JP2012082484A - Method of and device for cooling metallic strip - Google Patents

Method of and device for cooling metallic strip Download PDF

Info

Publication number
JP2012082484A
JP2012082484A JP2010230695A JP2010230695A JP2012082484A JP 2012082484 A JP2012082484 A JP 2012082484A JP 2010230695 A JP2010230695 A JP 2010230695A JP 2010230695 A JP2010230695 A JP 2010230695A JP 2012082484 A JP2012082484 A JP 2012082484A
Authority
JP
Japan
Prior art keywords
cooling
temperature
water
metal strip
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010230695A
Other languages
Japanese (ja)
Other versions
JP5505246B2 (en
Inventor
Seiji Okada
誠司 岡田
Toshinori Fujisaki
寿徳 藤嵜
Kenji Hamaogi
健司 濱荻
Takuya Amano
卓也 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010230695A priority Critical patent/JP5505246B2/en
Publication of JP2012082484A publication Critical patent/JP2012082484A/en
Application granted granted Critical
Publication of JP5505246B2 publication Critical patent/JP5505246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for producing a metallic strip having uniform mechanical properties in a plate width direction without generating shape defects by uniformly cooling the metallic strip.SOLUTION: The relationship of the temperature of the metallic strip with the water amount density in the boundary condition of film boiling and transition boiling is previously obtained when cooling the metallic strip using a cooling device for cooling by spraying a cooling water while controlling the water amount density of the cooling water on the surface of the metallic strip, and the water amount density is controlled so that the metallic strip is cooled in the water amount density given in response to the temperature of the metallic strip as an upper limit on the basis of the above relationship.

Description

本発明は、金属帯の冷却方法および冷却装置に関し、具体的には、金属帯を均一に冷却し、これにより、形状不良を発生させることなく、板幅方向の機械特性を均一にして金属帯を製造する冷却方法および冷却装置に関する。   The present invention relates to a cooling method and a cooling device for a metal strip. Specifically, the metal strip is cooled uniformly, thereby making the mechanical properties uniform in the plate width direction without causing shape defects. The present invention relates to a cooling method and a cooling device.

近年、衝突安全性の向上、省エネルギーさらには環境保護を図るために、自動車部品への高張力鋼板の採用が推進されている。高張力鋼板を製造する際、通常はNiやMnといったオーステナイト相安定化元素を含有することによってフェライト、パーライト変態を抑制し、マルテンサイト、ベイナイト組織を確保してきた。しかし、高張力鋼板の合金元素の含有量が増加するので、高超力鋼板の製造コストが嵩む。   In recent years, the use of high-tensile steel plates for automobile parts has been promoted in order to improve collision safety, save energy, and protect the environment. When producing high-tensile steel sheets, ferrite and pearlite transformations are usually suppressed by containing austenite phase stabilizing elements such as Ni and Mn, and martensite and bainite structures have been secured. However, since the alloy element content of the high-tensile steel plate increases, the manufacturing cost of the high-super strength steel plate increases.

鋼板の製造時に連続焼鈍設備で所定の温度に加熱した後に急冷すれば、これらの合金元素の含有量を低減しても、所望の強度を有する高張力鋼板を製造することができる。したがって、高張力鋼板の製造では、連続焼鈍設備における一次冷却の冷却速度が高いことが有利であるので、一次冷却には、例えばウォータクエンチと呼ばれる、鋼板を水冷槽へ直接浸漬する方法や、気水冷却と呼ばれる、水と雰囲気ガスとをミスト状に混合した冷媒を鋼板に吹き付ける方法が用いられ、これらの方法により、鋼板は700〜800℃から350℃〜常温まで急冷される。   If the steel sheet is rapidly cooled after being heated to a predetermined temperature in a continuous annealing facility, a high-tensile steel sheet having a desired strength can be manufactured even if the content of these alloy elements is reduced. Therefore, in the production of high-strength steel plates, it is advantageous that the cooling rate of primary cooling in a continuous annealing facility is high. Therefore, for primary cooling, for example, a method of directly immersing a steel plate in a water-cooled tank, called water quench, A method called water cooling is used which sprays a refrigerant obtained by mixing water and atmospheric gas in a mist form onto a steel sheet. By these methods, the steel sheet is rapidly cooled from 700 to 800 ° C. to 350 ° C. to room temperature.

鋼板にこのような急冷処理を施すと、鋼板の板幅方向に冷却むら(温度むら)が不可避的に発生する。この温度むらは、鋼板と冷媒との間に蒸気の膜が存在する膜沸騰領域から鋼板と冷媒とが直接接触する遷移・核沸騰領域に移行する時(クエンチ点)の急冷によって拡大され、鋼板の板幅方向の温度分布が均一でなくなる。その結果、高張力鋼板の板幅方向の機械特性値が均一でなくなり、また、低温変態相の変態歪みにより鋼板に形状不良が発生する。   When such a rapid cooling treatment is performed on the steel sheet, uneven cooling (temperature unevenness) inevitably occurs in the sheet width direction of the steel sheet. This temperature non-uniformity is magnified by rapid cooling at the time of transition from the film boiling region where a vapor film exists between the steel plate and the refrigerant to the transition / nucleate boiling region where the steel plate and the refrigerant are in direct contact (quenching point). The temperature distribution in the plate width direction is not uniform. As a result, the mechanical property value in the plate width direction of the high-tensile steel plate is not uniform, and a shape defect occurs in the steel plate due to transformation strain in the low-temperature transformation phase.

特許文献1には、縦型の冷却設備を備える熱処理炉において再結晶するように加熱された高張力冷延鋼帯の冷却において、鋼帯の温度が700℃からクエンチ点の温度領域(350℃)までにある場合には、ミスト冷却の水量密度を150l/m・分以上に制御するとともに、100℃/秒以上の冷却速度で急冷処理した後、鋼帯の温度がクエンチ点(350℃)から200℃までにある場合には冷却の水量密度を30〜150l/m・分に制御することにより、遷移沸騰させることなく膜沸騰のままでミスト冷却する方法が開示されている。 In Patent Document 1, in the cooling of a high-tensile cold-rolled steel strip heated so as to be recrystallized in a heat treatment furnace equipped with a vertical cooling facility, the temperature of the steel strip ranges from 700 ° C. to a quench point temperature range (350 ° C. ), The water density of the mist cooling is controlled to 150 l / m 2 · min or more, and after quenching at a cooling rate of 100 ° C./sec or more, the temperature of the steel strip is lowered to the quench point (350 ° C. ) To 200 ° C., a method of mist cooling with film boiling without transition boiling by controlling the cooling water density to 30 to 150 l / m 2 · min is disclosed.

特許文献2には、鋼帯の温度むらを防止して均一に適正温度に連続冷却することが可能なストリップ連続熱処理設備用の気水冷却式冷却ユニットの制御方法として、気水冷却式冷却ユニットにおける、冷却水および気体の混合気を鋼帯に向けて噴射する噴射ノズルから噴射する気体および冷却水の混合比を鋼帯の温度が350℃未満となる位置よりも後段では0.3m/l以上とすることにより、鋼帯の水垂れによる部分的な過冷却を防止する方法が開示されている。 Patent Document 2 discloses an air-water cooling type cooling unit as a control method of an air-water cooling type cooling unit for a strip continuous heat treatment facility capable of continuously cooling to an appropriate temperature while preventing uneven temperature of a steel strip. , The mixing ratio of the gas and the cooling water injected from the injection nozzle for injecting the mixture of the cooling water and the gas toward the steel strip is 0.3 m 3 / at the later stage than the position where the temperature of the steel strip is less than 350 ° C. A method of preventing partial supercooling due to water dripping of the steel strip by setting it to 1 or more is disclosed.

さらに、特許文献3には、冷却すべき温度が低い場合でも冷却炉から抽出される鋼帯の温度を安定化できるストリップ連続熱処理設備用冷却炉の制御方法として、最後段の冷却ユニットよりも前段の冷却ユニットでは、水及び/またはガスにより鋼帯を冷却し、最後段の冷却ユニットではガスのみにより鋼帯を冷却することによって、目的の冷却温度近傍での温度勾配がなだらかになることから、目的の冷却炉出側における鋼帯の温度が安定し、鋼帯の品質が向上するとともに安定操業が可能となる方法が開示されている。   Further, Patent Document 3 discloses a method for controlling a cooling furnace for a strip continuous heat treatment facility that can stabilize the temperature of a steel strip extracted from a cooling furnace even when the temperature to be cooled is low. In this cooling unit, the steel strip is cooled with water and / or gas, and in the last cooling unit, the steel strip is cooled only with gas, so that the temperature gradient in the vicinity of the target cooling temperature becomes gentle. A method is disclosed in which the temperature of the steel strip on the outlet side of the target cooling furnace is stabilized, the quality of the steel strip is improved, and stable operation is possible.

特許第4109365号明細書Japanese Patent No. 4109365 特許第2647274号明細書Japanese Patent No. 2647274 特開平05−263148号公報JP 05-263148 A

しかし、特許文献1〜3により開示された方法で鋼帯を冷却しても、膜沸騰を維持できず、金属帯と冷媒とが接触し急冷されてしまうことがあり、確実に温度むらを抑制できないことがあった。特許文献1〜3により開示された方法では、膜沸騰を維持する限界の水量密度を目標として鋼帯を冷却するのではないので、高張力鋼板の生産性が低下することが懸念される。さらに、特許文献1〜3により開示された方法では、鋼帯の冷却速度を抑えるあまり、目標とする冷却温度で鋼帯を冷却できないことも懸念される。   However, even if the steel strip is cooled by the method disclosed in Patent Documents 1 to 3, film boiling cannot be maintained, and the metal strip and the refrigerant may be brought into contact and rapidly cooled, thereby reliably suppressing temperature unevenness. There was something I couldn't do. In the methods disclosed in Patent Documents 1 to 3, since the steel strip is not cooled with the target water density that maintains film boiling as a target, there is a concern that the productivity of the high-tensile steel plate is lowered. Furthermore, in the methods disclosed in Patent Documents 1 to 3, there is a concern that the steel strip cannot be cooled at a target cooling temperature because the cooling rate of the steel strip is suppressed.

