決定するように、構成される少なくとも1つのプロセッサと、
    前記少なくとも1つのプロセッサに結合されるメモリ、
    を備える、装置。
  39. 前記PQIは、パイロットキャリア・オーバ・サーマル比(PCoT)、あるいは、パイロットのキャリアと干渉の比(C/I)を含む、請求項38の装置。
  40. 前記少なくとも1つのプロセッサは、前記パイロットに対するパワー制御(PC)命令を受信するように、および、前記PC命令に基づいて前記パイロットに対する前記送信パワーを調整するように、構成される、請求項38の装置。
  41. 前記少なくとも1つのプロセッサは、前記セクタからの干渉情報を受信するように、および、前記干渉情報にさらに基づいて前記伝送に対する前記送信パワーを決定するように、構成される、請求項38の装置。
  42. 前記少なくとも1つのプロセッサは、前記セクタからライズオーバサーマル比(RoT)を受信するように、前記RoTにさらに基づいて前記伝送に対する前記送信パワーを決定するように、および、符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信するように、構成される、請求項38の装置。
  43. 前記少なくとも1つのプロセッサは、前記セクタから干渉オーバサーマル比(IoT)を受信するように、前記IoTにさらに基づいて前記伝送に対する前記送信パワーを決定するように、および、直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信するように、構成される、請求項38の装置。
  44. リバースリンク上でパイロットを送信すること、
    前記リバースリンクリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信すること、および、
    前記PQIと前記パイロットに対する送信パワーに基づいて前記リバースリンク上の伝送に対する送信パワーを決定すること、
    を含む方法。
  45. 前記セクタからライズオーバサーマル比(RoT)を受信すること、そこにおいて、前記伝送に対する前記送信パワーは前記RoTにさらに基づいて決定される、および、
    符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信すること、
    をさらに含む、請求項44の方法。
  46. 前記セクタから干渉オーバサーマル比(IoT)を受信すること、そこにおいて、前記伝送に対する前記送信パワーは前記IoTにさらに基づいて決定される、および、
    直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信すること、
    をさらに含む、請求項44の方法。
  47. リバースリンク上でパイロットを送信する手段と、
    前記リバースリンク上で送信される前記パイロットに基づいてセクタにより決定されるパイロット品質インディケータ(PQI)を受信する手段と、
    前記PQIと前記パイロットに対する送信パワーに基づいて前記リバースリンク上の伝送に対する送信パワーを決定する手段、
    を備える装置。
  48. 前記セクタからライズオーバサーマル比(RoT)を受信する手段、そこにおいて、前記伝送に対する前記送信パワーは前記RoTにさらに基づいて決定される、および、
    符号分割多重接続(CDMA)により前記決定された送信パワーで前記伝送を送信する手段、
    をさらに備える、請求項47の装置。
  49. 前記セクタから干渉オーバサーマル比(IoT)を受信する手段、そこにおいて、前記伝送に対する前記送信パワーは前記IoTにさらに基づいて決定される、および、
    直交周波数分割多重接続(OFDMA)により前記決定された送信パワーで前記伝送を送信する手段、
    をさらに備える、請求項47の装置。
  50. リバースリンク上で端末からパイロットを受信するように、前記受信されたパイロットに基づいてパイロット品質インディケータ(PQI)を決定するように、前記PQIを前記端末へ送信するように、および、前記PQIに基づいて決定された送信パワーで、前記端末により送信される伝送を受信するように、構成される、少なくとも1つのプロセッサと、
    前記少なくとも1つのプロセッサに結合されるメモリ、
    を備える装置。
  51. 前記少なくとも1つのプロセッサは、前記受信されるパイロットに基づいてパイロットキャリア・オーバ・サーマル比(PCoT)を決定するように、および、前記パイロットのPCoTに基づいて前記PQIを決定するように、構成される、請求項50の装置。
  52. 前記少なくとも1つのプロセッサは、前記受信されるパイロットに基づきパイロットのキャリアと干渉の比(C/I)を決定するように、および、前記パイロットのC/Iに基づいて前記PQIを決定するように、構成される、請求項50の装置。
JP2011246456A 2006-06-13 2011-11-10 無線通信システムのためのパワー制御 Active JP5313321B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81348406P 2006-06-13 2006-06-13
US60/813,484 2006-06-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009515593A Division JP5318759B2 (ja) 2006-06-13 2007-06-11 無線通信システムのためのパワー制御

Publications (2)

Publication Number Publication Date
JP2012090280A true JP2012090280A (ja) 2012-05-10
JP5313321B2 JP5313321B2 (ja) 2013-10-09

