JP2012087662A - Method and device for exhaust emission control - Google Patents

Method and device for exhaust emission control Download PDF

Info

Publication number
JP2012087662A
JP2012087662A JP2010234211A JP2010234211A JP2012087662A JP 2012087662 A JP2012087662 A JP 2012087662A JP 2010234211 A JP2010234211 A JP 2010234211A JP 2010234211 A JP2010234211 A JP 2010234211A JP 2012087662 A JP2012087662 A JP 2012087662A
Authority
JP
Japan
Prior art keywords
fuel
nox
reduction catalyst
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010234211A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirabayashi
浩 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010234211A priority Critical patent/JP2012087662A/en
Publication of JP2012087662A publication Critical patent/JP2012087662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for exhaust emission control maintaining a high NOx reduction rate without deteriorating the performance even under the operation condition of a low exhaust gas temperature.SOLUTION: When an exhaust air-fuel ratio is lean, NOx in exhaust gas 3 is temporarily stored in a state of nitrate by a NOx storage reduction catalyst 5 in the middle of an exhaust pipe 4, and fuel 8 is added to the inlet side of the NOx storage reduction catalyst 5 to enrich the exhaust air-fuel ratio and allow NOx to be disassembled and discharged. The discharged NOx is reduced and controlled in emission by the reduction component generated from the added fuel to regenerate the NOx storage reduction catalyst 5. When doing this, by igniting the fuel 8 added to the inlet side of the NOx storage reduction catalyst 5, combustion is performed in a state that the exhaust air-fuel ratio is rich, atmospheric temperature at the combustion position is raised to a fuel reforming temperature or higher to generate Hand CO, and the NOx storage reduction catalyst 5 is regenerated by using the Hand CO as a reducing agent.

Description

本発明は、排気浄化方法及び装置に関するものである。   The present invention relates to an exhaust purification method and apparatus.

従来より、ディーゼルエンジンにおいては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒を排気管の途中に装備し、このNOx吸蔵還元触媒によりNOxの排出濃度を低減することが行われている。 Conventionally, in a diesel engine, when the exhaust air-fuel ratio is lean, NOx in the exhaust gas is oxidized and temporarily stored in the form of nitrate, and when the O 2 concentration in the exhaust gas decreases, unburned HC and CO For example, a NOx storage reduction catalyst having a property of decomposing and releasing NOx by the intervention of the above and the like to reduce and purify is installed in the middle of the exhaust pipe, and the NOx emission concentration is reduced by this NOx storage reduction catalyst.

ただし、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、NOxの吸蔵量が飽和量に達する前にNOx吸蔵還元触媒に流入する排気ガスのO2濃度をHC等の還元剤により低下させてNOxを分解放出させる必要がある。 However, in the NOx occlusion reduction catalyst, if the NOx occlusion amount increases and reaches the saturation amount, no more NOx can be occluded, and therefore the NOx occlusion reduction catalyst before the NOx occlusion amount reaches the saturation amount. It is necessary to decompose and release NOx by reducing the O 2 concentration of the exhaust gas flowing into the exhaust gas with a reducing agent such as HC.

例えば、ガソリンエンジンに使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼルエンジンの排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust gas purification device for a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒をディーゼルエンジンの排気浄化装置として使用する場合には、NOx吸蔵還元触媒の上流側で排気ガス中に燃料を添加することにより、この添加燃料から生じたHCを還元剤としてNOx吸蔵還元触媒上でO2と反応させて排気ガス中のO2濃度を低下させる必要がある。 For this reason, when the NOx storage reduction catalyst is used as an exhaust gas purification device for a diesel engine, by adding fuel to the exhaust gas upstream of the NOx storage reduction catalyst, the HC generated from the added fuel is reduced. It is necessary to reduce the O 2 concentration in the exhaust gas by reacting with O 2 on the NOx storage reduction catalyst.

尚、この種の排気浄化装置に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to this type of exhaust purification device, there is the following Patent Document 1 and the like.

特開2007−9718号公報Japanese Patent Laid-Open No. 2007-9718

しかしながら、前述の如くNOx吸蔵還元触媒の上流側で燃料添加を行う方式では、その添加燃料から生じたHCの一部がNOx吸蔵還元触媒の表面上で排気ガス中のO2と反応(燃焼)し、NOx吸蔵還元触媒の周囲の雰囲気中におけるO2濃度がほぼ零となってからNOxの分解放出が開始されることになるため、排気温度の低い運転条件下(例えば、渋滞の多い都市内での徐行運転等)では、NOx吸蔵還元触媒の触媒活性が低いためにNOx吸蔵還元触媒からNOxを効率良く分解放出させることができず、NOx吸蔵還元触媒の再生が効率良く進まないことで触媒の容積中に占めるNOx吸蔵サイトの回復割合が小さくなって吸蔵能力が落ちるという問題があった。 However, in the system in which fuel is added upstream of the NOx storage reduction catalyst as described above, a part of the HC generated from the added fuel reacts with the O 2 in the exhaust gas on the surface of the NOx storage reduction catalyst (combustion). However, since the NOx decomposition and release starts after the O 2 concentration in the atmosphere around the NOx occlusion reduction catalyst becomes almost zero, the operation condition under low exhaust temperature (for example, in a city with a lot of traffic congestion) In slow running operation, etc.), the catalytic activity of the NOx storage reduction catalyst is low, so NOx cannot be efficiently decomposed and released from the NOx storage reduction catalyst, and the regeneration of the NOx storage reduction catalyst does not proceed efficiently. There was a problem that the recovery rate of the NOx storage site occupying in the volume of the storage space was reduced and the storage capacity was lowered.

本発明は上述の実情に鑑みてなしたもので、排気温度の低い運転条件下でも性能低下を招くことなく高いNOx低減率を維持し得る排気浄化方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust purification method and apparatus that can maintain a high NOx reduction rate without degrading performance even under operating conditions at low exhaust temperatures.

