JP2012088735A - Zoom lens and imaging apparatus including the same - Google Patents

Zoom lens and imaging apparatus including the same Download PDF

Info

Publication number
JP2012088735A
JP2012088735A JP2011287917A JP2011287917A JP2012088735A JP 2012088735 A JP2012088735 A JP 2012088735A JP 2011287917 A JP2011287917 A JP 2011287917A JP 2011287917 A JP2011287917 A JP 2011287917A JP 2012088735 A JP2012088735 A JP 2012088735A
Authority
JP
Japan
Prior art keywords
lens
zoom
positive
lens group
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287917A
Other languages
Japanese (ja)
Other versions
JP5284456B2 (en
Inventor
Daisuke Ito
大介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011287917A priority Critical patent/JP5284456B2/en
Publication of JP2012088735A publication Critical patent/JP2012088735A/en
Application granted granted Critical
Publication of JP5284456B2 publication Critical patent/JP5284456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens which is suitable to a photography system using a solid state imaging device, consists of a small number of constituent lenses, is compact and low-cost, and has a high variable power ratio and superior optical performance, and an imaging apparatus including the same.SOLUTION: In the zoom lens which consists of a first lens group with negative refracting power, a second lens group with positive refracting power, and a third lens group with positive refracting power in order from an object side to an image side, and varies intervals between the respective lens groups for zooming, the first lens group consists of one negative lens 11 and one positive lens 12 in order from the object side to the image side, the second lens group consists of a positive lens 21, a positive lens 22, a negative lens 23, and a positive lens 24 in order from the object side to the image side, and for zooming from a wide-angle end to a telephoto end, the third lens group moves toward the image side, the focal length f3 of the third lens group and the focal length fW of the whole zoom lens system at the wide-angle end being suitably set.

Description

本発明はスチルカメラやビデオカメラ、そしてデジタルスチルカメラ等に好適なズームレンズ及びそれを有する撮像装置に関するものである。   The present invention relates to a zoom lens suitable for a still camera, a video camera, a digital still camera, and the like, and an imaging apparatus having the same.

最近、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ等、撮像装置(カメラ)の高機能化にともない、それに用いる光学系には広い画角を包含した大口径比のズームレンズが求められている。   Recently, with the enhancement of functions of imaging devices (cameras) such as video cameras and digital still cameras using solid-state imaging devices, a zoom lens with a large aperture ratio that includes a wide angle of view is required for the optical system used therefor. Yes.

この種のカメラには、レンズ最後部と撮像素子との間に、ローパスフィルターや色補正フィルターなどの各種光学部材を配置する為、それに用いる光学系には、比較的バックフォーカスの長いレンズ系が要求される。さらに、カラー画像用の撮像素子を用いたカラーカメラの場合、色シェーディングを避けるため、それに用いる光学系には像側のテレセントリック特性の良いものが望まれている。   In this type of camera, various optical members such as a low-pass filter and a color correction filter are arranged between the last lens part and the image sensor, so that the optical system used therefor has a lens system with a relatively long back focus. Required. Furthermore, in the case of a color camera using an image pickup device for color images, in order to avoid color shading, an optical system with good telecentric characteristics on the image side is desired.

従来より、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群の2つのレンズ群より成り、双方のレンズ間隔を変えて変倍を行う、所謂ショートズームタイプの広画角の2群ズームレンズが種々提案されている。これらのショートズームタイプの光学系では、正の屈折力の第2レンズ群を移動する事で変倍を行い、負の屈折力の第1レンズ群を移動する事で変倍に伴う像点位置の補正を行っている。これらの2つのレンズ群よりなるレンズ構成においては、ズーム倍率は2倍程度である。   Conventionally, a so-called short zoom type wide angle of view comprising two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, in which the magnification is changed by changing the distance between the two lenses. Various two-group zoom lenses have been proposed. In these short zoom type optical systems, zooming is performed by moving the second lens unit having a positive refractive power, and image point positions associated with zooming are moved by moving the first lens unit having a negative refractive power. Correction is performed. In a lens configuration composed of these two lens groups, the zoom magnification is about twice.

さらに2倍以上の高い変倍比を有しつつレンズ全体をコンパクトな形状にまとめるため、2群ズームレンズの像側に負または正の屈折力の第3レンズ群を配置し、高倍化に伴って発生する諸収差の補正を行っている、所謂3群ズームレンズが提案されている(例えば特許文献1、2)。   Furthermore, in order to bring the entire lens into a compact shape while having a high zoom ratio of 2 times or more, a third lens unit having a negative or positive refractive power is arranged on the image side of the two-unit zoom lens, and the magnification is increased. A so-called three-group zoom lens that corrects various aberrations that occur is proposed (for example, Patent Documents 1 and 2).

3群ズームレンズとしてバックフォーカスとテレセントリック特性を満足する広画角の3群ズームレンズ系が知られている(例えば特許文献3、4)。   A wide-angle 3-group zoom lens system that satisfies back focus and telecentric characteristics is known as a 3-group zoom lens (for example, Patent Documents 3 and 4).

又3群ズームレンズにおいて、負の屈折力の第1レンズ群を固定とし、正の屈折力の第2レンズ群と正の屈折力の第3レンズ群を移動させてズーミングを行うズームレンズが知られている(例えば特許文献5)。   In addition, in a three-group zoom lens, a zoom lens that performs zooming by moving the second lens group having a positive refractive power and the third lens group having a positive refractive power while fixing the first lens group having a negative refractive power is known. (For example, Patent Document 5).

又、負の屈折力の第1レンズ群、物体側より正群、正群、負群、正群からなる正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなる3群ズームレンズが知られている(例えば特許文献6〜13)。   Further, a first lens group having a negative refractive power, a second lens group having a positive refractive power consisting of a positive group, a positive group, a negative group, and a positive group from the object side, and a third lens group having a positive refractive power are provided. A group zoom lens is known (for example, Patent Documents 6 to 13).

特公平7−3507号公報Japanese Patent Publication No. 7-3507 特公平6−40170号公報Japanese Patent Publication No. 6-40170 特開昭63−135913号公報JP-A 63-135913 特開平7−261083号公報Japanese Patent Laid-Open No. 7-261083 特開平3−288113号公報JP-A-3-288113 特開平9−258103号公報JP-A-9-258103 特開平11−52246号公報JP 11-52246 A 特開平11−174322号公報JP-A-11-174322 特開平11−174322号公報JP-A-11-174322 特開平11−194274号公報Japanese Patent Application Laid-Open No. 11-194274 特許第3466385号Japanese Patent No. 3466385 特開2002−23053号公報JP 2002-23053 A 特開2002−196240号公報JP 2002-196240 A

35mmフィルム写真用に設計されている3群ズームレンズは、固体撮像素子を用いる光学機器には、バックフォーカスが長すぎ、又テレセントリック特性が良くない為、固体撮像素子を用いる光学機器に、そのまま用いることが難しい。   The three-group zoom lens designed for 35 mm film photography is used as it is for an optical device using a solid-state image sensor because the back focus is too long and the telecentric characteristics are not good for an optical device using a solid-state image sensor. It is difficult.

一方近年、カメラのコンパクト化とズームレンズの高倍化を両立する為に、非撮影時に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくした所謂沈胴式のズームレンズが広く用いられている。   On the other hand, in recent years, in order to achieve both compactness of the camera and high magnification of the zoom lens, the so-called collapsible structure has been achieved by reducing the lens projection distance from the camera body by reducing the distance between the lens groups to a different distance from the shooting state when not photographing. A zoom lens of the type is widely used.

一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなり、又、各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなり、所望の沈胴長が達成出来なくなり、沈胴式のズームレンズに用いるのが難しくなる。この傾向は、ズームレンズの変倍比が大きくなるほど顕著になる。   In general, if the number of lenses in each lens group constituting a zoom lens is large, the length of each lens group on the optical axis becomes long, and if the amount of movement of each lens group in zooming and focusing is large, the total lens length becomes long. Therefore, the desired retractable length cannot be achieved, making it difficult to use the retractable zoom lens. This tendency becomes more prominent as the zoom ratio of the zoom lens increases.

一方、非球面レンズを使用するとレンズ枚数を減らすことができるが、非球面レンズは球面レンズに比して高価であるので、非球面レンズの枚数を増やすと、ズームレンズのコストアップを招くことになる。   On the other hand, the number of lenses can be reduced by using an aspheric lens, but since an aspheric lens is more expensive than a spherical lens, increasing the number of aspheric lenses increases the cost of the zoom lens. Become.

本発明は構成レンズ枚数の少ないコンパクトでローコスト、且つ優れた光学性能を有するズームレンズ及びそれを有する光学機器の提供を目的とする。   An object of the present invention is to provide a compact zoom lens having a small number of constituent lenses, low cost, and excellent optical performance, and an optical apparatus having the zoom lens.

この他本発明は、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数の少ないコンパクトでローコスト、高変倍比で、優れた光学性能を有するズームレンズ及びそれを有する撮像装置を提供することを目的とする。   In addition, the present invention provides a compact zoom lens having a small number of constituent lenses, a low cost, a high zoom ratio, and an excellent optical performance suitable for an imaging system using a solid-state imaging device, and an imaging apparatus having the same. For the purpose.

