JP2012084788A - STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT - Google Patents

STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT Download PDF

Info

Publication number
JP2012084788A
JP2012084788A JP2010231495A JP2010231495A JP2012084788A JP 2012084788 A JP2012084788 A JP 2012084788A JP 2010231495 A JP2010231495 A JP 2010231495A JP 2010231495 A JP2010231495 A JP 2010231495A JP 2012084788 A JP2012084788 A JP 2012084788A
Authority
JP
Japan
Prior art keywords
silver
clad
copper
interface
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010231495A
Other languages
Japanese (ja)
Inventor
Michitaka Mikami
道孝 三上
Shinichiro Nakajima
伸一郎 中島
Kenichi Miyazaki
兼一 宮崎
Hiroshi Matsuo
寛 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2010231495A priority Critical patent/JP2012084788A/en
Priority to PCT/JP2011/065487 priority patent/WO2012049893A1/en
Publication of JP2012084788A publication Critical patent/JP2012084788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4383Reworking
    • H01L2224/43847Reworking with a mechanical process, e.g. with flattening of the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45025Plural core members
    • H01L2224/4503Stacked arrangements
    • H01L2224/45032Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45025Plural core members
    • H01L2224/4503Stacked arrangements
    • H01L2224/45033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/4516Iron (Fe) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • H01L2224/48456Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • H01L2224/48456Shape
    • H01L2224/48458Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48507Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48755Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48763Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48764Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48855Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/4886Iron (Fe) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48864Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/85424Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/8546Iron (Fe) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a silver clad copper ribbon for a high-temperature semiconductor element capable of improving the bonding reliability with a pad electrode interface and suppressing peel-off of a clad layer at a clad interface.SOLUTION: In a silver clad copper ribbon composed of a high-purity silver clad layer and a high-purity copper core material tape, a heat treatment is performed at a temperature of 450-750°C after clad processing to resolve a processing structure of the clad layer. Thereby, development of the processing structure composed of a high-distortion fine crystal structure in the clad layer, which is formed at a pad interface at bonding, is suppressed to reduce a hardness difference with the other regions of the clad layer and prevent clack generation. A fine granular crystal structure is formed under a high-temperature use environment to suppress dispersion of Al and the like from a pad layer and suppress generation of an intermetallic compound at the pad interface and clad interface. As a result, the bonding strength and the reliability can be improved.

Description

本発明は、電子部品および半導体パッケージ内において半導体素子と基板側リードフレーム部とを多数箇所の超音波接合によって接合し、ループ状に接続するための平角状銀クラッド銅リボン、特に高温パワー半導体素子と基板側リードフレーム部とを接続するための平角状銀クラッド銅リボンに関する。     The present invention relates to a rectangular silver clad copper ribbon, particularly a high-temperature power semiconductor element, for joining a semiconductor element and a substrate-side lead frame part in an electronic component and a semiconductor package by ultrasonic bonding at a plurality of locations and connecting them in a loop shape. The present invention relates to a flat silver clad copper ribbon for connecting the substrate and the lead frame portion on the substrate side.

シリコン(Si)、シリコンカーバイド(SiC)、ダイヤモンド(C)、窒化ガリウム(GaN)、サファイアなどの半導体素子に搭載されたボンディングパッドとして、これまで主にアルミニウム(Al)、あるいは、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、金(Au)やそれらの合金からなるパッドが使用されている。
また、基板側リードフレームには、アルミニウム(Al)合金や鉄(Fe)合金や銅(Cu)合金または金(Au)や銀(Ag)等の貴金属めっきや銅(Cu)、ニッケル(Ni)めっきやアルミニウム(Al)の真空蒸着がされた銅(Cu)合金、鉄(Fe)合金からなるリードフレーム、あるいは、これらの金属または合金からなるリードを搭載したセラミックスのリードフレームが主に使用されている。このパッド電極とリードフレーム等を超音波接合によって接続するのに、これまで主に平角状アルミニウムリボンが使用されてきた。平角状アルミニウムリボンの超音波ボンディング方法は、アルミニウムリボンの上に超硬ツールを押しつけ、その押圧荷重および超音波振動のエネルギーにより接合するものである。超音波印加の効果は、アルミニウムリボンの変形を助長するための接合面積の拡大と、アルミニウムリボンに自然に形成された1ナノメートル(nm)程度の酸化膜を破壊・除去することにより、アルミニウム(Al)等の金属原子を下面に露出させ、対抗するアルミニウム(Al)やニッケル(Ni)等のボンディングパッド電極とアルミニウムリボンとのパッド界面に塑性流動を発生させ、このパッド界面で互いに密着する新生面を漸増させながら、パッド電極とアルミニウムリボンとの両者を原子間結合させることにある。
As bonding pads mounted on semiconductor elements such as silicon (Si), silicon carbide (SiC), diamond (C), gallium nitride (GaN), and sapphire, aluminum (Al) or nickel (Ni) has been mainly used so far. , Pads made of copper (Cu), palladium (Pd), gold (Au), and alloys thereof are used.
In addition, the substrate side lead frame has an aluminum (Al) alloy, iron (Fe) alloy, copper (Cu) alloy, noble metal plating such as gold (Au) or silver (Ag), copper (Cu), nickel (Ni) Lead frames made of copper (Cu) alloy or iron (Fe) alloy plated with aluminum or vacuum deposition of aluminum (Al), or ceramic lead frames equipped with leads made of these metals or alloys are mainly used. ing. To connect the pad electrode and the lead frame by ultrasonic bonding, a flat aluminum ribbon has been mainly used so far. The ultrasonic bonding method for a flat rectangular ribbon is a method in which a cemented carbide tool is pressed onto an aluminum ribbon and bonded by the pressing load and the energy of ultrasonic vibration. The effect of applying ultrasonic waves is to increase the bonding area to promote the deformation of the aluminum ribbon, and to destroy and remove the oxide film of about 1 nanometer (nm) naturally formed on the aluminum ribbon. A new surface in which metal atoms such as Al) are exposed on the lower surface and plastic flow is generated at the pad interface between the opposing bonding pad electrode such as aluminum (Al) or nickel (Ni) and the aluminum ribbon, and the pad interface is in close contact with each other. In this case, both the pad electrode and the aluminum ribbon are bonded interatomically while gradually increasing.

このような半導体素子のパッド電極と平角状アルミニウムリボンを介して接続する基板側のリードフレームとは、上記したようにそれぞれ材質が異なる。このため冶金的な溶融過程を伴わない超音波接合によってもこれらの接合界面ではこれら異種の金属間化合物が生成したりして、必ずしも強固な、信頼性の高い接合は達成できなかった。
これらの解決策として、アルミニウム(Al)の片面にコバールなどの銅(Cu)合金を被着したクラッドリボンが提案されている(特公昭60−22827号公報、後述の特許文献1)。これは接合する一方の半導体素子側の電極がアルミパッドであり、他方がリードフレームなどの異種金属であるため、ボンディングワイヤをこれらの異種の金属に適した超音波接合特性を備える金属を貼り合せたクラッド積層材として、アルミパッドとコバールリードに対してワイヤのそれぞれの対応する金属面を接合しようとするものである。
しかし、このクラッドリボンは、アルミクラッド側のアルミニウム(Al)層でパッド電極に超音波接合(第一ボンド)した後、リードフレーム側に超音波接合(第二ボンド)するにはコバールなどのより硬い金属材料からなるリード先端に合わせてクラッドリボンのコバール側を対応させるため、第一ボンド後クラッドリボンをループを描いて捻って回転させ、あるいは方向を反転させて第二ボンドする必要があった。
また、クラッドリボンを構成する材料として、銅(Cu)合金が硬くアルミニウム(Al)が柔らかいため、ループ形成時にクラッドリボンが曲げ、あるいは捻られると銅(Cu)合金とアルミニウム(Al)との硬さの違いから、クラッドリボンのクラッド界面からはがれが発生した。このクラッド界面を強化するため熱処理することも考えられたが、熱処理すると銅(Cu)とアルミニウム(Al)の境界面に銅(Cu)とアルミニウム(Al)の脆弱な金属間化合物層が生成し、クラッド界面の密着強度を低下させ、その結果、かえってクラッド界面ではがれやすくさせてしまう。
As described above, the material of the pad electrode of the semiconductor element and the lead frame on the substrate side connected via the flat rectangular aluminum ribbon are different. For this reason, even by ultrasonic bonding that does not involve a metallurgical melting process, these different types of intermetallic compounds are generated at these bonding interfaces, so that it has not always been possible to achieve strong and reliable bonding.
As a solution to these problems, a clad ribbon in which a copper (Cu) alloy such as Kovar is deposited on one side of aluminum (Al) has been proposed (Japanese Patent Publication No. 60-22827, Patent Document 1 described later). This is because the electrode on one semiconductor element to be bonded is an aluminum pad and the other is a dissimilar metal such as a lead frame, so the bonding wire is bonded to a metal with ultrasonic bonding characteristics suitable for these dissimilar metals As a clad laminate, the corresponding metal surface of the wire is to be bonded to the aluminum pad and the Kovar lead.
However, this clad ribbon is ultrasonically bonded to the pad electrode with the aluminum (Al) layer on the aluminum clad side (first bond) and then ultrasonically bonded to the lead frame side (second bond) by using Kovar or the like. In order to match the Kovar side of the clad ribbon with the lead tip made of a hard metal material, it was necessary to twist and rotate the clad ribbon after the first bond, or to reverse the direction and make the second bond .
In addition, since the copper (Cu) alloy is hard and aluminum (Al) is soft as the material constituting the clad ribbon, if the clad ribbon is bent or twisted during loop formation, the copper (Cu) alloy and aluminum (Al) are hardened. Due to the difference, peeling occurred from the clad interface of the clad ribbon. Heat treatment was also considered to strengthen this clad interface, but a brittle intermetallic compound layer of copper (Cu) and aluminum (Al) was formed at the interface between copper (Cu) and aluminum (Al). As a result, the adhesion strength of the clad interface is lowered, and as a result, the clad interface tends to peel off.

このような被覆層界面や接合界面で銅(Cu)とアルミニウム(Al)の相互拡散による金属間化合物が形成されることを防止するため、銅(Cu)合金とアルミニウム(Al)とのあいだに中間層としてニッケル(Ni)、あるいはチタン(Ti)、タングステン(W)、クロム(Cr)などの拡散防止層を設けることも行われている。
しかし、これら中間層の形成は、ループ形成時におけるクラッド界面のはがれを抑制する効果はあるが、超音波が印加されたパッド電極と平角状クラッドリボンとの接合部においては、銅(Cu)合金層、ニッケル(Ni)中間層およびアルミニウム(Al)層のそれぞれに独自の塑性流動が発生するため、パッド界面のはがれを抑制することは困難であり、かえって、パッド電極とクラッドリボンとの接合強度のばらつきが大きくなることがわかった。
In order to prevent the formation of intermetallic compounds due to the mutual diffusion of copper (Cu) and aluminum (Al) at the coating layer interface and bonding interface, between the copper (Cu) alloy and aluminum (Al) As an intermediate layer, a diffusion prevention layer such as nickel (Ni) or titanium (Ti), tungsten (W), chromium (Cr) is also provided.
However, the formation of these intermediate layers has the effect of suppressing peeling of the clad interface at the time of loop formation, but at the junction between the pad electrode to which the ultrasonic wave is applied and the flat clad ribbon, a copper (Cu) alloy Each layer, nickel (Ni) intermediate layer, and aluminum (Al) layer has its own plastic flow, so it is difficult to suppress the peeling of the pad interface. On the contrary, the bonding strength between the pad electrode and the cladding ribbon It became clear that the variation of was large.