本発明は、排気空燃比がリーンの時に排気管途中のNOx吸蔵還元触媒により排気ガス中のNOxを硝酸塩の状態で一時的に吸蔵し、前記NOx吸蔵還元触媒の入側に燃料を添加することで排気空燃比をリッチとしてNOxを分解放出せしめ且つその放出NOxを添加燃料から生じた還元成分により還元浄化して前記NOx吸蔵還元触媒の再生を図る排気浄化方法であって、前記NOx吸蔵還元触媒の入側で添加燃料に点火して排気空燃比がリッチの状態で燃焼を行い、その燃焼位置における雰囲気温度を燃料改質温度以上に上げてH2とCOを生成し、これらH2とCOを還元剤として用いてNOx吸蔵還元触媒を再生することを特徴とするものである。 According to the present invention, when the exhaust air-fuel ratio is lean, NOx in the exhaust gas is temporarily occluded in the form of nitrate by the NOx occlusion reduction catalyst in the middle of the exhaust pipe, and fuel is added to the inlet side of the NOx occlusion reduction catalyst. An exhaust purification method for decomposing and releasing NOx by reducing the exhaust air-fuel ratio and reducing and purifying the released NOx with a reducing component generated from the added fuel to regenerate the NOx storage reduction catalyst, the NOx storage reduction catalyst the exhaust air-fuel ratio to ignite the additional fuel at the inlet side performs combustion in a rich state, the ambient temperature at the combustion positions to generate H 2 and CO is raised above the fuel reforming temperature, these H 2 and CO The NOx occlusion reduction catalyst is regenerated using NO as a reducing agent.

而して、このようにNOx吸蔵還元触媒の入側で添加燃料に点火して排気空燃比をリッチの状態として燃焼を行うと、その燃焼位置における雰囲気温度が燃料改質温度(約1000℃程度)以上となった時に、雰囲気中に残存する未燃の燃料が分解してH2とCOが生成され、これらH2とCOが還元剤としてNOx吸蔵還元触媒に供給されることになる。 Thus, when the added fuel is ignited on the inlet side of the NOx occlusion reduction catalyst and combustion is performed with the exhaust air / fuel ratio being rich, the ambient temperature at the combustion position becomes the fuel reforming temperature (about 1000 ° C.). ) when it becomes equal to or greater than, H 2 and CO are produced by decomposing the unburned fuel remaining in the atmosphere, these H 2 and CO is to be supplied to the NOx storage reduction catalyst as a reducing agent.

この際、燃焼により消費される燃料分は、排気ガス中のO2を消費してO2濃度を下げることに寄与しているため、H2とCOが還元剤としてNOx吸蔵還元触媒に供給された直後から雰囲気中のO2濃度が零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒の表面上で反応性の高いH2及びCOにより、HCを還元剤とした場合よりも低い温度からNOxが効率良くN2に還元処理されることになる。 At this time, the fuel consumed by combustion contributes to lowering the O 2 concentration by consuming O 2 in the exhaust gas, so that H 2 and CO are supplied to the NOx occlusion reduction catalyst as reducing agents. Immediately after that, the NOx decomposition and release starts immediately after the O 2 concentration in the atmosphere becomes zero, and the H 2 and CO that are highly reactive on the surface of the NO x storage reduction catalyst as they are are used as compared with the case where HC is used as the reducing agent. NOx is efficiently reduced to N 2 from a lower temperature.

また、本発明は、排気管の途中にNOx吸蔵還元触媒を装備すると共に、該NOx吸蔵還元触媒を再生させるための還元剤として前記NOx吸蔵還元触媒の入側に燃料を添加する燃料添加装置を配設した排気浄化装置であって、前記燃料添加装置からの添加燃料に点火する点火装置と、該点火装置により点火した燃料の燃焼位置における雰囲気温度を計測する温度センサと、該温度センサからの検出信号を入力して燃料改質温度以上の温度域で排気空燃比がリッチの状態となるように前記燃料添加装置の燃料添加量を制御し且つ燃料改質温度未満の温度域では前記燃料添加装置の燃料添加量を相対的に抑制するように制御する制御装置とを備えたことを特徴とするものでもある。   In addition, the present invention provides a fuel addition device that is equipped with a NOx storage reduction catalyst in the middle of an exhaust pipe, and that adds fuel to the inlet side of the NOx storage reduction catalyst as a reducing agent for regenerating the NOx storage reduction catalyst. An exhaust emission control device, an ignition device for igniting the added fuel from the fuel addition device, a temperature sensor for measuring an ambient temperature at a combustion position of the fuel ignited by the ignition device, and A detection signal is input to control the fuel addition amount of the fuel addition device so that the exhaust air-fuel ratio becomes rich in a temperature range above the fuel reforming temperature, and in the temperature range below the fuel reforming temperature, the fuel addition And a control device for controlling the fuel addition amount of the device to be relatively suppressed.

このようにすれば、温度センサにより計測される雰囲気温度が燃料改質温度以上の場合に、制御装置により排気空燃比がリッチの状態となるように燃料添加装置の燃料添加量が制御されるので、確実に燃料改質温度以上の条件下で排気空燃比をリッチ状態とした燃焼が行われてH2及びCOが効率良く生成されることになる。 In this way, when the atmospheric temperature measured by the temperature sensor is equal to or higher than the fuel reforming temperature, the fuel addition amount of the fuel addition device is controlled by the control device so that the exhaust air-fuel ratio becomes rich. As a result, combustion with the exhaust air-fuel ratio in a rich state is surely performed under conditions above the fuel reforming temperature, and H 2 and CO are efficiently generated.

一方、温度センサにより計測される雰囲気温度が燃料改質温度未満の場合には、制御装置により前記燃料添加装置の燃料添加量が相対的に抑制されるので、H2及びCOの生成に寄与しない無駄な燃料添加が削減されると共に、少ない燃料添加量で効率良く雰囲気温度を燃料改質温度まで上げることが可能となり、燃料添加の開始段階から一律に多く燃料添加量を添加して燃焼を行う場合よりもH2及びCOの生成量を増やすことが可能となる。 On the other hand, when the atmospheric temperature measured by the temperature sensor is lower than the fuel reforming temperature, the amount of fuel added to the fuel addition device is relatively suppressed by the control device, and thus does not contribute to the generation of H 2 and CO. In addition to reducing unnecessary fuel addition, it is possible to efficiently raise the ambient temperature to the fuel reforming temperature with a small amount of fuel addition, and combustion is performed by uniformly adding a large amount of fuel addition from the start of fuel addition. It becomes possible to increase the production amount of H 2 and CO more than the case.