すなわち、特許文献1〜3により開示された方法は、遷移沸騰は350℃未満の温度で発生し、遷移沸騰は冷却水量を絞るか、あるいは水の代わりにガスで冷却することによって回避できるという技術常識に立脚するものである。これらの方法には2つの課題がある。   That is, in the method disclosed in Patent Documents 1 to 3, transition boiling occurs at a temperature lower than 350 ° C., and transition boiling can be avoided by reducing the amount of cooling water or cooling with gas instead of water. It is based on common sense. These methods have two problems.

第1の課題は、後段の冷却ユニットの冷却能力を低下するために目標とする冷却温度で金属帯を冷却できないことである。目標の冷却速度で金属帯を冷却するには、目標とする冷却温度になるように金属帯の搬送速度を低下して生産性を低下するか、あるいは、前段の冷却ユニットの冷却能力を高めて後段の冷却ユニットの冷却能力を補うことが考えられる。   The first problem is that the metal strip cannot be cooled at a target cooling temperature in order to reduce the cooling capacity of the subsequent cooling unit. To cool the metal strip at the target cooling rate, reduce the metal strip transport speed to achieve the target cooling temperature to reduce productivity, or increase the cooling capacity of the previous cooling unit. It is conceivable to supplement the cooling capacity of the subsequent cooling unit.

第2の課題は、350℃以上の温度域で遷移沸騰が発生することを考慮しないことに起因する。すなわち、冷却水の水量密度が高い場合には、クエンチ点の温度が350℃以上に上昇する。このため、上述したように第1の課題の対策として前段の冷却ユニットの冷却能力を高めるために前段の冷却ユニットの水量密度を高めると、遷移沸騰を生じる恐れがある。   The second problem is caused by not considering that transition boiling occurs in a temperature range of 350 ° C. or higher. That is, when the water density of the cooling water is high, the quench point temperature rises to 350 ° C. or higher. For this reason, as described above, when the water density of the preceding cooling unit is increased in order to increase the cooling capacity of the preceding cooling unit as a countermeasure for the first problem, transition boiling may occur.

このように、特許文献1〜3により開示された方法には、金属帯を均一に冷却することができず、得られる高張力鋼板に形状不良や、板幅方向の機械特性のばらつきが発生するという課題があるため、結局は金属帯の搬送速度を低下し、金属帯の生産性が低下する。   As described above, in the methods disclosed in Patent Documents 1 to 3, the metal strip cannot be cooled uniformly, and the resulting high-tensile steel sheet has poor shape and variations in mechanical properties in the plate width direction. In the end, the transport speed of the metal strip is lowered, and the productivity of the metal strip is lowered.

本発明の目的は、金属帯を均一に冷却し、これにより、形状不良を発生させることなく、板幅方向の機械特性を均一にして金属帯を製造する冷却方法および冷却装置を提供することであり、略述すると、高い生産性と冷却時の温度むらの解消とを両立することができる金属帯の冷却方法および冷却装置を提供することである。   An object of the present invention is to provide a cooling method and a cooling device for cooling a metal strip uniformly, thereby producing a metal strip with uniform mechanical properties in the plate width direction without causing a shape defect. In short, it is to provide a metal strip cooling method and a cooling device that can achieve both high productivity and elimination of temperature unevenness during cooling.

本発明は、冷却水を噴射することによって金属帯を冷却する水冷装置を用いて、金属帯の表面における冷却水の水量密度を制御しながら、金属帯を冷却する際に、膜沸騰と遷移沸騰の境界条件における金属帯の温度および水量密度の関係を予め求めておき、金属帯が、この関係に基づいて金属帯の温度に応じて与えられる水量密度を上限とした水量密度で冷却されるように、水量密度を制御することを特徴とする金属帯の冷却方法である。   The present invention uses a water cooling device that cools a metal strip by injecting cooling water, and controls film boiling and transition boiling when cooling the metal strip while controlling the water density of the cooling water on the surface of the metal strip. The relationship between the metal band temperature and the water density in the boundary condition is obtained in advance, and the metal band is cooled at a water density with the upper limit of the water density given according to the temperature of the metal band based on this relationship. And a metal band cooling method characterized by controlling the water density.

別の観点からは、本発明は、金属帯の水冷装置と、金属帯の温度情報を出力する温度情報出力手段と、水冷装置から供給される冷却水の金属帯の表面における水量密度を制御する制御装置とを備える金属帯の冷却装置であって、制御装置は、膜沸騰と遷移沸騰の境界条件における金属帯の温度と水量密度の関係に基づいて温度情報出力手段から入力される温度情報に応じて与えられる水量密度を上限値として設定し、この上限値を逸脱しないように水量密度を制御することを特徴とする金属帯の冷却装置である。   From another point of view, the present invention controls the water density of the surface of the metal strip water cooling device, the temperature information output means for outputting the temperature information of the metal strip, and the cooling water supplied from the water cooling device. A cooling device for a metal strip comprising a control device, wherein the control device outputs temperature information input from the temperature information output means based on the relationship between the temperature of the metal strip and the water density in the boundary condition between film boiling and transition boiling. Accordingly, the metal band cooling device is characterized in that the water density given accordingly is set as an upper limit value, and the water density is controlled so as not to deviate from the upper limit value.

さらに、別の観点からは、本発明は、連続焼鈍炉の冷却帯に上述した本発明に係る冷却装置を備える金属帯の連続焼鈍炉である。   Furthermore, from another viewpoint, the present invention is a continuous annealing furnace for a metal strip provided with the cooling device according to the present invention described above in the cooling zone of a continuous annealing furnace.

本発明は、水量密度とクエンチ点の関係を用い金属帯の温度予測を行い水量密度の細かい制御冷却を行うので、金属帯の冷却時に生じる温度むら、およびこれに起因して発生する機械的特性のむらや形状不良を防止することができ、これにより、金属帯の幅方向の機械特性が均一で、かつ形状も良好な金属帯を高い生産性で製造することが可能になる。   Since the present invention predicts the temperature of the metal strip using the relationship between the water density and the quench point and performs controlled cooling with a fine water volume density, the temperature unevenness that occurs during the cooling of the metal strip, and the mechanical characteristics caused by this Unevenness and shape defects can be prevented, and this makes it possible to manufacture a metal strip having uniform mechanical properties in the width direction of the metal strip and a good shape with high productivity.

水量密度比とクエンチ点の関係を示すグラフである。It is a graph which shows the relationship between a water density ratio and a quench point. 鋼帯の冷却制御方法を示すフロー図である。It is a flowchart which shows the cooling control method of a steel strip. 水量密度と熱伝達率の関係を示すグラフである。It is a graph which shows the relationship between a water quantity density and a heat transfer coefficient. 発明の冷却前後の温度条件を示すグラフである。It is a graph which shows the temperature conditions before and behind the cooling of invention. 本発明に係る冷却装置の一例を示す説明図である。It is explanatory drawing which shows an example of the cooling device which concerns on this invention. 水量密度と鋼帯出側温度の関係を示すグラフである。It is a graph which shows the relationship between water quantity density and steel strip exit side temperature. 比較例1(水量密度一定時)の冷却過程を示すグラフである。It is a graph which shows the cooling process of the comparative example 1 (at the time of water quantity density constant). 比較例2(特許文献1記載の冷却方法)での冷却過程を示すグラフである。It is a graph which shows the cooling process in the comparative example 2 (cooling method of patent document 1). 本発明例(本発明の制御方式を適用した時)の冷却過程を示すグラフである。It is a graph which shows the cooling process of the example of this invention (when the control system of this invention is applied).

以下、本発明を実施するための形態を、添付図面を参照しながら説明する。
水等の沸騰する冷媒を用いて金属帯を冷却する時には、必ず膜沸騰領域から遷移・核沸騰領域へ移行するクエンチ点を通過する。このクエンチ点の温度は、大別すると、冷媒要因と被冷却材要因とに支配される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
When the metal strip is cooled using a boiling refrigerant such as water, it always passes through the quench point where the film boiling region moves to the transition / nucleate boiling region. The temperature at the quench point is roughly divided into a refrigerant factor and a coolant target factor.

冷媒側要因とは、冷媒の種類(鉄鋼業では主に水)で決まる比熱、熱伝導率、表面張力等の物性値と、スプレー冷却やラミナー冷却等の冷却方式によって決まる水量密度や衝突速度等の冷却形態を意味する。また、被冷却材側要因とは、材質によって決まる比熱、熱伝導率等の物性値と、粗さや表面スケール付着性等によって決まる表面性状を意味する。   Refrigerant-side factors include physical properties such as specific heat, thermal conductivity, and surface tension determined by the type of refrigerant (mainly water in the steel industry), water density and collision speed determined by cooling methods such as spray cooling and laminar cooling, etc. This means a cooling form. The factor to be cooled means the physical properties such as specific heat and thermal conductivity determined by the material, and surface properties determined by roughness and surface scale adhesion.

ただし、金属帯の冷却において、用いる冷媒と被冷却材とが決定されると、上述した各要因のうちでコントロールできる要因は、冷却方式のみに限定され、冷却方式のうちでも特に水量密度の影響が大きいため、従来技術でも冷却水の流量制御が行われてきた。   However, in the cooling of the metal strip, when the refrigerant to be used and the material to be cooled are determined, the factors that can be controlled among the above-mentioned factors are limited only to the cooling method, and the influence of the water density especially among the cooling methods. Therefore, the flow rate of the cooling water has been controlled even in the prior art.

しかし、クエンチ点の温度が水量密度によって決まるのに対し、その温度をしっかり予測制御しながら冷却する方法は現在のところ開示されていない。
本発明者らが鋼材の冷却試験を行い、水量密度とクエンチ点の関係(Tq=f(Q))を求めた結果の一例を図1にグラフで示す。
However, while the temperature at the quench point is determined by the water density, a method for cooling the temperature while accurately predicting and controlling the temperature is not disclosed at present.
FIG. 1 is a graph showing an example of the results of the inventors conducting a steel cooling test and determining the relationship between the water density and the quench point (Tq = f (Q)).