Family

ID=38828582

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009515593A Active JP5318759B2 (ja) 2006-06-13 2007-06-11 無線通信システムのためのパワー制御
JP2011246456A Active JP5313321B2 (ja) 2006-06-13 2011-11-10 無線通信システムのためのパワー制御

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009515593A Active JP5318759B2 (ja) 2006-06-13 2007-06-11 無線通信システムのためのパワー制御

Country Status (12)

Country Link
US (2) US8204530B2 (ja)
EP (2) EP2057756B1 (ja)
JP (2) JP5318759B2 (ja)
KR (1) KR101063509B1 (ja)
CN (2) CN102970739A (ja)
BR (1) BRPI0712765B1 (ja)
CA (2) CA2810296C (ja)
ES (2) ES2716729T3 (ja)
HU (1) HUE043935T2 (ja)
RU (1) RU2415515C2 (ja)
TW (2) TWI351834B (ja)
WO (1) WO2007146891A2 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7594151B2 (en) 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
GB0507160D0 (en) * 2005-04-08 2005-05-18 Ibm Data storage system with shared cache address space
JP5430938B2 (ja) 2005-10-27 2014-03-05 クゥアルコム・インコーポレイテッド 無線通信システムにおける逆方向リンク・ローディングを推定するための方法及び装置
CA2810296C (en) 2006-06-13 2016-08-23 Qualcomm Incorporated Power control for wireless communication systems
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8442572B2 (en) * 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8195097B2 (en) 2006-09-08 2012-06-05 Qualcomm Incorporated Serving sector interference broadcast and corresponding RL traffic power control
JP4835465B2 (ja) * 2007-02-26 2011-12-14 株式会社日立製作所 無線通信システムおよび端末
US8111731B2 (en) * 2007-04-04 2012-02-07 Texas Instruments Incorported Block scrambling for orthogonal frequency division multiple access
US8767637B2 (en) * 2007-11-05 2014-07-01 Apple Inc. Methods and systems for resource allocation
US9125163B2 (en) 2007-11-16 2015-09-01 Qualcomm Incorporated Persistent interference mitigation in a wireless communication
US8843069B2 (en) 2008-02-01 2014-09-23 Qualcomm Incorporated Interference reduction request in a wireless communication system
US8825046B2 (en) 2008-02-01 2014-09-02 Qualcomm Incorporated Short-term interference mitigation in a wireless communication system
US8472309B2 (en) * 2008-08-20 2013-06-25 Qualcomm Incorporated Using CDMA to send uplink signals in WLANs
WO2010084828A1 (ja) * 2009-01-26 2010-07-29 シャープ株式会社 通信制御装置、通信端末装置および無線通信システム
CN101998605B (zh) * 2009-08-28 2014-07-16 中兴通讯股份有限公司 上行发射功率控制方法
KR20110091093A (ko) * 2010-02-05 2011-08-11 삼성전자주식회사 무선 이동통신 시스템의 상향링크 간섭제어 방법 및 장치
KR101684968B1 (ko) * 2010-06-30 2016-12-09 엘지전자 주식회사 무선 통신 시스템에서 송신 전력 잔여량 보고 방법 및 이를 위한 장치
CN103563459A (zh) * 2011-04-27 2014-02-05 诺基亚西门子网络公司 用于使用ofdma与多个用户设备通信的装置和方法
EP2536031A1 (en) * 2011-06-15 2012-12-19 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and radio receiver enabling harmonic distortion detection
CN102833208B (zh) * 2012-09-21 2015-04-29 哈尔滨工业大学 增强型区块混合码分多址接入方法
CN102833209B (zh) * 2012-09-21 2015-04-29 哈尔滨工业大学 码分多址通信方法
US8989152B1 (en) * 2013-02-12 2015-03-24 Sprint Spectrum L.P. Systems and methods for symmetrical implementation of inter-cell interference coordination (ICIC) in a radio access network (RAN)
EP2854459A1 (en) * 2013-09-26 2015-04-01 Alcatel Lucent Power control
FR3031428A1 (fr) * 2015-01-07 2016-07-08 Orange Systeme de transmission de paquets de donnees selon un protocole d' acces multiple
KR102549780B1 (ko) * 2016-06-16 2023-06-30 삼성전자주식회사 무선 통신 시스템에서 상향 링크 전력 제어 장치 및 방법
EP3554149B1 (en) 2016-12-13 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink power control method and device
EP3669466A1 (en) * 2017-10-02 2020-06-24 Lenovo (Singapore) Pte. Ltd. Uplink power control
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
EP3888256A4 (en) 2018-11-27 2022-08-31 Xcom Labs, Inc. MULTIPLE INPUT AND INCOHERENT COOPERATIVE MULTIPLE OUTPUT COMMUNICATIONS
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
WO2021242574A1 (en) 2020-05-26 2021-12-02 XCOM Labs, Inc. Interference-aware beamforming
WO2022087569A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005125048A1 (ja) * 2004-06-17 2005-12-29 Nec Corporation 上り回線パケットデータ伝送の伝送電力制御方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842113A (en) * 1996-04-10 1998-11-24 Lucent Technologies Inc. Method and apparatus for controlling power in a forward link of a CDMA telecommunications system
US6956840B1 (en) * 1998-09-21 2005-10-18 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US6606341B1 (en) 1999-03-22 2003-08-12 Golden Bridge Technology, Inc. Common packet channel with firm handoff
US6493541B1 (en) * 1999-07-02 2002-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control time delay compensation in a wireless communications system
KR100383603B1 (ko) * 1999-07-07 2003-05-14 삼성전자주식회사 부호분할다중접속 통신시스템의 공통패킷채널의 채널할당장치 및 방법