即ち、燃料添加の開始段階から一律に多く燃料添加量を添加してしまうと、その燃焼の初期段階で燃料が過剰となり、その蒸発潜熱による温度低下が影響して雰囲気温度が効率良く燃料改質温度まで上がり難くなってしまうが、燃料改質温度に到達するまで燃料添加量を抑制して過不足のない燃料添加を行えば、少ない燃料添加量でも効率良く雰囲気温度を燃料改質温度まで上げることが可能となり、より早く雰囲気温度を燃料改質温度まで上げられることで燃料改質反応が早期に起こる結果、H2及びCOの生成量が増えることになる。 In other words, if a large amount of fuel is added from the beginning of fuel addition, the fuel becomes excessive in the initial stage of combustion, and the temperature drop due to the latent heat of vaporization affects the temperature of the fuel efficiently. Although it is difficult to increase the temperature, the amount of fuel added is suppressed until the fuel reforming temperature is reached, and if the fuel is added without excess or deficiency, the ambient temperature can be efficiently raised to the fuel reforming temperature even with a small amount of fuel added. As a result of the fact that the ambient temperature can be raised to the fuel reforming temperature earlier, the fuel reforming reaction takes place earlier, resulting in an increase in the amount of H 2 and CO produced.

また、本発明においては、燃料添加装置とNOx吸蔵還元触媒との間にパティキュレートフィルタを介装しても良く、このようにすれば、燃料の燃焼で発生する熱をパティキュレートフィルタで吸収してNOx吸蔵還元触媒における触媒床温度の上昇を抑制することが可能となり、NOx吸蔵還元触媒の触媒床温度の上昇により吸蔵NOxの放出が促されてNOx低減率が低下してしまうことが防止される。   In the present invention, a particulate filter may be interposed between the fuel addition device and the NOx occlusion reduction catalyst, so that the heat generated by the combustion of the fuel is absorbed by the particulate filter. Thus, it is possible to suppress the increase in the catalyst bed temperature in the NOx storage reduction catalyst, and the increase in the catalyst bed temperature of the NOx storage reduction catalyst prevents the NOx reduction rate from being reduced due to the accelerated release of the stored NOx. The

即ち、NOx吸蔵還元触媒の飽和吸蔵量は、所定のピーク温度に到達するまで触媒床温度の上昇に応じて増加するものの、ピーク温度を超えて更に触媒床温度が上昇すると逆に低下してしまう性質となっており、NOx吸蔵還元触媒の触媒床温度がピーク温度を超えて高まり過ぎてしまうと、NOxの放出量が増えてNOx低減率が低下してしまう虞れがあるため、NOx吸蔵還元触媒の触媒床温度が燃料の燃焼で発生する熱により高まり過ぎないよう考慮することが重要である。   That is, the saturated occlusion amount of the NOx occlusion reduction catalyst increases as the catalyst bed temperature rises until it reaches a predetermined peak temperature, but conversely decreases when the catalyst bed temperature rises beyond the peak temperature. NOx occlusion reduction because the NOx occlusion reduction may increase and the NOx reduction rate will decrease if the catalyst bed temperature of the NOx occlusion reduction catalyst increases excessively beyond the peak temperature. It is important to consider that the catalyst bed temperature of the catalyst does not become too high due to the heat generated by the combustion of the fuel.

また、このように燃料添加装置の直後にパティキュレートフィルタが配置されていれば、燃料添加装置からの燃料に添加して燃焼を行うことで前記パティキュレートフィルタの再生を図ることも可能であり、しかも、その再生にあたっての温度上昇も速やかに行うことが可能である。   Further, if the particulate filter is arranged immediately after the fuel addition device in this way, it is also possible to regenerate the particulate filter by adding and burning the fuel from the fuel addition device, Moreover, it is possible to quickly increase the temperature during the regeneration.

更に、パティキュレートフィルタとNOx吸蔵還元触媒との間に通気構造の蓄熱材を介装するようにしても良く、このようにすれば、前記蓄熱材で更なる熱の吸収を行わせることでNOx吸蔵還元触媒における触媒床温度の上昇をより一層抑制することが可能となる。   Furthermore, a heat storage material having a ventilation structure may be interposed between the particulate filter and the NOx occlusion reduction catalyst, and in this way, further heat absorption is performed by the heat storage material. An increase in the catalyst bed temperature in the storage reduction catalyst can be further suppressed.

また、本発明においては、NOx吸蔵還元触媒の後段に酸素共存下でも選択的にNOxをNH3と反応させ得る選択還元型触媒を備えることが好ましく、このようにすれば、NOx吸蔵還元触媒にてH2とNOxとが反応してNH3が生成されたとしても、このNH3を更なる還元剤として後段の選択還元型触媒でNOxを還元浄化することが可能となる。 Further, in the present invention, it is preferable to provide a selective reduction catalyst that can selectively react NOx with NH 3 even in the presence of oxygen at the subsequent stage of the NOx occlusion reduction catalyst. even H 2 and the NOx is that NH 3 reacts generated Te, it is possible to reduce and purify NOx at a later stage of the selective catalytic reduction catalyst of this NH 3 as a further reducing agent.

即ち、H2を還元剤として用いた場合、排気空燃比が深いリッチの状態にある条件下では、NOx吸蔵還元触媒におけるH2とNOxとの反応で一部がNH3を生成してしまうが、このNH3を還元剤として後段の選択還元型触媒で用いれば、更なるNOxの低減化を図ることが可能となると共に、リークアンモニア対策にもなる。 That is, when H 2 is used as a reducing agent, a part of NH 3 is produced by the reaction of H 2 and NO x in the NO x storage reduction catalyst under the condition that the exhaust air-fuel ratio is in a deep rich state. If this NH 3 is used as a reducing agent in the selective reduction catalyst in the subsequent stage, it becomes possible to further reduce NOx and to prevent leakage ammonia.