本発明に係るズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、正の屈折力の第3レンズ群より構成され、ズーミングに際して各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は、物体側から像側へ順に、1枚の負レンズ11と1枚の正レンズ12からなり、前記第2レンズ群は、物体側より像側へ順に、正レンズ21、正レンズ22、負レンズ23、正レンズ24からなり、広角端から望遠端へのズーミングに際して前記第3レンズ群は像側に移動し、前記第3レンズ群の焦点距離をf3、ズームレンズ全系の広角端における焦点距離をfWとしたとき、
4.0<f3/fW<5.0
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In the zoom lens in which the distance between the lens groups changes during zooming, the first lens group is composed of one negative lens 11 and one positive lens 12 in order from the object side to the image side, and the second lens. The group includes, in order from the object side to the image side, a positive lens 21, a positive lens 22, a negative lens 23, and a positive lens 24. During zooming from the wide-angle end to the telephoto end, the third lens group moves to the image side. When the focal length of the third lens group is f3 and the focal length at the wide angle end of the entire zoom lens system is fW,
4.0 <f3 / fW <5.0
It is characterized by satisfying the following conditions.

この他、本発明に係る他の様々な形態は、後述する実施形態において述べる。   In addition, various other forms according to the present invention will be described in embodiments described later.

本発明によれば、高性能でコンパクトなズームレンズを実現することができる。   According to the present invention, a high-performance and compact zoom lens can be realized.

実施形態1のレンズ断面図Lens sectional view of Embodiment 1 実施形態1の広角端の収差図Aberration diagram at the wide-angle end of the first embodiment 実施形態1の中間の収差図Aberration diagram in the middle of Embodiment 1 実施形態1の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 1 実施形態2のレンズ断面図Lens sectional view of Embodiment 2 実施形態2の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 2 実施形態2の中間の収差図Aberration diagram in the middle of Embodiment 2 実施形態2の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 2 実施形態3のレンズ断面図Lens sectional view of Embodiment 3 実施形態3の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 3 実施形態3の中間の収差図Aberrations in the middle of Embodiment 3 実施形態3の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 3 実施形態4のレンズ断面図Lens sectional view of Embodiment 4 実施形態4の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 4 実施形態4の中間の収差図Aberrations in the middle of Embodiment 4 実施形態4の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 4 実施形態5のレンズ断面図Lens sectional view of Embodiment 5 実施形態5の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 5 実施形態5の中間の収差図Aberrations in the middle of Embodiment 5 実施形態5の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 5 実施形態6のレンズ断面図Lens sectional view of Embodiment 6 実施形態6の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 6 実施形態6の中間の収差図Aberrations in the middle of Embodiment 6 実施形態6の望遠端の収差図Aberration diagram at telephoto end of Embodiment 6 実施形態7のレンズ断面図Lens sectional view of Embodiment 7 実施形態7の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 7 実施形態7の中間の収差図Aberrations in the middle of Embodiment 7 実施形態7の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 7 実施形態8のレンズ断面図Lens sectional view of Embodiment 8 実施形態8の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 8 実施形態8の中間の収差図Aberrations in the middle of Embodiment 8 実施形態8の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 8 実施形態9のレンズ断面図Lens cross-sectional view of Embodiment 9 実施形態9の広角端の収差図Aberration diagram at wide-angle end according to Embodiment 9 実施形態9の中間の収差図Aberrations in the middle of Embodiment 9 実施形態9の望遠端の収差図Aberration diagram at telephoto end according to Embodiment 9 光学機器の実施形態の要部概略図Schematic diagram of main parts of an embodiment of an optical apparatus

次に本発明のズームレンズを実施形態を交えて説明する。   Next, the zoom lens according to the present invention will be described with reference to embodiments.

図1は本発明の実施形態1のズームレンズの広角端におけるレンズ断面図、図2、図3、図4はそれぞれ実施形態1のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   1 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 1 of the present invention. FIGS. 2, 3, and 4 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 1, respectively. It is.

図5は本発明の実施形態2のズームレンズの広角端におけるレンズ断面図、図6、図7、図8はそれぞれ実施形態2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention, and FIGS. 6, 7, and 8 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is.

図9は本発明の実施形態3のズームレンズの広角端におけるレンズ断面図、図10、図11、図12はそれぞれ実施形態3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 10, 11, and 12 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 3, respectively. It is.

図13は本発明の実施形態4のズームレンズの広角端におけるレンズ断面図、図14、図15、図16はそれぞれ実施形態4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 13 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 4 of the present invention, and FIGS. 14, 15, and 16 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of Embodiment 4, respectively. It is.

図17は本発明の実施形態5のズームレンズの広角端におけるレンズ断面図、図18、図19、図20はそれぞれ実施形態5のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 17 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 5 of the present invention. FIGS. 18, 19, and 20 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 5, respectively. It is.

図21は本発明の実施形態6のズームレンズの広角端におけるレンズ断面図、図22、図23、図24はそれぞれ実施形態6のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 21 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 6 of the present invention. FIGS. 22, 23, and 24 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is.

図25は本発明の実施形態7のズームレンズの広角端におけるレンズ断面図、図26、図27、図28はそれぞれ実施形態7のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 25 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 7 of the present invention. FIGS. 26, 27, and 28 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end, respectively. It is.

図29は本発明の実施形態8のズームレンズの広角端におけるレンズ断面図、図30、図31、図32はそれぞれ実施形態8のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   29 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 8 of the present invention. FIGS. 30, 31, and 32 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of Embodiment 8, respectively. It is.

図33は本発明の実施形態9のズームレンズの広角端におけるレンズ断面図、図34、図35、図36はそれぞれ実施形態9のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   33 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 9 of the present invention. FIGS. 34, 35, and 36 are aberration diagrams of the zoom lens according to Embodiment 9 at the wide-angle end, intermediate zoom position, and telephoto end, respectively. It is.

各実施形態のズームレンズは撮像装置に用いられる撮影レンズ系であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に被写体像を形成し、銀塩フィルム用のカメラの撮影光学系として使用する際にはフィルム面に被写体像を形成する。   The zoom lens of each embodiment is a photographic lens system used in an image pickup apparatus. When used as a photographic optical system for a video camera or a digital still camera, an image is picked up by a solid-state image pickup device (photoelectric conversion device) such as a CCD or CMOS sensor. A subject image is formed on the surface, and the subject image is formed on the film surface when used as a photographing optical system of a camera for a silver salt film.

各レンズ断面図において、左方が被写体(物体)側(前方)で、右方が像側(後方)である。レンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群である。SPは開口絞りであり、第2レンズ群L2の物体側に位置している。Gは光学フィルター、フェースプレート等に相当するガラスブロックである。   In each lens cross-sectional view, the left is the subject (object) side (front), and the right is the image side (rear). In the lens cross-sectional view, L1 is a first lens group having negative refractive power (optical power = reciprocal of focal length), L2 is a second lens group having positive refractive power, and L3 is a third lens group having positive refractive power. It is. SP is an aperture stop, which is located on the object side of the second lens unit L2. G is a glass block corresponding to an optical filter, a face plate or the like.

収差図において、d、gは各々d線、g線、M、Sはメリディオナル像面、サジタル像面を表している。倍率色収差はg線によって表している。   In the aberration diagrams, d and g represent d-line, g-line, M and S respectively represent a meridional image plane and a sagittal image plane. Lateral chromatic aberration is represented by the g-line.

尚、各実施形態において広角端と望遠端は変倍用レンズ群が機構上光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In each embodiment, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit is positioned at both ends of the range in which the zoom lens unit can move on the optical axis.

各実施形態のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、そして正の屈折力の第3レンズ群L3の3つのレンズ群を有しており、広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。   The zoom lens according to each embodiment includes, in order from the object side to the image side, a first lens unit L1 having a negative refractive power, a second lens unit L2 having a positive refractive power, and a third lens unit L3 having a positive refractive power. The zoom lens has three lens groups. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group It is moving to the image side.

各実施形態のズームレンズは、第2レンズ群の移動により主な変倍を行い、第1レンズ群の凸軌跡の移動及び第3レンズ群による像側方向への移動によって変倍に伴う像面の移動を補正している。   The zoom lens according to each embodiment performs main zooming by moving the second lens group, and an image plane accompanying zooming by moving the convex locus of the first lens group and moving the third lens group in the image side direction. The movement is corrected.

特に、第3レンズ群は、撮像素子の小型化に伴う撮影レンズの屈折力の増大を分担し、第1、第2レンズ群で構成されるショートズーム系の屈折力を減らす事で特に第1レンズ群を構成するレンズでの収差の発生を抑え良好な光学性能を達成している。また、特に固体撮像素子等を用いた撮影装置に必要な像側のテレセントリックな結像を第3レンズ群にフィールドレンズの役割を持たせる事で達成している。   In particular, the third lens group shares the increase in the refractive power of the photographing lens accompanying the downsizing of the image pickup element, and reduces the refractive power of the short zoom system constituted by the first and second lens groups. It suppresses the occurrence of aberrations in the lenses constituting the lens group and achieves good optical performance. In addition, telecentric imaging on the image side necessary for a photographing apparatus using a solid-state imaging device or the like is achieved by making the third lens group act as a field lens.