図1のグラフは、クエンチ点の温度が300℃の場合の水量密度を1とした場合の水量密度とクエンチ点の温度の変化を示すものであり、クエンチ点の温度がほぼ水量密度に比例して高まることが分かる。   The graph of FIG. 1 shows changes in the water density and the quench point temperature when the water density is 1 when the quench point temperature is 300 ° C. The quench point temperature is approximately proportional to the water density. You can see that it increases.

図1のグラフにおけるTq>f(Q)の領域はクエンチ回避域であり、この領域では冷却水と鋼材の間に水蒸気の層を挟んで膜沸騰を維持できる。これに対し、図1のグラフにおけるTq<f(Q)の領域はクエンチ発生域であり、この領域では水量密度が高いため冷却水と鋼材とが直接接触する遷移沸騰の状態になり、膜沸騰を維持できない。   The region of Tq> f (Q) in the graph of FIG. 1 is a quench avoidance region, and in this region, film boiling can be maintained by sandwiching a water vapor layer between the cooling water and the steel material. On the other hand, the region of Tq <f (Q) in the graph of FIG. 1 is a quench generation region, and in this region, since the water density is high, the state becomes a transition boiling state in which the cooling water and the steel material are in direct contact, and film boiling Cannot be maintained.

図1に示す例では、水量密度とクエンチ点の温度との相関式が一次関数となっているが、上述したように様々な要因が影響するため、相関式は、多項式関数、指数関数あるいは対数関数になることもあるので、その形式は限定できないが、いずれにしても、水量密度とクエンチ点の温度との間には、正の相関がある。   In the example shown in FIG. 1, the correlation equation between the water density and the quench point temperature is a linear function. However, since various factors influence as described above, the correlation equation can be a polynomial function, an exponential function, or a logarithmic function. Since it can be a function, its form cannot be limited, but in any case, there is a positive correlation between the water density and the quench point temperature.

本発明者らは、冷却水を噴射することにより金属帯を冷却する場合、予め水量密度とクエンチ点の温度の関係を求めておき、その関係に基づいて膜沸騰を維持できるように冷却水の水量密度の上限値を定めれば、遷移沸騰を起こすことなく金属帯を均一かつ確実に冷却できることを知見した。   When the present inventors cool a metal strip by injecting cooling water, the relationship between the water density and the quench point temperature is obtained in advance, and the cooling water is maintained so that film boiling can be maintained based on the relationship. It was found that if the upper limit value of the water density is determined, the metal band can be cooled uniformly and reliably without causing transition boiling.

ここで、冷却時に参照する温度は、水冷装置で冷却された直後の金属帯の温度である。仮に水冷装置による冷却前あるいは冷却中の金属帯の温度を参照すると、金属帯の温度を測定した箇所よりも下流側の金属帯では、水量密度が過大になり、遷移沸騰に移行してしまうおそれがあるからである。   Here, the temperature referred at the time of cooling is the temperature of the metal strip immediately after being cooled by the water cooling device. If reference is made to the temperature of the metal strip before or during cooling by the water cooling device, the water density is excessive in the metal strip downstream of the location where the temperature of the metal strip is measured, and there is a risk of transition to transition boiling. Because there is.

通常、金属帯の冷却装置は、金属帯の進行方向に複数の冷却ゾーンに分割され、各冷却ゾーンに配置された水冷装置で冷却後の金属帯の目標温度が冷却ゾーン毎に設定される。したがって、その目標温度と水量密度とクエンチ点の温度の関係に基づいて、水量密度の上限値を設定すれば、遷移沸騰に移行することはない。   Usually, the metal band cooling device is divided into a plurality of cooling zones in the traveling direction of the metal band, and the target temperature of the metal band after cooling by the water cooling device disposed in each cooling zone is set for each cooling zone. Therefore, if the upper limit value of the water amount density is set based on the relationship between the target temperature, the water amount density, and the quench point temperature, transition boiling does not occur.

しかし、目標温度に基づいて設定した水量密度の上限値が低過ぎるために、金属帯が目標温度まで冷却されないことがある。この場合、冷却装置内の金属帯の温度は目標温度より高いのであるから、目標温度に基づく水量密度の上限値より適度に高い水量密度の上限値を設定しても遷移沸騰に移行することはないと考えられる。   However, since the upper limit value of the water density set based on the target temperature is too low, the metal strip may not be cooled to the target temperature. In this case, since the temperature of the metal strip in the cooling device is higher than the target temperature, even if an upper limit value of the water amount density that is appropriately higher than the upper limit value of the water amount density based on the target temperature is set, transition to boiling is not possible. It is not considered.

この場合の水量密度の上限値の設定方法を図2にフロー図で示す。
最初に、冷却装置で冷却した後の金属帯の目標温度に基づいて水量密度の上限値を設定する。
The method for setting the upper limit value of the water density in this case is shown in the flowchart of FIG.
First, the upper limit value of the water amount density is set based on the target temperature of the metal strip after being cooled by the cooling device.

次に、この冷却による金属帯の温度と目標温度の差を計算する。
次に、金属帯の温度が目標温度より一定値以上高い場合には、水量密度の上限値を高く設定し直して冷却する。水量密度の上限値を設定し直しても、金属帯の温度が一定値以上、水量密度に対応するクエンチ点の温度よりも高ければ、さらに水量密度の上限値を高く設定し直す。
Next, the difference between the metal band temperature and the target temperature due to this cooling is calculated.
Next, when the temperature of the metal strip is higher than the target temperature by a certain value or more, the upper limit value of the water amount density is set higher and cooling is performed. Even if the upper limit value of the water density is reset, if the temperature of the metal strip is equal to or higher than a certain value and higher than the temperature of the quench point corresponding to the water density, the upper limit value of the water density is set higher again.

これにより、金属帯の温度が目標温度まで冷却されないにしても、遷移沸騰に移行することなく、より目標温度に近い温度まで金属帯を冷却することができる。あるいは遷移沸騰に移行しない範囲で最大の水量密度を確保しても冷却能力が不足する場合は、ライン速度を下げる必要があるがその下げ代を必要最小限に抑えることができる。   Thereby, even if the temperature of the metal strip is not cooled to the target temperature, the metal strip can be cooled to a temperature closer to the target temperature without shifting to transition boiling. Alternatively, if the cooling capacity is insufficient even if the maximum water density is ensured within the range where transition boiling does not occur, the line speed needs to be reduced, but the reduction allowance can be minimized.

なお、金属帯の温度が水量密度に対応するクエンチ点の温度よりも低ければ、遷移沸騰に移行しているので、この状態にならないよう注意する必要がある。
つまり、過剰に高い水量密度の上限値を設定すると、遷移沸騰に移行するため、水量密度の上限値は、注意して設定する必要がある。一度に変更する水量密度の上限値の量を制限し、その上で金属帯の温度と水量密度に対応するクエンチ点の温度の差を確認し、必要に応じて水量密度の上限値の設定を繰り返せば、遷移沸騰への移行を確実に防止することができる。
If the temperature of the metal strip is lower than the temperature of the quench point corresponding to the water density, transition boiling has occurred, so care must be taken not to enter this state.
That is, if an excessively high upper limit value of the water amount density is set, transition to boiling will occur, so the upper limit value of the water amount density needs to be set with care. Limit the amount of water density upper limit to be changed at one time, and then check the difference between the metal band temperature and the quench point temperature corresponding to the water density, and set the water density upper limit if necessary. If it repeats, the transition to transition boiling can be prevented reliably.

上記一定値と、一度に変更する水量密度の上限値の量とは、任意に設定できる。この一定値が大きければ水量密度の上限値を再設定し難くなる半面、小さ過ぎれば例えば金属帯の温度が安定している定常部においてさえ、わずかな温度むらにも反応し過剰な冷却水量を設定し、かえって遷移沸騰への移行を招くことが懸念される。   The fixed value and the amount of the upper limit value of the water density to be changed at a time can be arbitrarily set. If this constant value is large, it will be difficult to reset the upper limit value of the water density, but if it is too small, for example, even in the steady part where the temperature of the metal strip is stable, it reacts to slight temperature irregularities and increases the amount of cooling water. There is a concern that it may cause a transition to transition boiling.

一度に変更する水量密度の上限値の量は、大き過ぎれば遷移沸騰に移行する危険が増すが、小さすぎれば適当な水量密度の上限に到達するまで何度も水量密度の上限値を設定し直すことになり、設定に時間を要する。金属帯の温度と水量密度に対応するクエンチ点の温度の差によって一度に変更する水量密度の上限値の量を変更するようにしてもよい。   If the upper limit of the water density is changed too much, there is an increased risk of transition to transition boiling, but if it is too small, the upper limit of the water density is set many times until the appropriate upper limit of the water density is reached. It takes time to set up. You may make it change the quantity of the upper limit of the water quantity density changed at once by the difference of the temperature of the quenching point corresponding to the temperature of a metal strip, and the water quantity density.

金属帯の温度は、実測ではなく計算によって求めるようにしてもよい。水冷装置による水量密度を変更し、実際に金属帯の温度の変化が完了するまでには時間を要するため、金属帯の温度の実測値に基づく水量密度の制御には時間がかかり、さらに繰り返し設定するのであれば、制御完了までに要する時間は無視できないほど大きくなる。計算によって求める場合、計算機の性能にもよるが、ほぼ瞬時に最適な条件を導出することができる。   The temperature of the metal strip may be obtained by calculation instead of actual measurement. Since it takes time to change the water density of the water cooling device and actually change the temperature of the metal strip, it takes time to control the water density based on the measured value of the metal strip temperature. If so, the time required to complete the control becomes so large that it cannot be ignored. When it is obtained by calculation, although it depends on the performance of the computer, an optimum condition can be derived almost instantaneously.