上記した本発明の排気浄化方法及び装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust purification method and apparatus of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2に記載の発明によれば、NOx吸蔵還元触媒の入側で添加燃料に点火して排気空燃比がリッチの状態で燃焼を行い、その燃焼位置における雰囲気温度を燃料改質温度以上に上げてH2とCOを生成し、これらH2とCOを還元剤としてNOx吸蔵還元触媒に導くことで、HCを還元剤とした場合よりも低い温度からNOxを効率良くN2に還元処理することができるので、排気温度の低い運転条件下でも性能低下を招くことなく高いNOx低減率を維持することができる。 (I) According to the first and second aspects of the present invention, the added fuel is ignited on the inlet side of the NOx occlusion reduction catalyst, combustion is performed in a rich exhaust air-fuel ratio, and the atmosphere at the combustion position The temperature is raised above the fuel reforming temperature to produce H 2 and CO, and these H 2 and CO are used as a reducing agent and guided to the NOx storage reduction catalyst, so that NOx is reduced from a lower temperature than when HC is used as the reducing agent. Since the reduction treatment can be efficiently performed to N 2 , a high NOx reduction rate can be maintained without causing performance degradation even under operating conditions with a low exhaust temperature.

(II)本発明の請求項3に記載の発明によれば、燃料の燃焼で発生する熱をパティキュレートフィルタで吸収してNOx吸蔵還元触媒における触媒床温度の上昇を抑制することができるので、NOx吸蔵還元触媒の触媒床温度の上昇により吸蔵NOxが放出されてNOx低減率が低下してしまう事態を防止することができ、しかも、燃料の燃焼で発生する熱でパティキュレートフィルタの再生を図ることもでき、その再生にあたっての温度上昇も速やかに行うことができる。   (II) According to the invention described in claim 3 of the present invention, the heat generated by the combustion of the fuel can be absorbed by the particulate filter and the increase in the catalyst bed temperature in the NOx storage reduction catalyst can be suppressed. The increase in the catalyst bed temperature of the NOx occlusion reduction catalyst can prevent the situation where the NOx occlusion is released and the NOx reduction rate decreases, and the particulate filter is regenerated by the heat generated by the combustion of the fuel. It is also possible to quickly increase the temperature during the regeneration.

(III)本発明の請求項4に記載の発明によれば、蓄熱材で更なる熱の吸収を行わせることでNOx吸蔵還元触媒における触媒床温度の上昇をより一層抑制することができるので、NOx吸蔵還元触媒の触媒床温度の上昇によるNOx低減率の低下を更に確実に防止することができる。   (III) According to the invention described in claim 4 of the present invention, it is possible to further suppress an increase in the catalyst bed temperature in the NOx storage reduction catalyst by causing the heat storage material to absorb further heat. A reduction in the NOx reduction rate due to an increase in the catalyst bed temperature of the NOx storage reduction catalyst can be prevented more reliably.

(IV)本発明の請求項5に記載の発明によれば、NOx吸蔵還元触媒にてH2とNOxとが反応してNH3が生成されたとしても、このNH3を更なる還元剤として後段の選択還元型触媒でNOxを還元浄化することができるので、NOxの更なる低減化を図ることができると共に、NH3を還元剤として消費することでNH3の車外への排出を防止することができる。 (IV) According to the invention described in claim 5 of the present invention, even if NH 3 is produced by the reaction of H 2 and NO x in the NO x storage reduction catalyst, this NH 3 is used as a further reducing agent. Since NOx can be reduced and purified by the selective reduction catalyst in the latter stage, it is possible to further reduce NOx and prevent NH 3 from being discharged outside the vehicle by consuming NH 3 as a reducing agent. be able to.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 従来の燃料添加パターンを示すグラフである。It is a graph which shows the conventional fuel addition pattern. センサ温度の変化を示すグラフである。It is a graph which shows the change of sensor temperature. 本形態例の燃料添加パターンを示すグラフである。It is a graph which shows the fuel addition pattern of this embodiment. 2濃度の変化を示すグラフである。Is a graph showing changes in concentration of H 2. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention. 本発明の更に別の形態例を示す概略図である。It is the schematic which shows another example of a form of this invention.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、排気空燃比がリーンの時に排気ガス3中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス3中のO2濃度が低下した時に還元剤の介在によりNOxを分解放出して還元浄化するNOx吸蔵還元触媒5が触媒ケース6に抱持されて装備されている。 FIG. 1 shows an example of an embodiment for carrying out the present invention. In this embodiment, exhaust air is exhausted in the middle of an exhaust pipe 4 through which exhaust gas 3 discharged from a diesel engine 1 through an exhaust manifold 2 flows. When the fuel ratio is lean, the NOx in the exhaust gas 3 is oxidized and temporarily stored in the form of nitrate, and when the O 2 concentration in the exhaust gas 3 decreases, the NOx is decomposed and released by the intervention of a reducing agent to reduce and purify. The NOx occlusion reduction catalyst 5 is mounted on the catalyst case 6.

また、前記触媒ケース6の入口部分には、軽油タンク7内の燃料8(軽油)を軽油ポンプ9を介し導いて噴射する燃料添加ノズル10が設けられており、これら軽油タンク7、軽油ポンプ9、燃料添加ノズル10により燃料添加装置11が構成されるようになっている。   In addition, a fuel addition nozzle 10 that guides and injects fuel 8 (light oil) in the light oil tank 7 through the light oil pump 9 is provided at the inlet portion of the catalyst case 6, and these light oil tank 7, light oil pump 9 A fuel addition device 11 is configured by the fuel addition nozzle 10.

更に、前記燃料添加装置11の燃料添加ノズル10による燃料8の噴射位置近傍には、該燃料8に点火するイグナイタ12(点火装置)と、該イグナイタ12により点火した燃料8の燃焼位置における雰囲気温度を計測する温度センサ13とが装備されており、該温度センサ13からの検出信号13aが制御装置14に入力されるようになっている。   Further, in the vicinity of the injection position of the fuel 8 by the fuel addition nozzle 10 of the fuel addition device 11, an igniter 12 (ignition device) for igniting the fuel 8 and the ambient temperature at the combustion position of the fuel 8 ignited by the igniter 12 And a detection signal 13a from the temperature sensor 13 is input to the control device 14.