また、第1レンズ群は、物体側から順に、物体側に凸面を向けたメニスカス負レンズ11と、像側に凹面を向けたメニスカス正レンズ12の2枚のレンズで構成されている。尚、負レンズ11の像側の面は非球面である。第2レンズ群は、物体側より順に、両レンズ面が凸面の正レンズ21、両レンズ面が凸面の正レンズ22と両レンズ面が凹面の負レンズ23の接合レンズと正レンズ24で構成されている。第3レンズ群は少なくとも1枚の正の単レンズを有している。   The first lens group is composed of two lenses in order from the object side: a meniscus negative lens 11 having a convex surface facing the object side, and a meniscus positive lens 12 having a concave surface facing the image side. The image side surface of the negative lens 11 is an aspherical surface. The second lens group includes, in order from the object side, a positive lens 21 having a convex surface on both lens surfaces, a positive lens 22 having a convex surface on both lens surfaces, and a negative lens 23 having a concave surface on both lens surfaces, and a positive lens 24. ing. The third lens group has at least one positive single lens.

以上の様に各レンズ群を構成することにより、適切な屈折力配置と収差補正とを両立させ、良好な性能を保ちつつ、レンズ系のコンパクト化、高倍化と沈胴長の短縮を達成している。   By configuring each lens group as described above, the lens system can be made compact, high magnification and retractable length shortened while maintaining both good refractive power and aberration correction and maintaining good performance. Yes.

また、各実施形態では非球面レンズが第1レンズ群の負レンズ11の1枚のみと少ないので、ローコストなズームレンズを実現できる。   In each embodiment, the number of aspherical lenses is as small as only one negative lens 11 in the first lens group, so that a low-cost zoom lens can be realized.

第1レンズ群は、軸外主光線を絞り中心に瞳結像させる役割を持っており、特に広角側においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。   The first lens group has a role of focusing off-axis chief rays on the center of the aperture, and especially on the wide-angle side, since the amount of refraction of off-axis chief rays is large, off-axis aberrations, especially astigmatism. Distortion is likely to occur.

そこで各実施形態では、通常の広角レンズと同様、最も物体側のレンズ径の増大が抑えられる負レンズと正レンズの構成としている。   Therefore, in each embodiment, as with a normal wide-angle lens, a negative lens and a positive lens are configured to suppress an increase in the lens diameter closest to the object side.

そして負レンズ11の像側のレンズ面を、周辺で負の屈折力が弱くなる非球面とする事により、非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ない枚数で第1レンズ群を構成し、レンズ全体のコンパクト化に寄与している。   By making the lens surface on the image side of the negative lens 11 an aspherical surface in which the negative refractive power becomes weak at the periphery, the astigmatism and the distortion aberration are corrected in a well-balanced manner, and the first number can be reduced with a small number of two. Constructs a lens group and contributes to making the entire lens compact.

また第1レンズ群を構成する各レンズは、軸外主光線の屈折によって生じる軸外収差の発生を抑えるために絞りと光軸が交差する点を中心とする同心球面に近い形状をとっている。   Further, each lens constituting the first lens group has a shape close to a concentric sphere centered on a point where the stop and the optical axis intersect in order to suppress the occurrence of off-axis aberration caused by refraction of the off-axis principal ray. .

次に第2レンズ群は、両凸面である正レンズと21と両凸面である正レンズ22を配置し、第1レンズ群を射出した軸外主光線の屈折角を少なくし、軸外諸収差が発生しない様な形状としている。   Next, in the second lens group, a biconvex positive lens 21 and a biconvex positive lens 22 are arranged, the refraction angle of the off-axis principal ray emitted from the first lens group is reduced, and various off-axis aberrations are obtained. The shape does not occur.

また、両凸の正レンズ21は、最も軸上光線の通る高さが高いレンズであり、主に球面収差、コマ収差の補正に寄与しているレンズである。   In addition, the biconvex positive lens 21 is a lens having the highest axial light beam and mainly contributes to the correction of spherical aberration and coma aberration.

そこで各実施形態においては、両凸の正レンズ21と両凸の正レンズ22において光線を除々に屈折させることにより球面収差、コマ収差を良好に補正している。   Therefore, in each embodiment, spherical aberration and coma aberration are favorably corrected by gradually refracting light rays in the biconvex positive lens 21 and the biconvex positive lens 22.

次に、両凸正レンズ22と接合した両凹負レンズ23の形状を、像面側に凹面を向けた形状とすることで、両凸正レンズ21と両凸正レンズ22で発生した収差をキャンセルさせている。   Next, the shape of the biconcave negative lens 23 joined to the biconvex positive lens 22 is changed to a shape in which the concave surface is directed to the image plane side, so that the aberration generated in the biconvex positive lens 21 and the biconvex positive lens 22 is reduced. Canceled.

各実施形態では、第2レンズ群は非球面を使用しないことにより、ローコストなズームレンズを実現している。   In each embodiment, the second lens group does not use an aspheric surface, thereby realizing a low-cost zoom lens.

次に第3レンズ群は、両レンズ面が凸面の正レンズ31より構成し、像側テレセントリックにするためのフィールドレンズとしての役割をも有している。   Next, the third lens group is constituted by a positive lens 31 having convex surfaces on both lens surfaces, and also has a role as a field lens for image side telecentricity.

いま、バックフォーカスをsk’、第3レンズ群の焦点距離をf3、第3レンズ群の結像倍率をβ3とすると、
sk’=f3(1−β3)
の関係が成り立っている。
但し、
0<β3<1.0
である。
Now, if the back focus is sk ′, the focal length of the third lens group is f3, and the imaging magnification of the third lens group is β3,
sk ′ = f3 (1-β3)
The relationship is established.
However,
0 <β3 <1.0
It is.

ここで、広角端から望遠端への変倍に際して第3レンズ群を像側に移動するとバックフォーカスsk’が減少する事になり、第3レンズ群の結像倍率β3は望遠側で増大する。   Here, when the third lens group is moved to the image side during zooming from the wide-angle end to the telephoto end, the back focus sk 'decreases, and the imaging magnification β3 of the third lens group increases on the telephoto side.

すると、結果的に第3レンズ群で変倍を分担できるため、第2レンズ群の移動量が減少させることができる。そして、第2レンズ群の移動量が減少することにより、スペースが節約できるためにズームレンズ全系の小型化に寄与する。   Then, as a result, the third lens group can share the variable magnification, so that the amount of movement of the second lens group can be reduced. Since the movement amount of the second lens group is reduced, space can be saved, which contributes to downsizing of the entire zoom lens system.

各実施形態のズームレンズを用いて近距離物体を撮影する場合には、第1レンズ群を物体側へ移動する事で良好な性能を得られるが、さらに望ましくは、第3レンズ群を物体側に移動した方が良い。   When photographing a short-distance object using the zoom lens of each embodiment, good performance can be obtained by moving the first lens group to the object side, but more desirably, the third lens group is arranged on the object side. It is better to move to.

これは、最も物体側に配置した第1レンズ群をフォーカシングさせた場合に生じる、前玉径の増大、レンズ重量が最も重い第1レンズ群を移動させる事によるアクチュエーターの負荷の増大を防ぎ、さらに第1レンズ群と第2レンズ群とをカム等で単純に連携してズーミング時に移動させる事が可能となり、メカ構造の簡素化及び精度向上を達成できるためである。   This prevents an increase in the front lens diameter, an increase in the load on the actuator caused by moving the first lens group with the heaviest lens weight, which occurs when the first lens group arranged closest to the object side is focused. This is because the first lens group and the second lens group can be simply linked by a cam or the like and moved during zooming, thereby simplifying the mechanical structure and improving accuracy.

また、第3レンズ群にてフォーカシングを行う場合、広角端から望遠端への変倍に際して第3レンズ群を像側に移動する事により、フォーカシング移動量の大きい望遠端を像面側に配置する事が出来る為、ズーミング及びフォーカシングで必要となる第3レンズ群の全ての移動量を最小とする事が可能となり、レンズ系のコンパクト化を達成している。   Further, when performing focusing with the third lens group, the telephoto end having a large focusing movement amount is arranged on the image plane side by moving the third lens group to the image side upon zooming from the wide-angle end to the telephoto end. Therefore, it is possible to minimize the total amount of movement of the third lens unit required for zooming and focusing, thereby achieving a compact lens system.

尚、各実施形態のズームレンズにおいて、高倍率で良好なる光学性能を得るためには、次の諸条件のうちの少なくとも1つを満足させるのが良い。   In the zoom lens of each embodiment, in order to obtain good optical performance at high magnification, it is preferable to satisfy at least one of the following conditions.

(1−1)高倍率で良好な光学性能を得る為に、以下の条件を満足するのが好ましい。
1.2<|β23T|<1.9・・・(1)
ここで、β23Tは望遠端における第2レンズ群と第3レンズ群の合成倍率である。
β23Tの値はレンズ系の望遠端の焦点距離を左右する値である。
(1-1) In order to obtain good optical performance at a high magnification, it is preferable to satisfy the following conditions.
1.2 <| β23T | <1.9 (1)
Here, β23T is a combined magnification of the second lens group and the third lens group at the telephoto end.
The value of β23T is a value that affects the focal length of the telephoto end of the lens system.

条件式(1)の下限を超えて小さくなると、望遠端を決める焦点距離が短くなるため、所定の倍率確保するために1群のパワーが強くなると共に1群の外径が大きくなるため、非点収差、コマ収差等の諸収差の補正が困難になるばかりでなく、1群の外径アップによるコストアップにつながるため好ましくない。   When the value is smaller than the lower limit of the conditional expression (1), the focal length for determining the telephoto end is shortened. Therefore, in order to secure a predetermined magnification, the power of the first group is increased and the outer diameter of the first group is increased. Not only is it difficult to correct various aberrations such as point aberration and coma aberration, but it is not preferable because it leads to an increase in cost due to an increase in the outer diameter of one group.