US6996069B2 (en) 2000-02-22 2006-02-07 Qualcomm, Incorporated Method and apparatus for controlling transmit power of multiple channels in a CDMA communication system
KR100547893B1 (ko) * 2001-10-30 2006-02-01 삼성전자주식회사 이동통신시스템에서 역방향 채널의 전력 제어 방법 및 장치
US7245598B2 (en) * 2002-02-21 2007-07-17 Qualcomm Incorporated Feedback of channel quality information
JP4423836B2 (ja) * 2002-04-03 2010-03-03 日本電気株式会社 セルラシステム、通信制御方法及び移動局
US7139274B2 (en) * 2002-08-23 2006-11-21 Qualcomm, Incorporated Method and system for a data transmission in a communication system
US8179833B2 (en) * 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
US7321780B2 (en) * 2003-04-30 2008-01-22 Motorola, Inc. Enhanced uplink rate selection by a communication device during soft handoff
EP1641146A4 (en) * 2003-06-16 2012-07-18 Ntt Docomo Inc CONTROL DEVICE AND RADIO CONTROL METHOD
US7738901B2 (en) * 2003-07-10 2010-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Secondary link power control in a wireless communication network
US7346314B2 (en) * 2003-08-15 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Forward link transmit power control based on observed command response
US7590094B2 (en) * 2003-09-25 2009-09-15 Via Telecom Co., Ltd. Tristate requests for flexible packet retransmission
US7724701B2 (en) 2003-09-30 2010-05-25 Qualcomm Incorporated Method and apparatus for controlling reverse link data rate of a mobile station in a communication system with reverse link common rate control
US20050181834A1 (en) * 2004-02-12 2005-08-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for cell-site ARQ generation under softer handoff conditions
US20050245278A1 (en) * 2004-04-29 2005-11-03 Rath Vannithamby Method and apparatus for forward link power control at non-serving radio sector transmitters
US8452316B2 (en) * 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
CN102655446B (zh) * 2004-06-30 2016-12-14 亚马逊科技公司 用于控制信号传输的装置和方法、以及通信方法
US20060007318A1 (en) * 2004-07-09 2006-01-12 Omron Corporation Monitoring system center apparatus, monitoring-system-center program, and recording medium having recorded monitoring-system-center program
KR100725773B1 (ko) * 2004-08-20 2007-06-08 삼성전자주식회사 시분할 듀플렉스 방식의 이동통신 시스템에서 단말기의상태에 따라 상향링크 전력제어방식을 적응적으로변경하기 위한 장치 및 방법
US20070097924A1 (en) * 2004-11-22 2007-05-03 Motorola, Inc. Method and system for inter-technology active handoff of a hybrid communication device
RU2406271C2 (ru) * 2005-01-21 2010-12-10 Телефонактиеболагет Лм Эрикссон (Пабл) Способ распределения радиоресурсов
US7512412B2 (en) * 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US8848574B2 (en) * 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US7724813B2 (en) * 2005-05-20 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmit power control
US7587219B2 (en) * 2005-06-27 2009-09-08 Telefonaktiebolaget L M Ericsson (Publ) System and method for adaptive broadcast service
US8416745B2 (en) * 2005-08-22 2013-04-09 Qualcomm Incorporated Open-loop power adjustment for CQI repointing based on RL quality indicators
US8315633B2 (en) * 2005-08-26 2012-11-20 Qualcomm Incorporated Uplink soft handoff support in UMTS TDD systems for efficient uplink power and rate control
US7548760B2 (en) * 2006-01-13 2009-06-16 Alcatel-Lucent Usa Inc. Method of reverse link dynamic power control in a wireless communication system using quality feedback from a delay-sensitive traffic stream or overhead channel
US7813753B2 (en) * 2006-02-27 2010-10-12 Qualcomm Incorporated Power control in communication systems
US7957345B2 (en) * 2006-03-20 2011-06-07 Futurewei Technologies, Inc. Adaptive HARQ in an OFDMA based communication system
US20070218915A1 (en) * 2006-03-20 2007-09-20 Futurewei Technologies, Inc. Wireless communication resource allocation and related signaling
US7778657B2 (en) * 2006-03-28 2010-08-17 Intel Corporation Method and apparatus to perform power control in a wireless network
CA2810296C (en) 2006-06-13 2016-08-23 Qualcomm Incorporated Power control for wireless communication systems
US20080056180A1 (en) * 2006-09-01 2008-03-06 Gang Li Method of determining a serving sector switch with minimum forward link MAC channel feedback in a wireless communication system
US8195097B2 (en) * 2006-09-08 2012-06-05 Qualcomm Incorporated Serving sector interference broadcast and corresponding RL traffic power control
US20080117849A1 (en) * 2006-09-08 2008-05-22 Qualcomm Incorporated Method and apparatus for interaction of fast other sector interference (osi) with slow osi
US8095166B2 (en) * 2007-03-26 2012-01-10 Qualcomm Incorporated Digital and analog power control for an OFDMA/CDMA access terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005125048A1 (ja) * 2004-06-17 2005-12-29 Nec Corporation 上り回線パケットデータ伝送の伝送電力制御方法