そして、この制御装置14においては、前記温度センサ13からの検出信号13aに基づき燃料8からH2及びCOへの燃料改質の反応が起こり得る燃料改質温度(約1000℃程度)以上の温度域で排気空燃比がリッチの状態となるように前記燃料添加装置11の燃料添加量を制御信号11aにより制御し且つ燃料改質温度未満の温度域では前記燃料添加装置11の燃料添加量を相対的に抑制するように制御信号11aにより制御するようになっている。 In the control device 14, a temperature equal to or higher than the fuel reforming temperature (about 1000 ° C.) at which the fuel reforming reaction from the fuel 8 to H 2 and CO can occur based on the detection signal 13 a from the temperature sensor 13. The fuel addition amount of the fuel addition device 11 is controlled by the control signal 11a so that the exhaust air-fuel ratio becomes rich in the region, and the fuel addition amount of the fuel addition device 11 is relative in the temperature region below the fuel reforming temperature. Therefore, the control signal 11a is controlled so as to suppress it.

また、図1に示している例においては、燃料添加装置11とNOx吸蔵還元触媒5との間に、酸化触媒を担持して成る触媒担持型のパティキュレートフィルタ15を介装した場合を例示しており、このパティキュレートフィルタ15は、排気ガス3中のパティキュレート(Particulate Matter:粒子状物質)を捕集し得るようコージェライト等のセラミックから成る多孔質のハニカム構造としてある。   In the example shown in FIG. 1, a case where a catalyst-carrying particulate filter 15 carrying an oxidation catalyst is interposed between the fuel addition device 11 and the NOx occlusion reduction catalyst 5 is illustrated. The particulate filter 15 has a porous honeycomb structure made of ceramic such as cordierite so as to collect particulate matter (particulate matter) in the exhaust gas 3.

而して、このようにした場合、排気空燃比がリーンの時にNOx吸蔵還元触媒5により排気ガス3中のNOxが硝酸塩の状態で一時的に吸蔵されるので、前記NOx吸蔵還元触媒5の入側に燃料8を添加することで排気空燃比をリッチとしてNOxを分解放出せしめ且つその放出NOxを前記燃料8から生じた還元成分により還元浄化して前記NOx吸蔵還元触媒5の再生を図る必要があるが、この際に、前記NOx吸蔵還元触媒5の入側でイグナイタ12により前記燃料8に点火して排気空燃比をリッチの状態として燃焼を行うと、その燃焼位置における雰囲気温度が燃料改質温度(約1000℃程度)以上となった時に、雰囲気中に残存する未燃の燃料8が分解してH2とCOが生成され、これらH2とCOが還元剤としてNOx吸蔵還元触媒5に供給されることになる。 Thus, in this case, when the exhaust air-fuel ratio is lean, the NOx occlusion reduction catalyst 5 temporarily stores NOx in the exhaust gas 3 in the form of nitrate, so that the NOx occlusion reduction catalyst 5 enters. It is necessary to regenerate the NOx occlusion reduction catalyst 5 by adding the fuel 8 to the exhaust side so that the exhaust air-fuel ratio becomes rich and the NOx is decomposed and released, and the released NOx is reduced and purified by the reducing components generated from the fuel 8. However, at this time, if the fuel 8 is ignited by the igniter 12 on the inlet side of the NOx storage reduction catalyst 5 and combustion is performed with the exhaust air-fuel ratio being rich, the ambient temperature at the combustion position becomes the fuel reforming. when a temperature (about 1000 ° C.) or higher, the fuel 8 unburned remaining in the atmosphere is produced decomposition to H 2 and CO, these H 2 and CO is the NOx storage reduction catalyst 5 as a reducing agent Serving It is is will be.

この際、燃焼により消費される燃料分は、排気ガス3中のO2を消費してO2濃度を下げることに寄与しているため、H2とCOが還元剤としてNOx吸蔵還元触媒5に供給された直後から雰囲気中のO2濃度が零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒5の表面上で反応性の高いH2及びCOにより、HCを還元剤とした場合よりも低い温度からNOxが効率良くN2に還元処理されることになる。 At this time, the fuel consumed by combustion contributes to lowering the O 2 concentration by consuming O 2 in the exhaust gas 3, so that H 2 and CO are used as a reducing agent in the NOx storage reduction catalyst 5. Immediately after being supplied, the O 2 concentration in the atmosphere becomes zero and NOx decomposition and release is started immediately, and HC is used as a reducing agent by H 2 and CO having high reactivity on the surface of the NO x storage reduction catalyst 5 as they are. Thus, NOx is efficiently reduced to N 2 at a temperature lower than that of the case.

尚、図1に示している例では、燃料添加装置11とNOx吸蔵還元触媒5との間に、酸化触媒を担持したパティキュレートフィルタ15が介装されているが、H2及びCOが生成される段階では、排気ガス3中のO2が消費されて酸欠状態となっているため、H2及びCOは、パティキュレートフィルタ15で酸化処理されることなくNOx吸蔵還元触媒5まで到達することになる。 In the example shown in FIG. 1, a particulate filter 15 carrying an oxidation catalyst is interposed between the fuel addition device 11 and the NOx occlusion reduction catalyst 5, but H 2 and CO are generated. At this stage, O 2 in the exhaust gas 3 is consumed and is in an oxygen deficient state, so that H 2 and CO reach the NOx occlusion reduction catalyst 5 without being oxidized by the particulate filter 15. become.

また、特に本形態例の排気浄化装置では、温度センサ13により計測される雰囲気温度が燃料改質温度以上の場合に、制御装置14により排気空燃比がリッチの状態となるように燃料添加装置11の燃料添加量が制御されるので、確実に燃料改質温度以上の条件下で排気空燃比をリッチ状態とした燃焼が行われてH2及びCOが効率良く生成されることになる。 In particular, in the exhaust purification apparatus of the present embodiment, when the atmospheric temperature measured by the temperature sensor 13 is equal to or higher than the fuel reforming temperature, the fuel addition apparatus 11 is set so that the exhaust air-fuel ratio becomes rich by the control apparatus 14. Therefore, the combustion with the exhaust air-fuel ratio in a rich state is reliably performed under the condition above the fuel reforming temperature, and H 2 and CO are efficiently generated.