また、条件式(1)の上限値を超えると、望遠端の焦点距離が長くなるため、所定の倍率を確保するためには1群のパワーが弱くなり、1群の外径を小さくするには有利であるが1群の厚さが増大するためレンズ系のコンパクト化には不利であるため好ましくない。   If the upper limit value of conditional expression (1) is exceeded, the focal length at the telephoto end becomes longer. Therefore, in order to secure a predetermined magnification, the power of the first group is weakened, and the outer diameter of the first group is reduced. Is advantageous, but is unfavorable for making the lens system compact because the thickness of one group increases.

更に好ましくは、条件式(1)の数値範囲を次の如くするのが良い。
1.25<|β23T|<1.85・・・(1a)
More preferably, the numerical range of conditional expression (1) should be as follows.
1.25 <| β23T | <1.85 (1a)

(1−2)レンズ全長短縮、良好な光学性能を得る為に、以下の条件を満足するのが好ましい。
0.35<d/D<0.60・・・ (2−1)
1.45<D/fW<1.80・・・(2−2)
ここでdは正レンズ22と負レンズ23の光軸上の合計肉厚、Dは該第2レンズ群の最も物体側の面から最も像側の面までの光軸上間隔、fWは広角端での焦点距離である。
(1-2) In order to shorten the overall length of the lens and obtain good optical performance, it is preferable to satisfy the following conditions.
0.35 <d / D <0.60 (2-1)
1.45 <D / fW <1.80 (2-2)
Here, d is the total thickness on the optical axis of the positive lens 22 and the negative lens 23, D is the distance on the optical axis from the most object-side surface to the most image-side surface of the second lens group, and fW is the wide-angle end. Is the focal length.

条件式(2−1)の上限を越えて大きくなると、望遠端での球面収差の補正が困難なため好ましくない。   If the value exceeds the upper limit of conditional expression (2-1), it is difficult to correct spherical aberration at the telephoto end, which is not preferable.

条件式(2−1)の下限を越えて小さくなると、望遠端での収差補正が困難となると共に、コンパクト化が図れないため好ましくない。   If the value is smaller than the lower limit of conditional expression (2-1), it is difficult to correct aberrations at the telephoto end and it is not possible to achieve compactness.

更に、各実施形態では、条件式(2−1)を満足することにより、第2レンズ群に非球面を使用しない状態で収差を良好に抑え、且つコンパクトなズームレンズを実現している。条件式(2−1)の下限を超える程接合レンズの肉厚を薄くすると、それに伴い第1レンズ群内のレンズ間隔を大きくしないと球面収差を抑えることができなくなり、ズームレンズ全系が大型化してしまう。また、条件式(2−1)の上限を超える程接合レンズの肉厚を厚くすると、第2レンズ群に球面レンズのみを用いたのでは球面収差抑えきれなくなり、好ましくない。   Furthermore, in each embodiment, by satisfying conditional expression (2-1), aberrations can be satisfactorily suppressed without using an aspheric surface for the second lens group, and a compact zoom lens can be realized. If the thickness of the cemented lens is reduced so as to exceed the lower limit of the conditional expression (2-1), the spherical aberration cannot be suppressed unless the lens interval in the first lens group is increased accordingly, and the entire zoom lens system is large. It will become. Further, if the thickness of the cemented lens is increased so as to exceed the upper limit of the conditional expression (2-1), it is not preferable to use only a spherical lens for the second lens group because it is impossible to suppress spherical aberration.

つまり、条件式(2−1)を満足することにより、収差を良好に抑え且つコンパクトなズームレンズを実現できるとともに、第2レンズ群に非球面を使用しない構成をとることが可能になる。故に、ズームレンズ全系の中の非球面レンズの枚数を減らすことができ、ローコスト化に貢献している。   That is, by satisfying conditional expression (2-1), it is possible to realize a compact zoom lens that suppresses aberrations satisfactorily and that does not use an aspherical surface for the second lens group. Therefore, the number of aspherical lenses in the entire zoom lens system can be reduced, which contributes to low cost.

条件式の(2−2)の上限を越えて大きくなるとレンズのコンパクト化に不利であるため好ましくない。   If the value exceeds the upper limit of the conditional expression (2-2), it is disadvantageous for making the lens compact.

また条件式(2−2)の下限を超えて小さくなると、レンズのコンパクト化には有利であるが球面収差補正が困難であるため好ましくない。   On the other hand, when the value is smaller than the lower limit of the conditional expression (2-2), it is advantageous for making the lens compact, but it is not preferable because it is difficult to correct spherical aberration.

更に好ましくは条件式(2−1)の数値範囲を次の如くするのが良い。
0.4<d/D<0.55・・・ (2−1a)
1.5<D/fw<1.75・・・(2−2b)
More preferably, the numerical range of conditional expression (2-1) should be as follows.
0.4 <d / D <0.55 (2-1a)
1.5 <D / fw <1.75 (2-2b)

(1−3)光学系のレンズ全長短縮の為に、以下の条件を満足するのが好ましい。
−2.8<f1/fw<−2.0・・・(3)
ここで、f1は第1レンズ群の焦点距離、fwは広角端の焦点距離である。
(1-3) In order to shorten the total lens length of the optical system, it is preferable to satisfy the following conditions.
-2.8 <f1 / fw <-2.0 (3)
Here, f1 is the focal length of the first lens group, and fw is the focal length at the wide angle end.

条件式(3)の上限値を超えると、光学系の全長は短くなるが、第1レンズ群の焦点距離が短くなることで、変倍域全体の収差補正、特に歪曲収差の補正が困難となり好ましくない。   If the upper limit of conditional expression (3) is exceeded, the total length of the optical system will be shortened, but the focal length of the first lens group will be shortened, making it difficult to correct aberrations in the entire zoom range, particularly distortion aberrations. It is not preferable.

また、条件式(3)の下限値を超えると、変倍時の第1レンズ群の移動量が増大し、光学系の全長が長くなるので好ましくない。   If the lower limit of conditional expression (3) is exceeded, the amount of movement of the first lens unit during zooming increases, and the total length of the optical system becomes longer.

更に好ましくは、条件式(3)の数値範囲を次の如くするのが良い。
−2.7<f1/fw<−2.1・・・(3a)
More preferably, the numerical range of conditional expression (3) should be as follows.
−2.7 <f1 / fw <−2.1 (3a)

(1−4)(1−3)の条件に加え光学系のレンズ全長短縮の為に、以下の条件を満足するのが好ましい。
2.0<f2/fw<2.7・・・(4)
ここで、f2は第2レンズ群の焦点距離、fwは広角端の焦点距離である。
(1-4) In addition to the conditions of (1-3), it is preferable to satisfy the following conditions in order to shorten the total lens length of the optical system.
2.0 <f2 / fw <2.7 (4)
Here, f2 is the focal length of the second lens group, and fw is the focal length at the wide angle end.

条件式(4)の上限値を超えると、変倍時の第2レンズ群の移動量が増大し、光学系の全長が長くなるので好ましくない。   Exceeding the upper limit of conditional expression (4) is not preferable because the amount of movement of the second lens unit during zooming increases and the overall length of the optical system becomes longer.

また、条件式(4)の下限値を超えると、光学系の全長は短くなるが、第2レンズ群の焦点距離が短くなることで、変倍域全体の収差補正が困難となり好ましくない。   If the lower limit value of conditional expression (4) is exceeded, the total length of the optical system is shortened, but the focal length of the second lens group is shortened, which makes it difficult to correct aberrations over the entire zoom range, which is not preferable.

更に好ましくは、条件式(4)の数値範囲を次の如くするのが良い。
2.1<f2/fw<2.6・・・(4a)
More preferably, the numerical range of conditional expression (4) should be as follows.
2.1 <f2 / fw <2.6 (4a)

(1−5)光学系のテレセントリック性の為に以下の条件を満足するのが好ましい。
4.0<f3/fw<5.0・・・(5)
ここで、f3は第3レンズ群の焦点距離、fwは広角端の焦点距離である。
(1-5) It is preferable to satisfy the following conditions for the telecentricity of the optical system.
4.0 <f3 / fw <5.0 (5)
Here, f3 is the focal length of the third lens group, and fw is the focal length at the wide-angle end.

条件式(5)の上限値を超えると、射出瞳距離が像面から近くなり、テレセントリック性が悪くなるため好ましくない。   Exceeding the upper limit of conditional expression (5) is not preferable because the exit pupil distance becomes closer to the image plane and the telecentricity deteriorates.

また、条件式(5)の下限を超えて小さくなると第3群のパワーが強くなるため、テレセントリック性は良好になるが非点収差が増大し、補正困難となるため好ましくない。   On the other hand, if the value is smaller than the lower limit of the conditional expression (5), the power of the third lens group is increased, so that the telecentricity is improved but the astigmatism is increased and correction is difficult.

更に好ましくは、条件式(5)の数値範囲を次の如くするのが良い。
4.1<f3/fw<4.9・・・(5a)
More preferably, the numerical range of conditional expression (5) should be as follows.
4.1 <f3 / fw <4.9 (5a)

次に、本発明の実施形態を示す。各実施形態において、iは物体側からの面の順序を示し、Riはレンズ面の曲率半径、Diは第i面と第i+1面との間のレンズ肉厚および空気間隔、Ni、νiはそれぞれd線に対する屈折率、アッベ数を示す。   Next, an embodiment of the present invention will be described. In each embodiment, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the lens thickness and air spacing between the i-th surface and the i + 1-th surface, and Ni and νi are respectively The refractive index and Abbe number for the d-line are shown.