この計算の演算要素には、水冷装置の水量、金属帯の表面の水量密度、水冷装置による冷却前の金属帯の温度、金属帯の板厚、金属帯の搬送速度、金属帯の材質に基づく熱伝導率、比熱といった物性値、冷却水の水温、熱伝達係数等が挙げられる。   The calculation elements of this calculation are based on the amount of water in the water cooling device, the water density on the surface of the metal strip, the temperature of the metal strip before cooling by the water cooling device, the thickness of the metal strip, the transport speed of the metal strip, and the material of the metal strip. Examples include physical properties such as thermal conductivity and specific heat, cooling water temperature, heat transfer coefficient, and the like.

ただし、材質に基づく物性値は、処理する金属帯の材質に差異が無ければ定数で構わない。また、冷却水の水温が一定に保たれる水冷装置であれば、冷却水の水温も定数で構わない。さらに、熱伝達係数も水量密度と冷却水の水温から計算で求めることができるため、この計算値によって代用できる。熱伝達率の計算結果の例を図3にグラフで示す。   However, the physical property value based on the material may be a constant as long as there is no difference in the material of the metal strip to be processed. Further, the cooling water temperature may be a constant as long as the cooling water temperature is kept constant. Furthermore, since the heat transfer coefficient can also be calculated from the water density and the coolant temperature, this calculated value can be used instead. An example of the calculation result of the heat transfer coefficient is shown in a graph in FIG.

また、金属帯の温度は、予め作成したテーブル値を参照することによって求めるようにしてもよい。これにより、演算よりも速やかに金属帯の温度を導出することができる。
このテーブル値は、演算と同様の要素が考えられるが、演算と同様に省略できる要素もある。テーブル値は、少なくとも水冷装置の水量、金属帯の水量密度、水冷装置による冷却前の金属帯の温度、金属帯の板厚を要素とすることができる。これにより冷却速度を導出でき、搬送速度に応じて冷却後の金属帯の温度を導出することができる。
Further, the temperature of the metal strip may be obtained by referring to a table value created in advance. Thereby, the temperature of the metal strip can be derived more quickly than the calculation.
The table value may be the same element as the calculation, but there are elements that can be omitted as in the calculation. The table value can include at least the water amount of the water cooling device, the water amount density of the metal strip, the temperature of the metal strip before cooling by the water cooling device, and the thickness of the metal strip. Thereby, a cooling rate can be derived | led-out and the temperature of the metal strip after cooling can be derived | led-out according to a conveyance speed.

演算あるいはテーブル値に基づく金属帯の温度を基に水量密度の上限値を設定すると、温度実測に比べて、速やかに最適な水量密度を設定することができる。ただし、定常状態においては、金属帯の温度を実測し、温度実測値に基づいて水量密度を制御するようにしてもよい。実際の冷却装置において演算に使用する演算要素が実際の値からずれていることもあり、そのような場合に温度実測値を使用すると、実際の状態に応じた制御を行うことができる。   When the upper limit value of the water density is set based on the temperature of the metal band based on the calculation or the table value, the optimum water density can be set more quickly than in the actual temperature measurement. However, in a steady state, the temperature of the metal strip may be measured and the water density may be controlled based on the measured temperature value. The calculation element used for calculation in the actual cooling device may deviate from the actual value. In such a case, if the actual temperature measurement value is used, control according to the actual state can be performed.

上述した演算あるいはテーブル値から、水冷装置による冷却前の金属帯の温度に応じて膜沸騰と遷移沸騰の境界条件における水冷装置による冷却直後の金属帯の温度を導出することができる。この関係の一例を図4にグラフで示す。   From the above-described calculation or table value, the temperature of the metal strip immediately after cooling by the water cooling device in the boundary condition between film boiling and transition boiling can be derived according to the temperature of the metal strip before cooling by the water cooling device. An example of this relationship is shown graphically in FIG.

図4のグラフにおける冷却無しの条件とは、冷却前温度と冷却後温度が等しい条件である。図4のグラフにおいて冷却無しの条件より下の条件は存在しない。図4のグラフにおける境界条件とは、膜沸騰と遷移沸騰との境界条件であり、図1のグラフにおけるTq=f(Q)の条件である。図4のグラフにおける境界条件は、冷却前温度における膜沸騰と遷移沸騰の境界条件の水量密度で冷却した場合の金属帯の冷却後温度を示す。従って、膜沸騰を維持して冷却できる条件は、図4のグラフでは境界条件と冷却無しの間の着色部である。   The condition without cooling in the graph of FIG. 4 is a condition where the temperature before cooling and the temperature after cooling are equal. There is no condition below the condition of no cooling in the graph of FIG. The boundary condition in the graph of FIG. 4 is a boundary condition between film boiling and transition boiling, and is a condition of Tq = f (Q) in the graph of FIG. The boundary condition in the graph of FIG. 4 shows the temperature after cooling of the metal strip when cooling is performed with the water density of the boundary condition of film boiling and transition boiling at the temperature before cooling. Therefore, the conditions under which film boiling can be maintained and cooled are the colored portions between the boundary conditions and no cooling in the graph of FIG.

冷却前後それぞれの温度を維持したまま搬送速度が低下すれば、必要な冷却速度が低下するため、冷却に必要な水量密度が小さくなり、低い水量密度では遷移沸騰し難くなるため、着色部は左上に拡大していく。つまり、金属帯の最大搬送速度における図4のグラフの関係を求めておき、水冷装置による冷却前後の目標温度を着色部の領域に定めておけば、遷移沸騰を引き起こす水量密度の冷却を回避することができる。また、目標温度の入力の際、着色部の温度条件でなければ目標温度の入力値を受け付けないとしてもよい。   If the conveyance speed decreases while maintaining the respective temperatures before and after cooling, the required cooling speed decreases, so the water density required for cooling becomes small, and transition boiling is difficult at low water density. Expand to. That is, if the relationship of the graph of FIG. 4 in the maximum conveyance speed of a metal strip is calculated | required and the target temperature before and behind the cooling by a water cooling apparatus will be defined in the area | region of a coloring part, cooling of the water density which causes transition boiling will be avoided be able to. In addition, when the target temperature is input, the input value of the target temperature may not be accepted unless the temperature condition of the colored portion is satisfied.

冷却装置は、金属帯の進行方向に分割された複数の冷却ゾーンを備え、冷却ゾーン毎に配置された水冷装置により上記の冷却を行うようにしてもよい。これにより、各冷却ゾーンの冷却終了後の金属帯の目標温度を設定することができるため、複雑な冷却パターンを設定することが可能になる。   The cooling device may include a plurality of cooling zones divided in the traveling direction of the metal strip, and the above cooling may be performed by a water cooling device arranged for each cooling zone. Thereby, since the target temperature of the metal strip after the cooling of each cooling zone can be set, it becomes possible to set a complicated cooling pattern.

さらに、冷却装置が分割された複数の冷却ゾーンを備える場合、各冷却ゾーンによる冷却前の金属帯の温度をこの冷却ゾーンの一つ上流の冷却ゾーンの水冷装置で冷却された直後の金属帯の温度により代用してもよい。これにより、ある冷却ゾーンで金属帯を目標温度まで冷却できなかった場合には、この冷却ゾーンの冷却結果を反映して、この冷却ゾーンの下流の冷却ゾーンの冷却条件を調整することができる。   Furthermore, when the cooling device includes a plurality of divided cooling zones, the temperature of the metal strip before cooling by each cooling zone is set to the temperature of the metal strip immediately after being cooled by the water cooling device in the cooling zone one upstream of this cooling zone. You may substitute by temperature. Thereby, when the metal band cannot be cooled to the target temperature in a certain cooling zone, the cooling condition of the cooling zone downstream of this cooling zone can be adjusted by reflecting the cooling result of this cooling zone.

本発明の水冷装置の冷却方法は、気水冷却あるいはミスト冷却といった細かい水滴を金属帯に噴射して金属帯を冷却する冷却方法であることが望ましい。本発明に該当しない冷却方法には、例えば、熱間圧延のランアウトテーブルの上流側に見られるような金属帯に水が乗っているような大流量の水量密度の冷却を挙げることができる。このような冷却方法は、高い水量密度で高い温度でクエンチ点を通過し、遷移沸騰領域で金属帯を冷却するものであるから、本発明の冷却方法には該当しない。   The cooling method of the water cooling device of the present invention is preferably a cooling method in which fine water droplets such as air-water cooling or mist cooling are jetted onto the metal band to cool the metal band. Cooling methods that do not fall within the scope of the present invention include, for example, cooling at a large water flow density such that water is on a metal strip as seen on the upstream side of a hot rolling runout table. Such a cooling method does not correspond to the cooling method of the present invention because it passes through the quench point at a high temperature and a high temperature and cools the metal strip in the transition boiling region.

本発明が最も効果的である金属の種類は鋼である。鋼は他の金属材料に比べて冷却速度による組織や特性の変化が顕著であるため、本発明による均一な冷却が最も効果を発揮する。   The type of metal for which the present invention is most effective is steel. Compared to other metal materials, steel has a remarkable change in structure and characteristics depending on the cooling rate, so uniform cooling according to the present invention is most effective.

次に本発明を実施するための冷却装置について説明する。
図5は、本発明に係る冷却装置の一例を示す説明図である。
本発明の冷却装置(1)は、金属帯(8)を水冷する水冷装置(2)、金属帯(8)の温度情報を出力する温度情報出力手段(3)、および、水冷装置(2)による金属帯(8)の表面の水量密度を制御する制御装置(4)からなる。
Next, a cooling device for carrying out the present invention will be described.
FIG. 5 is an explanatory view showing an example of a cooling device according to the present invention.
The cooling device (1) of the present invention includes a water cooling device (2) for cooling the metal strip (8) with water, a temperature information output means (3) for outputting temperature information of the metal strip (8), and a water cooling device (2). It comprises a control device (4) for controlling the water density on the surface of the metal strip (8).