また、これまでのパワー半導体素子は使用時に150℃の温度に達することもあるが、このパワー半導体素子に適用されるこれらの平角状ボンディングリボンにおいても、半導体素子の微細化、高密度化および搭載部品の大容量化が進むにつれて、電流の大電流化・高密度化が求められ、一方では半導体素子上のパッド電極は、金(Au)やニッケル(Ni)やアルミニウム(Al)またはこれらの合金、例えば、Al−Cu合金やAl−Si合金であるため、これらのパッドに対する超音波ボンディングにおける高い接合信頼性が要求され、このような用途には上記のアルミニウム(Al)の片面にコバールなどの銅(Cu)合金を被着したクラッドリボンでは不十分である。
特開2007−324603号公報(後述の特許文献2)は、そのような要求に応えて提案されたものであって、導電性の高い銅(Cu)を芯材としてアルミニウム(Al)や銀(Ag)などをクラッドして高い導電性とパッドに対する超音波接合性を両立させたものである。
この発明によれば、ワイヤ内側の銅(Cu)層に対して、外側の銀(Ag)でクラッドする可能性が示唆され(後述の特許文献2の〔0007〕段落、〔0032〕段落)、これによって信頼性の高い超音波ボンディングによる接合が達成できるとしている。それによれば、内側の銅(u)によって大きな電流容量を達成し、それに対して小さい厚さの銀(Ag)クラッド層、実用上厚さ1〜200nm、有利には約20〜25nmの被覆層によって、パッドに対する優れた超音波接合が達成できるとしている(後述の特許文献2の〔0017〕段落)。
In addition, power semiconductor devices used so far may reach a temperature of 150 ° C., but these flat rectangular bonding ribbons applied to the power semiconductor devices are also miniaturized, densified and mounted. As the capacity of components has increased, the current must be increased and the current density increased. On the other hand, the pad electrode on the semiconductor element can be gold (Au), nickel (Ni), aluminum (Al) or an alloy thereof. For example, since it is an Al—Cu alloy or an Al—Si alloy, high bonding reliability in ultrasonic bonding to these pads is required. For such applications, one side of the above-described aluminum (Al) is made of Kovar or the like. A clad ribbon coated with a copper (Cu) alloy is insufficient.
Japanese Patent Application Laid-Open No. 2007-324603 (Patent Document 2 described later) was proposed in response to such a request, and aluminum (Al) or silver (with high conductivity copper (Cu) as a core material) was proposed. Ag) or the like is clad to achieve both high conductivity and ultrasonic bondability to the pad.
According to the present invention, it is suggested that the copper (Cu) layer on the inner side of the wire may be clad with outer silver (Ag) (Patent Document 2, [0007] paragraph, [0032] paragraph) described later, In this way, it is said that highly reliable ultrasonic bonding can be achieved. According to it, a large current capacity is achieved by the inner copper (u), whereas a small thickness silver (Ag) cladding layer, practically a thickness of 1 to 200 nm, preferably about 20 to 25 nm coating layer Therefore, it is said that excellent ultrasonic bonding to the pad can be achieved (paragraph [0017] in Patent Document 2 described later).

このような大容量のクラッドリボンは、100〜150℃の耐熱温度を必要とする比較的高温の半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などの比較的高温環境下で使用されるパワー半導体に採用され、その半導体素子の動作条件は通常の半導体素子よりも高温度となる。例えば、車載用に使用される比較的高温環境下のパワー半導体に用いられるクラッドリボンは、最大で通常100〜150℃の接合部温度に耐える必要がある。このような比較的高温の環境下においては、クラッドリボン材料の内部酸化も課題として挙げられ、クラッドリボン表面を安定な皮膜で覆うなどの、クラッドリボン材料の耐酸化性向上が求められる。   Such a large-capacity clad ribbon is used in a relatively high-temperature environment such as a relatively high-temperature semiconductor requiring a heat-resistant temperature of 100 to 150 ° C., particularly an air conditioner, a solar power generation system, a hybrid vehicle, and an electric vehicle. The operating condition of the semiconductor element is higher than that of a normal semiconductor element. For example, a clad ribbon used for a power semiconductor in a relatively high temperature environment used for in-vehicle use needs to withstand a junction temperature of usually 100 to 150 ° C. at the maximum. Under such a relatively high temperature environment, internal oxidation of the clad ribbon material is cited as an issue, and improvement in oxidation resistance of the clad ribbon material is required, such as covering the clad ribbon surface with a stable coating.

特公昭60−22827号公報Japanese Patent Publication No. 60-22827 特開2007−324603号公報JP 2007-324603 A

前述のような比較的高温に曝されるパワー半導体素子用クラッドリボンを用いた超音波接合は、パッド電極へ第一ボンド後にクラッドリボンのループを形成してリードフレームへ第二ボンドをし、場合によっては更にそれ以上の第三、第四の複数ボンドを行い、最終ボンド後にカッターでクラッドリボンを切断していた。
ところが、これまでの銅(Cu)芯材にアルミニウム(Al)や銀(Ag)などをクラッドしたクラッドリボンでは、クラッド界面の接合強度とパッド界面の接続信頼性を同時に満足することが困難であった。
例えば、直接パッド電極に接する銀(Ag)クラッド層の厚さを厚くして比較的柔らかいクラッド層により接合時にパッド電極へかかる負荷を緩和して第一ボンド時のチップ割れを防ごうとすると、ループを形成して屈曲して接合する際に銅(Cu)と厚さを大きくした銀(Ag)の硬さの差により変形の度合いが異なるため、ループ形成時のクラッドリボンに加わる屈曲動作により、銀(Ag)クラッド層のクラッド界面はがれが発生する。
In the ultrasonic bonding using the clad ribbon for power semiconductor elements exposed to a relatively high temperature as described above, a loop of the clad ribbon is formed after the first bond to the pad electrode, and the second bond is made to the lead frame. In some cases, further third and fourth multiple bonds were made, and the clad ribbon was cut with a cutter after the final bond.
However, with clad ribbons in which aluminum (Al) or silver (Ag) is clad on a copper (Cu) core material so far, it has been difficult to simultaneously satisfy the bonding strength at the clad interface and the connection reliability at the pad interface. It was.
For example, increasing the thickness of the silver (Ag) clad layer that is in direct contact with the pad electrode and reducing the load applied to the pad electrode during bonding by a relatively soft clad layer to prevent chip cracking during the first bond, When a loop is formed and bent and joined, the degree of deformation differs depending on the difference in hardness between copper (Cu) and silver (Ag) with increased thickness. The clad interface of the silver (Ag) clad layer peels off.

逆に、銀(Ag)クラッド層の厚さを薄くすると、バッド電極との間の銀(Ag)クラッド層がいわゆるクッション層として働かないため、接合時における超硬ツールの押圧荷重と印加される超音波のエネルギーによって銅(Cu)芯材層が変形し、銅(Cu)側の界面が直接パッド電極上へ露出することになる。このためボンディング時の押圧荷重と超音波エネルギーが露出された銅(Cu)の界面を介してパッドへ直接伝達され、パッド電極側の半導体素子にチップダメージが生じることになる。
しかも、比較的高温のパワー半導体素子の大容量化に伴って、太陽光発電システム、ハイブリッド車や電気自動車などで使用するパワー半導体の動作温度がますます高くなり、このような銀(Ag)クラッド銅リボンを150℃以上の高温で使用する高温パワー半導体になると、パッド電極のアルミニウム(Al)や金(Au)やニッケル(Ni)が銀(Ag)クラッド層中を拡散し、銅(Cu)芯材と銀(Ag)クラッド層が接合されたクラッド界面でAl・Cu系の金属間化合物やAu・Cu系の脆弱な化合物やNi・Cu系の金属間化合物などがクラッド界面に形成される。これらの化合物は高温で増殖・成長するためそのクラッド界面からクラックが入り、クラッドリボンのクラッド界面における接合強度は十分とはいえないものであった。特に、動作温度が300℃までの高温に近づけば近づくほど、銀(Ag)クラッド層中を拡散するパッド金属の拡散速度が速くなる結果、クラッド界面における接合強度は不十分なものとなる。
また、銀(Ag)クラッド層中に存在するアルミニウム(Al)等のパッド電極から拡散した元素が増える結果、銀(Ag)クラッド層中にもAl・Ag系の脆弱な化合物相が形成され、パッド界面における長期間の接合部信頼性に欠ける結果となっていた。
Conversely, if the thickness of the silver (Ag) clad layer is reduced, the silver (Ag) clad layer between the pad electrode and the pad electrode does not work as a so-called cushion layer. The copper (Cu) core layer is deformed by the ultrasonic energy, and the interface on the copper (Cu) side is directly exposed on the pad electrode. For this reason, the pressing load and ultrasonic energy at the time of bonding are directly transmitted to the pad via the exposed copper (Cu) interface, and chip damage occurs in the semiconductor element on the pad electrode side.
Moreover, as the capacity of relatively high-temperature power semiconductor elements increases, the operating temperature of power semiconductors used in photovoltaic power generation systems, hybrid vehicles, electric vehicles, etc. becomes higher, and such silver (Ag) cladding When it becomes a high-temperature power semiconductor that uses a copper ribbon at a high temperature of 150 ° C. or higher, aluminum (Al), gold (Au), or nickel (Ni) of the pad electrode diffuses in the silver (Ag) cladding layer, and copper (Cu) Al / Cu-based intermetallic compounds, Au / Cu-based brittle compounds, Ni / Cu-based intermetallic compounds, etc. are formed at the cladding interface at the cladding interface where the core material and the silver (Ag) cladding layer are joined. . Since these compounds proliferate and grow at high temperatures, cracks occurred from the clad interface, and the bonding strength of the clad ribbon at the clad interface was not sufficient. In particular, the closer the operating temperature is to a high temperature up to 300 ° C., the faster the diffusion rate of the pad metal that diffuses in the silver (Ag) cladding layer, resulting in insufficient bonding strength at the cladding interface.
In addition, as a result of an increase in the number of elements diffused from the pad electrode such as aluminum (Al) existing in the silver (Ag) cladding layer, an Al / Ag-based fragile compound phase is formed in the silver (Ag) cladding layer, This resulted in a lack of long-term joint reliability at the pad interface.