また、最も像側の2面はフェースプレート等のガラス材である。また、k、B,C,D,Eは非球面係数である。非球面形状は光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき
x=(h/R)/[1+{1−(1+k)(h/R)1/2]+Bh+Ch+Dh+Eh10
で表される。但しRは近軸曲率半径である。
The two surfaces closest to the image side are glass materials such as face plates. K, B, C, D, and E are aspheric coefficients. The aspherical shape is defined as x = (h 2 / R) / [1+ {1− (1 + k) (h) where x is the displacement in the optical axis direction at the position of the height h from the optical axis with respect to the surface vertex. / R) 2} 1/2] + Bh 4 + Ch 6 + Dh 8 + Eh 10
It is represented by Where R is the paraxial radius of curvature.

以下、本発明の実施形態1〜9及び各実施形態に対応する数値実施例1〜9を開示する。それに先立ち、各図面と数値実施例との対応関係を以下に記す。又、前述の各条件式と各実施形態との関係を表1に示す。   Hereinafter, Embodiments 1 to 9 of the present invention and Numerical Examples 1 to 9 corresponding to the respective embodiments will be disclosed. Prior to that, the correspondence between each drawing and the numerical examples will be described below. Table 1 shows the relationship between each conditional expression described above and each embodiment.

<実施形態1>
図1は実施形態1のレンズ断面図である。図2〜図4は実施形態1の広角端,中間,望遠端の収差図である。
<Embodiment 1>
FIG. 1 is a lens cross-sectional view of the first embodiment. 2 to 4 are aberration diagrams of the first embodiment at the wide-angle end, the middle, and the telephoto end.

実施形態1は変倍比3.1倍、開口比2.9〜5.2程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。   The first embodiment is a zoom lens having a zoom ratio of 3.1 times and an aperture ratio of about 2.9 to 5.2. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例1
f=5.50 〜17.28 Fno=2.90〜5.24 2ω=29.7°〜10.0°

R 1 = 49.729 D 1 = 1.50 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.941 D 2 = 2.80
R 3 = 8.810 D 3 = 1.70 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.324 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 14.614 D 6 = 1.75 N 3 = 1.696797 ν 3 = 55.5
R 7 = -47.546 D 7 = 0.10
R 8 = 6.508 D 8 = 2.35 N 4 = 1.603112 ν 4 = 60.6
R 9 = -14.435 D 9 = 1.85 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.344 D10 = 1.36
R11 = 44.265 D11 = 1.50 N 6 = 1.772499 ν 6 = 49.6
R12 = -20.712 D12 = 可変
R13 = 17.600 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -37.974 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.50 12.95 17.28
可変間隔
D 4 19.11 3.20 3.22
D12 4.06 13.91 19.62
D14 4.71 4.36 3.92

非球面係数
R2 k=-1.57051e+00 B=1.00040e-03 C=2.52797e-06 D=-2.11744e-07 E=5.48035e-09
Numerical example 1
f = 5.50-17.28 Fno = 2.90-5.24 2ω = 29.7 ° -10.0 °

R 1 = 49.729 D 1 = 1.50 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.941 D 2 = 2.80
R 3 = 8.810 D 3 = 1.70 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.324 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 14.614 D 6 = 1.75 N 3 = 1.696797 ν 3 = 55.5
R 7 = -47.546 D 7 = 0.10
R 8 = 6.508 D 8 = 2.35 N 4 = 1.603112 ν 4 = 60.6
R 9 = -14.435 D 9 = 1.85 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.344 D10 = 1.36
R11 = 44.265 D11 = 1.50 N 6 = 1.772499 ν 6 = 49.6
R12 = -20.712 D12 = variable
R13 = 17.600 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -37.974 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.50 12.95 17.28
Variable interval
D 4 19.11 3.20 3.22
D12 4.06 13.91 19.62
D14 4.71 4.36 3.92

Aspheric coefficient
R2 k = -1.57051e + 00 B = 1.00040e-03 C = 2.52797e-06 D = -2.11744e-07 E = 5.48035e-09

<実施形態2>
図5は実施形態2のレンズ断面図である。図6〜図8は実施形態2の広角端,中間,望遠端の収差図である。
数値実施形態2は変倍比3.7倍、開口比3.4〜7.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 2>
FIG. 5 is a lens cross-sectional view of the second embodiment. 6 to 8 are aberration diagrams of the second embodiment at the wide-angle end, the middle, and the telephoto end.
Numerical Embodiment 2 is a zoom lens having a zoom ratio of 3.7 times and an aperture ratio of about 3.4 to 7.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例2
f=5.20〜19.40 Fno=3.38〜3.98 2ω=29.7°〜8.5°

R 1 = 41.517 D 1 = 1.20 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.534 D 2 = 2.70
R 3 = 7.970 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 12.658 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 7.558 D 6 = 1.95 N 3 = 1.487490 ν 3 = 70.2
R 7 = -34.663 D 7 = 0.28
R 8 = 6.322 D 8 = 2.05 N 4 = 1.638539 ν 4 = 55.4
R 9 = -7.499 D 9 = 1.50 N 5 = 1.834000 ν 5 = 37.2
R10 = 4.833 D10 = 0.83
R11 = 20.441 D11 = 1.50 N 6 = 1.696797 ν 6 = 55.5
R12 = -21.202 D12 = 可変
R13 = 46.140 D13 = 1.25 N 7 = 1.834807 ν 7 = 42.7
R14 = -35.618 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.20 15.95 19.40
可変間隔
D 4 16.80 2.94 1.80
D12 3.12 17.24 21.45
D14 4.56 3.28 2.69

非球面係数
R2 k=-1.77797e+00 B=1.66314e-03 C=-1.23495e-05 D=3.81177e-07 E=-4.17703e-09
Numerical example 2
f = 5.20-19.40 Fno = 3.38-3.98 2ω = 29.7 ° -8.5 °

R 1 = 41.517 D 1 = 1.20 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.534 D 2 = 2.70
R 3 = 7.970 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 12.658 D 4 = variable
R 5 = Aperture D 5 = 0.70
R 6 = 7.558 D 6 = 1.95 N 3 = 1.487490 ν 3 = 70.2
R 7 = -34.663 D 7 = 0.28
R 8 = 6.322 D 8 = 2.05 N 4 = 1.638539 ν 4 = 55.4
R 9 = -7.499 D 9 = 1.50 N 5 = 1.834000 ν 5 = 37.2
R10 = 4.833 D10 = 0.83
R11 = 20.441 D11 = 1.50 N 6 = 1.696797 ν 6 = 55.5
R12 = -21.202 D12 = variable
R13 = 46.140 D13 = 1.25 N 7 = 1.834807 ν 7 = 42.7
R14 = -35.618 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.20 15.95 19.40
Variable interval
D 4 16.80 2.94 1.80
D12 3.12 17.24 21.45
D14 4.56 3.28 2.69

Aspheric coefficient
R2 k = -1.77797e + 00 B = 1.66314e-03 C = -1.23495e-05 D = 3.81177e-07 E = -4.17703e-09

<実施形態3>
図9は実施形態3のレンズ断面図である。図10〜図12は実施形態3の広角端,中間,望遠端の収差図である。
実施形態3は変倍比3.8倍、開口比3.1〜7.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 3>
FIG. 9 is a lens cross-sectional view of the third embodiment. 10 to 12 are aberration diagrams of the third embodiment at the wide-angle end, the middle, and the telephoto end.
The third embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.1 to 7.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例3
f=5.15〜19.40 Fno=3.14〜6.98 2ω=29.2°〜8.5°

R 1 = 37.036 D 1 = 1.20 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.500 D 2 = 3.26
R 3 = 8.896 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.947 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 9.411 D 6 = 1.85 N 3 = 1.516330 ν 3 = 64.1
R 7 = -41.935 D 7 = 0.28
R 8 = 6.373 D 8 = 2.05 N 4 = 1.603112 ν 4 = 60.6
R 9 = -10.716 D 9 = 2.05 N 5 = 1.834000 ν 5 = 37.2
R10 = 5.161 D10 = 0.83
R11 = 28.615 D11 = 1.50 N 6 = 1.603112 ν 6 = 60.6
R12 = -14.456 D12 = 可変
R13 = 31.147 D13 = 1.25 N 7 = 1.712995 ν 7 = 53.9
R14 = -28.821 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.15 15.75 19.40
可変間隔
D 4 17.24 3.68 2.41
D12 2.69 19.77 24.64
D14 5.54 3.42 2.76

非球面係数
R2 k=-1.61834e+00 B=1.40026e-03 C=-1.85711e-05 D=9.56155e-07 E=-2.06096e-08
Numerical Example 3
f = 5.15 ~ 19.40 Fno = 3.14 ~ 6.98 2ω = 29.2 ° ~ 8.5 °