また、冷却装置(1)はラインの進行方向に複数の冷却ゾーン(5,6,7)に分割されて構成されることが多い。冷却ゾーン(5,6,7)には冷媒によって金属帯(8)を冷却する装置が設置される。本発明では冷媒が水である金属帯(8)を冷却する装置を水冷装置(2)という。なお、図5において、冷却ゾーン(5,7)の水冷装置(2)以外の装置および情報は記載を省略した。   Further, the cooling device (1) is often configured by being divided into a plurality of cooling zones (5, 6, 7) in the line traveling direction. In the cooling zone (5, 6, 7), a device for cooling the metal strip (8) with a refrigerant is installed. In the present invention, the device for cooling the metal strip (8) whose coolant is water is referred to as a water cooling device (2). In FIG. 5, the description of the devices and information other than the water cooling device (2) in the cooling zone (5, 7) is omitted.

水冷装置(2)は、ポンプ、配管、スプレーヘッダ、スプレーノズル等によって構成される。水冷装置(2)から金属帯(8)へ噴射される冷却水(9)の水量は制御装置(4)から出力される水量指示(11)によって指示される。   A water cooling device (2) is comprised by a pump, piping, a spray header, a spray nozzle, etc. The amount of cooling water (9) injected from the water cooling device (2) to the metal strip (8) is instructed by a water amount instruction (11) output from the control device (4).

制御装置(4)は温度情報出力手段(3)から出力される温度情報(12)に基づき金属帯(8)を冷却する水量密度を決定し、水冷装置(2)の設置個所における金属帯(8)の搬送速度に応じた水冷装置(2)の冷却水(9)の水量を決定し、水量指示(11)として出力する。温度情報出力手段(3)から出力される温度情報(12)は、たとえば金属帯の水量装置(2)で冷却される前の温度実績(13)、水量装置(2)で冷却された後の温度実績(14)、制御装置(4)が出力した水量実績(15)、金属帯(8)の搬送速度等に基づいて出力される。 制御装置(4)は一つの水冷装置(2)に一つの制御装置(4)であってもよいし、一つの制御装置(4)が複数の冷却ゾーン(5,6,7)の各水冷装置(2)に応じた水量指示(11)を出力する構成であってもよい。また、温度情報出力手段(3)も一つの冷却ゾーン(例えば6)に一つの温度情報出力手段(3)であっても良いし、一つの温度情報出力手段(3)が複数の冷却ゾーン(5,6,7)にそれぞれの冷却ゾーン(5,6,7)の制御装置(4)が水量密度設定するのに必要な温度情報(12)を出力する構成であってもよい。   The control device (4) determines the density of the amount of water to cool the metal strip (8) based on the temperature information (12) output from the temperature information output means (3), and the metal strip (2) at the place where the water cooling device (2) is installed. The amount of cooling water (9) of the water cooling device (2) corresponding to the conveyance speed of 8) is determined and output as a water amount instruction (11). The temperature information (12) output from the temperature information output means (3) includes, for example, a temperature record (13) before being cooled by the water device (2) of the metal strip, and after being cooled by the water device (2). It is output based on the temperature record (14), the water volume record (15) output by the controller (4), the transport speed of the metal strip (8), and the like. The control device (4) may be one control device (4) for one water cooling device (2), or one control device (4) may perform water cooling for each of the cooling zones (5, 6, 7). The structure which outputs the water quantity instruction | indication (11) according to an apparatus (2) may be sufficient. Further, the temperature information output means (3) may be one temperature information output means (3) in one cooling zone (for example, 6), or one temperature information output means (3) may have a plurality of cooling zones ( The temperature information (12) required for the control device (4) of each cooling zone (5, 6, 7) to set the water density may be output to 5, 6, 7).

この冷却装置(1)の特徴は、制御装置(4)に膜沸騰と遷移沸騰の境界条件(クエンチ点)における金属帯(8)の温度と水量密度の関係を格納しておき、この関係に基づき温度情報出力手段(3)から制御装置(4)に入力される温度情報(12)に応じて膜沸騰を維持できる水量密度を上限値として設定し、その水量密度の上限値を逸脱しない範囲で水量密度を制御することによって、遷移沸騰に移行することなく膜沸騰を維持しながら金属帯(8)を冷却できることである。   The feature of this cooling device (1) is that the control device (4) stores the relationship between the temperature of the metal strip (8) and the water amount density at the boundary condition (quenching point) between film boiling and transition boiling. Based on the temperature information (12) input from the temperature information output means (3) to the control device (4), a water density that can maintain film boiling is set as an upper limit value, and the range that does not deviate from the upper limit value of the water density By controlling the water content density, the metal strip (8) can be cooled while maintaining film boiling without shifting to transition boiling.

膜沸騰を維持しながら金属帯(8)を冷却するため、金属帯(8)は均一に冷却され、温度むらに伴う金属帯(8)の特性のばらつきを防止することができる。
温度情報出力手段(3)から出力される温度情報(12)は、例えば金属帯(8)の目標温度である。この場合、目標温度に応じて冷却水(9)の水量密度の上限値を設定するため、目標温度まで冷却されていない金属帯(8)において金属帯(8)を冷却する冷却水(9)が遷移沸騰に移行することを避けることができる。
Since the metal strip (8) is cooled while maintaining film boiling, the metal strip (8) is uniformly cooled, and variations in characteristics of the metal strip (8) due to temperature unevenness can be prevented.
The temperature information (12) output from the temperature information output means (3) is, for example, the target temperature of the metal strip (8). In this case, in order to set the upper limit value of the water density of the cooling water (9) according to the target temperature, the cooling water (9) for cooling the metal band (8) in the metal band (8) not cooled to the target temperature. Can be prevented from transitioning to transition boiling.

温度情報出力手段(3)から出力される温度情報(12)は、金属帯(8)の温度の測定値、あるいは演算又はテーブル値に基づく金属帯(8)の温度の推定値であってもよい。これにより、冷却装置(2)内を搬送される金属帯(8)の温度に応じた冷却水(9)の水量密度の上限値を設定するため、金属帯(8)を冷却する冷却水(9)が遷移沸騰に移行することを防止することができる。   The temperature information (12) output from the temperature information output means (3) may be a measured value of the temperature of the metal strip (8), or an estimated value of the temperature of the metal strip (8) based on a calculation or a table value. Good. Thereby, in order to set the upper limit of the amount density of the cooling water (9) according to the temperature of the metal strip (8) conveyed in the cooling device (2), the cooling water (8) for cooling the metal strip (8) 9) can be prevented from transitioning to transition boiling.

温度情報出力手段(3)から出力される金属帯(8)の温度情報(12)は、金属帯(8)の目標温度と金属帯(8)の温度の測定値、あるいは演算又はテーブル値に基づく金属帯(8)の温度の推定値の両方であってもよい。これにより、金属帯(8)の温度が金属帯(8)の目標温度より所定値以上高い場合、金属帯(8)の温度の測定値あるいは推定値に基づく冷却水(9)の水量密度の上限値に設定値を変更し、金属帯(8)の温度を目標温度に近付けることができる。   The temperature information (12) of the metal strip (8) output from the temperature information output means (3) is a measured value of the target temperature of the metal strip (8) and the temperature of the metal strip (8), or an operation or table value. It may be both the estimated value of the temperature of the metal strip (8) based. Thus, when the temperature of the metal strip (8) is higher than the target temperature of the metal strip (8) by a predetermined value or more, the water density of the cooling water (9) based on the measured value or estimated value of the temperature of the metal strip (8). By changing the set value to the upper limit value, the temperature of the metal strip (8) can be brought close to the target temperature.

ただし、水量密度を増加させた結果、金属帯(8)の温度が低下し、金属帯(8)を冷却する冷却水(9)が遷移沸騰に移行し易くなるため、冷却水(9)の水量密度の上限値の設定変更は一度に行うのではなく小刻みに行い、設定変更の都度、変更後の金属帯(8)の温度を確認し、冷却水(9)が遷移沸騰に移行しない(金属帯の温度がその時の冷却水の水量密度に対応するクエンチ点の温度より低くならない)ことを確認しながら、金属帯(8)の温度と水量密度に対応するクエンチ点の温度との差が所定の範囲になるまで冷却水(9)の水量密度の上限値の設定変更を繰り返すことが望ましい。   However, as a result of increasing the water density, the temperature of the metal strip (8) decreases, and the cooling water (9) for cooling the metal strip (8) is likely to shift to transition boiling. Change the setting of the upper limit value of the water density in small increments rather than at once, and check the temperature of the metal strip (8) after the change every time the setting is changed, and the cooling water (9) does not shift to transition boiling ( The difference between the temperature of the metal band (8) and the temperature of the quench point corresponding to the water density is confirmed while confirming that the temperature of the metal band does not become lower than the temperature of the quench point corresponding to the water density of the cooling water at that time) It is desirable to repeat the setting change of the upper limit value of the water amount density of the cooling water (9) until the predetermined range is reached.

なお、温度情報(12)は、水冷装置による冷却直後の金属帯(8)の温度情報である。仮に水冷装置による冷却前あるいは冷却中の位置の金属帯(8)の温度情報であった場合、この位置より下流側の金属帯(8)では、金属帯(8)の温度が温度情報より低いため、水量密度が過大になり、遷移沸騰に移行することがあるからである。   The temperature information (12) is temperature information of the metal strip (8) immediately after cooling by the water cooling device. If the temperature information of the metal strip (8) at a position before or during cooling by the water cooling device is present, the temperature of the metal strip (8) is lower than the temperature information in the metal strip (8) downstream from this position. For this reason, the water density becomes excessive, and transition boiling may occur.

演算の要素には、水冷装置(2)の水量、金属帯(8)の表面の水量密度、水冷装置(2)による冷却前の金属帯(8)の温度、金属帯(8)の板厚および金属帯(8)の搬送速度、金属帯(8)の材質に基づく熱伝導率、比熱といった物性値、冷却水(9)の水温、熱伝達係数等が挙げられる。   The calculation elements include the amount of water in the water-cooling device (2), the water density on the surface of the metal strip (8), the temperature of the metal strip (8) before cooling by the water-cooling device (2), and the thickness of the metal strip (8). And the transport speed of the metal strip (8), the thermal conductivity based on the material of the metal strip (8), the physical properties such as specific heat, the water temperature of the cooling water (9), the heat transfer coefficient, and the like.