一方、温度センサ13により計測される雰囲気温度が燃料改質温度未満の場合には、制御装置14により前記燃料添加装置11の燃料添加量が相対的に抑制されるので、H2及びCOの生成に寄与しない無駄な燃料8の添加が削減されると共に、少ない燃料添加量で効率良く雰囲気温度を燃料改質温度まで上げることが可能となり、燃料8の添加の開始段階から一律に多く燃料添加量を添加して燃焼を行う場合よりもH2及びCOの生成量を増やすことが可能となる。 On the other hand, when the atmospheric temperature measured by the temperature sensor 13 is lower than the fuel reforming temperature, the amount of fuel added to the fuel adding device 11 is relatively suppressed by the control device 14, and thus H 2 and CO are generated. The amount of useless fuel 8 that does not contribute to fuel consumption is reduced, and the ambient temperature can be efficiently raised to the fuel reforming temperature with a small amount of fuel addition. It is possible to increase the amount of H 2 and CO produced as compared with the case where combustion is performed with addition of.

即ち、図2に示す如く、燃料添加の開始段階から一律に多く燃料添加量を添加してしまうと、その燃焼の初期段階で燃料8が過剰となり、図3のグラフ中に鎖線で示すように、その蒸発潜熱による温度低下が影響して雰囲気温度が効率良く燃料改質温度まで上がり難くなってしまうが、図4に示す如く、燃料改質温度に到達するまで燃料添加量を抑制して過不足のない燃料添加を行えば、少ない燃料添加量でも効率良く雰囲気温度を燃料改質温度まで上げることが可能となり、先の図3のグラフ中に実線で示すように、より早く雰囲気温度を燃料改質温度まで上げることが可能となる。   That is, as shown in FIG. 2, if the fuel addition amount is uniformly increased from the start stage of fuel addition, the fuel 8 becomes excessive at the initial stage of combustion, as shown by the chain line in the graph of FIG. However, although the temperature drop due to the latent heat of vaporization affects the atmospheric temperature, it becomes difficult to efficiently reach the fuel reforming temperature. However, as shown in FIG. If fuel is added without a shortage, it is possible to efficiently raise the ambient temperature to the fuel reforming temperature even with a small amount of added fuel. As indicated by the solid line in the graph of FIG. It is possible to raise the reforming temperature.

この結果、図2の如き燃料添加の開始段階から一律に多く燃料添加を実施する燃料添加パターンよりも、図4の如き制御を加えて燃料添加を実施する燃料添加パターンとした方が、より早く雰囲気温度が燃料改質温度まで上がって燃料改質反応が早期に起こるので、H2及びCOの生成量が増えることになり、特にH2濃度に着目すれば、図5にグラフで示す如く、図2の燃料添加で鎖線のようなH2濃度であったものが、図4の燃料添加で実線のようなH2濃度まで上げられることが確認されている。 As a result, the fuel addition pattern in which the fuel addition is performed by adding the control as shown in FIG. 4 is faster than the fuel addition pattern in which the fuel addition is uniformly increased from the start stage of the fuel addition as shown in FIG. Since the atmospheric temperature rises to the fuel reforming temperature and the fuel reforming reaction takes place early, the amount of H 2 and CO produced will increase, and focusing on the H 2 concentration, as shown in the graph of FIG. those had been a concentration of H 2 as a chain line in the fuel addition in FIG. 2, it is raised to concentration of H 2 as a solid line in the fuel addition of 4 has been confirmed.

従って、上記形態例によれば、NOx吸蔵還元触媒5の入側で添加した燃料8に点火して排気空燃比がリッチの状態で燃焼を行い、その燃焼位置における雰囲気温度を燃料改質温度以上に上げてH2とCOを生成し、これらH2とCOを還元剤としてNOx吸蔵還元触媒5に導くことで、HCを還元剤とした場合よりも低い温度からNOxを効率良くN2に還元処理することができるので、排気温度の低い運転条件下でも性能低下を招くことなく高いNOx低減率を維持することができる。 Therefore, according to the above embodiment, the fuel 8 added on the inlet side of the NOx storage reduction catalyst 5 is ignited to perform combustion in a rich exhaust air-fuel ratio, and the ambient temperature at the combustion position is equal to or higher than the fuel reforming temperature. H 2 and CO are generated, and these H 2 and CO are led to the NOx occlusion reduction catalyst 5 as reducing agents, so that NOx is efficiently reduced to N 2 from a lower temperature than when HC is used as the reducing agent. Since it can be processed, a high NOx reduction rate can be maintained without causing performance degradation even under operating conditions with a low exhaust temperature.

事実、本発明者による検証実験によれば、燃料8への点火を行わずにHCを還元剤として用いた場合に50%程度のNOx低減率であったものが、同じ運転モードで燃料8に点火して排気空燃比がリッチの状態で燃焼を行った場合に65%程度までNOx低減率を向上することができた。   In fact, according to a verification experiment by the present inventor, when HC is used as a reducing agent without igniting the fuel 8, a NOx reduction rate of about 50% is applied to the fuel 8 in the same operation mode. When ignition was performed and combustion was performed in a rich exhaust air-fuel ratio, the NOx reduction rate could be improved to about 65%.

また、本形態例においては、燃料添加装置11とNOx吸蔵還元触媒5との間にパティキュレートフィルタ15を介装しているので、燃料8の燃焼で発生する熱をパティキュレートフィルタ15で吸収してNOx吸蔵還元触媒5における触媒床温度の上昇を抑制することができ、NOx吸蔵還元触媒5の触媒床温度の上昇により吸蔵NOxの放出が促されてNOx低減率が低下してしまう事態を防止することができる。   In this embodiment, since the particulate filter 15 is interposed between the fuel addition device 11 and the NOx storage reduction catalyst 5, the heat generated by the combustion of the fuel 8 is absorbed by the particulate filter 15. The increase in the catalyst bed temperature in the NOx occlusion reduction catalyst 5 can be suppressed, and the increase in the catalyst bed temperature of the NOx occlusion reduction catalyst 5 prevents the storage NOx from being released and the NOx reduction rate decreases. can do.