R 1 = 37.036 D 1 = 1.20 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.500 D 2 = 3.26
R 3 = 8.896 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.947 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 9.411 D 6 = 1.85 N 3 = 1.516330 ν 3 = 64.1
R 7 = -41.935 D 7 = 0.28
R 8 = 6.373 D 8 = 2.05 N 4 = 1.603112 ν 4 = 60.6
R 9 = -10.716 D 9 = 2.05 N 5 = 1.834000 ν 5 = 37.2
R10 = 5.161 D10 = 0.83
R11 = 28.615 D11 = 1.50 N 6 = 1.603112 ν 6 = 60.6
R12 = -14.456 D12 = variable
R13 = 31.147 D13 = 1.25 N 7 = 1.712995 ν 7 = 53.9
R14 = -28.821 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.15 15.75 19.40
Variable interval
D 4 17.24 3.68 2.41
D12 2.69 19.77 24.64
D14 5.54 3.42 2.76

Aspheric coefficient
R2 k = -1.61834e + 00 B = 1.40026e-03 C = -1.85711e-05 D = 9.56155e-07 E = -2.06096e-08

<実施形態4>
図13は実施形態4のレンズ断面図である。図14〜図16は実施形態4の広角端,中間,望遠端の収差図である。
実施形態3は変倍比3.8倍、開口比3.3〜7.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 4>
FIG. 13 is a lens cross-sectional view of the fourth embodiment. 14 to 16 are aberration diagrams of the fourth embodiment at the wide-angle end, the middle, and the telephoto end.
The third embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.3 to 7.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例4
f=5.15〜19.40 Fno=3.26〜6.98 2w=29.9°〜8.5°

R 1 = 58.781 D 1 = 1.40 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.725 D 2 = 3.01
R 3 = 8.849 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.412 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 8.077 D 6 = 2.20 N 3 = 1.487490 ν 3 = 70.2
R 7 = -26.024 D 7 = 0.10
R 8 = 6.002 D 8 = 2.40 N 4 = 1.622992 ν 4 = 58.2
R 9 = -7.902 D 9 = 1.50 N 5 = 1.834000 ν 5 = 37.2
R10 = 4.629 D10 = 0.55
R11 = 22.011 D11 = 1.50 N 6 = 1.712995 ν 6 = 53.9
R12 = -24.802 D12 = 可変
R13 = 37.187 D13 = 1.30 N 7 = 1.772499 ν 7 = 49.6
R14 = -28.934 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.15 16.05 19.40
可変間隔
D 4 16.42 2.91 1.80
D12 3.45 17.45 21.41
D14 4.11 3.09 2.80

非球面係数
R2 k=-1.75960e+00 B=1.37386e-03 C=-6.07840e-06 D=-6.23270e-08 E=4.79777e-09
Numerical Example 4
f = 5.15-19.40 Fno = 3.26-6.98 2w = 29.9 ° -8.5 °

R 1 = 58.781 D 1 = 1.40 N 1 = 1.683430 ν 1 = 52.4
R 2 = 4.725 D 2 = 3.01
R 3 = 8.849 D 3 = 2.00 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.412 D 4 = variable
R 5 = Aperture D 5 = 0.70
R 6 = 8.077 D 6 = 2.20 N 3 = 1.487490 ν 3 = 70.2
R 7 = -26.024 D 7 = 0.10
R 8 = 6.002 D 8 = 2.40 N 4 = 1.622992 ν 4 = 58.2
R 9 = -7.902 D 9 = 1.50 N 5 = 1.834000 ν 5 = 37.2
R10 = 4.629 D10 = 0.55
R11 = 22.011 D11 = 1.50 N 6 = 1.712995 ν 6 = 53.9
R12 = -24.802 D12 = variable
R13 = 37.187 D13 = 1.30 N 7 = 1.772499 ν 7 = 49.6
R14 = -28.934 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.15 16.05 19.40
Variable interval
D 4 16.42 2.91 1.80
D12 3.45 17.45 21.41
D14 4.11 3.09 2.80

Aspheric coefficient
R2 k = -1.75960e + 00 B = 1.37386e-03 C = -6.07840e-06 D = -6.23270e-08 E = 4.79777e-09

<実施形態5>
図17は実施形態5のレンズ断面図である。図18〜図20は実施形態5の広角端,中間,望遠端の収差図である。
実施形態3は変倍比3.8倍、開口比3.0〜6.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 5>
FIG. 17 is a lens cross-sectional view of the fifth embodiment. 18 to 20 are aberration diagrams of the fifth embodiment at the wide-angle end, the middle, and the telephoto end.
The third embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.0 to 6.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例5
f=5.56〜21.00 Fno=2.99〜6.00 2ω=29.6°〜8.4°

R 1 = 45.108 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.063 D 2 = 2.92
R 3 = 8.903 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.057 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 25.157 D 6 = 1.55 N 3 = 1.696797 ν 3 = 55.5
R 7 = -25.157 D 7 = 0.10
R 8 = 6.523 D 8 = 3.30 N 4 = 1.603112 ν 4 = 60.6
R 9 = -11.354 D 9 = 1.25 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.778 D10 = 2.02
R11 = 354.322 D11 = 1.25 N 6 = 1.772499 ν 6 = 49.6
R12 = -15.778 D12 = 可変
R13 = 17.868 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -42.556 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.56 17.43 21.00
可変間隔
D 4 20.48 3.38 2.03
D12 4.10 19.88 24.36
D14 4.77 3.89 3.61

非球面係数
R2 k=-1.32539e+00 B=7.16011e-04 C=5.94492e-06 D=-1.87944e-07 E=4.19999e-09
Numerical Example 5
f = 5.56-21.00 Fno = 2.99-6.000 2ω = 29.6 ° -8.4 °

R 1 = 45.108 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.063 D 2 = 2.92
R 3 = 8.903 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.057 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 25.157 D 6 = 1.55 N 3 = 1.696797 ν 3 = 55.5
R 7 = -25.157 D 7 = 0.10
R 8 = 6.523 D 8 = 3.30 N 4 = 1.603112 ν 4 = 60.6
R 9 = -11.354 D 9 = 1.25 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.778 D10 = 2.02
R11 = 354.322 D11 = 1.25 N 6 = 1.772499 ν 6 = 49.6
R12 = -15.778 D12 = variable
R13 = 17.868 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -42.556 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.56 17.43 21.00
Variable interval
D 4 20.48 3.38 2.03
D12 4.10 19.88 24.36
D14 4.77 3.89 3.61

Aspheric coefficient
R2 k = -1.32539e + 00 B = 7.16011e-04 C = 5.94492e-06 D = -1.87944e-07 E = 4.19999e-09

<実施形態6>
図21は実施形態6のレンズ断面図である。図22〜図24は実施形態6の広角端,中間,望遠端の収差図である。
実施形態3は変倍比3.8倍、開口比3.0〜6.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 6>
FIG. 21 is a lens cross-sectional view of the sixth embodiment. 22 to 24 are aberration diagrams of the sixth embodiment at the wide-angle end, the middle, and the telephoto end.
The third embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.0 to 6.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例6
f=5.56〜21.00 Fno=2.99〜6.00 2ω=29.6°〜8.4°

R 1 = 48.120 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.150 D 2 = 2.92
R 3 = 9.002 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.267 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 24.053 D 6 = 1.70 N 3 = 1.696797 ν 3 = 55.5
R 7 = -29.069 D 7 = 0.10
R 8 = 6.765 D 8 = 3.25 N 4 = 1.603112 ν 4 = 60.6
R 9 = -11.281 D 9 = 1.60 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.998 D10 = 1.63
R11 = 189.465 D11 = 1.25 N 6 = 1.772499 ν 6 = 49.6
R12 = -15.275 D12 = 可変
R13 = 19.279 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.56 17.39 21.00
可変間隔
D 4 20.31 3.26 1.90
D12 3.99 19.69 24.20
D14 4.94 3.99 3.63

非球面係数
R2 k=-1.47717e+00 B=8.18024e-04 C=3.91469e-06 D=-1.75977e-07 E=4.03752e-09
Numerical Example 6
f = 5.56 ~ 21.00 Fno = 2.99 ~ 6.00 2ω = 29.6 ° ~ 8.4 °

R 1 = 48.120 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.150 D 2 = 2.92
R 3 = 9.002 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 14.267 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 24.053 D 6 = 1.70 N 3 = 1.696797 ν 3 = 55.5
R 7 = -29.069 D 7 = 0.10
R 8 = 6.765 D 8 = 3.25 N 4 = 1.603112 ν 4 = 60.6
R 9 = -11.281 D 9 = 1.60 N 5 = 1.806 100 ν 5 = 33.3
R10 = 5.998 D10 = 1.63
R11 = 189.465 D11 = 1.25 N 6 = 1.772499 ν 6 = 49.6
R12 = -15.275 D12 = variable
R13 = 19.279 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.56 17.39 21.00
Variable interval
D 4 20.31 3.26 1.90
D12 3.99 19.69 24.20
D14 4.94 3.99 3.63

Aspheric coefficient
R2 k = -1.47717e + 00 B = 8.18024e-04 C = 3.91469e-06 D = -1.75977e-07 E = 4.03752e-09

<実施形態7>
図25は実施形態7のレンズ断面図である。図26〜図28は実施形態7の広角端,中間,望遠端の収差図である。
実施形態3は変倍比3.8倍、開口比3.0〜6.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Embodiment 7>
FIG. 25 is a lens cross-sectional view of the seventh embodiment. 26 to 28 are aberration diagrams of the seventh embodiment at the wide-angle end, the middle, and the telephoto end.
The third embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.0 to 6.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例7
f=5.56〜21.00 Fno=2.99〜6.00 2ω=29.6°〜8.4°