Also Published As

Publication number Publication date
CA2652862C (en) 2013-04-09
TW201115951A (en) 2011-05-01
TWI351834B (en) 2011-11-01
RU2415515C2 (ru) 2011-03-27
CA2810296C (en) 2016-08-23
BRPI0712765A2 (pt) 2012-09-25
JP5313321B2 (ja) 2013-10-09
EP2582066A1 (en) 2013-04-17
US20120224502A1 (en) 2012-09-06
KR101063509B1 (ko) 2011-09-08
US20080014979A1 (en) 2008-01-17
JP2009540766A (ja) 2009-11-19
CN101578773B (zh) 2014-05-07
RU2009100844A (ru) 2010-07-20
BRPI0712765B1 (pt) 2020-01-21
WO2007146891A3 (en) 2009-05-07
CN102970739A (zh) 2013-03-13
KR20090033218A (ko) 2009-04-01
CA2652862A1 (en) 2007-12-21
ES2733437T3 (es) 2019-11-29
HUE043935T2 (hu) 2019-09-30
US8855001B2 (en) 2014-10-07
WO2007146891A2 (en) 2007-12-21
CA2810296A1 (en) 2007-12-21
US8204530B2 (en) 2012-06-19
ES2716729T3 (es) 2019-06-14
EP2057756B1 (en) 2019-04-03
EP2582066B1 (en) 2018-10-24
TWI424697B (zh) 2014-01-21
EP2057756A2 (en) 2009-05-13
JP5318759B2 (ja) 2013-10-16
TW200818744A (en) 2008-04-16
CN101578773A (zh) 2009-11-11

Similar Documents

Publication Publication Date Title
JP5313321B2 (ja) 無線通信システムのためのパワー制御
JP5237114B2 (ja) 電力制御コマンドおよび消去指示を用いた電力制御およびハンドオフ
TWI381666B (zh) 用於零散向後相容之分頻雙工器的逆向鏈路通訊量功率控制
RU2420877C2 (ru) Способ и устройство для использования показателя помехи другого сектора (osi)
KR100828800B1 (ko) 하이브리드 tdm/ofdm/cdm 역방향 링크 전송
US9295008B2 (en) Method and apparatus for utilizing other sector interference (OSI) indication
JP2002501689A (ja) 電力制御サブシステム
KR20110038738A (ko) Cdma 무선 통신 시스템들
JP2001525629A (ja) 通信システムにおいて3値電力制御を提供する方法および装置
KR20100132033A (ko) 원하는 송신 전력을 표시하기 위한 방법 및 시스템 그리고 무선 네트워크에서의 유연한 전력 제어
KR100828801B1 (ko) 하이브리드 tdm/ofdm/cdm 역방향 링크 전송

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250