そこで、これらに対処するため、第一ボンドからループを描いて第二ボンドした銀クラッド銅リボンにおいて、150℃〜300℃の高温動作環境下でも、第一ボンドからループを描いて第二ボンドする超音波ボンディング時において、これまで通りに銀(Ag)クラッド層の剥離を防止しながら、銅(Cu)芯材と銀(Ag)クラッド層とのクラッド界面の接合強度を向上し、かつ、パッド電極のアルミニウム(Al)や金(Au)やニッケル(Ni)層とリボン側の銀(Ag)クラッド層とを第一ボンドしたパッド界面における接合信頼性を確保することを本発明の課題とする。   Therefore, in order to deal with these problems, the silver-bonded copper ribbon that is second-bonded by drawing a loop from the first bond draws a loop from the first bond and is second-bonded even in a high-temperature operating environment of 150 ° C. to 300 ° C. During ultrasonic bonding, the bonding strength of the clad interface between the copper (Cu) core material and the silver (Ag) clad layer is improved while preventing the peeling of the silver (Ag) clad layer as before, and the pad It is an object of the present invention to ensure the bonding reliability at the pad interface where the aluminum (Al), gold (Au) or nickel (Ni) layer of the electrode and the silver (Ag) clad layer on the ribbon side are first bonded. .

上記課題を解決するための手段として、本発明者らは150℃〜300℃の高温動作環境に第一ボンドからループを描いて第二ボンドした銀クラッド銅リボンを放置した場合、パッド界面においてボンディングに伴って形成された銀(Ag)クラッド層の微細な結晶組織が粒状の比較的粒度の小さな再結晶組織に変化させることに着目した。
銀クラッド銅リボンをパッド電極に第一ボンドで超音波接合する際の状態を詳しく観察すると、銀クラッド銅リボンのパッド接合界面には超音波の振動とともに超音波ツールにより変形した銅(Cu)の機械的な圧縮力が銀(Ag)クラッド層を介してパッド電極に加わり、銀(Ag)クラッド層のパッド界面には転移網の密集した微細な結晶組織が形成される。本発明者らはあらかじめ銀クラッド銅リボンを熱処理して銀(Ag)クラッド層のパッド界面における加工組織の高い歪を解消した組織に変えておくことにより、150℃〜300℃の高温動作環境下でも、銀クラッド銅リボンをクラッド加工したときの影響を受けない安定した粒状の結晶組織を銀(Ag)クラッド層のパッド界面上に形成することに成功した。
As means for solving the above-mentioned problems, the present inventors have bonded at the pad interface when the second-bonded silver-clad copper ribbon is left in a high-temperature operating environment of 150 ° C. to 300 ° C. by drawing a loop from the first bond. Attention was focused on changing the fine crystal structure of the silver (Ag) clad layer formed along with this to a recrystallized structure having a relatively small grain size.
When the state of ultrasonic bonding of the silver clad copper ribbon to the pad electrode with the first bond is observed in detail, the pad bonding interface of the silver clad copper ribbon is made of copper (Cu) deformed by an ultrasonic tool along with ultrasonic vibration. A mechanical compressive force is applied to the pad electrode through the silver (Ag) cladding layer, and a fine crystal structure having a dense transition network is formed at the pad interface of the silver (Ag) cladding layer. The present inventors previously heat-treated the silver-clad copper ribbon to change it to a structure in which the high strain of the processed structure at the pad interface of the silver (Ag) clad layer has been eliminated, so that the high-temperature operating environment of 150 ° C. to 300 ° C. However, the present inventors succeeded in forming a stable granular crystal structure on the pad interface of the silver (Ag) clad layer that is not affected by the clad processing of the silver clad copper ribbon.

すなわち、銀クラッド加工後の銀クラッド銅リボンは、クラッド加工に伴ってクラッド層は塑性変形するため歪を伴う加工組織が形成されている。従来は、その加工度はさほど大きくないためそのままボンディングに使用されていたが、そのようなボンディングリボンでボンディングを行うとクラッド層のパッドとの接合界面近傍では上記したように超音波ツールにより塑性変形するため、クラッド加工に伴う加工組織は更に加工度を向上させて上記したような転移網の密集した微細な結晶組織が形成される。
この結晶組織領域は、硬さがその周辺の結晶組織よりも高くなっており、また、その後の高温度の使用環境下に長時間置かれることにより、急速にかつ高度な再結晶化が進行してしまう。
このため、銀(Ag)クラッド層のパッド界面近傍に上記のパッドへの接合時に形成されたこのような微細な結晶組織が存在すると、この高歪み領域とクラッド界面近傍の再結晶組織の領域とはこのような内部組織の変化に起因した大きな硬度差があるため、銀(Ag)クラッド層中のこの内部組織の変化が著しい箇所でクラックが生じ、銀クラッド銅リボンのパッド界面における接合信頼性が低下する。
本発明者らは、クラッド加工後にボンディングリボンをアニールしておくことにより、パッドへの接合時に形成される高歪み領域の加工度を緩和して硬さを抑えると共に高温使用環境下での再結晶化を抑制して粒状の再結晶組織に変化させ、さらに、銀(Ag)クラッド層中のパッド接合界面の高歪み領域が粒状の再結晶組織に変化すると、内部組織の変化に起因した硬度差が小さくなりこの界面でのクラックの発生を防ぐことができることを見出した。この粒状の再結晶組織は、比較的粒度が小さいが使用環境下で高温になればなるほど速く、大きく形成されて、その直上にある銀(Ag)クラッド層中のアニール時のままの比較的大きな結晶粒とクラックが生じる前に両組織の硬度差が小さくなる。また、加工組織である微細な結晶組織から粒状の再結晶組織に変化することにより、銀(Ag)クラッド層中に拡散進入するパッド電極のアルミニウム(Al)や金(Au)やニッケル(Ni)の拡散速度が遅くなり、クラッド界面のAl・Cu系の金属間化合物などの形成が妨げられる。
さらに、パッド接合界面近傍以外の銀(Ag)クラッド層中の比較的大きな銀(Ag)の結晶粒も、150℃〜300℃の高温動作環境下で第一ボンドによって形成された高ひずみを有する結晶粒からひずみが除かれ、芯材の銅(Cu)と銀(Ag)との相互拡散が増し、銀クラッド銅リボンのクラッド界面の接合強度が高くなる。
ただし、銀(Ag)の純度が99.999質量%を超えると、銀(Ag)クラッド層中の再結晶組織の領域が二次再結晶を起こして粗大化するとともに、パッド界面近傍の銀(Ag)クラッド層中の高歪み領域の結晶粒も粗大成長をし、二次再結晶組織よりも更に大きくなる。このような粗大結晶粒は強度が小さく、パッド界面の近傍付近に付与される熱応力でクラックが生じやすく、高温動作時にパッド界面の接合信頼性が低下するので好ましくない。
In other words, the silver-clad copper ribbon after the silver-clad processing has a strained texture because the clad layer undergoes plastic deformation as the clad is processed. Conventionally, since the degree of processing was not so large, it was used for bonding as it was, but when bonding with such a bonding ribbon, plastic deformation was performed by an ultrasonic tool near the bonding interface with the pad of the cladding layer as described above. Therefore, the processing structure accompanying the cladding processing is further improved in the processing degree, and a fine crystal structure having a dense transition network as described above is formed.
This crystal structure region has a hardness higher than that of the surrounding crystal structure, and is rapidly and highly recrystallized by being placed in a high temperature use environment for a long time. End up.
Therefore, if such a fine crystal structure formed at the time of bonding to the pad exists in the vicinity of the pad interface of the silver (Ag) clad layer, the high strain region and the recrystallized region near the clad interface Since there is a large difference in hardness due to such a change in the internal structure, cracks occur in the silver (Ag) cladding layer where the change in the internal structure is significant, and the bonding reliability at the pad interface of the silver-clad copper ribbon Decreases.
The present inventors annealed the bonding ribbon after the clad processing, thereby relaxing the degree of processing of the high strain region formed at the time of bonding to the pad to suppress the hardness and recrystallizing in a high temperature use environment. When the high strain region at the pad bond interface in the silver (Ag) cladding layer is changed to a granular recrystallized structure, the hardness difference due to the change in the internal structure is suppressed. It has been found that the occurrence of cracks at this interface can be prevented. This granular recrystallized structure has a relatively small grain size but is formed faster and larger as the temperature becomes higher in the use environment, and is relatively large as it is during annealing in the silver (Ag) clad layer immediately above it. The difference in hardness between the two structures is reduced before crystal grains and cracks are generated. Further, by changing from a fine crystal structure, which is a processed structure, to a granular recrystallized structure, aluminum (Al), gold (Au), nickel (Ni) of a pad electrode that diffuses and enters into a silver (Ag) cladding layer. , And the formation of Al / Cu intermetallic compounds at the cladding interface is hindered.
Furthermore, the relatively large silver (Ag) crystal grains in the silver (Ag) cladding layer other than the vicinity of the pad bond interface also have high strain formed by the first bond under a high temperature operating environment of 150 ° C. to 300 ° C. The strain is removed from the crystal grains, the interdiffusion between copper (Cu) and silver (Ag) of the core material is increased, and the bonding strength of the clad interface of the silver clad copper ribbon is increased.
However, when the purity of silver (Ag) exceeds 99.999 mass%, the recrystallized structure region in the silver (Ag) cladding layer undergoes secondary recrystallization and becomes coarse, and the silver (A Ag) The crystal grains in the high strain region in the cladding layer also grow coarsely and become larger than the secondary recrystallized structure. Such coarse crystal grains are not preferable because they have low strength, are likely to crack due to thermal stress applied in the vicinity of the pad interface, and the bonding reliability at the pad interface decreases during high temperature operation.

150〜300℃の環境下で用いられるパワー半導体に使用する本発明の銀クラッド銅リボンの特徴は以下の通りである。すなわち、本発明は、半導体素子のパッドと基板との間を多数箇所の超音波接合によってループ状に接続するための銀(Ag)クラッド層および銅(Cu)芯材テープからなる平角状銀クラッド銅リボンにおいて、
前記銀クラッド銅リボンは、クラッド後に450℃〜750℃で熱処理されたものであり、前記熱処理された銀(Ag)クラッド層は、30〜80Hvのビッカース硬さをもつ純度99質量%〜純度99.999質量%の銀(Ag)からなり、
前記熱処理された銅(Cu)芯材テープは50〜80Hvのビッカース硬さをもつ純度99.9質量%〜純度99.9999質量%の銅(Cu)からなることを特徴とする。
The characteristics of the silver clad copper ribbon of the present invention used for a power semiconductor used in an environment of 150 to 300 ° C. are as follows. That is, the present invention relates to a rectangular silver clad comprising a silver (Ag) clad layer and a copper (Cu) core material tape for connecting a pad of a semiconductor element and a substrate in a loop shape by ultrasonic bonding at multiple locations. In copper ribbon,
The silver-clad copper ribbon is heat-treated at 450 ° C. to 750 ° C. after the clad, and the heat-treated silver (Ag) clad layer has a purity of 99% by mass to 99% having a Vickers hardness of 30 to 80 Hv. .99% by mass of silver (Ag),
The heat-treated copper (Cu) core tape is composed of copper (Cu) having a Vickers hardness of 50 to 80 Hv and a purity of 99.9% by mass to a purity of 99.9999% by mass.

なお、銀(Ag)クラッド層の厚さは、超音波ボンディング時の超音波ツールの加圧力や超音波エネルギー(特定周波数の振幅×時間)やパッド電極の加熱温度によって適宜定まるが、粒状の結晶組織を形成するのに5μm〜200μmの範囲が好ましい。前記の特許文献2で好適範囲とされているような厚さでは、粒状の結晶組織を形成することができず、高温半導体においてパッド電極からクラッド界面へアルミニウム(Al)等の金属が拡散するのを防ぐことができない。また、銀(Ag)クラッド層の厚さが5μm未満では、150〜300℃の高温動作環境下で銀(Ag)クラッド層の全ての銀(Ag)が脆弱なAg−Al化合物に変わってしまい、また、銀(Ag)クラッド層中に拡散した銅(Cu)もAl・Cu系の金属間化合物などを形成し、銀(Ag)クラッド層と銅(Cu)芯材とのクラッド界面でクラックが発生する。
他方、銅(Cu)芯材の厚さに対する銀(Ag)クラッド層の厚さは、1/10〜2/3の範囲が好ましい。
The thickness of the silver (Ag) clad layer is appropriately determined depending on the pressure applied by the ultrasonic tool during ultrasonic bonding, the ultrasonic energy (amplitude of specific frequency × time), and the heating temperature of the pad electrode. A range of 5 μm to 200 μm is preferred for forming the tissue. When the thickness is within the preferred range in Patent Document 2, a granular crystal structure cannot be formed, and a metal such as aluminum (Al) diffuses from the pad electrode to the cladding interface in a high-temperature semiconductor. Can not prevent. In addition, when the thickness of the silver (Ag) cladding layer is less than 5 μm, all silver (Ag) in the silver (Ag) cladding layer is changed to a fragile Ag—Al compound under a high temperature operating environment of 150 to 300 ° C. In addition, copper (Cu) diffused in the silver (Ag) cladding layer also forms Al / Cu intermetallic compounds, etc., and cracks occur at the cladding interface between the silver (Ag) cladding layer and the copper (Cu) core material. Will occur.
On the other hand, the thickness of the silver (Ag) cladding layer with respect to the thickness of the copper (Cu) core material is preferably in the range of 1/10 to 2/3.

ここで、「クラッド」とは、銅(Cu)芯材テープの全面に銀(Ag)薄テープ層を、圧力と熱を加えて圧延してオーバーレイ接合する周知の技術である。得られた銀クラッド銅リボンは圧延されているので、加工ひずみが残っていると考えられる。これをクラッド後の熱処理で取り除いておくのである。
このため銀(Ag)クラッド層は、純度ができるだけ高いほうが好ましく、純度99質量%の銀(Ag)よりも純度99.9質量%の銀(Ag)のほうが好ましい。しかし、純度が高くなりすぎると、上述したとおり、結晶組織が粗大化しやすくなるため純度99.999質量%の銀(Ag)よりも純度99.99質量%の銀(Ag)のほうが好ましい。同様に、純度99.99質量%〜純度99.999質量%の銅(Cu)が好ましい。
ただし、銀(Ag)および銅(Cu)の純度や微量添加物の種類は、使用する高温半導体の目的に応じて適宜選択することができるが、銀クラッド銅リボンでは超音波接合時の加工硬化の程度をできるだけ低くすることが重要なので、銀(Ag)クラッド層の硬さを30〜80Hvのビッカース硬さとし、銅(Cu)芯材テープの硬さを50〜80Hvのビッカース硬さとした。なお、純度99.99%以上の銅(Cu)、更には純度99.995%以上の銅(Cu)のように、より高純度の銅(Cu)を使用することは、ループ形成時や接合時における加工硬化を低減させるうえから好ましい。このような高純度化により、ループ形成時において急峻なループを描いても、銅(Cu)芯材テープと銀(Ag)クラッド層とのクラッド界面からはく離しにくくなる。また、第一ボンド時においては、超硬ツールの機械的圧縮による銀クラッド銅リボンの加工硬化が起こりにくくなり、パッド電極のチップダメージを防ぐ効果がある。
Here, “cladding” is a well-known technique in which a silver (Ag) thin tape layer is rolled over the entire surface of a copper (Cu) core material tape by applying pressure and heat, and overlay bonded. Since the obtained silver clad copper ribbon is rolled, it is thought that the processing strain remains. This is removed by heat treatment after cladding.
For this reason, the silver (Ag) clad layer preferably has as high a purity as possible, and silver (Ag) having a purity of 99.9% by mass is more preferable than silver (Ag) having a purity of 99% by mass. However, if the purity becomes too high, as described above, the crystal structure tends to be coarsened, and therefore silver (Ag) with a purity of 99.99 mass% is preferable to silver (Ag) with a purity of 99.999 mass%. Similarly, copper (Cu) having a purity of 99.99 mass% to a purity of 99.999 mass% is preferable.
However, the purity of silver (Ag) and copper (Cu) and the kind of trace additives can be selected as appropriate according to the purpose of the high-temperature semiconductor to be used. With silver-clad copper ribbons, work hardening during ultrasonic bonding is possible. Therefore, the hardness of the silver (Ag) clad layer is set to 30 to 80 Hv, and the hardness of the copper (Cu) core tape is set to 50 to 80 Hv. Note that the use of higher-purity copper (Cu), such as copper (Cu) with a purity of 99.99% or more and further copper (Cu) with a purity of 99.995% or more, is useful for loop formation and bonding. From the viewpoint of reducing work hardening at the time. Due to such high purity, even if a steep loop is drawn at the time of loop formation, it becomes difficult to peel off from the clad interface between the copper (Cu) core material tape and the silver (Ag) clad layer. Further, at the time of the first bonding, the work hardening of the silver clad copper ribbon due to mechanical compression of the cemented carbide tool hardly occurs, and there is an effect of preventing chip damage of the pad electrode.

高温環境下では、銀クラッド銅リボン内の銀(Ag)と銅(Cu)とのクラッド界面で相互拡散が生じて接合強度が強化されるが、パッド電極の金属が銀(Ag)クラッド層中に拡散してAl・Cu系の金属間化合物などが形成され、クラッド界面でクラックが入りやすくなる。そのため銀(Ag)と銅(Cu)とのクラッド界面間に拡散防止層を形成することは有効であって、拡散防止層は既知のニッケル(Ni)、亜鉛(Zn)あるいはチタン(Ti)、タングステン(W)、クロム(Cr)に加え、Cuと全率固溶である金、パラジウム、白金およびその他白金族金属などを湿式めっきやクラッドや真空析出させることができる。この拡散防止層は、銀(Ag)クラッド層および銅(Cu)芯材テープの合計膜厚に対してきわめて薄く、最大でも数%オーダーの膜厚に過ぎないので、超音波ボンディング時に拡散防止層の硬さの影響は無視することができる。   Under high temperature environment, mutual diffusion occurs at the clad interface between silver (Ag) and copper (Cu) in the silver clad copper ribbon, and the bonding strength is strengthened, but the metal of the pad electrode is in the silver (Ag) clad layer. Al and Cu-based intermetallic compounds and the like are formed by diffusing to form cracks at the cladding interface. Therefore, it is effective to form a diffusion prevention layer between the clad interface between silver (Ag) and copper (Cu), and the diffusion prevention layer is known nickel (Ni), zinc (Zn) or titanium (Ti), In addition to tungsten (W) and chromium (Cr), gold, palladium, platinum, and other platinum group metals that are completely dissolved with Cu can be wet-plated, clad, or vacuum deposited. This diffusion prevention layer is extremely thin with respect to the total film thickness of the silver (Ag) clad layer and the copper (Cu) core tape, and is only a film thickness on the order of several percent at the maximum. The effect of hardness can be ignored.

本発明における銀(Ag)クラッド層は、第一ボンド時に形成されたパッド界面近傍にある高ひずみの微細な結晶組織を高温動作環境下で粒状の結晶組織に変えることにより、微細な結晶粒界を伝って拡散するアルミニウム(Al)等の進行を遅らせる効果がある。このためクラッド界面にAl・Cu系の金属間化合物などが形成するのを遅らせる効果がある。
他方、銀クラッド銅リボンは高純度の金属を用いているので、クラッド界面における銀(Ag)と銅(Cu)の相互拡散を促進させる結果、150℃〜300℃の高温動作環境下でクラッド界面における接合強度が増加する効果がある。
また、銀(Ag)クラッド層内の結晶組織の違いに起因した硬度差は、第一ボンドによって形成された高ひずみを有する結晶粒からひずみが除かれ粒状の結晶組織が形成されることにより、銀(Ag)クラッド層内の硬度差は小さくなる。このため150℃〜300℃の高温動作環境に放置しても、銀(Ag)クラッド層内のパッド界面近傍にある結晶組織の相違する箇所からクラックが入ることが無く、パッド電極と銀(Ag)クラッド層とのパッド接合界面における接合信頼性が向上する効果がある。
The silver (Ag) clad layer in the present invention has a fine grain boundary by changing a high strain fine crystal structure in the vicinity of the pad interface formed at the time of the first bonding into a granular crystal structure under a high temperature operating environment. There is an effect of delaying the progress of aluminum (Al) or the like which diffuses through the metal. Therefore, there is an effect of delaying the formation of an Al / Cu intermetallic compound or the like at the cladding interface.
On the other hand, since the silver clad copper ribbon uses a high-purity metal, the interdiffusion between silver (Ag) and copper (Cu) at the clad interface is promoted. As a result, the clad interface under a high temperature operating environment of 150 ° C. to 300 ° C. This has the effect of increasing the bonding strength.
Moreover, the hardness difference resulting from the difference in crystal structure in the silver (Ag) clad layer is obtained by removing the strain from the crystal grains having high strain formed by the first bond and forming a granular crystal structure. The difference in hardness in the silver (Ag) cladding layer is reduced. For this reason, even if left in a high temperature operating environment of 150 ° C. to 300 ° C., cracks do not enter from different locations of the crystal structure near the pad interface in the silver (Ag) cladding layer, and the pad electrode and silver (Ag) ) There is an effect of improving the bonding reliability at the pad bonding interface with the cladding layer.

図1(A)〜(C)は、クラッド後のアニール温度と信頼性試験後のAg/Al接合界面の金属組織との関係を示す断面組織写真図(100倍)であって、(A)アニールなし、(B)本発明のアニール処理を行ったもの。アニール温度450〜760℃の範囲で同様な結果であった。(C)アニール温度が本発明範囲を超えて高かったもの。FIGS. 1A to 1C are cross-sectional structure photographs (100 times) showing the relationship between the annealing temperature after cladding and the metal structure of the Ag / Al junction interface after the reliability test. No annealing, (B) The annealing treatment of the present invention was performed. Similar results were obtained when the annealing temperature ranged from 450 to 760 ° C. (C) The annealing temperature was higher than the range of the present invention. 図2は、175℃/−50℃の熱サイクル試験(各温度で3分間、合計1000サイクル)後のパッド接合部の断面組織を示す。(A)倍率5倍、(B)倍率10倍であって、パッド界面にクラック発生は見られない。FIG. 2 shows a cross-sectional structure of the pad joint after a thermal cycle test at 175 ° C./−50° C. (3 minutes at each temperature for a total of 1000 cycles). (A) The magnification is 5 times and (B) the magnification is 10 times, and no cracks are observed at the pad interface. 図3は、クラッド後のアニールしない比較例のボンディングリボンの超音波ボンディングした後、175℃/−50℃の熱サイクル試験(各温度で3分間、合計1000サイクル)後の断面組織を示す。(A)倍率5倍、(B)倍率10倍であって、パッド界面にクラック発生。FIG. 3 shows a cross-sectional structure after a thermal cycle test at 175 ° C./−50° C. (3 minutes at each temperature for a total of 1000 cycles) after ultrasonic bonding of a non-annealed comparative bonding ribbon after cladding. (A) The magnification is 5 times, (B) the magnification is 10 times, and cracks are generated at the pad interface. 図4は、クラッド後のアニール温度と信頼性試験後のAg/Al接合界面の詳細を示す組織顕微鏡図である。FIG. 4 is a structure micrograph showing the details of the annealing temperature after cladding and the Ag / Al junction interface after the reliability test. 図5は、従来のクラッドボンディングリボンにより、半導体素子のパッドとリードフレームを超音波接合により接続した状態を示す図である。FIG. 5 is a diagram showing a state in which a pad of a semiconductor element and a lead frame are connected by ultrasonic bonding using a conventional clad bonding ribbon.

本発明のボンディングリボンにおいて、銅(Cu)芯材テープの純度は99.9%以上であることが好ましい。ループ変形時の加工硬化をできるだけ少なくし、ボンディングスピードを速め、単位時間当たりの接続個数を多くするためである。銅(Cu)芯材テープの純度や種類は使用する対象の半導体やリードフレーム等によって適宜定まるが、ボンディング時における銅(Cu)芯材テープの加工硬化および不純物の混入を避けるため、純度99.99質量%以上、より好ましくは純度99.995質量%〜純度99.999質量%が望ましい。銅(Cu)芯材テープのビッカース硬さは、純度99.9999質量%以上の銅(Cu)の硬さである50Hvから、超音波ボンディング時の加工硬化を避ける80Hvの範囲が好ましい。   In the bonding ribbon of the present invention, the purity of the copper (Cu) core material tape is preferably 99.9% or more. This is to reduce the work hardening during loop deformation as much as possible, increase the bonding speed, and increase the number of connections per unit time. The purity and type of the copper (Cu) core tape is appropriately determined depending on the semiconductor to be used, the lead frame, etc. However, in order to avoid work hardening of the copper (Cu) core tape and mixing of impurities during bonding, the purity is 99.99. 99 mass% or more, More preferably, purity 99.995 mass%-purity 99.999 mass% is desirable. The Vickers hardness of the copper (Cu) core tape is preferably in the range of 50 Hv, which is the hardness of copper (Cu) having a purity of 99.9999% by mass or more, and 80 Hv that avoids work hardening during ultrasonic bonding.

銀(Ag)クラッド層の純度は純度99.999質量%以下であることが好ましい。これは、超音波ボンディング後の150℃〜300℃の高温動作環境下で銀(Ag)クラッド層中のパッド界面上に粒状組織を形成させ、パッド電極のアルミニウム(Al)金属等が銀(Ag)クラッド層中に拡散するのを回避し、接合信頼性を確保するためである。銀(Ag)クラッド層の、純度99.999質量%以上の銀(Ag)の硬さである30Hvから、半導体素子のチップ割れを防ぐ80Hvの範囲が好ましい。   The purity of the silver (Ag) clad layer is preferably 99.999% by mass or less. This is because a granular structure is formed on the pad interface in the silver (Ag) cladding layer under a high temperature operating environment of 150 ° C. to 300 ° C. after ultrasonic bonding, and the aluminum (Al) metal or the like of the pad electrode is silver (Ag). This is for avoiding diffusion in the cladding layer and ensuring the bonding reliability. The range of 30 Hv, which is the hardness of silver (Ag) with a purity of 99.999% by mass or more of the silver (Ag) clad layer, to 80 Hv that prevents chip cracking of the semiconductor element is preferable.

本発明の銅(Cu)芯材テープの硬さは、銀(Ag)クラッド層の硬さの1.5倍以下であることがより好ましい。より急峻なループを描いてもCu/Ag界面からはく離しにくくするためである。さらに、超音波ボンディングの接合部における銀(Ag)クラッド層の過度な変形および剥離を抑制し、安定した接合信頼性の確保とチップダメージを回避するためである。   The hardness of the copper (Cu) core tape of the present invention is more preferably 1.5 times or less of the hardness of the silver (Ag) cladding layer. This is because even if a steeper loop is drawn, it is difficult to peel off from the Cu / Ag interface. Furthermore, it is for suppressing the excessive deformation | transformation and peeling of the silver (Ag) clad layer in the junction part of ultrasonic bonding, and ensuring stable joining reliability and avoiding chip damage.

また、銀(Ag)クラッド層の厚さは、ループ形成時における銅(Cu)芯材テープとの耐はがれ性の点から、200μm以下であることが好ましい。さらに、銀(Ag)クラッド層の膜厚が5μm未満と薄すぎる場合、150℃〜300℃の高温動作環境下で十分な粒状の結晶組織を形成することができず、パッド電極の金属と銀(Ag)が脆弱な結晶粒組織を形成するとともに、高温動作環境下でパッド電極からクラッド界面へアルミニウム(Al)等の金属が拡散するのを防ぐことができない。より好ましくは20〜80μmの領域であり、経済的観点から20〜50μmの領域が最も優れている。   Further, the thickness of the silver (Ag) clad layer is preferably 200 μm or less from the viewpoint of peeling resistance with the copper (Cu) core material tape at the time of loop formation. Further, when the film thickness of the silver (Ag) cladding layer is too thin, less than 5 μm, a sufficient granular crystal structure cannot be formed under a high temperature operating environment of 150 ° C. to 300 ° C., and the metal of the pad electrode and silver While (Ag) forms a brittle crystal grain structure, it cannot prevent a metal such as aluminum (Al) from diffusing from the pad electrode to the cladding interface under a high-temperature operating environment. More preferably, the region is 20 to 80 μm, and the region of 20 to 50 μm is most excellent from the economical viewpoint.

以下、本発明の実施例を説明する。
〔実施例1〕
〔銅(Cu)芯材テープの作製〕
直径700μmの純度99.99質量%の銅(Cu)線材を圧延加工して、幅1.9mm、厚さ0.16mmの銅(Cu)芯材テープを作製した。次いで、圧延加工したテープを750℃の水素混合窒素雰囲気中でフルアニールしたところ、芯材テープはビッカース硬さが70Hvから55Hvとなった。この芯材テープの特性を表1に示す。
なお、同様にして圧延加工した純度99.9999質量%の銅(Cu)テープをフル・アニールすると、ビッカース硬さは55〜50Hvまで低下した。
Examples of the present invention will be described below.
[Example 1]
[Production of copper (Cu) core tape]
A copper (Cu) wire rod having a diameter of 700 μm and a purity of 99.99% by mass was rolled to produce a copper (Cu) core tape having a width of 1.9 mm and a thickness of 0.16 mm. Next, when the rolled tape was fully annealed in a hydrogen mixed nitrogen atmosphere at 750 ° C., the core material tape had a Vickers hardness of 70 Hv to 55 Hv. The properties of this core tape are shown in Table 1.
In addition, when a copper (Cu) tape having a purity of 99.9999 mass% rolled in the same manner was fully annealed, the Vickers hardness was reduced to 55 to 50 Hv.

〔銀(Ag)クラッド層の作製〕
純度99.9質量%の銀(Ag)テープ材を圧延加工して、幅1.9mm 厚さ0.06mmの銀(Ag)クラッド層テープを作製した。次いで、クラッド層テープをフルアニールしたところ、クラッド層はビッカース硬さが60Hvから45Hvなった。このクラッド層の特性を表1に示す。
なお、同様にして、純度99.9999質量%の銀(Ag)テープをフルアニールすると、ビッカース硬さは35Hvまで低下した。
[Preparation of silver (Ag) clad layer]
A silver (Ag) tape material having a purity of 99.9% by mass was rolled to produce a silver (Ag) clad layer tape having a width of 1.9 mm and a thickness of 0.06 mm. Next, when the clad layer tape was fully annealed, the clad layer had a Vickers hardness of 60 Hv to 45 Hv. Table 1 shows the characteristics of this cladding layer.
Similarly, when a silver (Ag) tape having a purity of 99.9999% by mass was fully annealed, the Vickers hardness decreased to 35 Hv.

〔銀クラッド銅リボンの作製〕
上下2段ロール式加熱圧着装置に水素混合窒素ガスを流入し、銀(Ag)クラッド層と銅(Cu)芯材テープとを接合後冷間圧延をし、幅2.0mm 厚さ0.2mmの銀クラッド銅リボンとした。次いで、これらの銀クラッド銅リボンを洗浄後700℃の水素混合窒素雰囲気中でフルアニールして銀クラッド銅リボン(1)とした。
[Production of silver clad copper ribbon]
Hydrogen mixed nitrogen gas is flowed into the upper and lower two-roll type thermocompression bonding apparatus, the silver (Ag) clad layer and the copper (Cu) core tape are joined, and then cold-rolled, width 2.0 mm, thickness 0.2 mm Silver clad copper ribbon. Next, these silver clad copper ribbons were washed and then fully annealed in a hydrogen mixed nitrogen atmosphere at 700 ° C. to obtain a silver clad copper ribbon (1).

〔銀クラッド銅リボンの観察〕
この銀クラッド銅リボン(1)を希薄な硝酸でエッチング後、5kV×30分(傾角45度、偏芯3mm)でイオンミリングした後、長手方向の断面を金属顕微鏡(オリンパス社製型式PMG3)で5倍、10倍、及び100倍でそれぞれ観察した。
ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では700℃のフルアニールによって相互拡散がまったく生じていないことがわかった。
[Observation of silver clad copper ribbon]
This silver-clad copper ribbon (1) is etched with dilute nitric acid, ion milled at 5 kV × 30 minutes (angle 45 °, eccentricity 3 mm), and then the longitudinal section is examined with a metal microscope (Olympus model PMG3). Observation was performed at 5 times, 10 times, and 100 times, respectively.
From the results of line analysis, it was found that no interdiffusion occurred at all at the 700 ° C. full annealing at the cladding interface of silver (Ag) and copper (Cu).

〔超音波接合試験〕
次いで、この銀クラッド銅リボン(1)を純度99.99質量%のアルミニウム(Al)板(厚さ2mm)上に超音波ボンディング(第一ボンド)した後、3μmのNiめっきを施した純度99.95質量%の銅(Cu)基板(厚さ2mm)上に超音波ボンディング(第二ボンド)した。装置は、オーソダイン社(Orthodyne Electronics Co.)製全自動リボンボンダー3600R型にて、80kHzの周波数で、荷重および超音波負荷条件については、潰れ幅が1.01〜1.02倍になる条件で全サンプルについて同一条件でボンディングを実施した。また、ボンディングリボンのループ長は50mmで、ループ高さは30mmとし、通常条件よりもリボンや経路やツールから受ける摺動抵抗が大きくなるような条件に設定した。そして、各試料ともn=50個で超音波ボンディングした場合にボンディング中に発生したリボンの切断回数を調べたところ、切断したものはなかった。また、接合強度は、リボン側面よりDAGE万能ボンドテスターPC5000型にて接合部側面からのシェア強度測定を実施し、その判定結果を表1に記載した。
[Ultrasonic bonding test]
Next, this silver-clad copper ribbon (1) was ultrasonically bonded (first bond) on an aluminum (Al) plate (thickness 2 mm) having a purity of 99.99% by mass, and then subjected to Ni plating of 3 μm and having a purity of 99. Ultrasonic bonding (second bonding) was performed on a 95% by mass copper (Cu) substrate (thickness 2 mm). The apparatus is a fully automatic ribbon bonder 3600R type manufactured by Orthodyne Electronics Co., at a frequency of 80 kHz, and the load and ultrasonic load conditions are such that the collapse width is 1.01 to 1.02 times. All samples were bonded under the same conditions. The loop length of the bonding ribbon was 50 mm, the loop height was 30 mm, and the conditions were set such that the sliding resistance received from the ribbon, the path, and the tool was greater than the normal conditions. Then, when ultrasonic bonding was performed with n = 50 in each sample, the number of cuttings of the ribbon generated during bonding was examined, and none was cut. Moreover, the joint strength was measured from the side of the joint using the DAGE Universal Bond Tester PC5000 type from the side of the ribbon, and the determination results are shown in Table 1.

〔信頼性試験前の内部組織の観察〕
第一ボンドされた接合直後の銀クラッド銅リボン(1)の長手方向の断面をイオンミリングでエッチング後、そのクラッド界面およびパッド界面を金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真から、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が形成され、クラッド界面には大きな結晶粒組織が形成されていることがわかった。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では相互拡散が依然生じていないことがわかった。
[Observation of internal structure before reliability test]
The cross section in the longitudinal direction of the silver-clad copper ribbon (1) immediately after the first bonding was etched by ion milling, and the clad interface and pad interface were observed with a metal microscope and subjected to line analysis. From a cross-sectional photograph of a metallographic microscope, it was found that a fine crystal structure with high strain was formed at the pad interface of the silver (Ag) cladding layer, and a large crystal grain structure was formed at the cladding interface. Moreover, it was found from the results of line analysis that interdiffusion has not yet occurred at the cladding interface of silver (Ag) and copper (Cu).

〔信頼性試験〕
次いで、この銀クラッド銅リボン(1)の信頼性試験を175℃/−50℃の熱サイクル試験(各温度で3分間、合計1000サイクル)で行った。使用装置は、日立ヒートショック試験装置:ES−60LMS〔液例サイクル試験機〕。
高温信頼性の試験は、第一ボンド直後のシェア強度に対する信頼性試験後のシェア強度の低下割合を測定し、表1に併記した。なお、判定は、信頼性試験後の強度比を基にし、信頼性試験後の強度比が0.9以上のものを二重丸(◎)で表記し、0.7以上0.9未満のものを一重丸(○)で表記し、0.7未満のものをバツ(×)印で表記した。
表1から明らかな通り、本発明の銀クラッド銅リボン(1)の高温接合信頼性は優れており、これは銀(Ag)クラッド層のパッド界面の高ひずみの微細な結晶組織が微細な結晶粒組織に変化していることによる(図4下段図)。
〔Reliability test〕
Subsequently, the reliability test of this silver clad copper ribbon (1) was conducted by a thermal cycle test at 175 ° C./−50° C. (3 minutes at each temperature for a total of 1000 cycles). The equipment used is Hitachi Heat Shock Tester: ES-60LMS [Liquid Example Cycle Tester].
In the high temperature reliability test, the rate of decrease in the shear strength after the reliability test with respect to the shear strength immediately after the first bond was measured and is also shown in Table 1. In addition, the determination is based on the strength ratio after the reliability test, and the strength ratio after the reliability test of 0.9 or more is represented by a double circle (◎), and is 0.7 or more and less than 0.9. A thing was described with a single circle (O), and a thing less than 0.7 was described with a cross (x) mark.
As is clear from Table 1, the high temperature bonding reliability of the silver clad copper ribbon (1) of the present invention is excellent. This is because the fine crystal structure of the high strain at the pad interface of the silver (Ag) clad layer is a fine crystal. This is due to the change to the grain structure (lower diagram in FIG. 4).

〔信頼性試験後の観察〕
信頼性試験後の銀クラッド銅リボン(1)の長手方向の断面をイオンミリングでエッチング後、そのクラッド界面およびパッド界面を金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真(図1-B、図2及び図4下段図)から、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が微細な結晶粒組織に変化し、クラッド界面にはより大きな結晶粒組織が形成されていることがわかる。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では相互拡散が生じており、銀(Ag)クラッド層中のパッド界面近傍ではアルミニウム(Al)の拡散が余り進んでいないことがわかった。
また、図4に同じクラッド後の銀クラッド銅リボンについて、熱処理を行ったもの(下段)と、熱処理を行わなかったもの(上段)について、アルミパッドに対してボンディング接合し、それぞれ熱サイクル試験後のより詳細な組織状態を示す。
図4によれば、熱処理を行わなかった場合、Ag接合界面近傍の結晶組織は粗く、粗大な結晶に成長しており、熱サイクル試験後のAg層接合界面にクラック、ボイドが形成されていることがわかる(図4上段右図)。一方、本発明の熱処理を行ったものは接合後のAg接合界面近傍の結晶組織が微細な粒状結晶組織に変化しており(図4下段左右図)、熱サイクル試験後のAg層接合界面でも微細な粒状結晶組織が維持されている。
〔実施例2〕
[Observation after reliability test]
After etching the longitudinal section of the silver clad copper ribbon (1) after the reliability test by ion milling, the clad interface and the pad interface were observed with a metal microscope and subjected to line analysis. From the cross-sectional photographs of the metallurgical microscope (FIGS. 1-B, 2 and 4), the fine crystal structure of high strain changes to a fine grain structure at the pad interface of the silver (Ag) cladding layer. It can be seen that a larger crystal grain structure is formed at the interface. In addition, from the results of line analysis, mutual diffusion occurs at the silver (Ag) and copper (Cu) clad interface, and aluminum (Al) diffuses too much near the pad interface in the silver (Ag) clad layer. I found out.
In addition, the silver clad copper ribbon after the same clad in FIG. 4 was subjected to heat treatment (lower stage) and non-heat treated (upper stage) by bonding with an aluminum pad, and after each thermal cycle test. The more detailed organization status is shown.
According to FIG. 4, when heat treatment is not performed, the crystal structure in the vicinity of the Ag bonding interface is coarse and grows to a coarse crystal, and cracks and voids are formed at the Ag layer bonding interface after the thermal cycle test. It can be seen (the upper right figure in FIG. 4). On the other hand, in the case of the heat treatment of the present invention, the crystal structure in the vicinity of the Ag joint interface after bonding is changed to a fine granular crystal structure (lower left and right diagram in FIG. 4). A fine granular crystal structure is maintained.
[Example 2]

〔銅(Cu)芯材テープの作製〕
実施例1と同様にして、直径500μmの純度99.999質量%の銅(Cu)線材に純度99.9質量%のニッケル(Ni)をマグネトロンスパッタにより0.1μm成膜したものを冷間加工して、幅1.7mm、厚さ0.46mmの銅(Cu)芯材テープを作製した。次いで、実施例1と同様にしてフルアニールしたところ、芯材テープはビッカース硬さが70Hvから55Hvとなった。
[Production of copper (Cu) core tape]
In the same manner as in Example 1, cold-working was performed by depositing nickel (Ni) with a purity of 99.9% by mass on a copper (Cu) wire having a diameter of 500 μm with a purity of 99.999% by magnetron sputtering. Thus, a copper (Cu) core tape having a width of 1.7 mm and a thickness of 0.46 mm was produced. Next, when full annealing was performed in the same manner as in Example 1, the Vickers hardness of the core material tape was changed from 70 Hv to 55 Hv.

〔銀(Ag)クラッド層の作製〕
実施例1と同様にして、直径600μmの純度99.999質量%の銀(Ag)線材を圧延加工して、幅2.0mm、厚さ130μmの銀(Ag)クラッド層を作製し700℃の水素混合窒素雰囲気中でフルアニールしたところ、銀(Ag)クラッド層はビッカース硬さが40Hvから35Hvとなった。この芯材テープおよびクラッド層の構成を表1に示す。
[Preparation of silver (Ag) clad layer]
In the same manner as in Example 1, a silver (Ag) wire having a diameter of 600 μm and a purity of 99.999% by mass was rolled to produce a silver (Ag) clad layer having a width of 2.0 mm and a thickness of 130 μm. When full annealing was performed in a hydrogen mixed nitrogen atmosphere, the silver (Ag) cladding layer had a Vickers hardness of 40 Hv to 35 Hv. Table 1 shows the configurations of the core tape and the clad layer.

〔銀クラッド銅リボンの作製〕
実施例1と同様にして、銀クラッド銅リボンを得、740℃でフルアニールして銀クラッド銅リボン(2)とした。
[Production of silver clad copper ribbon]
In the same manner as in Example 1, a silver clad copper ribbon was obtained and fully annealed at 740 ° C. to obtain a silver clad copper ribbon (2).

〔銀クラッド銅リボンの観察〕
この銀クラッド銅リボン(2)を実施例1と同様にして、長手方向の断面を金属顕微鏡で観察し、クラッド界面をライン分析した。
金属顕微鏡の断面写真から、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が形成され、クラッド界面には大きな結晶粒組織が形成されていることが確認された。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では相互拡散が依然生じていないことがわかった。
[Observation of silver clad copper ribbon]
This silver clad copper ribbon (2) was observed in the same manner as in Example 1 with a cross section in the longitudinal direction with a metal microscope, and the clad interface was subjected to line analysis.
From a cross-sectional photograph of a metallographic microscope, it was confirmed that a fine crystal structure with high strain was formed at the pad interface of the silver (Ag) clad layer, and a large crystal grain structure was formed at the clad interface. Moreover, it was found from the results of line analysis that interdiffusion has not yet occurred at the cladding interface of silver (Ag) and copper (Cu).

〔超音波接合試験〕
次いで、この銀クラッド銅リボン(2)を実施例1と同様に試験をし、その判定結果を表1に記載した。なお、n=50のボンディング中にリボンが切断したものはなかった。
[Ultrasonic bonding test]
Next, this silver clad copper ribbon (2) was tested in the same manner as in Example 1, and the determination results are shown in Table 1. No ribbon was cut during n = 50 bonding.

〔信頼性試験前の内部組織の観察〕
実施例1と同様にして、金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真から実施例1と同様に、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が形成され、クラッド界面には大きな結晶粒組織が形成されていることが確認された。
[Observation of internal structure before reliability test]
In the same manner as in Example 1, it was observed with a metal microscope and subjected to line analysis. From the cross-sectional photograph of the metallographic microscope, as in Example 1, a fine crystal structure with high strain is formed at the pad interface of the silver (Ag) cladding layer, and a large crystal grain structure is formed at the cladding interface. confirmed.

〔信頼性試験〕
次いで、実施例1と同様にして、この銀クラッド銅リボン(2)を175℃/−50℃の熱サイクル試験(各温度で3分間、合計1000サイクル)を行い、表1に併記した。使用装置は、日立ヒートショック試験装置:ES−60LMS〔液冷サイクル試験機〕。
表1から明らかな通り、本発明の銀クラッド銅リボン(1)の高温接合信頼性は、実施例1と同様に優れており、これは銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が微細な結晶粒組織に変化していることによる。
〔Reliability test〕
Next, in the same manner as in Example 1, this silver-clad copper ribbon (2) was subjected to a thermal cycle test at 175 ° C./−50° C. (3 minutes at each temperature for a total of 1000 cycles). The equipment used is Hitachi Heat Shock Test Equipment: ES-60LMS [Liquid Cooling Cycle Tester].
As is clear from Table 1, the high-temperature bonding reliability of the silver-clad copper ribbon (1) of the present invention is excellent as in Example 1, and this is a high strain at the pad interface of the silver (Ag) clad layer. This is because the fine crystal structure is changed to a fine crystal grain structure.

〔信頼性試験後の観察〕
信頼性試験後の銀クラッド銅リボン(2)の長手方向の断面をイオンミリングでエッチング後、そのクラッド界面およびパッド界面を金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真による観察から、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が微細な結晶粒組織に変化しているものの、クラッド界面では実施例1の銀クラッド銅リボン(1)のより大きな結晶粒組織ほど結晶組織が成長していないことが観察された。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では、実施例1と異なり、相互拡散がある程度生じており、銀(Ag)クラッド層中のパッド界面近傍では、実施例1と同様に、アルミニウム(Al)の拡散が余り進んでいないことがわかった。
[Observation after reliability test]
The cross section in the longitudinal direction of the silver clad copper ribbon (2) after the reliability test was etched by ion milling, and then the clad interface and the pad interface were observed with a metal microscope and subjected to line analysis. From the observation by a cross-sectional photograph of a metallographic microscope, although the fine crystal structure of high strain is changed to a fine grain structure at the pad interface of the silver (Ag) clad layer, the silver clad copper of Example 1 is changed at the clad interface. It was observed that the crystal grain structure did not grow as the larger grain structure of the ribbon (1). Also, from the results of the line analysis, the silver (Ag) and copper (Cu) clad interface has some degree of interdiffusion unlike the first example, and is performed near the pad interface in the silver (Ag) clad layer. As in Example 1, it was found that the diffusion of aluminum (Al) was not so advanced.

〔捻回試験〕
次いで、この銀クラッド銅リボン(1)、(2)について、約1mの試料の一端を固定し、他端を毎分1回転で右回転15回した後、逆に左回転15回して銀(Ag)および銅(Cu)ないしニッケル(Ni)とのクラッド界面のはがれを観察した。
銀クラッド銅リボン(1)、(2)のいずれにも境界面のはがれは生じていなかった。このことから、本発明に銀(Ag)クラッド層のはがれ抑制特性は優れていることがわかる。
さらに熱処理条件について、実施例1の銀クラッド銅リボンを通電式電気炉において加熱してアニールした実施例3及びアニール温度を400℃とした実施例4の結果を表1に示す。アニール温度が400℃の場合、芯材及びクラッド層の硬さが高く、信頼性試験結果も若干劣ることがわかる。
[Torsion test]
Next, with respect to the silver clad copper ribbons (1) and (2), one end of a sample of about 1 m is fixed, and the other end is rotated 15 times to the right at 1 revolution per minute, and then rotated 15 times to the left to reverse the silver ( The peeling of the cladding interface with Ag) and copper (Cu) or nickel (Ni) was observed.
No peeling of the boundary surface occurred in any of the silver-clad copper ribbons (1) and (2). From this, it can be seen that the present invention is excellent in the peeling prevention characteristic of the silver (Ag) clad layer.
Further, regarding the heat treatment conditions, Table 1 shows the results of Example 3 in which the silver-clad copper ribbon of Example 1 was annealed by heating in a current-carrying electric furnace and Example 4 in which the annealing temperature was 400 ° C. When the annealing temperature is 400 ° C., the core material and the cladding layer are high in hardness, and the reliability test results are slightly inferior.

比較例Comparative example

〔銅(Cu)芯材テープの作製〕
実施例1と同様にしてビッカース硬さが50Hvの芯材テープを作成した。
[Production of copper (Cu) core tape]
A core tape having a Vickers hardness of 50 Hv was prepared in the same manner as in Example 1.

〔銀(Ag)クラッド層の作製〕
実施例1と同様にしてビッカース硬さが60Hvの銀(Ag)クラッド層を作成した。
[Preparation of silver (Ag) clad layer]
A silver (Ag) clad layer having a Vickers hardness of 60 Hv was prepared in the same manner as in Example 1.

〔銀クラッド銅リボンの作製〕
実施例1と同様にして銀(Ag)クラッド層と銅(Cu)芯材テープとを接合し、450℃〜750℃の水素混合窒素雰囲気中のフルアニール工程を除いた以外は実施例1と同様にして、銀クラッド銅リボン:比較例1とした。
[Production of silver clad copper ribbon]
The silver (Ag) clad layer and the copper (Cu) core material tape were joined in the same manner as in Example 1, and except for the full annealing process in a hydrogen mixed nitrogen atmosphere at 450 ° C. to 750 ° C. Similarly, it was set as the silver clad copper ribbon: Comparative Example 1.

〔銀クラッド銅リボンの観察〕
この比較例1の銀クラッド銅リボンをイオンミリングでエッチング後、長手方向の断面を金属顕微鏡で観察し、銀(Ag)と銅(Cu)のライン分析をした。
ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では実施例1と同様に相互拡散がまったく生じていないことがわかった。
[Observation of silver clad copper ribbon]
After etching the silver clad copper ribbon of Comparative Example 1 by ion milling, the cross section in the longitudinal direction was observed with a metallographic microscope, and line analysis of silver (Ag) and copper (Cu) was performed.
As a result of the line analysis, it was found that no interdiffusion occurred at all in the clad interface of silver (Ag) and copper (Cu) as in Example 1.

〔超音波接合試験〕
次いで、この比較例1の銀クラッド銅リボンを実施例1と同様にして第一ボンドおよび第二ボンドした。そして、各試料ともn=50個で超音波ボンディングした場合にボンディング中に発生したリボンの切断回数を調べたところ、切断したものはなかった。また、接合強度は、リボン側面よりDAGE万能ボンドテスターPC5000型にて接合部側面からのシェア強度測定を実施し、その判定結果を表1に記載した。
[Ultrasonic bonding test]
Next, the first and second bonds of the silver-clad copper ribbon of Comparative Example 1 were made in the same manner as in Example 1. Then, when ultrasonic bonding was performed with n = 50 in each sample, the number of cuttings of the ribbon generated during bonding was examined, and none was cut. Moreover, the joint strength was measured from the side of the joint using the DAGE Universal Bond Tester PC5000 type from the side of the ribbon, and the determination results are shown in Table 1.

〔信頼性試験前の内部組織の観察〕
第一ボンドされた接合直後の比較例1の銀クラッド銅リボンについて、実施例1と同様に金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真から、実施例1と同様に、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が形成され、クラッド界面には大きな結晶粒組織が形成されていることがわかった。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面では相互拡散が依然生じていないことがわかった。
[Observation of internal structure before reliability test]
About the silver clad copper ribbon of the comparative example 1 immediately after the 1st bonding, it observed with the metal microscope similarly to Example 1, and analyzed the line. From a cross-sectional photograph of a metallurgical microscope, as in Example 1, a fine crystal structure with high strain is formed at the pad interface of the silver (Ag) cladding layer, and a large crystal grain structure is formed at the cladding interface. I understood. Moreover, it was found from the results of line analysis that interdiffusion has not yet occurred at the cladding interface of silver (Ag) and copper (Cu).

〔信頼性試験〕
次いで、この比較例1の銀クラッド銅リボンを実施例1と同様にして信頼性試験を行った。高温信頼性の試験は、第一ボンド直後のシェア強度に対する信頼性後のシェア強度の低下割合を測定し、表1に併記した。 なお、判定は、信頼性試験後の強度比を基にし、信頼性試験後の強度比が0.9以上のものを二重丸(◎)で表記し、0.7以上0.9未満のものを一重丸(○)で表記し、0.7未満のものをバツ(×)印で表記した。
表1から明らかな通り、比較例1の銀クラッド銅リボンの高温接合信頼性は劣っており、これは後述のとおり、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が銀(Ag)とアルミニウム(Al)の化合物からなる脆弱な結晶粒組織に変化していることによる。
〔Reliability test〕
Subsequently, the silver clad copper ribbon of Comparative Example 1 was subjected to a reliability test in the same manner as in Example 1. In the high temperature reliability test, the rate of decrease in the shear strength after reliability with respect to the shear strength immediately after the first bond was measured, and is also shown in Table 1. In addition, the determination is based on the strength ratio after the reliability test, and the strength ratio after the reliability test of 0.9 or more is represented by a double circle (◎), and is 0.7 or more and less than 0.9. A thing was described with a single circle (O), and a thing less than 0.7 was described with a cross (x) mark.
As is apparent from Table 1, the high-temperature bonding reliability of the silver-clad copper ribbon of Comparative Example 1 is inferior, and this is because, as described later, a high-strain fine crystal structure is present at the pad interface of the silver (Ag) clad layer. This is due to the change to a fragile grain structure composed of a compound of silver (Ag) and aluminum (Al).

〔信頼性試験後の観察〕
信頼性試験後の比較例1の銀クラッド銅リボンの長手方向の断面をイオンミリングでエッチング後、そのクラッド界面およびパッド界面を金属顕微鏡で観察し、ライン分析した。金属顕微鏡の断面写真(図1−A、図3及び図4上段図)から、銀(Ag)クラッド層のパッド界面には高ひずみの微細な結晶組織が脆弱な結晶粒組織に変化し、クラッド界面にはより大きな結晶粒組織が形成されていることがわかる。また、ライン分析の結果から、銀(Ag)と銅(Cu)のクラッド界面ではアルミニウム(Al)の拡散が生じてアルミニウム(Al)と銅(Cu)のの金属間化合物が形成されており、銀(Ag)クラッド層中のパッド界面近傍ではアルミニウム(Al)の拡散によって銀(Ag)とアルミニウム(Al)の化合物が形成されていることがわかった。
さらに、比較例2として、実施例1の銀クラッド銅リボンのアニール温度を本発明範囲を超えて、770℃としたものについて、芯材及びクラッド層の硬さ、信頼試験結果を表1に示す。その金属顕微鏡の断面写真から、銀(Ag)クラッド層のパッド界面近傍が粗大な結晶組織となり、接合界面にクラックが発生していることがわかる(図1−C)。
アニール温度が本発明範囲を超えると、芯材及びクラッド層の硬さが低下するが、信頼性試験結果は不良となる。これは、アニール温度の上昇に伴って再結晶化が著しく進行して粗大な結晶組織となるためであって、本発明のアニール温度範囲を外れると銀クラッド銅リボンとして使用できないことを示している。
[Observation after reliability test]
The cross section in the longitudinal direction of the silver-clad copper ribbon of Comparative Example 1 after the reliability test was etched by ion milling, and the clad interface and pad interface were observed with a metal microscope and subjected to line analysis. From the cross-sectional photographs of the metallurgical microscope (FIG. 1-A, FIG. 3 and FIG. 4 top view), the fine crystal structure of high strain changed to a brittle crystal grain structure at the pad interface of the silver (Ag) clad layer. It can be seen that a larger crystal grain structure is formed at the interface. In addition, from the results of line analysis, diffusion of aluminum (Al) occurs at the clad interface between silver (Ag) and copper (Cu), and an intermetallic compound of aluminum (Al) and copper (Cu) is formed. It was found that a compound of silver (Ag) and aluminum (Al) was formed by diffusion of aluminum (Al) in the vicinity of the pad interface in the silver (Ag) cladding layer.
Furthermore, as Comparative Example 2, the hardness of the core material and the clad layer and the reliability test results are shown in Table 1 for the annealing temperature of the silver clad copper ribbon of Example 1 exceeding 770 ° C. of the present invention. . From the cross-sectional photograph of the metal microscope, it can be seen that the vicinity of the pad interface of the silver (Ag) clad layer has a coarse crystal structure and cracks are generated at the bonding interface (FIG. 1-C).
When the annealing temperature exceeds the range of the present invention, the hardness of the core material and the clad layer is lowered, but the reliability test result is poor. This is because recrystallization progresses remarkably as the annealing temperature rises, resulting in a coarse crystal structure, which indicates that it cannot be used as a silver-clad copper ribbon outside the annealing temperature range of the present invention. .

1 ボンディングリボン
2 銀(Ag)クラッド層
3 銅芯材
4 アルミパッド
5 リードフレーム

DESCRIPTION OF SYMBOLS 1 Bonding ribbon 2 Silver (Ag) clad layer 3 Copper core material 4 Aluminum pad 5 Lead frame

Claims (5)

半導体素子のパッドと基板との間を多数箇所の超音波接合によってループ状に接続するための銀(Ag)クラッド層および銅(Cu)芯材テープからなる平角状銀クラッド銅リボンにおいて、
前記銀クラッド銅リボンは、クラッド後に450℃〜750℃で熱処理されたものであり、前記熱処理された銀(Ag)クラッド層は、30〜80Hvのビッカース硬さをもつ純度99質量%〜純度99.999質量%の銀(Ag)からなり、前記熱処理された銅(Cu)芯材テープは50〜80Hvのビッカース硬さをもつ純度99.9質量%〜純度99.9999質量%の銅(Cu)からなることを特徴とする高温半導体素子用平角状銀(Ag)クラッド銅リボン。
In a rectangular silver clad copper ribbon composed of a silver (Ag) clad layer and a copper (Cu) core material tape for connecting a semiconductor element pad and a substrate in a loop shape by ultrasonic bonding at multiple locations,
The silver-clad copper ribbon is heat-treated at 450 ° C. to 750 ° C. after the clad, and the heat-treated silver (Ag) clad layer has a purity of 99% by mass to 99% having a Vickers hardness of 30 to 80 Hv. The heat-treated copper (Cu) core tape is composed of 999 mass% silver (Ag) and has a Vickers hardness of 50 to 80 Hv and a purity of 99.9 mass% to 99.9999 mass% copper (Cu A flat silver (Ag) clad copper ribbon for high-temperature semiconductor elements.
前記銀(Ag)クラッド層の厚さが、5μm以上200μm以下である請求項1に記載の高温半導体素子用平角状銀クラッド銅リボン。   The rectangular silver clad copper ribbon for high-temperature semiconductor elements according to claim 1, wherein the silver (Ag) clad layer has a thickness of 5 µm or more and 200 µm or less. 前記銅(Cu)芯材テープの純度が純度99.99質量%〜純度99.999質量%である請求項1に記載の高温半導体素子用平角状銀クラッド銅リボン。   The rectangular silver clad copper ribbon for high-temperature semiconductor elements according to claim 1, wherein the purity of the copper (Cu) core material tape is 99.99 mass% to 99.999 mass%. 前記銀(Ag)クラッド層の純度が純度99.9質量%〜純度99.99質量%である請求項1に記載の高温半導体素子用平角状銀クラッド銅リボン。   The rectangular silver clad copper ribbon for a high-temperature semiconductor device according to claim 1, wherein the purity of the silver (Ag) clad layer is 99.9 mass% to 99.99 mass%. 前記高温半導体素子が150℃〜300℃の動作環境で使用される請求項1に記載の高温半導体素子用平角状銀クラッド銅リボン。   The flat silver-clad copper ribbon for a high-temperature semiconductor element according to claim 1, wherein the high-temperature semiconductor element is used in an operating environment of 150C to 300C.
JP2010231495A 2010-10-14 2010-10-14 STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT Pending JP2012084788A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010231495A JP2012084788A (en) 2010-10-14 2010-10-14 STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT
PCT/JP2011/065487 WO2012049893A1 (en) 2010-10-14 2011-07-06 RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231495A JP2012084788A (en) 2010-10-14 2010-10-14 STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT

Publications (1)

Publication Number Publication Date
JP2012084788A true JP2012084788A (en) 2012-04-26

Family

ID=45938129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231495A Pending JP2012084788A (en) 2010-10-14 2010-10-14 STRAIGHT ANGLE SILVER (Ag) CLAD COPPER RIBBON FOR HIGH-TEMPERATURE SEMICONDUCTOR ELEMENT

Country Status (2)

Country Link
JP (1) JP2012084788A (en)
WO (1) WO2012049893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901996A3 (en) * 2020-03-30 2022-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for connecting components during manufacture of power electronic modules or assemblies via direct bonding of smooth metallic surface layers as well as corresponding power electronic module and corresponding power electronic assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208251A1 (en) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Electrical contacting for semiconductors
CN103331584B (en) * 2013-07-16 2016-01-20 富威科技(吴江)有限公司 A kind of production technology of photovoltaic solar copper strips
CN105706236B (en) 2014-01-27 2019-03-01 三菱电机株式会社 The manufacturing method of electrode terminal, power semiconductor device and power semiconductor device
DE102014223352A1 (en) * 2014-11-17 2016-05-19 Robert Bosch Gmbh Connecting arrangement with a multilayer bond wire
CN105537311B (en) * 2015-12-08 2017-10-13 安徽楚江科技新材料股份有限公司 A kind of copper strips production technology for automobile contact
CN105499300A (en) * 2015-12-18 2016-04-20 安徽楚江科技新材料股份有限公司 Production technology of copper strip for lock
JP6685143B2 (en) 2016-02-03 2020-04-22 三菱電機株式会社 Electrode terminal, semiconductor device and power converter
CN106734319A (en) * 2016-12-29 2017-05-31 安徽楚江科技新材料股份有限公司 A kind of manufacturing technology of copper strip for photovoltaic solar device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296459A (en) * 1997-04-28 1998-11-10 Kawai Musical Instr Mfg Co Ltd Manufacture of deformed cross-section clad plate
DE102006025870A1 (en) * 2006-06-02 2007-12-06 Robert Bosch Gmbh Bonding wire for connecting pad and pin of chip, has outer and inner layers, where inner layer has high conductivity, low bending stiffness, low breaking load and low tensile strength than that of outer layers and wire is designed as tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901996A3 (en) * 2020-03-30 2022-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for connecting components during manufacture of power electronic modules or assemblies via direct bonding of smooth metallic surface layers as well as corresponding power electronic module and corresponding power electronic assembly

Also Published As

Publication number Publication date
WO2012049893A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP5728126B2 (en) Power semiconductor device, manufacturing method thereof, and bonding wire
JP5159001B1 (en) Aluminum alloy bonding wire
JP4700681B2 (en) Si circuit die, method of manufacturing Si circuit die, method of attaching Si circuit die to heat sink, circuit package and power module
WO2017217145A1 (en) Solder bonded part
WO2011108436A1 (en) Semiconductor device and bonding material for semiconductor device
JP2008533707A (en) Copper bonding wire or extra fine wire with improved bonding and corrosion properties
JP5343069B2 (en) Bonding wire bonding structure
TWI599664B (en) Metallic ribbon for power module packaging
JP2014082367A (en) Power semiconductor device
JP4544964B2 (en) Heat dissipation board
JP2008127606A (en) High-strength copper alloy sheet having oxide film superior in adhesiveness
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP2011192840A (en) Flat aluminum coated copper ribbon for semiconductor element
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP2015080812A (en) Joint method
TWI559417B (en) Bonding wire for power module package and method of manufacturing the same
Zheng et al. Die attach for high temperature electronics packaging
JP2010205974A (en) Semiconductor device
JP6579551B2 (en) Bonding layer structure using alloy bonding material and method for forming the same, semiconductor device having the bonding layer structure, and method for manufacturing the same
TW201307589A (en) Silver cladded copper ribbon having flat square shape for high temperature semiconductor elements
JP2014067917A (en) Die bond structure of semiconductor element and die bonding method of semiconductor element
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP5519419B2 (en) Flat rectangular (Pd) or platinum (Pt) coated copper ribbon for high temperature semiconductor devices