R 1 = 42.286 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.125 D 2 = 3.01
R 3 = 8.875 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.534 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 20.648 D 6 = 1.45 N 3 = 1.696797 ν 3 = 55.5
R 7 = -32.144 D 7 = 0.10
R 8 = 6.676 D 8 = 3.60 N 4 = 1.603112 ν 4 = 60.6
R 9 = -9.670 D 9 = 0.70 N 5 = 1.806100 ν 5 = 33.3
R10 = 6.052 D10 = 1.61
R11 = -60.080 D11 = 1.25 N 6 = 1.804000 ν 6 = 46.6
R12 = -12.288 D12 = 可変
R13 = 20.874 D13 = 2.25 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.56 17.39 21.00
可変間隔
D 4 20.51 3.27 1.96
D12 4.11 19.64 24.27
D14 4.77 4.06 3.62

非球面係数
R2 k=-1.62555e+00 B=9.93078e-04 C=2.60059e-07 D=-7.38079e-08 E=2.96694e-09
Numerical Example 7
f = 5.56 ~ 21.00 Fno = 2.99 ~ 6.00 2ω = 29.6 ° ~ 8.4 °

R 1 = 42.286 D 1 = 1.55 N 1 = 1.683430 ν 1 = 52.4
R 2 = 5.125 D 2 = 3.01
R 3 = 8.875 D 3 = 1.65 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.534 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 20.648 D 6 = 1.45 N 3 = 1.696797 ν 3 = 55.5
R 7 = -32.144 D 7 = 0.10
R 8 = 6.676 D 8 = 3.60 N 4 = 1.603112 ν 4 = 60.6
R 9 = -9.670 D 9 = 0.70 N 5 = 1.806100 ν 5 = 33.3
R10 = 6.052 D10 = 1.61
R11 = -60.080 D11 = 1.25 N 6 = 1.804000 ν 6 = 46.6
R12 = -12.288 D12 = variable
R13 = 20.874 D13 = 2.25 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.56 17.39 21.00
Variable interval
D 4 20.51 3.27 1.96
D12 4.11 19.64 24.27
D14 4.77 4.06 3.62

Aspheric coefficient
R2 k = -1.62555e + 00 B = 9.93078e-04 C = 2.60059e-07 D = -7.38079e-08 E = 2.96694e-09

<実施形態8>
図29は実施形態8のレンズ断面図である。図30〜図32は実施形態8の広角端,中間,望遠端の収差図である。
実施形態8は変倍比3.8倍、開口比2.8〜6.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Eighth embodiment>
FIG. 29 is a lens cross-sectional view of the eighth embodiment. 30 to 32 are aberration diagrams of the eighth embodiment at the wide-angle end, in the middle, and at the telephoto end.
The eighth embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 2.8 to 6.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例8
f=5.60〜21.39 Fno=2.80〜6.01 2ω=29.4°〜8.1°

R 1 = 56.335 D 1 = 1.70 N 1 = 1.693500 ν 1 = 53.2
R 2 = 4.974 D 2 = 3.49
R 3 = 9.269 D 3 = 1.85 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.650 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 14.159 D 6 = 2.15 N 3 = 1.719995 ν 3 = 50.2
R 7 = -39.252 D 7 = 0.10
R 8 = 6.742 D 8 = 2.45 N 4 = 1.603112 ν 4 = 60.6
R 9 = -13.884 D 9 = 1.90 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.305 D10 = 1.60
R11 = 70.397 D11 = 1.60 N 6 = 1.772499 ν 6 = 49.6
R12 = -21.912 D12 = 可変
R13 = 21.213 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.60 17.92 21.39
可変間隔
D 4 18.08 3.56 2.49
D12 4.02 21.78 26.79
D14 5.00 5.00 5.00

非球面係数
R2 k=-1.72660e+00 B=1.06844e-03 C=4.12539e-06 D=-4.57521e-07 E=1.16819e-08
Numerical Example 8
f = 5.60〜21.39 Fno = 2.80〜6.01 2ω = 29.4 ° 〜8.1 °

R 1 = 56.335 D 1 = 1.70 N 1 = 1.693500 ν 1 = 53.2
R 2 = 4.974 D 2 = 3.49
R 3 = 9.269 D 3 = 1.85 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.650 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 14.159 D 6 = 2.15 N 3 = 1.719995 ν 3 = 50.2
R 7 = -39.252 D 7 = 0.10
R 8 = 6.742 D 8 = 2.45 N 4 = 1.603112 ν 4 = 60.6
R 9 = -13.884 D 9 = 1.90 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.305 D10 = 1.60
R11 = 70.397 D11 = 1.60 N 6 = 1.772499 ν 6 = 49.6
R12 = -21.912 D12 = variable
R13 = 21.213 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -35.146 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.60 17.92 21.39
Variable interval
D 4 18.08 3.56 2.49
D12 4.02 21.78 26.79
D14 5.00 5.00 5.00

Aspheric coefficient
R2 k = -1.72660e + 00 B = 1.06844e-03 C = 4.12539e-06 D = -4.57521e-07 E = 1.16819e-08

<実施形態9>
図33は実施形態9のレンズ断面図である。図34〜図36は実施形態9の広角端,中間,望遠端の収差図である。
実施形態9は変倍比3.8倍、開口比3.0〜6.0程度のズームレンズである。広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の軌跡で移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。本実施形態の数値実施例を以下に示す。
<Ninth Embodiment>
FIG. 33 is a lens cross-sectional view of the ninth embodiment. 34 to 36 are aberration diagrams of Embodiment 9 at the wide-angle end, the middle, and the telephoto end.
The ninth embodiment is a zoom lens having a zoom ratio of 3.8 times and an aperture ratio of about 3.0 to 6.0. During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. Numerical examples of this embodiment are shown below.

数値実施例9
f=5.60〜21.00 Fno=3.01〜6.00 2ω=29.4°〜8.2°

R 1 = 39.307 D 1 = 1.70 N 1 = 1.693500 ν 1 = 53.2
R 2 = 5.346 D 2 = 3.04
R 3 = 8.995 D 3 = 1.85 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.650 D 4 = 可変
R 5 = 絞り D 5 = 0.70
R 6 = 14.756 D 6 = 2.15 N 3 = 1.712995 ν 3 = 53.9
R 7 = -57.854 D 7 = 0.10
R 8 = 6.551 D 8 = 2.45 N 4 = 1.603112 ν 4 = 60.6
R 9 = -15.543 D 9 = 1.65 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.411 D10 = 1.62
R11 = 44.972 D11 = 1.60 N 6 = 1.772499 ν 6 = 49.6
R12 = -22.392 D12 = 可変
R13 = 19.832 D13 = 1.60 N 7 = 1.517417 ν 7 = 52.4
R14 = -35.146 D14 = 可変
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

焦点距離 5.60 17.44 21.00
可変間隔
D 4 21.24 3.41 1.98
D12 3.87 18.96 23.22
D14 4.76 3.87 3.62
Numerical Example 9
f = 5.60〜21.00 Fno = 3.01〜6.00 2ω = 29.4 ° 〜8.2 °

R 1 = 39.307 D 1 = 1.70 N 1 = 1.693500 ν 1 = 53.2
R 2 = 5.346 D 2 = 3.04
R 3 = 8.995 D 3 = 1.85 N 2 = 1.846660 ν 2 = 23.9
R 4 = 13.650 D 4 = Variable
R 5 = Aperture D 5 = 0.70
R 6 = 14.756 D 6 = 2.15 N 3 = 1.712995 ν 3 = 53.9
R 7 = -57.854 D 7 = 0.10
R 8 = 6.551 D 8 = 2.45 N 4 = 1.603112 ν 4 = 60.6
R 9 = -15.543 D 9 = 1.65 N 5 = 1.806100 ν 5 = 33.3
R10 = 5.411 D10 = 1.62
R11 = 44.972 D11 = 1.60 N 6 = 1.772499 ν 6 = 49.6
R12 = -22.392 D12 = variable
R13 = 19.832 D13 = 1.60 N 7 = 1.517417 ν 7 = 52.4
R14 = -35.146 D14 = variable
R15 = ∞ D15 = 0.81 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞

Focal length 5.60 17.44 21.00
Variable interval
D 4 21.24 3.41 1.98
D12 3.87 18.96 23.22
D14 4.76 3.87 3.62

前述の各条件式の値を実施例1〜9についてまとめたものを表1に示す。   Table 1 summarizes the values of the conditional expressions described above for Examples 1 to 9.

各実施形態は以上の様に各要素を設定する事により、特に、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数が少なくコンパクトで、特に沈胴ズームレンズに適した、変倍比が3〜4倍程度の優れた光学性能を有するズームレンズが達成出来る。   In each embodiment, by setting each element as described above, the zoom ratio is particularly suitable for an imaging system using a solid-state imaging device, is compact with a small number of constituent lenses, and particularly suitable for a retractable zoom lens. A zoom lens having excellent optical performance of about 3 to 4 times can be achieved.

又、本発明によれば第1レンズ群中に効果的に非球面を導入し、特に第1レンズ群と第2レンズ群の屈折力を適切に設定することによって軸外諸収差、特に非点収差・歪曲収差および大口径比化した際の球面収差の補正が効果的に行える。   In addition, according to the present invention, by effectively introducing an aspheric surface into the first lens group, and setting the refractive powers of the first lens group and the second lens group appropriately, various off-axis aberrations, particularly astigmatism. It is possible to effectively correct aberrations / distortion aberrations and spherical aberrations when the aperture ratio is increased.