ただし、材質に基づく物性値は処理する金属帯(8)の材質に差異が無ければ定数で構わない。また、冷却水(9)の水温が一定に保たれる水冷装置(2)であれば、冷却水(9)の水温も定数で構わない。さらに、熱伝達係数も水量密度と冷却水(9)の水温から計算で求めることができるため、代用できる。   However, the physical property value based on the material may be a constant as long as there is no difference in the material of the metal strip (8) to be processed. In addition, the water temperature of the cooling water (9) may be a constant as long as it is a water cooling device (2) in which the water temperature of the cooling water (9) is kept constant. Furthermore, since a heat transfer coefficient can be calculated | required from water quantity density and the water temperature of cooling water (9), it can substitute.

テーブル値は、演算と同様の要素が考えられるが、演算と同様に省略できる要素もある。テーブル値は少なくとも水冷装置(2)の水量又は金属帯(8)への冷却水量密度、水冷装置(2)による冷却前の金属帯(8)の温度、金属帯(8)の板厚を要素とする。これにより冷却速度を導出でき、金属帯(8)の搬送速度に応じて冷却後の金属帯(8)の温度を導出することができる。   The table value may be the same element as the calculation, but there are elements that can be omitted as in the calculation. The table values include at least the water amount of the water cooling device (2) or the density of the cooling water amount to the metal strip (8), the temperature of the metal strip (8) before cooling by the water cooling device (2), and the plate thickness of the metal strip (8). And Thereby, a cooling rate can be derived | led-out and the temperature of the metal strip (8) after cooling can be derived | led-out according to the conveyance speed of a metal strip (8).

また、温度情報出力手段(3)から出力される温度情報(12)のうち、目標温度に図4のグラフにおける着色部のような制約条件を課してもよい。最大搬送速度における図4のグラフの着色部の関係を満たせば、冷却水(9)が遷移沸騰することがないため、膜沸騰のまま冷却することができる。   Further, in the temperature information (12) output from the temperature information output means (3), a restriction condition such as a colored portion in the graph of FIG. 4 may be imposed on the target temperature. If the relationship between the colored portions in the graph of FIG. 4 at the maximum conveyance speed is satisfied, the cooling water (9) does not undergo transition boiling, so that the film can be cooled while boiling.

具体的には、制約条件を記録装置に記録しておき、温度情報出力手段(3)は制約条件を参照し、金属帯(8)を冷却する冷却水(9)が遷移沸騰しない水冷装置(2)による冷却直後の金属帯(8)の温度の下限値より高い値を水冷装置(2)による冷却直後の金属帯(8)の温度の目標値として出力する。   Specifically, the constraint condition is recorded in the recording device, the temperature information output means (3) refers to the constraint condition, and the cooling water (9) that cools the metal strip (8) does not transition and boil. A value higher than the lower limit value of the temperature of the metal strip (8) immediately after cooling by 2) is output as the target value of the temperature of the metal strip (8) immediately after cooling by the water cooling device (2).

冷却装置(1)は、金属帯(8)搬送方向に複数の冷却ゾーン(5,6,7)に分割された冷却装置(1)であって、各冷却ゾーン(5,6,7)の水冷装置(2)は上記の冷却水量制御に基づく冷却を行う冷却装置(1)であってもよい。これにより、各冷却ゾーン(5,6,7)の金属帯(8)の目標温度を設定することができるため、複雑な冷却パターンを設定することが可能になる。   The cooling device (1) is a cooling device (1) divided into a plurality of cooling zones (5, 6, 7) in the metal band (8) conveyance direction, and each cooling zone (5, 6, 7) The water cooling device (2) may be a cooling device (1) that performs cooling based on the cooling water amount control. Thereby, since the target temperature of the metal strip (8) of each cooling zone (5, 6, 7) can be set, it becomes possible to set a complicated cooling pattern.

さらに、冷却装置(1)は金属帯搬送方向に複数の冷却ゾーン(5,6,7)に分割された場合、冷却ゾーン(5,6,7)による冷却前の金属帯(8)の温度をこの冷却ゾーンの一つ上流の冷却ゾーンの水冷装置(2)で冷却された直後の金属帯(8)の温度にしてもよい。そうすると、ある冷却ゾーンで金属帯(8)を目標温度まで冷却できなかった場合、この冷却ゾーンの下流の冷却ゾーンの冷却条件をこの冷却ゾーンの冷却結果を反映して調整することができる。   Further, when the cooling device (1) is divided into a plurality of cooling zones (5, 6, 7) in the metal band conveyance direction, the temperature of the metal band (8) before cooling by the cooling zones (5, 6, 7). May be the temperature of the metal strip (8) immediately after being cooled by the water cooling device (2) in the cooling zone one upstream of this cooling zone. Then, when the metal strip (8) cannot be cooled to the target temperature in a certain cooling zone, the cooling condition of the cooling zone downstream of this cooling zone can be adjusted to reflect the cooling result of this cooling zone.

金属帯(8)を水冷する水冷装置(2)の冷却方法は、気水冷却あるいはミスト冷却といった細かい水滴を金属帯(8)に噴射して金属帯(8)を冷却する冷却方法である。この冷却方法に該当しない冷却方法には、例えば、熱間圧延のランアウトテーブルの上流側に見られるような金属帯に水が乗っているような大流量の水量密度の冷却を挙げることができる。このような冷却方法は、高い水量密度で高い温度でクエンチ点を通過し、遷移沸騰領域で金属帯を冷却するものであるから、本発明の冷却装置(1)における水冷装置(2)の冷却方法には該当しない。   The cooling method of the water cooling device (2) that cools the metal strip (8) is a cooling method that cools the metal strip (8) by spraying fine water droplets such as air-water cooling or mist cooling onto the metal strip (8). As a cooling method not corresponding to this cooling method, for example, cooling of a water flow density with a large flow rate such that water is on a metal band as seen on the upstream side of a hot rolling run-out table can be mentioned. Since such a cooling method is to pass the quench point at a high temperature with a high water density and cool the metal strip in the transition boiling region, the cooling of the water cooling device (2) in the cooling device (1) of the present invention. Does not apply to the method.

本発明の冷却装置(1)に、最適な冷却対象は鋼帯である。鋼は他の金属材料に比べて冷却速度による組織や特性の変化が顕著であるため、本発明の冷却装置による均一な冷却が最も効果を発揮する。   The optimum cooling object for the cooling device (1) of the present invention is a steel strip. Compared to other metal materials, steel has a remarkable change in structure and characteristics depending on the cooling rate. Therefore, uniform cooling by the cooling device of the present invention is most effective.

本発明の冷却装置(1)の最適な設置個所は、連続焼鈍炉の冷却帯である。本発明の冷却装置(1)は、金属帯(8)を温度むらなく均一に冷却することができるため、本発明の冷却装置(1)を冷却帯に設置した連続焼鈍炉は均一な特性の金属帯(8)を製造することができる。   The optimum installation location of the cooling device (1) of the present invention is the cooling zone of the continuous annealing furnace. Since the cooling device (1) of the present invention can uniformly cool the metal strip (8) without uneven temperature, the continuous annealing furnace in which the cooling device (1) of the present invention is installed in the cooling zone has uniform characteristics. A metal strip (8) can be produced.

実施例として、全長10m(10ゾーン)の冷却帯で700℃の板厚1.4mmの鋼帯を冷却する場合を想定して伝熱計算を行った結果を以下に述べる。
なお、この実施例は、薄鋼板の縦型連続焼鈍炉について記述するが、本発明は他のゾーン毎に冷却条件を操作して鋼板を気水冷却あるいはミスト冷却する設備についても同様に適用できる。また、同様の設備で処理するのであれば、鋼以外の金属でも、その金属に応じた相関式を適用すれば、同様に実施可能である。
As an example, the results of heat transfer calculation assuming a case where a steel strip having a plate thickness of 1.4 mm at 700 ° C. is cooled in a cooling zone having a total length of 10 m (10 zones) will be described below.
Although this embodiment describes a vertical continuous annealing furnace for thin steel sheets, the present invention can be similarly applied to equipment for operating the cooling conditions for each of the other zones to cool the steel sheets with air or mist. . Moreover, if it processes with the same installation, even if it is metal other than steel, if the correlation type according to the metal is applied, it can implement similarly.

[比較例1]
全ゾーンを同一水量で300℃まで冷却した場合を図6にグラフで示す。搬送速度を80〜150mpmの間で変化させて検討した。搬送速度80mpm、出側鋼帯温度300℃を図6に白丸印で示す。この条件ではTq>f(Q)であるので、冷却水は鋼板上で膜沸騰が維持される。これは搬送速度80mpmであれば冷却速度が低く、冷却に必要な水量密度も低くなるので冷却水が遷移沸騰することなく安定した均一冷却が可能となるからである。
[Comparative Example 1]
FIG. 6 is a graph showing a case where all zones are cooled to 300 ° C. with the same amount of water. The conveyance speed was changed between 80 and 150 mpm for examination. A conveyance speed of 80 mpm and a delivery side steel strip temperature of 300 ° C. are indicated by white circles in FIG. Under this condition, Tq> f (Q), so that the cooling water maintains film boiling on the steel plate. This is because if the conveying speed is 80 mpm, the cooling speed is low and the water density required for cooling is also low, so that the cooling water can be stably and uniformly cooled without transition boiling.

一方、搬送速度150mpm、出側鋼帯温度300℃を図6のグラフ中に黒丸印で示す。この条件ではTq<f(Q)であるので、冷却水は鋼板上で遷移沸騰し、膜沸騰が維持できない。搬送速度150mpmでは冷却速度が高く、冷却に必要な水量密度も高くなるので、全ゾーンを同一水量で冷却した場合、冷却水が遷移沸騰することになる。   On the other hand, a conveyance speed of 150 mpm and an outlet steel strip temperature of 300 ° C. are indicated by black circles in the graph of FIG. Since Tq <f (Q) under this condition, the cooling water undergoes transition boiling on the steel sheet, and film boiling cannot be maintained. When the conveyance speed is 150 mpm, the cooling rate is high and the density of water required for cooling is also high. Therefore, when all zones are cooled with the same amount of water, the cooling water undergoes transition boiling.

図6のグラフでは、搬送速度が150mpmの場合、冷却に必要な水量密度が1.6になり、この条件ではTq=f(Q)となる350℃以下では膜沸騰が維持できないことが示されている。すなわち、生産性を上げるために高速通板しようとすると必要な水量密度が増加するため冷却水が膜沸騰を維持できなくなる。   In the graph of FIG. 6, when the conveyance speed is 150 mpm, the water density required for cooling is 1.6. Under these conditions, it is shown that film boiling cannot be maintained at 350 ° C. or lower where Tq = f (Q). ing. That is, when trying to pass through the plate at a high speed in order to increase productivity, the required water density increases and the cooling water cannot maintain film boiling.

図7に、図5の搬送速度150mpmでの各冷却ゾーンの冷却装置で冷却される直前の金属帯の温度(Tsin)と各冷却ゾーンの水量密度設定および各冷却ゾーンの冷却装置で冷却された直後の金属帯の温度(Tsout)の関係を示す。   FIG. 7 shows the temperature (Tsin) of the metal strip immediately before being cooled by the cooling device in each cooling zone at the conveyance speed of 150 mpm in FIG. 5, the water density setting of each cooling zone, and the cooling device in each cooling zone. The relationship of the temperature (Tsout) of the metal strip immediately after is shown.

図7において点線は膜沸騰と遷移沸騰の境界条件における一つの冷却ゾーンでの冷却前後の金属帯の温度を示す。また、Qmaxは金属帯の温度に応じた膜沸騰と遷移沸騰の境界条件における水量密度を示す。白丸印は各冷却ゾーンの冷却装置で冷却される直前の金属帯の温度と各冷却ゾーンの水量密度の条件を示している。図7においては金属帯の温度によらず水量密度一定の条件としている。白三角印は各冷却ゾーンの冷却装置で冷却される直前の金属帯の温度と各冷却ゾーンの冷却装置で冷却された直後の金属帯の温度の条件を示している。   In FIG. 7, the dotted line indicates the temperature of the metal band before and after cooling in one cooling zone in the boundary condition between film boiling and transition boiling. Qmax indicates the water density in the boundary condition between film boiling and transition boiling according to the temperature of the metal strip. White circles indicate the conditions of the temperature of the metal strip immediately before being cooled by the cooling device of each cooling zone and the water density of each cooling zone. In FIG. 7, the water density is constant regardless of the temperature of the metal strip. The white triangle marks indicate the conditions of the temperature of the metal strip immediately before being cooled by the cooling device in each cooling zone and the temperature of the metal strip immediately after being cooled by the cooling device in each cooling zone.

9番目の冷却ゾーンにおいて、冷却水は遷移沸騰に移行した。このとき、冷却前後の金属帯の温度は点線を横切り、水量密度はQmax以上になっている。冷却水が膜沸騰から遷移沸騰へ移行した際、急激に冷却が進み、わずかな水量むらで温度むらが拡大することになる。この時使用した冷却ノズルの水量むらを±10%程度だと仮定すると±22℃の温度むらが生じることになる。   In the ninth cooling zone, the cooling water transitioned to transition boiling. At this time, the temperature of the metal strip before and after cooling crosses the dotted line, and the water density is equal to or higher than Qmax. When the cooling water shifts from film boiling to transition boiling, the cooling proceeds rapidly, and the temperature unevenness increases with a small amount of water unevenness. If it is assumed that the water amount unevenness of the cooling nozzle used at this time is about ± 10%, a temperature unevenness of ± 22 ° C. occurs.

[比較例2]
これに対し、特許文献1に記載されているように、350℃以下で水量密度を下げた場合を図8に図7と同様にグラフで示す。搬送速度は150mpmである。この条件では350℃以下で水量密度を下げ冷却能力を落とす分、前段の冷却ゾーンの水量密度を上げ、冷却装置全体として最終的に300℃まで金属帯を冷却している。
[Comparative Example 2]
On the other hand, as described in Patent Document 1, a case where the water density is lowered at 350 ° C. or lower is shown in a graph in FIG. 8 as in FIG. The conveyance speed is 150 mpm. Under this condition, the water density in the preceding cooling zone is increased by lowering the water density at 350 ° C. or lower and the cooling capacity is lowered, and the metal strip is finally cooled to 300 ° C. as a whole cooling device.

この方法では高温時の冷却水量が多いため遷移沸騰に移行しやすくなり、金属帯が350℃になるまでに冷却水が遷移沸騰に移行してしまっている。このため金属帯の温度が350℃以下になってから冷却水の水量密度を下げても既に温度むらが発生してしまっている。金属帯の温度が350℃以下で冷却水量を減らすため鋼板温度差が復熱し温度むらは緩和されるものの±17℃の温度むらが生じた。   In this method, since the amount of cooling water at a high temperature is large, it becomes easy to shift to transition boiling, and the cooling water shifts to transition boiling before the metal strip reaches 350 ° C. For this reason, even if the water density of the cooling water is lowered after the temperature of the metal strip becomes 350 ° C. or less, temperature unevenness has already occurred. In order to reduce the amount of cooling water when the temperature of the metal strip was 350 ° C. or less, the steel plate temperature difference was reheated, and the temperature unevenness was alleviated, but the temperature unevenness of ± 17 ° C. occurred.

[本発明例]
本発明の実施例を図7、図8と同様に図9にグラフで示す。搬送速度と金属帯の板厚は、図7、図8と同じ150mpmと1.4mmである。水冷装置による最大水量密度(約3)を太線で示す。クエンチ点を回避するよう鋼板の冷却ゾーンの水量密度を低くするため、ライン内で目標温度まで鋼帯温度を下げるためには冷却初期の水量密度を高くしてライン全体の冷却能力を調整することになる。その結果、クエンチ点を一度も通過しないため温度むらは非常に小さく±6℃と大幅に改善された。
[Example of the present invention]
An embodiment of the present invention is shown graphically in FIG. 9 as in FIGS. The conveyance speed and the thickness of the metal strip are 150 mpm and 1.4 mm, which are the same as those in FIGS. The maximum water density by the water cooling device (about 3) is indicated by a bold line. In order to reduce the water density in the cooling zone of the steel sheet to avoid the quench point, to reduce the steel strip temperature to the target temperature in the line, the water capacity density in the initial stage of cooling should be increased to adjust the cooling capacity of the entire line. become. As a result, since the quench point was never passed, the temperature unevenness was very small and improved to ± 6 ° C.

これを実現するには下記の方法が例示される。
(a)各冷却ゾーンの金属帯の温度に応じた膜沸騰と遷移沸騰の境界条件における水量密度Qmaxを該冷却ゾーン水量密度の上限値として設定する。
(b)各冷却ゾーンの冷却直前の金属帯温度に応じて、冷却水が遷移沸騰に移行しない各冷却ゾーンの冷却直後の金属帯の温度を各ゾーンの冷却直後の金属帯目標温度に設定する。
The following method is exemplified for realizing this.
(A) The water density Qmax in the boundary condition between film boiling and transition boiling corresponding to the temperature of the metal band in each cooling zone is set as the upper limit value of the cooling zone water density.
(B) In accordance with the metal zone temperature immediately before cooling in each cooling zone, the temperature of the metal zone immediately after cooling in each cooling zone where the cooling water does not shift to transition boiling is set to the target metal band temperature immediately after cooling in each zone. .

1 冷却装置
2 水冷装置
3 温度情報出力手段
4 制御装置
5,6,7 冷却ゾーン
8 金属帯
9 冷却水
11 水量指示
12 温度情報
13 温度実績(水冷装置による冷却前)
14 温度実績(水冷装置による冷却後)
15 水量実績
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Water cooling device 3 Temperature information output means 4 Control devices 5, 6, 7 Cooling zone 8 Metal strip 9 Cooling water 11 Water quantity instruction 12 Temperature information 13 Temperature record (before cooling by water cooling device)
14 Temperature record (after cooling with water cooling device)
15 Water results

Claims (15)

冷却水を噴射することによって金属帯を冷却する水冷装置を用いて、前記金属帯の表面における冷却水の水量密度を制御しながら、金属帯を冷却する際に、膜沸騰と遷移沸騰の境界条件における前記金属帯の温度および水量密度の関係を予め求めておき、前記金属帯が、当該関係に基づいて該金属帯の温度に応じて与えられる水量密度を上限とした水量密度で冷却されるように、前記水量密度を制御することを特徴とする金属帯の冷却方法。   Using a water cooling device that cools the metal strip by injecting cooling water, the boundary condition between film boiling and transition boiling when the metal strip is cooled while controlling the water density of the cooling water on the surface of the metal strip. A relationship between the temperature of the metal band and the water density in advance is obtained in advance, and the metal band is cooled at a water volume density with an upper limit of the water density given according to the temperature of the metal band based on the relationship. In addition, the metal band cooling method is characterized by controlling the water density. 前記金属帯の温度は、前記水冷装置で冷却された直後の前記金属帯の温度である請求項1に記載された金属帯の冷却方法。   The method for cooling a metal strip according to claim 1, wherein the temperature of the metal strip is a temperature of the metal strip immediately after being cooled by the water cooling device. 前記金属帯の温度は、前記水冷装置で冷却された直後の前記金属帯の目標温度であるとともに、前記水量密度の制御は該目標温度に基づいて前記水量密度の上限値を定めることにより行われる請求項1に記載された金属帯の冷却方法。   The temperature of the metal strip is the target temperature of the metal strip immediately after being cooled by the water cooling device, and the control of the water density is performed by determining the upper limit value of the water density based on the target temperature. The method for cooling a metal strip according to claim 1. 前記水冷装置で冷却された直後の前記金属帯の温度が前記金属帯の目標温度より所定値以上高い場合、前記金属帯の温度から前記関係に基づき水量密度に応じて与えられる温度を減算して得られる値が正の所定範囲になるように、前記水量密度の上限値を高い値に変更して再設定する請求項3に記載された金属帯の冷却方法。   When the temperature of the metal strip immediately after being cooled by the water cooling device is higher than the target temperature of the metal strip by a predetermined value or more, the temperature given according to the water density based on the relationship is subtracted from the temperature of the metal strip. The metal strip cooling method according to claim 3, wherein the upper limit value of the water density is changed to a high value and reset so that the obtained value is in a positive predetermined range. 前記金属帯の温度を計算によって求める請求項1から請求項4までのいずれか1項に記載された金属帯の冷却方法。   The method for cooling a metal strip according to any one of claims 1 to 4, wherein the temperature of the metal strip is obtained by calculation. 前記金属帯の温度は予め作成したテーブル値を参照することによって求められる請求項1から請求項4までのいずれか1項に記載された金属帯の冷却方法。   The metal band cooling method according to any one of claims 1 to 4, wherein the temperature of the metal band is obtained by referring to a table value created in advance. 予め前記金属帯の板厚と前記水冷装置による冷却前の該金属帯の温度に応じた該金属帯を冷却する冷却水が遷移沸騰しない前記水冷装置による冷却直後の該金属帯の温度の下限値を求めておき、前記目標温度は前記下限値より高い請求項3から請求項6までのいずれか1項に記載された金属帯の冷却方法。   The lower limit value of the temperature of the metal strip immediately after cooling by the water cooling device in which the cooling water for cooling the metal strip according to the plate thickness of the metal strip and the temperature of the metal strip before cooling by the water cooling device does not transition boiling The method for cooling a metal strip according to any one of claims 3 to 6, wherein the target temperature is higher than the lower limit value. 前記水冷装置は、前記金属帯の進行方向に分割された複数の冷却ゾーンそれぞれに配置される請求項1から請求項7までのいずれか1項に記載された金属帯の冷却方法。   The metal band cooling method according to any one of claims 1 to 7, wherein the water cooling device is disposed in each of a plurality of cooling zones divided in a traveling direction of the metal band. 金属帯の水冷装置と、該金属帯の温度情報を出力する温度情報出力手段と、前記水冷装置から供給される冷却水の前記金属帯の表面における水量密度を制御する制御装置とを備える金属帯の冷却装置であって、前記制御装置は、膜沸騰と遷移沸騰の境界条件における金属帯の温度と水量密度の関係に基づいて前記温度情報出力手段から入力される金属帯の温度情報に応じて与えられる水量密度を上限値として設定し、該上限値を逸脱しないように前記水量密度を制御することを特徴とする金属帯の冷却装置。   Metal strip comprising a metal strip water cooling device, temperature information output means for outputting temperature information of the metal strip, and a control device for controlling the water density on the surface of the metal strip of cooling water supplied from the water cooling device The cooling device according to the present invention is based on the temperature information of the metal strip input from the temperature information output means based on the relationship between the temperature of the metal strip and the water density in the boundary condition between film boiling and transition boiling. A metal band cooling device, wherein a given water density is set as an upper limit value, and the water density is controlled so as not to deviate from the upper limit value. 前記金属帯の温度情報は、該金属帯の目標温度である請求項9に記載された金属帯の冷却装置。   The metal band cooling device according to claim 9, wherein the temperature information of the metal band is a target temperature of the metal band. 前記金属帯の温度情報は、該金属帯の温度の測定値、あるいは演算又はテーブル値に基づく該金属帯の温度の推定値である請求項9に記載された金属帯の冷却装置。   The metal band cooling device according to claim 9, wherein the temperature information of the metal band is a measured value of the temperature of the metal band, or an estimated value of the temperature of the metal band based on a calculation or a table value. 前記金属帯の温度情報は、該金属帯の目標温度、および該金属帯の温度の測定値あるいは演算又はテーブル値に基づく該金属帯の温度の推定値であって、該金属帯の温度が該金属帯の目標温度より所定値以上高い場合に、前記該金属帯の温度の測定値あるいは演算又はテーブル値に基づく該金属帯の温度の推定値と前記関係に基づき水量密度に対応する金属帯の温度の差が正の所定の範囲になるまで水量密度の上限値を上げる再設定を繰り返すことを特徴とする請求項9に記載された金属帯の冷却装置。   The temperature information of the metal band is a target temperature of the metal band and an estimated value of the temperature of the metal band based on a measured value or calculation or table value of the temperature of the metal band, and the temperature of the metal band is the When the metal band is higher than the target temperature by a predetermined value or more, the estimated value of the temperature of the metal band based on the measured value or calculation or table value of the metal band and the metal band corresponding to the water density based on the relationship The metal band cooling device according to claim 9, wherein the resetting for increasing the upper limit value of the water amount density is repeated until the temperature difference becomes a predetermined positive range. 前記金属帯の温度情報は、前記水冷装置による冷却直後の前記金属帯の温度情報である請求項9から請求項12までのいずれか1項に記載された金属帯の冷却装置。   The metal band cooling device according to any one of claims 9 to 12, wherein the temperature information of the metal band is temperature information of the metal band immediately after cooling by the water cooling device. 前記金属帯の板厚と前記水冷装置による冷却前の該金属帯の温度に応じた該金属帯を冷却する冷却水が遷移沸騰しない前記水冷装置による冷却直後の該金属帯の温度の下限値を記録した記録装置を備え、前記目標温度は前記記録装置に記録された該金属帯温度の下限値より高い請求項13に記載された金属帯の冷却装置。   The lower limit value of the temperature of the metal strip immediately after cooling by the water cooling device in which the cooling water for cooling the metal strip according to the plate thickness of the metal strip and the temperature of the metal strip before cooling by the water cooling device does not cause transition boiling 14. The metal strip cooling device according to claim 13, further comprising a recording device that records, wherein the target temperature is higher than a lower limit value of the metal strip temperature recorded in the recording device. 前記水冷装置は、前記金属帯の進行方向に分割された複数の冷却ゾーンそれぞれに配置される請求項9から請求項14までのいずれか1項に記載された金属帯の冷却装置。   The said water cooling apparatus is a cooling device of the metal strip described in any one of Claim 9 to 14 arrange | positioned in each of the some cooling zone divided | segmented in the advancing direction of the said metal strip.
JP2010230695A 2010-10-13 2010-10-13 Metal strip cooling method and cooling device Active JP5505246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230695A JP5505246B2 (en) 2010-10-13 2010-10-13 Metal strip cooling method and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230695A JP5505246B2 (en) 2010-10-13 2010-10-13 Metal strip cooling method and cooling device

Publications (2)

Publication Number Publication Date
JP2012082484A true JP2012082484A (en) 2012-04-26
JP5505246B2 JP5505246B2 (en) 2014-05-28

Family

ID=46241671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230695A Active JP5505246B2 (en) 2010-10-13 2010-10-13 Metal strip cooling method and cooling device

Country Status (1)

Country Link
JP (1) JP5505246B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125622A (en) * 1986-11-15 1988-05-28 Kawasaki Steel Corp Method for continuous cooling of steel strip in heat treatment stage
JPH06179010A (en) * 1992-12-11 1994-06-28 Nippon Steel Corp Method for controlling cooling in continuous hot rolling
JPH06262240A (en) * 1993-03-10 1994-09-20 Nkk Corp Method for cooling steel strip
JP2000178658A (en) * 1998-12-08 2000-06-27 Nippon Steel Corp Method for cooling metallic strip
JP2009127060A (en) * 2007-11-20 2009-06-11 Sumitomo Metal Ind Ltd Production method of cold-rolled steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125622A (en) * 1986-11-15 1988-05-28 Kawasaki Steel Corp Method for continuous cooling of steel strip in heat treatment stage
JPH06179010A (en) * 1992-12-11 1994-06-28 Nippon Steel Corp Method for controlling cooling in continuous hot rolling
JPH06262240A (en) * 1993-03-10 1994-09-20 Nkk Corp Method for cooling steel strip
JP2000178658A (en) * 1998-12-08 2000-06-27 Nippon Steel Corp Method for cooling metallic strip
JP2009127060A (en) * 2007-11-20 2009-06-11 Sumitomo Metal Ind Ltd Production method of cold-rolled steel sheet

Also Published As

Publication number Publication date
JP5505246B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
KR101211273B1 (en) Method for cooling hot-rolled steel plate
CN102781598B (en) The manufacture method of hot rolled steel plate and manufacturing installation
JP5130733B2 (en) Continuous annealing equipment
JP5012056B2 (en) Steel continuous casting method
JP6037095B2 (en) Method and method for cooling hot-rolled coil and cooling device
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
EP2929949B1 (en) Device for cooling hot-rolled steel sheet
JP5100327B2 (en) Cold rolled steel sheet manufacturing method
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP5505246B2 (en) Metal strip cooling method and cooling device
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
KR102046949B1 (en) Austenitic stainless steel continuous casting method with uniform distribution of cooling water of second cooling stand
JP6436309B2 (en) Temperature control device and temperature control method for metal strip in continuous annealing equipment
JP5962209B2 (en) Method for producing hot-dip galvanized steel sheet
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
WO2021006254A1 (en) Secondary cooling method and device for continuously cast slab
CN114269953A (en) Manufacturing equipment and manufacturing method of thick steel plate
JP2008068267A (en) Method of cooling hot-rolled steel sheet
JP2012101237A (en) Method for controlling cooling of hot-rolled steel sheet
KR101353762B1 (en) Method for controlling surface propery of strip in twin roll strip casting process
JP3282714B2 (en) Cooling method for hot steel sheet
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
JP5779853B2 (en) Hot-rolled steel strip manufacturing method and hot-rolled steel strip cooling equipment
KR20220082884A (en) Rapid cooling of high yield strength steel sheet
JP6617592B2 (en) Steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5505246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350