即ち、NOx吸蔵還元触媒5の飽和吸蔵量は、所定のピーク温度に到達するまで触媒床温度の上昇に応じて増加するものの、ピーク温度を超えて更に触媒床温度が上昇すると逆に低下してしまう性質となっており、NOx吸蔵還元触媒5の触媒床温度がピーク温度を超えて高まり過ぎてしまうと、NOxの放出量が増えてNOx低減率が低下してしまう虞れがあるため、NOx吸蔵還元触媒5の触媒床温度が燃料8の燃焼で発生する熱により高まり過ぎないよう考慮することが重要である。   That is, the saturated occlusion amount of the NOx occlusion reduction catalyst 5 increases as the catalyst bed temperature rises until it reaches a predetermined peak temperature, but decreases when the catalyst bed temperature further rises beyond the peak temperature. If the catalyst bed temperature of the NOx occlusion reduction catalyst 5 exceeds the peak temperature and increases too much, the amount of NOx released may increase and the NOx reduction rate may decrease. It is important to consider that the catalyst bed temperature of the storage reduction catalyst 5 is not excessively increased by the heat generated by the combustion of the fuel 8.

また、このように燃料添加装置11の直後にパティキュレートフィルタ15が配置されていれば、燃料添加装置11からの燃料8に添加して燃焼を行うことで前記パティキュレートフィルタ15の再生を図ることもでき、しかも、その再生にあたっての温度上昇も速やかに行うことができる。   Further, when the particulate filter 15 is arranged immediately after the fuel addition device 11 as described above, the particulate filter 15 is regenerated by adding to the fuel 8 from the fuel addition device 11 and performing combustion. In addition, the temperature rise during the regeneration can be performed quickly.

図6は本発明の別の形態例を示すもので、パティキュレートフィルタ15とNOx吸蔵還元触媒5との間に通気構造の蓄熱材16を更に介装した構成となっている。このようにすれば、前記蓄熱材16で更なる熱の吸収を行わせることでNOx吸蔵還元触媒5における触媒床温度の上昇をより一層抑制することができるので、NOx吸蔵還元触媒5の触媒床温度の上昇によるNOx低減率の低下を更に確実に防止することができる。   FIG. 6 shows another embodiment of the present invention, in which a heat storage material 16 having a ventilation structure is further interposed between the particulate filter 15 and the NOx storage reduction catalyst 5. In this way, since the heat storage material 16 can absorb more heat, the increase in the catalyst bed temperature in the NOx storage reduction catalyst 5 can be further suppressed, so the catalyst bed of the NOx storage reduction catalyst 5 can be reduced. A decrease in the NOx reduction rate due to the temperature rise can be prevented more reliably.

図7は本発明の更に別の形態例を示すもので、NOx吸蔵還元触媒5の後段に酸素共存下でも選択的にNOxをNH3と反応させ得る選択還元型触媒17を備えた構成となっている。 FIG. 7 shows still another embodiment of the present invention. The NOx occlusion reduction catalyst 5 is provided with a selective reduction catalyst 17 that can selectively react NOx with NH 3 even in the presence of oxygen. ing.

このようにすれば、NOx吸蔵還元触媒5にてH2とNOxとが反応してNH3が生成されたとしても、このNH3を更なる還元剤として後段の選択還元型触媒17でNOxを還元浄化することができるので、NOxの更なる低減化を図ることができると共に、NH3を還元剤として消費することでNH3の車外への排出を防止することができる。 In this way, even if the NH 3 generated by the NOx storage reduction catalyst 5 by the reaction with H 2 and NOx, the NOx in the downstream selective reduction catalyst 17 to the NH 3 as a further reducing agent it is possible to reduce and purify, it is possible to achieve a further reduction of NOx, it is possible to prevent the discharge of the outside of the NH 3 in the consumption of NH 3 as the reducing agent.

即ち、H2を還元剤として用いた場合、排気空燃比が深いリッチの状態にある条件下では、NOx吸蔵還元触媒5におけるH2とNOxとの反応で一部がNH3を生成してしまうが、このNH3を還元剤として後段の選択還元型触媒17で用いれば、更なるNOxの低減化を図ることが可能となると共に、リークアンモニア対策にもなるのである。 That is, when H 2 is used as a reducing agent, a part of NH 3 is generated by the reaction between H 2 and NO x in the NO x storage reduction catalyst 5 under the condition that the exhaust air-fuel ratio is in a deep rich state. However, if this NH 3 is used as a reducing agent in the subsequent selective reduction catalyst 17, it is possible to further reduce NOx and to prevent leakage ammonia.

尚、本発明の排気浄化方法及び装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the exhaust purification method and apparatus of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

3 排気ガス
4 排気管
5 NOx吸蔵還元触媒
8 燃料
11 燃料添加装置
11a 制御信号
12 イグナイタ(点火装置)
13 温度センサ
13a 検出信号
14 制御装置
15 パティキュレートフィルタ
16 蓄熱材
17 選択還元型触媒
3 Exhaust gas 4 Exhaust pipe 5 NOx storage reduction catalyst 8 Fuel 11 Fuel addition device 11a Control signal 12 Igniter (ignition device)
DESCRIPTION OF SYMBOLS 13 Temperature sensor 13a Detection signal 14 Control apparatus 15 Particulate filter 16 Thermal storage material 17 Selective reduction type catalyst

Claims (5)

排気空燃比がリーンの時に排気管途中のNOx吸蔵還元触媒により排気ガス中のNOxを硝酸塩の状態で一時的に吸蔵し、前記NOx吸蔵還元触媒の入側に燃料を添加することで排気空燃比をリッチとしてNOxを分解放出せしめ且つその放出NOxを添加燃料から生じた還元成分により還元浄化して前記NOx吸蔵還元触媒の再生を図る排気浄化方法であって、前記NOx吸蔵還元触媒の入側で添加燃料に点火して排気空燃比がリッチの状態で燃焼を行い、その燃焼位置における雰囲気温度を燃料改質温度以上に上げてH2とCOを生成し、これらH2とCOを還元剤として用いてNOx吸蔵還元触媒を再生することを特徴とする排気浄化方法。 When the exhaust air-fuel ratio is lean, NOx in the exhaust gas is temporarily stored in the form of nitrate by the NOx storage-reduction catalyst in the middle of the exhaust pipe, and the fuel is added to the inlet side of the NOx storage-reduction catalyst so that the exhaust air-fuel ratio Is an exhaust purification method for decomposing and releasing NOx and reducing and purifying the released NOx with a reducing component generated from the added fuel to regenerate the NOx storage reduction catalyst, on the inlet side of the NOx storage reduction catalyst exhaust air-fuel ratio to ignite the fuel addition is performed combustion in a rich state, the ambient temperature at the combustion position raised above the fuel reforming temperature to produce a H 2 and CO, these H 2 and CO as a reducing agent An exhaust purification method characterized by using to regenerate a NOx storage reduction catalyst. 排気管の途中にNOx吸蔵還元触媒を装備すると共に、該NOx吸蔵還元触媒を再生させるための還元剤として前記NOx吸蔵還元触媒の入側に燃料を添加する燃料添加装置を配設した排気浄化装置であって、前記燃料添加装置からの添加燃料に点火する点火装置と、該点火装置により点火した燃料の燃焼位置における雰囲気温度を計測する温度センサと、該温度センサからの検出信号を入力して燃料改質温度以上の温度域で排気空燃比がリッチの状態となるように前記燃料添加装置の燃料添加量を制御し且つ燃料改質温度未満の温度域では前記燃料添加装置の燃料添加量を相対的に抑制するように制御する制御装置とを備えたことを特徴とする排気浄化装置。   An exhaust purification device equipped with a NOx occlusion reduction catalyst in the middle of the exhaust pipe and provided with a fuel addition device for adding fuel to the inlet side of the NOx occlusion reduction catalyst as a reducing agent for regenerating the NOx occlusion reduction catalyst An ignition device for igniting the added fuel from the fuel addition device, a temperature sensor for measuring the ambient temperature at the combustion position of the fuel ignited by the ignition device, and a detection signal from the temperature sensor are input. The fuel addition amount of the fuel addition device is controlled so that the exhaust air-fuel ratio becomes rich in the temperature range above the fuel reforming temperature, and the fuel addition amount of the fuel addition device is reduced in the temperature range below the fuel reforming temperature. An exhaust emission control device comprising a control device that performs control so as to be relatively suppressed. 燃料添加装置とNOx吸蔵還元触媒との間にパティキュレートフィルタを介装したことを特徴とする請求項2に記載の排気浄化装置。   The exhaust emission control device according to claim 2, wherein a particulate filter is interposed between the fuel addition device and the NOx occlusion reduction catalyst. パティキュレートフィルタとNOx吸蔵還元触媒との間に通気構造の蓄熱材を介装したことを特徴とする請求項3に記載の排気浄化装置。   The exhaust emission control device according to claim 3, wherein a heat storage material having a ventilation structure is interposed between the particulate filter and the NOx occlusion reduction catalyst. NOx吸蔵還元触媒の後段に酸素共存下でも選択的にNOxをNH3と反応させ得る選択還元型触媒を備えたことを特徴とする請求項2、3又は4に記載の排気浄化装置。 An exhaust emission control device as claimed in claim 2, 3 or 4, characterized in that also provided with a selective reduction catalyst capable of selectively reacting NOx with NH 3 in the presence of oxygen downstream of the NOx storage reduction catalyst.
JP2010234211A 2010-10-19 2010-10-19 Method and device for exhaust emission control Pending JP2012087662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234211A JP2012087662A (en) 2010-10-19 2010-10-19 Method and device for exhaust emission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234211A JP2012087662A (en) 2010-10-19 2010-10-19 Method and device for exhaust emission control

Publications (1)

Publication Number Publication Date
JP2012087662A true JP2012087662A (en) 2012-05-10

Family

ID=46259554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234211A Pending JP2012087662A (en) 2010-10-19 2010-10-19 Method and device for exhaust emission control

Country Status (1)

Country Link
JP (1) JP2012087662A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2010127186A (en) * 2008-11-27 2010-06-10 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010530494A (en) * 2007-06-19 2010-09-09 イートン コーポレーション Measures for setting the schedule of LNT playback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2010530494A (en) * 2007-06-19 2010-09-09 イートン コーポレーション Measures for setting the schedule of LNT playback
JP2010127186A (en) * 2008-11-27 2010-06-10 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
JP4503593B2 (en) Exhaust mechanism for lean burn engine including particulate matter filter and NOx absorbent
JP5131392B2 (en) Exhaust gas purification device for internal combustion engine
KR101317411B1 (en) System of regenerating gasoline particulate filter and method thereof
JP2007291980A (en) Exhaust emission control device
JP2006242020A (en) Exhaust emission control device
JP2009091909A (en) Exhaust emission control device
JP2004346828A (en) Exhaust emission control device
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP2004204699A (en) Exhaust gas purifying device
JP2007009718A (en) Exhaust emission control device
JP2007100572A (en) Exhaust emission control device of internal combustion engine
JP2007132202A (en) Exhaust gas temperature rise device
KR101707388B1 (en) Exhaust purification system for an internal combustion engine
JP2009150279A (en) Exhaust gas treatment device
JP2007205267A (en) Exhaust emission control device
JP4934082B2 (en) Exhaust purification device
JP5392411B1 (en) Exhaust gas purification device for internal combustion engine
JP3876903B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP5053134B2 (en) Exhaust purification device
JP2005002925A (en) Exhaust emission control device
JP2012087662A (en) Method and device for exhaust emission control
KR101305187B1 (en) System for purifying exhaust gas and method for controlling the same
JP5713612B2 (en) Exhaust purification device control method
JP2009216021A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331