又、第2レンズ群に非球面を使用しないことにより、ズームレンズ全体として非球面の枚数を低減し、ローコスト化を実現している。   Further, by not using an aspherical surface for the second lens group, the number of aspherical surfaces is reduced as a whole of the zoom lens, thereby realizing a low cost.

尚、上述の各実施形態のズームレンズは全て3つのレンズ群で構成されているが、本発明のズームレンズのレンズ群の数はこれにとらわれるものではない。例えば、上述の各実施形態に、弱い正又は負の屈折力を有するレンズ群を加え、4群構成とすることも可能である。   The zoom lenses of the above-described embodiments are all composed of three lens groups, but the number of lens groups of the zoom lens of the present invention is not limited to this. For example, it is possible to add a lens group having a weak positive or negative refractive power to the above-described embodiments to form a four-group configuration.

次に本発明のズームレンズを撮影光学系として用いたデジタルカメラ(光学機器)の実施形態を図37を用いて説明する。   Next, an embodiment of a digital camera (optical apparatus) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図37において、20はデジタルカメラ本体、21は上述の実施形態のズームレンズによって構成された撮影光学系、22は撮影光学系21によって被写体像を受光するCCD等の撮像素子、23は撮像素子22が受光した被写体像を記録する記録手段、24は不図示の表示素子に表示された被写体像を観察するためのファインダーである。   In FIG. 37, 20 is a digital camera body, 21 is a photographing optical system constituted by the zoom lens of the above-described embodiment, 22 is an imaging element such as a CCD that receives a subject image by the photographing optical system 21, and 23 is an imaging element 22. A recording means 24 for recording the received subject image, and a viewfinder 24 for observing the subject image displayed on a display element (not shown).

上記表示素子は液晶パネル等によって構成され、撮像素子22上に形成された被写体像が表示される。25は、前記ファインダーと同等の機能を有する液晶表示パネルである。   The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 22 is displayed. Reference numeral 25 denotes a liquid crystal display panel having a function equivalent to that of the finder.

このように本発明のズームレンズをデジタルカメラ等の光学機器に適用することにより、小型で高い光学性能を有する光学機器を実現している。   Thus, by applying the zoom lens of the present invention to an optical apparatus such as a digital camera, an optical apparatus having a small size and high optical performance is realized.

L1 第1群
L2 第2群
L3 第3群
SP 絞り
G ガラスブロック
d d線
g g線
S サジタル像面
M メリディオナル像面
L1 1st group L2 2nd group L3 3rd group SP Aperture G Glass block d d line g g line S Sagittal image plane M Meridional image plane

Claims (12)

物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、正の屈折力の第3レンズ群より構成され、ズーミングに際して各レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群は、物体側から像側へ順に、1枚の負レンズ11と1枚の正レンズ12からなり、前記第2レンズ群は、物体側より像側へ順に、正レンズ21、正レンズ22、負レンズ23、正レンズ24からなり、広角端から望遠端へのズーミングに際して前記第3レンズ群は像側に移動し、前記第3レンズ群の焦点距離をf3、ズームレンズ全系の広角端における焦点距離をfWとしたとき、
4.0<f3/fW<5.0
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a positive refractive power. In zoom lenses where
The first lens group includes one negative lens 11 and one positive lens 12 in order from the object side to the image side, and the second lens group includes a positive lens 21 in order from the object side to the image side. The zoom lens includes a positive lens 22, a negative lens 23, and a positive lens 24. The third lens group moves to the image side during zooming from the wide-angle end to the telephoto end, and the focal length of the third lens group is f3. When the focal length at the wide-angle end is fW,
4.0 <f3 / fW <5.0
A zoom lens characterized by satisfying the following conditions:
前記正レンズ22と負レンズ23とが接合された接合レンズであることを特徴とする請求項1に記載のズームレンズ。   The zoom lens according to claim 1, wherein the zoom lens is a cemented lens in which the positive lens 22 and the negative lens 23 are cemented. 広角端から望遠端のズーミングに際して、前記第1レンズ群は像側に凸形状の軌跡で移動し、前記第2レンズ群は物体側に単調に移動することを特徴とする請求項1又は2に記載のズームレンズ。   3. The zoom lens according to claim 1, wherein the first lens unit moves along a locus convex toward the image side and the second lens unit moves monotonously toward the object side during zooming from the wide-angle end to the telephoto end. The described zoom lens. 前記負レンズ11は、像側の面が非球面であって像側に凹面を向けた負メニスカスレンズであり、前記正レンズ12は、物体側に凸面を向けた正メニスカスレンズであることを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。   The negative lens 11 is a negative meniscus lens having an aspherical surface on the image side and a concave surface facing the image side, and the positive lens 12 is a positive meniscus lens having a convex surface facing the object side. The zoom lens according to any one of claims 1 to 3. 前記正レンズ21は両凸レンズであり、前記正レンズ22は両凸レンズであり、前記負レンズ23は両凹レンズであることを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。   5. The zoom lens according to claim 1, wherein the positive lens is a biconvex lens, the positive lens is a biconvex lens, and the negative lens is a biconcave lens. 前記正レンズ22と前記負レンズ23の光軸上の厚さの合計をd、前記第2レンズ群の最も物体側の面から最も像側の面までの光軸上間隔をDとしたとき、
0.35<d/D<0.60
なる条件を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。
When the total thickness on the optical axis of the positive lens 22 and the negative lens 23 is d, and the distance on the optical axis from the most object side surface to the most image side surface of the second lens group is D,
0.35 <d / D <0.60
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群の最も物体側の面から最も像側の面までの光軸上間隔をDとしたとき、
1.45<D/fW<1.80
なる条件を満足することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。
When the distance on the optical axis from the most object side surface to the most image side surface of the second lens group is D,
1.45 <D / fW <1.80
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1としたとき、
−2.8<f1/fW<−2.0
なる条件を満足することを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。
When the focal length of the first lens group is f1,
-2.8 <f1 / fW <-2.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群の焦点距離をf2としたとき、
2.0<f2/fW<2.7
なる条件を満足することを特徴とする請求項1乃至8のいずれか1項に記載のズームレンズ。
When the focal length of the second lens group is f2,
2.0 <f2 / fW <2.7
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ群は1枚の正の単レンズからなることを特徴とする請求項1乃至9のいずれか1項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 9, wherein the third lens group includes one positive single lens. 光電変換素子上に像を形成することを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。   The zoom lens according to claim 1, wherein an image is formed on the photoelectric conversion element. 請求項1乃至11のいずれか1項に記載のズームレンズと、該ズームレンズによって形成される像を受光する光電変換素子を有することを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a photoelectric conversion element that receives an image formed by the zoom lens.
JP2011287917A 2011-12-28 2011-12-28 Zoom lens and imaging apparatus having the same Expired - Fee Related JP5284456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287917A JP5284456B2 (en) 2011-12-28 2011-12-28 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287917A JP5284456B2 (en) 2011-12-28 2011-12-28 Zoom lens and imaging apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004364447A Division JP5006514B2 (en) 2004-12-16 2004-12-16 Zoom lens and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2012088735A true JP2012088735A (en) 2012-05-10
JP5284456B2 JP5284456B2 (en) 2013-09-11

Family

ID=46260346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287917A Expired - Fee Related JP5284456B2 (en) 2011-12-28 2011-12-28 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5284456B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194274A (en) * 1998-01-05 1999-07-21 Ricoh Co Ltd Zoom lens
JP2002372667A (en) * 2001-06-14 2002-12-26 Konica Corp Zoom lens
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2005099091A (en) * 2003-09-22 2005-04-14 Olympus Corp Zoom lens and electronic imaging apparatus using the same
JP2005316335A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
WO2006001431A1 (en) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194274A (en) * 1998-01-05 1999-07-21 Ricoh Co Ltd Zoom lens
JP2002372667A (en) * 2001-06-14 2002-12-26 Konica Corp Zoom lens
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2005099091A (en) * 2003-09-22 2005-04-14 Olympus Corp Zoom lens and electronic imaging apparatus using the same
JP2005316335A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
WO2006001431A1 (en) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera

Also Published As

Publication number Publication date
JP5284456B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4612823B2 (en) Zoom lens and imaging apparatus having the same
JP4669294B2 (en) Zoom lens and imaging apparatus having the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
JP5465000B2 (en) Zoom lens and imaging apparatus having the same
JP4921045B2 (en) Optical system and optical apparatus having the same
JP5317669B2 (en) Zoom lens and imaging apparatus having the same
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JPWO2012086153A1 (en) Zoom lens system, interchangeable lens device and camera system
JP2006039531A (en) Zoom lens and imaging apparatus equipped with the same
JP4931136B2 (en) Zoom lens
JP2012242472A (en) Image forming optical system
JP2016090840A (en) Zoom lens and imaging apparatus including the same
JP3710352B2 (en) Zoom lens and optical apparatus using the same
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP4708734B2 (en) Zoom lens and imaging apparatus having the same
JP5084900B2 (en) Zoom lens and imaging apparatus having the same
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP2011017848A (en) Zoom lens and image pickup apparatus using the same
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP2001296475A (en) Zoom lens and optical equipment using the same
JP4928288B2 (en) Zoom lens and imaging apparatus having the same
JP2015114509A (en) Optical system and imaging device including the same
JP4027343B2 (en) Zoom lens and imaging apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R151 Written notification of patent or utility model registration

Ref document number: 5284456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees