JP2012079593A - 非水電解質二次電池および非水電解質 - Google Patents

非水電解質二次電池および非水電解質 Download PDF

Info

Publication number
JP2012079593A
JP2012079593A JP2010225030A JP2010225030A JP2012079593A JP 2012079593 A JP2012079593 A JP 2012079593A JP 2010225030 A JP2010225030 A JP 2010225030A JP 2010225030 A JP2010225030 A JP 2010225030A JP 2012079593 A JP2012079593 A JP 2012079593A
Authority
JP
Japan
Prior art keywords
negative electrode
group
formula
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010225030A
Other languages
English (en)
Inventor
Yuko Oyauchi
裕子 大谷内
Masayuki Ihara
将之 井原
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010225030A priority Critical patent/JP2012079593A/ja
Publication of JP2012079593A publication Critical patent/JP2012079593A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】負荷特性、保存特性、サイクル特性を向上できる非水電解質二次電池および非水電解質を提供する。
【解決手段】セパレータ23には、溶媒および電解質塩を含む電解液が含浸されている。溶媒は、式(1)で表される化合物を含み、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である。
【化1】
Figure 2012079593

【選択図】図2

Description

この発明は、非水電解質二次電池および非水電解質に関する。さらに詳しくは、非水溶媒および電解質塩を含む非水電解質を用いた非水電解質二次電池に関する。
近年、ビデオカメラ、デジタルスチルカメラ、携帯電話またはノートパソコン等のポータブル電子機器が広く普及しており、その小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。
中でも、充放電反応にリチウムイオンの吸蔵および放出を利用するリチウムイオン二次電池や、リチウム金属の析出および溶解を利用するリチウム金属二次電池等は、大いに期待されている。鉛電池やニッケルカドミウム電池よりも高いエネルギー密度が得られるからである。
これらのリチウムイオン二次電池およびリチウム金属二次電池の電解質として、炭酸エチレンまたは炭酸ジエチル等の炭酸エステル系の溶媒と、六フッ化リン酸リチウム等の電解質塩との組み合わせが広く用いられている。導電率が高く、電位的にも安定だからである。
二次電池は、正極および負極と共に電解液を備えており、その電解液は、非水溶媒および電解質塩を含んでいる。充放電反応の媒介として機能する電解液は、二次電池の性能に大きな影響を及ぼすことから、その組成については、さまざまな検討がなされている。
具体的には、高温特性を向上させるために、炭酸ジメチルの量を減らし、炭酸プロピレンを用いる方法が提案されている(特許文献1)。また炭酸ジメチルと、炭酸ジエチルや炭酸エチルメチルを併用することにより、炭酸ジメチルの割合を減少させ、保存特性を改善する方法が提案されている(特許文献2、特許文献3)。またサイクル特性を向上させるために、鎖状炭酸エステルに変えて、鎖状ジ炭酸エステルを用いる方法が提案されている(特許文献4)。
特開2009−43624号公報 特開2000−311706号公報 特開2001−143760号公報 特開平8−138741号公報
上記の例のように炭酸プロピレンを用いると、負極上で炭酸プロピレンの分解が起こるため、炭酸プロピレンの割合を増やすにつれて、充分な繰り返し充放電特性が得られなくなるという問題があった。また、炭酸ジエチルや炭酸エチルメチル、または鎖状ジ炭酸エステルを主溶媒として用いると、非水溶媒の粘度が増加し、充分なイオン伝導度が得られなくなるため、高負荷での放電容量を充分に確保できなくなる問題があった。
近年、ポータブル電子機器は益々高性能化および多機能化しており、その消費電力は増大する傾向にある。このため二次電池の性能、中でも負荷特性、保存特性、サイクル特性について、より一層の向上が望まれている。
本発明はかかる問題点に鑑みてなされたもので、その目的は、負荷特性、保存特性、サイクル特性を向上できる非水電解質二次電池および非水電解質を提供することにある。
上述した課題を解決するために、第1の発明は、正極と、負極と、非水溶媒および電解質塩を含む非水電解質とを含み、非水溶媒は、式(1)で表される化合物を含み、非水溶媒の全体量に対する式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である非水電解質二次電池である。
Figure 2012079593
第2の発明は、非水溶媒および電解質塩を含む非水電解質を含み、非水溶媒は、式(1)で表される化合物を含み、非水溶媒の全体量に対する式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である非水電解質である。
Figure 2012079593
第1および第2の発明では、非水溶媒は、式(1)で表される化合物を含み、非水溶媒の全体量に対する式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である。これにより、負荷特性、保存特性、サイクル特性を向上させることができる。
この発明によれば、負荷特性、保存特性およびサイクル特性を向上できる。
この発明の実施の形態による二次電池の構成を表す断面図である。 図1に示した巻回電極体の一部を拡大して表す断面図である。 図2に示した負極の構成を模式的に表す断面図である。 図2に示した負極の他の構成を模式的に表す断面図である。 図2に示した負極の断面構造を表すSEM写真およびその模式図である。 図2に示した負極の断面構造を表すSEM写真およびその模式図である。 この発明の実施の形態による第3の二次電池の構成を表す斜視図である。 図7に示した巻回電極体のVIII−VIII線に沿った断面図である。 XPSによるSnCoC含有材料の分析結果を表す図である。
以下、この発明の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(非水電解液)
2.第2の実施の形態(非水電解液を用いた二次電池)
(2−1)第1の二次電池
(2−2)第2の二次電池
(2−3)第3の二次電池
3.他の実施の形態(変形例)
1.第1の実施の形態
この発明の第1の実施の形態による非水電解液について説明する。この発明の第1の実施の形態による非水電解液は、例えば、二次電池に使用する二次電池用非水電解液(以下、単に「電解液」という)である。この電解液は、溶媒および電解質塩を含んでいる。
(溶媒)
溶媒は、式(1)で表される化合物を含む。この溶媒は、溶媒の全体量に対する式(1)で表される化合物の質量百分率をBとすると、0<B≦5.4質量%を満たすものである。
Figure 2012079593
また、溶媒は、式(1)で表される化合物と共に、炭酸エチレンと、4−フルオロ−1,3−ジオキソラン−2−オンと、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、トリメチル酢酸メチルから選ばれる少なくとも一種以上の溶媒とを含むことが好ましい。
この溶媒において、炭酸エチレンの質量分率をE、4−フルオロ−1,3−ジオキソラン−2−オンの質量分率をF、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、トリメチル酢酸メチルから選ばれる少なくとも一種以上の溶媒の質量分率をMとした場合に、0.11≦E/M≦0.49、且つ、0.8≦E/F≦18を満たすことが好ましい。
0.11≦E/M≦0.49、且つ、0.8≦E/F≦18であると共に、0<B≦5.4質量%を満たす溶媒を含む電解液を、例えば二次電池等の電気化学デバイスに用いた場合には、保存特性、負荷特性、サイクル特性により優れた二次電池を提供できる。
E/M<0.11であると、電解質塩の解離が妨げられるためイオン伝導性が低下し、充分な負荷特性が得られなくなる。E/M>0.49であると、電解液の粘性が増加するため、充分な負荷特性が得られなくなる。
E/F<0.8であると、高温保存中に4−フルオロ−1,3−ジオキソラン−2−オンの分解によるガス発生が増加し、保存特性が低下する。E/F>18であると、電解液と電極との反応が抑制できず、保存特性が低下する。
式(1)で表される化合物が含まれない(B=0)と、電極表面に良好な皮膜が形成されず、サイクル特性が低下する。
式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%であり、より良好な効果が得られる点から、0<B≦1.0質量%であることが好ましく、0.0001質量%≦B≦1.0質量%であることがより好ましい。B<0.0001質量%であると充分な効果が得られない傾向にある。B>5.4質量%であると高温保存中の電解液の劣化が進行し、保存後の負荷特性が低下する傾向にある。さらに、式(1)で表される化合物の質量百分率Bは、0.0001質量%≦B≦0.5質量%であることが好ましい。電解液の化学的安定性がより向上するからである。
E/Mは、0.13≦E/M≦0.25であることがより好ましい。電解液の化学的安定性とイオン伝導性が最適化されるからである。E/Fは、1.5≦E/F≦14であることがより好ましい。高温保存中の電解液の安定性と、電解液と電極との反応抑制が両立するからである。
溶媒は、式(2)〜式(3)の化合物のうち少なくとも一種を含んでもよい。電解液の化学的安定性が向上するからである。電解液中における式(2)〜式(3)の化合物の含有量としては、特に限定されないが、0.001質量%以上2質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。電解液の化学的安定性がより向上するからである。
Li2PFO3・・・式(2)
LiPF22・・・式(3)
なお、溶媒は、式(1)で表される化合物の質量百分率Bが、上記の条件を満たしていれば、式(1)で表される化合物、並びに、上述した材料(炭酸エチレン、4−フルオロ−1,3−ジオキソラン−2−オンと、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、トリメチル酢酸メチルから選ばれる少なくとも一種以上の溶媒)以外の他の材料を含んでいてもよい。このような他の材料は、例えば、以下で説明する有機溶媒等の非水溶媒のいずれか1種または2種以上等である。なお、以下で説明する非水溶媒からは、上述した炭酸エチレン、4−フルオロ−1,3−ジオキソラン−2−オン、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、トリメチル酢酸メチルが除かれることとする。
非水溶媒の一例としては、以下のもの等が挙げられる。炭酸プロピレン、炭酸ブチレン、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタンまたはテトラヒドロフランである。2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサンまたは1,4−ジオキサンである。酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸エチルである。アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリジノンまたはN−メチルオキサゾリジノンである。N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルまたはジメチルスルホキシドである。電解液を用いた電気化学デバイスにおいて、優れた特性が得られるからである。この特性とは、例えば、電解液が二次電池に用いられた場合には、電池容量、サイクル特性および保存特性等である。
特に、溶媒は、式(4)で表されるハロゲン化鎖状炭酸エステルおよび式(5)で表されるハロゲン化環状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい(ただし、4−フルオロ−1,3−ジオキソラン−2−オンを除く)。二次電池等の電気化学デバイスに用いた場合に、電極反応時において電極の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。この「ハロゲン化鎖状炭酸エステル」とは、ハロゲンを構成元素として含む鎖状炭酸エステルであり、「ハロゲン化環状炭酸エステル」とは、ハロゲンを構成元素として含む環状炭酸エステルである。なお、式(4)中のR11〜R16は、同じ種類の基でもよいし、異なる種類の基でもよい。このことは、式(5)中のR17〜R20についても、同様である。溶媒中におけるハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルの含有量は、例えば、0.01質量%以上50質量%以下である。ただし、ハロゲン化鎖状炭酸エステルまたはハロゲン化環状炭酸エステルの種類は、必ずしも下記で説明する化合物に限られず、他の化合物でもよい。
Figure 2012079593
(R11〜R16は、それぞれ独立して、水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。)
Figure 2012079593
(R17〜R20は、それぞれ独立して、水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。R18とR19が水素であり、R17とR18のいずれかがフッ素である場合は4−フルオロ−1,3−ジオキソラン−2−オンとなるため、これを除く)
ハロゲンの種類は、特に限定されないが、中でも、フッ素、塩素または臭素が好ましく、フッ素がより好ましい。他のハロゲンよりも高い効果が得られるからである。ただし、ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上でもよい。電解液を二次電池等の電気化学デバイスに用いた場合に、電極反応時において、電極の表面に保護膜を形成する能力が高くなり、より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。
ハロゲン化鎖状炭酸エステルの一例としては、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチル等が挙げられる。また、ハロゲン化環状炭酸エステルの一例としては、式(5−1)〜式(5−20)で表される化合物等が挙げられる。すなわち、式(5−1)の4−クロロ−1,3−ジオキソラン−2−オンまたは式(5−2)の4,5−ジフルオロ−1,3−ジオキソラン−2−オンである。式(5−3)のテトラフルオロ−1,3−ジオキソラン−2−オン、式(5−4)の4−クロロ−5−フルオロ−1,3−ジオキソラン−2−オンまたは式(5−5)の4,5−ジクロロ−1,3−ジオキソラン−2−オンである。式(5−6)のテトラクロロ−1,3−ジオキソラン−2−オン、式(5−7)の4,5−ビストリフルオロメチル−1,3−ジオキソラン−2−オンまたは式(5−8)の4−トリフルオロメチル−1,3−ジオキソラン−2−オンである。式(5−9)の4,5−ジフルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オンまたは式(5−10)の4,4−ジフルオロ−5−メチル−1,3−ジオキソラン−2−オンである。式(5−11)の4−エチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オン、式(5−12)の4−フルオロ−5−トリフルオロメチル−1,3−ジオキソラン−2−オンまたは式(5−13)の4−メチル−5−トリフルオロメチル−1,3−ジオキソラン−2−オンである。式(5−14)の4−フルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オンまたは式(5−15)の5−(1,1−ジフルオロエチル)−4,4−ジフルオロ−1,3−ジオキソラン−2−オンである。式(5−16)の4,5−ジクロロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、式(5−17)の4−エチル−5−フルオロ−1,3−ジオキソラン−2−オンまたは式(5−18)の4−エチル−4,5−ジフルオロ−1,3−ジオキソラン−2−オンである。式(5−19)の4−エチル−4,5,5−トリフルオロ−1,3−ジオキソラン−2−オンまたは式(5−20)の4−フルオロ−4−メチル−1,3−ジオキソラン−2−オンである。このハロゲン化環状炭酸エステルには、幾何異性体も含まれる。中でも、(5−2)に示した4,5−ジフルオロ−1,3−ジオキソラン−2−オンがより好ましい。特に、4,5−ジフルオロ−1,3−ジオキソラン−2−オンでは、シス異性体よりもトランス異性体が好ましい。容易に入手できると共に、高い効果が得られるからである。
Figure 2012079593
また、溶媒は、式(6)〜式(8)で表される不飽和炭素結合環状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。電気化学デバイスに用いた場合の電極反応時において電極の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。この「不飽和炭素結合環状炭酸エステル」とは、不飽和炭素結合を有する環状炭酸エステルである。溶媒中における不飽和炭素結合環状炭酸エステルの含有量は、例えば、0.01質量%〜10質量%である。不飽和炭素結合環状炭酸エステルの種類は、下記で説明するものに限られず、他のものでもよい。
Figure 2012079593
(R21およびR22は、それぞれ独立して、水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基である。)
Figure 2012079593
(R23〜R26は、それぞれ独立して、水素基、アルキル基、ビニル基またはアリル基であり、それらのうちの少なくとも1つはビニル基またはアリル基である。)
Figure 2012079593
(R27はアルキレン基である。)
式(6)に示した不飽和炭素結合環状炭酸エステルは、炭酸ビニレン系化合物である。この炭酸ビニレン系化合物の一例としては、以下のもの等が挙げられる。炭酸ビニレン、炭酸メチルビニレンまたは炭酸エチルビニレンである。また、4,5−ジメチル−1,3−ジオキソール−2−オン、4,5−ジエチル−1,3−ジオキソール−2−オン、4−フルオロ−1,3−ジオキソール−2−オンまたは4−トリフルオロメチル−1,3−ジオキソール−2−オンである。中でも、炭酸ビニレンが好ましい。容易に入手できると共に、高い効果が得られるからである。
式(7)に示した不飽和炭素結合環状炭酸エステルは、炭酸ビニルエチレン系化合物である。この炭酸ビニルエチレン系化合物の一例としては、以下のもの等が挙げられる。炭酸ビニルエチレン、4−メチル−4−ビニル−1,3−ジオキソラン−2−オンまたは4−エチル−4−ビニル−1,3−ジオキソラン−2−オンである。また、4−n−プロピル−4−ビニル−1,3−ジオキソラン−2−オン、5−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4,4−ジビニル−1,3−ジオキソラン−2−オンまたは4,5−ジビニル−1,3−ジオキソラン−2−オンである。中でも、炭酸ビニルエチレンが好ましい。容易に入手できると共に、高い効果が得られるからである。もちろん、R23〜R26としては、全てがビニル基でもよいし、全てがアリル基でもよいし、ビニル基とアリル基とが混在してもよい。
式(8)に示した不飽和炭素結合環状炭酸エステルは、炭酸メチレンエチレン系化合物である。この炭酸メチレンエチレン系化合物の一例としては、以下のもの等が挙げられる。4−メチレン−1,3−ジオキソラン−2−オン、4,4−ジメチル−5−メチレン−1,3−ジオキソラン−2−オンまたは4,4−ジエチル−5−メチレン−1,3−ジオキソラン−2−オンである。この炭酸メチレンエチレン系化合物としては、1つのメチレン基を有するもの(式(8)に示した化合物)の他、2つのメチレン基を有するものでもよい。
なお、不飽和炭素結合環状炭酸エステルとしては、式(6)〜式(8)に示したものの他、ベンゼン環を有する炭酸カテコール(カテコールカーボネート)等であってもよい。
また、溶媒は、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電解液の化学的安定性がより向上するからである。このスルトンとしては、例えば、プロパンスルトンまたはプロペンスルトン等が挙げられる。非水溶媒中におけるスルトンの含有量は、例えば、0.5質量%〜5質量%である。ただし、スルトンは、上記した化合物に限られず、他の化合物でもよい。
さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性がより向上するからである。この酸無水物としては、例えば、例えば、カルボン酸無水物、ジスルホン酸無水物、またはカルボン酸とスルホン酸との無水物等が挙げられる。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸等である。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸等である。カルボン酸とスルホン酸との無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸等である。非水溶媒中における酸無水物の含有量は、例えば、0.5質量%〜5質量%である。ただし、酸無水物は、上記した化合物に限られず、他の化合物でもよい。
(電解質塩)
電解質塩は、例えば、以下で説明するリチウム塩のいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩(例えばリチウム塩以外の軽金属塩)を含んでいてもよい。なお、上述した式(2)の化合物であるモノフルオロリン酸リチウムおよび式(3)の化合物であるジフルオロリン酸リチウムは、以下で説明する電解質塩から除かれることとする。
リチウム塩としては、例えば、以下の化合物等が挙げられる。六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)または六フッ化ヒ酸リチウム(LiAsF6)である。テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)またはテトラクロロアルミン酸リチウム(LiAlCl4)である。六フッ化ケイ酸二リチウム(Li2SiF6)、塩化リチウム(LiCl)または臭化リチウム(LiBr)である。電解液を用いた二次電池において、優れた電池容量、サイクル特性および保存特性等が得られるからである。ただし、リチウム塩は、上記した化合物に限られず、他の化合物でもよい。
中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムの1種類または2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。
特に、電解質塩は、式(9)〜式(14)で表される化合物のうちの少なくとも1種を含んでいることが好ましい。より高い効果が得られるからである。なお、式(9)中のR33は、同一でもよいし、異なってもよい。このことは、式(10)中のR41〜R43および式(11)中のR51およびR52についても同様である。ただし、式(9)〜式(14)に示した化合物は、下記で説明する化合物に限られず、他の化合物でもよい。
Figure 2012079593
(X31は長周期型周期表における1族元素または2族元素、またはアルミニウムである。M31は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。R31はハロゲン基である。Y31は−OC−R32−CO−、−OC−C(R33)2−または−OC−CO−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基またはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基またはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2または4であり、c3、d3、m3およびn3は1〜3の整数である。)
Figure 2012079593
(X41は長周期型周期表における1族元素または2族元素である。M41は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。Y41は−(O=)C−(C(R41)2b4−C(=O)−、−(R43)2C−(C(R42)2c4−C(=O)−、−(R43)2C−(C(R42)2c4−C(R43)2−、−(R43)2C−(C(R42)2c4−S(=O)2−、−(O=)2S−(C(R42)2d4−S(=O)2−または−(O=)C−(C(R42)2d4−S(=O)2−である。ただし、R41およびR43は、それぞれ独立して、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。なお、a4、e4およびn4は1または2であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
Figure 2012079593
(X51は長周期型周期表における1族元素または2族元素である。M51は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。Rfはフッ素化アルキル基またはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−(O=)C−(C(R51)2d5−C(=O)−、−(R52)2C−(C(R51)2d5−C(=O)−、−(R52)2C−(C(R51)2d5−C(R52)2−、−(R52)2C−(C(R51)2d5−S(=O)2−、−(O=)2S−(C(R51)2e5−S(=O)2−または−(O=)C−(C(R51)2e5−S(=O)2−である。ただし、R51は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。なお、a5、f5およびn5は1または2であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)
LiN(Cm2m+1SO2)(Cn2n+1SO2)…(12)
(mおよびnは1以上の整数である。)
Figure 2012079593
(R61は炭素数=2〜4の直鎖状または分岐状のパーフルオロアルキレン基である。)
LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2
…(14)
(p、qおよびrは1以上の整数である。)
なお、長周期型周期表における1族元素とは、水素(H)、リチウム(Li)ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)およびフランシウム(Fr)である。2族元素とは、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)およびラジウム(Ra)である。13族元素とは、ホウ素、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)である。14族元素とは、炭素、ケイ素、ゲルマニウム(Ge)、スズ(Sn)および鉛(Pb)である。15族元素とは、窒素、リン、ヒ素(As)、アンチモン(Sb)およびビスマス(Bi)である。
式(9)に示した化合物の一例としては、式(9−1)〜式(9−6)で表される化合物等が挙げられる。式(10)に示した化合物の一例としては、式(10−1)〜式(10−8)で表される化合物等が挙げられる。式(11)に示した化合物の一例としては、式(11−1)で表される化合物等が挙げられる。
Figure 2012079593
Figure 2012079593
Figure 2012079593
また、電解質塩は、式(12)〜式(14)で表される化合物のうちの少なくとも1種を含んでいることが好ましい。より高い効果が得られるからである。
式(12)に示した化合物は、鎖状のイミド化合物である。この化合物の一例としては、以下の化合物等が挙げられる。ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)またはビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C25SO22)である。(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CF3SO2)(C25SO2))である。(トリフルオロメタンスルホニル)(ヘプタフルオロプロパンスルホニル)イミドリチウム(LiN(CF3SO2)(C37SO2))である。(トリフルオロメタンスルホニル)(ノナフルオロブタンスルホニル)イミドリチウム(LiN(CF3SO2)(C49SO2))である。
式(13)に示した化合物は、環状のイミド化合物である。この化合物の一例としては、式(13−1)〜式(13−4)で表される化合物等が挙げられる。すなわち、式(13−1)の1,2−パーフルオロエタンジスルホニルイミドリチウムまたは式(13−2)の1,3−パーフルオロプロパンジスルホニルイミドリチウムである。式(13−3)の1,3−パーフルオロブタンジスルホニルイミドリチウムまたは式(13−4)の1,4−パーフルオロブタンジスルホニルイミドリチウムである。
Figure 2012079593
Figure 2012079593
Figure 2012079593
Figure 2012079593
式(14)に示した化合物は、鎖状のメチド化合物である。この化合物の一例としては、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3SO23)等が挙げられる。
電解質塩の含有量は、溶媒に対して0.3mol/kg〜3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。
2.第2の実施の形態
この発明の第2の実施の形態による第1〜第3の二次電池について説明する。この発明の第2の実施の形態による二次電池は、上述した第1の実施の形態による電解液を用いた二次電池である。
<2−1.第1の二次電池>
図1および図2は、第1の二次電池の断面構成を表しており、図2では、図1に示した巻回電極体20の一部を拡大している。ここで説明する二次電池は、例えば、負極の容量が電極反応物質であるリチウムイオンの吸蔵および放出により表されるリチウムイオン二次電池である。
[二次電池の全体構成]
この二次電池は、主に、ほぼ中空円柱状の電池缶11の内部に、巻回電極体20および一対の絶縁板12,13が収納されたものである。このような電池缶11を用いた電池構造は、円筒型と呼ばれている。
電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、鉄(Fe)、アルミニウム(Al)またはそれらの合金等により構成されている。なお、電池缶11が鉄により構成される場合には、例えば、電池缶の11の表面にニッケル(Ni)等が鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を上下から挟み、その巻回周面に対して垂直に延在するように配置されている。
電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16がガスケット17を介してかしめられており、その電池缶11は、密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱等に起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続を切断するようになっている。熱感抵抗素子16は、温度の上昇に応じて抵抗が増大する(電流を制限する)ことにより、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、その表面には、例えば、アスファルトが塗布されている。
巻回電極体20は、セパレータ23を介して正極21と負極22とが積層および巻回されたものである。この巻回電極体20の中心には、センターピン24が挿入されていてもよい。巻回電極体20では、アルミニウム等により構成された正極リード25が正極21に接続されていると共に、ニッケル等により構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接等されて電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接等されて電気的に接続されている。
(正極)
正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられたものである。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。
正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレス(SUS)等により構成されている。
正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて、正極結着剤または正極導電剤等の他の材料を含んでいてもよい。
正極材料としては、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。リチウム含有化合物としては、例えば、リチウムと遷移金属元素とを構成元素として含む複合酸化物や、リチウムと遷移金属元素とを構成元素として含むリン酸化合物等が挙げられる。中でも、遷移金属元素としてコバルト(Co)、ニッケル、マンガン(Mn)および鉄のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。その化学式は、例えば、LixM1O2またはLiyM2PO4で表される。式中、M1およびM2は、1種類以上の遷移金属元素を表す。また、xおよびyの値は、充放電状態に応じて異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。
リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、または式(17)で表されるリチウムニッケル系複合酸化物等が挙げられる。また、リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4)またはリチウム鉄マンガンリン酸化合物(LiFe1-uMnuPO4(u≦1))等が挙げられる。高い電池容量が得られると共に、優れたサイクル特性も得られるからである。
LiNi1-xx2…(17)
(Mはコバルト、マンガン、鉄、アルミニウム、バナジウム(V)、スズ、マグネシウム、チタン(Ti)、ストロンチウム、カルシウム、ジルコニウム(Zr)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、レニウム(Re)、イッテルビウム(Yb)、銅(Cu)、亜鉛(Zn)、バリウム、ホウ素、クロム(Cr)、ケイ素、ガリウム、リン、アンチモンおよびニオブ(Nb)のうちの少なくとも1種である。xは0.005≦x≦0.5である。)
この他、正極材料としては、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等が挙げられる。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等である。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等である。導電性高分子は、例えば、硫黄、ポリアニリンまたはポリチオフェン等である。
もちろん、正極材料は、上記以外のものであってもよい。また、上記した一連の正極材料は、任意の組み合わせで2種以上混合されてもよい。
正極結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエン等の合成ゴムや、ポリフッ化ビニリデン等の高分子材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
正極導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラックまたはケチェンブラック等の炭素材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。なお、正極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子等であってもよい。
(負極)
負極22は、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられたものである。ただし、負極活物質層22Bは、負極集電体22Aの片面だけに設けられていてもよい。
負極集電体22Aは、例えば、銅、ニッケルまたはステンレス等により構成されている。この負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極集電体22Aの表面が粗面化されていればよい。粗面化の方法としては、例えば、電解処理により微粒子を形成する方法等が挙げられる。この電解処理とは、電解槽中において電解法により負極集電体22Aの表面に微粒子を形成して凹凸を設ける方法である。この電解処理によって粗面化された銅箔を含め、電解法によって作製された銅箔は、一般に「電解銅箔」と呼ばれている。
負極活物質層22Bは、負極活物質として、リチウムイオンを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んでおり、必要に応じて、負極結着剤または負極導電剤等の他の材料を含んでいてもよい。なお、負極結着剤および負極導電剤に関する詳細は、例えば、それぞれ正極結着剤および正極導電剤と同様である。この負極活物質層22Bでは、例えば、充放電時において意図せずにリチウム金属が析出することを防止するために、負極材料の充電可能な容量は正極21の放電容量よりも大きくなっていることが好ましい。
負極材料としては、例えば、炭素材料が挙げられる。リチウムイオンの吸蔵および放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度および優れたサイクル特性が得られるからである。また、負極導電剤としても機能するからである。この炭素材料は、例えば、易黒鉛化性炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素や、(002)面の面間隔が0.34nm以下の黒鉛等である。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭またはカーボンブラック類等がある。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークス等が含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂等を適当な温度で焼成して炭素化したものをいう。なお、炭素材料の形状は、繊維状、球状、粒状または鱗片状のいずれでもよい。
また、負極材料としては、例えば、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料(金属系材料)が挙げられる。高いエネルギー密度が得られるからである。このような材料は、金属元素または半金属元素の単体、合金または化合物でもよいし、それらの2種以上でもよいし、それらの1種または2種以上の相を少なくとも一部に有するものでもよい。なお、本発明における「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含まれる。また、「合金」は、非金属元素を含んでいてもよい。その組織には、固溶体、共晶(共融混合物)、金属間化合物、またはそれらの2種以上が共存するものがある。
上記した金属元素または半金属元素は、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素であり、具体的には、以下の元素のうちの少なくとも1種である。マグネシウム、ホウ素、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、ビスマス、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム、パラジウム(Pd)または白金(Pt)である。中でも、ケイ素およびスズのうちの少なくとも一方が好ましい。リチウムイオンを吸蔵および放出する能力が優れているため、高いエネルギー密度が得られるからである。
ケイ素およびスズのうちの少なくとも一方を含む材料は、例えば、ケイ素またはスズの単体、合金または化合物でもよいし、それらの2種以上でもよいし、それらの1種または2種以上の相を少なくとも一部に有するものでもよい。
ケイ素の合金としては、例えば、ケイ素以外の構成元素として、以下の元素のうちの少なくとも1種を含むもの等が挙げられる。スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムである。ケイ素の化合物としては、例えば、ケイ素以外の構成元素として、酸素または炭素を含むものが挙げられる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金について説明した元素のいずれか1種または2種以上を含んでいてもよい。
ケイ素の合金または化合物の一例としては、以下のもの等が挙げられる。SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2またはTaSi2である。VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOv(0≦v≦2)またはLiSiOである。
スズの合金としては、例えば、スズ以外の構成元素として、以下の元素のうちの少なくとも1種を含むもの等が挙げられる。ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムである。スズの化合物としては、例えば、酸素または炭素を含むもの等が挙げられる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金について説明した元素のいずれか1種または2種以上を含んでいてもよい。スズの合金または化合物の一例としては、SnOw(0≦w≦2)、SnSiO3、LiSnOまたはMg2Sn等が挙げられる。
特に、ケイ素を含む材料としては、例えば、ケイ素の単体が好ましい。高い電池容量および優れたサイクル特性等が得られるからである。なお、「単体」とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。
また、スズを含む材料としては、例えば、スズを第1の構成元素とし、それに加えて第2および第3の構成元素を含むものが好ましい。第2の構成元素は、例えば、以下の元素のうちの少なくとも1種である。コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セリウム(Ce)、ハフニウム、タンタル、タングステン、ビスマスまたはケイ素である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンのうちの少なくとも1種である。第2および第3の構成元素を有することにより、高い電池容量および優れたサイクル特性等が得られるからである。
中でも、スズ、コバルトおよび炭素を含む材料(SnCoC含有材料)が好ましい。このSnCoC含有材料の組成としては、例えば、炭素の含有量が9.9質量%〜29.7質量%であり、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%〜70質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。
SnCoC含有材料は、スズ、コバルトおよび炭素を含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応可能な反応相であり、その反応相の存在により、優れた特性が得られる。この相のX線回折により得られる回折ピークの半値幅は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合に、回折角2θで1.0°以上であることが好ましい。リチウムイオンがより円滑に吸蔵および放出されると共に、電解質等との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部を含む相を含んでいる場合もある。
X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するものであるか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば、容易に判断することができる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°〜50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化しているものと考えられる。
SnCoC含有材料では、構成元素である炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズ等の凝集または結晶化が抑制されるからである。元素の結合状態については、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)により確認できる。市販の装置では、例えば、軟X線としてAl−Kα線またはMg−Kα線等が用いられる。炭素の少なくとも一部が金属元素または半金属元素等と結合している場合には、炭素の1s軌道(C1s)の合成波のピークは284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面には表面汚染炭素が存在しているため、表面汚染炭素のC1sのピークを284.8eVとし、それをエネルギー基準とする。XPS測定では、C1sのピークの波形が表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られるため、例えば、市販のソフトウエアを用いて解析して、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
なお、SnCoC含有材料は、必要に応じて、さらに他の構成元素を含んでいてもよい。このような他の構成元素としては、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスのうちの少なくとも1種が挙げられる。
このSnCoC含有材料の他、スズ、コバルト、鉄および炭素を含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意に設定可能である。例えば、鉄の含有量を少なめに設定する場合の組成は、以下の通りである。炭素の含有量は9.9質量%〜29.7質量%であり、鉄の含有量は0.3質量%〜5.9質量%であり、スズおよびコバルトの含有量の割合(Co/(Sn+Co))は30質量%〜70質量%である。また、例えば、鉄の含有量を多めに設定する場合の組成は、以下の通りである。炭素の含有量は11.9質量%〜29.7質量%である。また、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))は26.4質量%〜48.5質量%であり、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))は9.9質量%〜79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。このSnCoFeC含有材料の物性(半値幅等)は、上記したSnCoC含有材料と同様である。
また、他の負極材料としては、例えば、金属酸化物または高分子化合物が挙げられる。金属酸化物は、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデン等である。高分子化合物は、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等である。
もちろん、負極材料は、上記以外のものでもよい。また、一連の負極活物質は、任意の組み合わせで2種以上混合されてもよい。
負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法または焼成法(焼結法)、またはそれらの2種以上の方法により形成されている。塗布法とは、例えば、粒子状の負極活物質を負極結着剤等と混合したのち、溶剤に分散させて塗布する方法である。気相法の一例としては、物理堆積法または化学堆積法等が挙げられる。具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長CVD法またはプラズマ化学気相成長法等である。液相法の一例としては、電解鍍金法または無電解鍍金法等が挙げられる。溶射法とは、負極活物質を溶融状態または半溶融状態で吹き付ける方法である。焼成法とは、例えば、塗布法と同様の手順で塗布したのち、負極結着剤等の融点よりも高い温度で熱処理する方法である。焼成法については、公知の手法を用いることができる。一例としては、例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法等が挙げられる。
負極活物質は、例えば、複数の粒子状である。この場合には、負極活物質層22Bは、複数の粒子状の負極活物質(以下、単に「負極活物質粒子」という。)を含んでいる。負極活物質層22Bの形成方法として塗布法等を用いた場合における負極活物質粒子は、塗布用のスラリーを準備するために用いられた粒子状の負極活物質そのものである。一方、負極活物質層22Bの形成方法として気相法または溶射法等を用いた場合における負極活物質粒子は、蒸発または溶融等して負極集電体22A上に堆積された結果、粒子状になった負極活物質である。
負極活物質粒子が気相法等の堆積法により形成される場合には、その負極活物質粒子は、単一の堆積工程により形成された単層構造を有していてもよいし、複数回の堆積工程により形成された多層構造を有していてもよい。ただし、堆積時に高熱を伴う蒸着法等を用いる場合には、負極活物質粒子は多層構造を有していることが好ましい。負極材料の堆積工程が複数回に分割して行われる(負極材料が順次薄く形成して堆積される)ため、その堆積工程を1回で行う場合よりも、負極集電体22Aが高熱に晒される時間が短くなるからである。これにより、負極集電体22Aが熱的ダメージを受けにくくなる。
この負極活物質粒子は、負極集電体22Aの表面から負極活物質層22Bの厚さ方向に成長しており、その根元において負極集電体22Aに連結されていることが好ましい。充放電時において負極活物質層22Bの膨張および収縮が抑制されるからである。また、負極活物質粒子は、気相法、液相法または焼成法等により形成されており、負極集電体22Aとの界面の少なくとも一部において合金化していることが好ましい。この場合には、両者の界面において、負極集電体22Aの構成元素が負極活物質粒子に拡散していてもよいし、負極活物質粒子の構成元素が負極集電体22Aに拡散していてもよいし、両者の構成元素が拡散しあっていてもよい。
特に、負極活物質層22Bは、必要に応じて、負極活物質粒子の表面(酸化物含有膜を設けないとしたならば電解質と接することとなる領域)を被覆する酸化物含有膜を含んでいることが好ましい。酸化物含有膜が電解質に対する保護膜として機能するため、充放電時において電解質の分解反応が抑制されるからである。これにより、サイクル特性および保存特性等が向上する。なお、酸化物含有膜は、負極活物質粒子の表面の全部を被覆していてもよいし、一部だけを被覆していてもよいが、中でも、全部を被覆していることが好ましい。電解質の分解反応がより抑制されるからである。
この酸化物含有膜は、例えば、ケイ素の酸化物、ゲルマニウムの酸化物およびスズの酸化物のうちの少なくとも1種を含んでおり、中でも、ケイ素の酸化物を含んでいることが好ましい。負極活物質粒子の表面を全体に渡って容易に被覆しやすいと共に、優れた保護作用が得られるからである。もちろん、酸化物含有膜は、上記以外の他の酸化物を含んで
いてもよい。
酸化物含有膜は、例えば、気相法または液相法等により形成されており、中でも、液相法により形成されていることが好ましい。負極活物質粒子の表面を広い範囲に渡って容易に被覆しやすいからである。液相法としては、液相析出法、ゾルゲル法、塗布法またはディップコーティング法等が挙げられ、中でも、液相析出法、ゾルゲル法またはディップコーティング法が好ましく、液相析出法がより好ましい。より高い効果が得られるからである。なお、酸化物含有膜は、上記した一連の形成方法のうち、単独の形成方法により形成されていてもよいし、2種以上の形成方法により形成されていてもよい。
また、負極活物質層22Bは、必要に応じて、負極活物質層22Bの内部の隙間に、リチウムと合金化しない金属元素を構成元素として含む金属材料(以下、単に「金属材料」という。)を含んでいることが好ましい。複数の負極活物質粒子が金属材料を介して結着されると共に、負極活物質層22B中の空隙率が減少するため、その負極活物質層22Bの膨張および収縮が抑制されるからである。これにより、サイクル特性および保存特性等が向上する。なお、「負極活物質層22Bの内部の隙間」の詳細については、後述する(図5および図6参照)。
上記した金属元素としては、例えば、鉄、コバルト、ニッケル、亜鉛および銅からなる群のうちの少なくとも1種が挙げられ、中でも、コバルトが好ましい。負極活物質層22B内の隙間に金属材料が容易に入り込みやすいと共に、優れた結着作用が得られるからである。もちろん、金属元素は、上記以外の他の金属元素でもよい。ただし、ここで言う「金属材料」とは、単体に限らず、合金または金属化合物まで含む広い概念である。
金属材料は、例えば、気相法または液相法等により形成されており、中でも、液相法により形成されていることが好ましい。負極活物質層22B内の隙間に金属材料が入り込みやすいからである。液相法としては、例えば、電解鍍金法または無電解鍍金法等が挙げられ、中でも、電解鍍金法が好ましい。上記した隙間に金属材料がより入り込みやすいと共に、その形成時間が短くて済むからである。なお、金属材料は、上記した一連の形成方法のうち、単独の形成方法により形成されていてもよいし、2種以上の形成方法により形成されていてもよい。
なお、負極活物質層22Bは、酸化物含有膜または金属材料のいずれか一方だけを含んでいてもよいし、双方を含んでいてもよい。ただし、サイクル特性等をより向上させるためには、双方を含んでいることが好ましい。また、いずれか一方だけを含む場合において、サイクル特性等をより向上させるためには、酸化物含有膜を含んでいることが好ましい。なお、酸化物含有膜および金属材料の双方を含む場合には、どちらを先に形成してもよいが、サイクル特性等をより向上させるためには、酸化物含有膜を先に形成することが好ましい。
ここで、図3〜図6を参照して、負極22の詳細な構成について説明する。
まず、負極活物質層22Bが複数の負極活物質粒子と共に酸化物含有膜を含む場合について説明する。図3および図4は、負極22の断面構造を模式的に表している。ここでは、負極活物質粒子が単層構造を有している場合を示している。
図3に示した場合には、例えば、蒸着法等の気相法により負極集電体22A上に負極材料が堆積されると、その負極集電体22A上に複数の負極活物質粒子221が形成される。この場合には、負極集電体22Aの表面が粗面化され、その表面に複数の突起部(例えば電解処理により形成された微粒子)が存在すると、負極活物質粒子221が突起部ごとに厚さ方向に成長する。このため、複数の負極活物質粒子221は、負極集電体22A上において配列されると共に、その根元において負極集電体22Aに連結される。こののち、例えば、液相析出法等の液相法により負極活物質粒子221の表面に酸化物含有膜222が形成されると、その酸化物含有膜222は、負極活物質粒子221の表面をほぼ全体に渡って被覆する。この場合には、負極活物質粒子221の頭頂部から根元に至る広い範囲が被覆される。この広範囲な被覆状態は、酸化物含有膜222が液相法により形成された場合に得られる特徴である。すなわち、液相法を用いて酸化物含有膜222を形成すると、被覆作用が負極活物質粒子221の頭頂部だけでなく根元まで広く及ぶため、その根元まで酸化物含有膜222により被覆される。
これに対して、図4に示した場合には、例えば、気相法により複数の負極活物質粒子221が形成されたのち、同様に気相法により酸化物含有膜223が形成されると、その酸化物含有膜223は、負極活物質粒子221の一部(頭頂部)だけを被覆する。この狭範囲な被覆状態は、酸化物含有膜223が気相法により形成された場合に得られる特徴である。すなわち、気相法を用いて酸化物含有膜223を形成すると、被覆作用が負極活物質粒子221の頭頂部に及ぶものの根元まで及ばないため、その根元までは酸化物含有膜223により被覆されない。
なお、図3では、気相法により負極活物質層22Bが形成される場合について説明したが、塗布法または焼結法等の他の形成方法により負極活物質層22Bが形成される場合においても、同様の結果が得られる。すなわち、複数の負極活物質粒子の表面をほぼ全体に渡って被覆するように酸化物含有膜222が形成される。
次に、負極活物質層22Bが複数の負極活物質粒子と共に金属材料を含む場合について説明する。図5および図6は、負極22の断面構造を拡大して表している。図5および図6において、(A)は走査型電子顕微鏡(scanning electron microscope:SEM)写真(二次電子像)、(B)は(A)に示したSEM像の模式絵である。ここでは、複数の負極活物質粒子221が多層構造を有している場合を示している。
図5に示したように、負極活物質粒子221が多層構造を有する場合には、その配列構造、多層構造および表面構造に起因して、負極活物質層22Bの内部に複数の隙間224が生じている。この隙間224は、主に、発生原因に応じて分類された2種類の隙間224A,224Bを含んでいる。隙間224Aは、負極活物質粒子221間に生じたものであり、隙間224Bは、負極活物質粒子221内の階層間に生じたものである。ただし、他の発生原因により生じた隙間224が存在していてもよい。
なお、負極活物質粒子221の露出面(最表面)には、空隙225が生じる場合がある。この空隙225は、負極活物質粒子221の表面にひげ状の微細な突起部(図示せず)が生じたため、その突起部間に生じたものである。この空隙225は、負極活物質粒子221の露出面において、全体に渡って生じる場合もあれば、一部だけに生じる場合もある。ただし、ひげ状の突起部は、負極活物質粒子221の形成時ごとにその表面に生じるため、空隙225は、負極活物質粒子221の露出面だけでなく、その階層間にも生じる場合もある。
図6に示したように、負極活物質層22Bは、隙間224A,224Bに、金属材料226を有している。この場合には、隙間224A,224Bのうちのいずれか一方だけに金属材料226を有していてもよいが、双方に金属材料226を有していることが好ましい。より高い効果が得られるからである。
この金属材料226は、負極活物質粒子221間の隙間224Aに入り込んでいる。詳細には、気相法等により負極活物質粒子221が形成される場合には、上記したように、負極集電体22Aの表面に存在する突起部ごとに負極活物質粒子221が成長するため、負極活物質粒子221間に隙間224Aが生じる。この隙間224Aは、負極活物質層22Bの結着性を低下させる原因となるため、その結着性を高めるために、隙間224Aに金属材料226が埋め込まれている。この場合には、隙間224Aの一部でも埋められていればよいが、その埋め込み量は多いほど好ましい。負極活物質層22Bの結着性がより向上するからである。金属材料226の埋め込み量(充填量)は、20%以上が好ましく、40%以上がより好ましく、80%以上がさらに好ましい。
また、金属材料226は、負極活物質粒子221内の隙間224Bに入り込んでいる。詳細には、負極活物質粒子221が多層構造を有する場合には、その階層間に隙間224Bが生じる。この隙間224Bは、隙間224Aと同様に、負極活物質層22Bの結着性を低下させる原因となるため、その結着性を高めるために、隙間224Bに金属材料226が埋め込まれている。この場合には、隙間224Bの一部でも埋め込まれていればよいが、その埋め込み量が多いほど好ましい。負極活物質層22Bの結着性がより向上するからである。
なお、負極活物質層22Bは、最上層の負極活物質粒子221の露出面に生じるひげ状の微細な突起部(図示せず)が二次電池の性能に悪影響を及ぼすことを抑えるために、空隙225に金属材料226を有していてもよい。詳細には、気相法等により負極活物質粒子221が形成される場合には、その表面にひげ状の微細な突起部が生じるため、その突起部間に空隙225が生じる。この空隙225は、負極活物質粒子221の表面積の増加を招き、その表面に形成される不可逆性の被膜の量も増加させるため、充放電反応の進行度を低下させる原因となる可能性がある。そこで、充放電反応の進行度の低下を抑えるために、空隙225に金属材料226が埋め込まれている。この場合には、空隙225の一部でも埋め込まれていればよいが、その埋め込み量が多いほど好ましい。充放電反応の進行度の低下がより抑えられるからである。図6において、最上層の負極活物質粒子221の表面に金属材料226が点在していることは、その点在箇所に上記した微細な突起部が存在していること表している。もちろん、金属材料226は、必ずしも負極活物質粒子221の表面に点在していなければならないわけではなく、その表面全体を被覆していてもよい。
特に、隙間224Bに入り込んだ金属材料226は、各階層における空隙225を埋め込む機能も果たしている。詳細には、負極材料が複数回に渡って堆積される場合には、その堆積時ごとに負極活物質粒子221の表面に微細な突起部が生じる。このため、金属材料226は、各階層における隙間224Bに埋め込まれているだけでなく、各階層における空隙225にも埋め込まれている。
なお、図5および図6では、負極活物質粒子221が多層構造を有していると共に、負極活物質層22B中に隙間224A,224Bの双方が存在している場合について説明した。このため、負極活物質層22Bは、隙間224A,224Bに金属材料226を有している。これに対して、負極活物質粒子221が単層構造を有していると共に、負極活物質層22B中に隙間224Aだけが存在する場合には、負極活物質層22Bが隙間224Aだけに金属材料226を有することとなる。もちろん、空隙225は両者の場合において生じるため、いずれの場合においても空隙225に金属材料226を有することとなる。
(セパレータ)
セパレータ23は、正極21と負極22とを隔離し、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23には、液状の電解質(電解液)として、上記した電解液が含浸されている。セパレータ23は、例えば、合成樹脂またはセラミックからなる多孔質膜等により構成されており、それらの2種以上の多孔質膜が積層されたものでもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレン等である。
[二次電池の動作]
この二次電池では、充電時において、例えば、正極21からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極22に吸蔵される。一方、放電時において、例えば、負極22からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して正極21に吸蔵される。
[二次電池の製造方法]
この二次電池は、例えば、以下の手順により製造される。
まず、正極21を作製する。最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤等とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを均一に塗布してから乾燥させて、正極活物質層21Bを形成する。最後に、必要に応じて加熱しながら、ロールプレス機等を用いて正極活物質層21Bを圧縮成型する。この場合には、複数回に渡って圧縮成型を繰り返してもよい。
次に、上記した正極21と同様の手順により、負極22を作製する。この場合には、負極活物質と、必要に応じて負極結着剤および負極導電剤等とを混合した負極合剤を有機溶剤に分散させて、ペースト状の負極合剤スラリーとする。こののち、負極集電体22Aの両面に負極合剤スラリーを均一に塗布して負極活物質層22Bを形成したのち、その負極活物質層22Bを圧縮成型する。
なお、正極21とは異なる手順により、負極22を作製してもよい。この場合には、最初に、蒸着法等の気相法を用いて負極集電体22Aの両面に負極材料を堆積させて、複数の負極活物質粒子を形成する。こののち、必要に応じて、液相析出法等の液相法を用いて酸化物含有膜を形成し、または電解鍍金法等の液相法を用いて金属材料を形成し、または双方を形成して、負極活物質層22Bを形成する。
最後に、正極21および負極22を用いて二次電池を組み立てる。最初に、正極集電体21Aに正極リード25を溶接等して取り付けると共に、負極集電体22Aに負極リード26を溶接等して取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で挟みながら、巻回電極体20を電池缶11の内部に収納する。この場合には、正極リード25の先端部を安全弁機構15に溶接等して取り付けると共に、負極リード26の先端部を電池缶11に溶接等して取り付ける。続いて、電池缶11の内部に電解液を注入して、セパレータ23に含浸させる。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。これにより、図1〜図6に示した二次電池が完成する。
この第1の二次電池によれば、負極22の容量がリチウムイオンの吸蔵および放出により表される場合において、上記した電解質(電解液)を備えているので、充放電を繰り返しても、電解液の分解反応が抑制されるため、サイクル特性を向上させることができる。その上、充電状態で高温環境下に曝されても、上記した電解液は分解されにくいため、分解した電解液のガス化が抑制される。このため、高温環境下における二次電池内部の圧力上昇による安全弁作動時間が長くなる。よって、安全性も向上させることができる。
特に、負極22の負極活物質として高容量化に有利な金属系材料を用いた場合においてサイクル特性が向上するため、炭素材料等を用いた場合よりも高い効果を得ることができる。
この第1の二次電池に関する他の効果は、上記した電解質と同様である。
<2−2.第2の二次電池>
[二次電池の構成]
第2の二次電池は、負極の容量がリチウム金属の析出および溶解により表されるリチウム金属二次電池である。この二次電池は、負極活物質層22Bがリチウム金属により構成されていることを除き、第1の二次電池と同様の構成を有していると共に、同様の手順により製造される。
この二次電池は、負極活物質としてリチウム金属を用いており、それにより高いエネルギー密度を得ることができるようになっている。負極活物質層22Bは、組み立て時から既に存在するようにしてもよいが、組み立て時には存在せず、充電時に析出したリチウム金属により構成されるようにしてもよい。また、負極活物質層22Bを集電体としても利用して、負極集電体22Aを省略してもよい。
[二次電池の動作]
この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極集電体22Aの表面にリチウム金属となって析出する。一方、放電を行うと、例えば、負極活物質層22Bからリチウム金属がリチウムイオンとなって溶出し、セパレータ23に含浸された電解液を介して正極21に吸蔵される。
この第2の二次電池によれば、負極22の容量がリチウム金属の析出および溶解により表される場合において、上記した電解液を備えている。このため、第1の二次電池と同様の作用により、サイクル特性を向上させることができる。この二次電池に関する他の効果は、第1の二次電池と同様である。
<2−3.第3の二次電池>
図7は、第3の二次電池の分解斜視構成を表しており、図8は、図7に示した巻回電極体30のVIII−VIII線に沿った断面を拡大して示している。
[二次電池の全体構成]
この二次電池は、第1の二次電池と同様にリチウムイオン二次電池であり、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収納されたものである。このような外装部材40を用いた電池構造は、ラミネートフィルム型と呼ばれている。
正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。ただし、巻回電極体30に対する正極リード31および負極リード32の設置位置や、それらの導出方向等は、特に限定されるわけではない。正極リード31は、例えば、アルミニウム等により構成されており、負極リード32は、例えば、銅、ニッケルまたはステンレス等により構成されている。これらの材料は、例えば、薄板状または網目状になっている。
(外装部材)
外装部材40は、例えば、融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。この場合には、例えば、融着層が巻回電極体30と対向するように、2枚のフィルムの融着層における外縁部同士が融着、または接着剤等により貼り合わされている。融着層としては、例えば、ポリエチレンまたはポリプロピレン等のフィルムが挙げられる。金属層としては、例えば、アルミニウム箔等が挙げられる。表面保護層としては、例えば、ナイロンまたはポリエチレンテレフタレート等のフィルムが挙げられる。
中でも、外装部材40としては、ポリエチレンフィルム、アルミニウム箔およびナイロンフィルムがこの順に積層されたアルミラミネートフィルムが好ましい。ただし、外装部材40は、アルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレン等の高分子フィルムまたは金属フィルムでもよい。
外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料により構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂が挙げられる。
(正極、負極およびセパレータ)
巻回電極体30は、セパレータ35および電解質層36を介して正極33と負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37により保護されている。正極33は、例えば、正極集電体33Aの両面に正極活物質層33Bが設けられたものである。正極集電体33Aおよび正極活物質層33Bの構成は、それぞれ第1の二次電池における正極集電体21Aおよび正極活物質層21Bと同様である。負極34は、例えば、負極集電体34Aの両面に負極活物質層34Bが設けられたものである。負極集電体34Aおよび負極活物質層34Bの構成は、それぞれ第1の二次電池における負極集電体22Aおよび負極活物質層22Bの構成と同様である。
なお、セパレータ35の構成は、第1の二次電池におけるセパレータ23の構成と同様である。
(電解質層)
電解質層36は、電解液が高分子化合物により保持されたものであり、必要に応じて、各種添加剤等の他の材料を含んでいてもよい。この電解質層36は、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に電解液の漏液が防止されるので好ましい。
高分子化合物としては、例えば、以下の高分子材料うちの少なくとも1種が挙げられる。ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサンまたはポリフッ化ビニルである。また、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンまたはポリカーボネートである。また、フッ化ビニリデンとヘキサフルオロピレンとの共重合体である。これらは単独でもよいし、複数種が混合されてもよい。中でも、ポリフッ化ビニリデン、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。電気化学的に安定だからである。
電解液の組成は、第1の二次電池における電解液の組成と同様である。ただし、ゲル状の電解質である電解質層36において、電解液の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有するものまで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
なお、電解液が高分子化合物により保持されたゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。
[二次電池の動作]
この二次電池では、充電時において、例えば、正極33からリチウムイオンが放出され、電解質層36を介して負極34に吸蔵される。一方、放電時において、例えば、負極34からリチウムイオンが放出され、電解質層36を介して正極53に吸蔵される。
[二次電池の製造方法]
このゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
第1の製造方法では、最初に、第1の二次電池における正極21および負極22と同様の作製手順により、正極33および負極34を作製する。具体的には、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。続いて、電解液、高分子化合物および溶剤を含む前駆溶液を調製して正極33および負極34に塗布したのち、その溶剤を揮発させてゲル状の電解質層36を形成する。続いて、正極集電体33Aに正極リード31を溶接等して取り付けると共に、負極集電体34Aに負極リード32を溶接等して取り付ける。続いて、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層および巻回したのち、その最外周部に保護テープ37を接着させて、巻回電極体30を作製する。最後に、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着等で接着させて、巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図7および図8に示した二次電池が完成する。
第2の製造方法では、最初に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤等の他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。最後に、モノマーを熱重合させて高分子化合物とし、ゲル状の電解質層36を形成する。これにより、二次電池が完成する。
第3の製造方法では、最初に、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2の製造方法と同様に、巻回体を形成して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体、または多元共重合体等)が挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体等である。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種または2種以上の高分子化合物を含んでいてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。最後に、外装部材40に加重をかけながら加熱して、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して電解質層36が形成されるため、二次電池が完成する。
この第3の製造方法では、第1の製造方法よりも電池膨れが抑制される。また、第3の製造方法では、第2の製造方法よりも高分子化合物の原料であるモノマーまたは溶媒等が電解質層36中にほとんど残らず、しかも高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35と電解質層36との間において十分な密着性が得られる。
この第3の二次電池によれば、負極34の容量がリチウムイオンの吸蔵および放出により表される場合において、電解質層36が上記した電解質(電解液)を含んでいる。したがって、第1の二次電池と同様の作用により、サイクル特性を向上させることができる。この二次電池に関する他の効果は、第1の二次電池と同様である。なお、第3の二次電池は、第1の二次電池と同様の構成を有している場合に限られず、第2の二次電池と同様の構成を有していてもよい。この場合も同様の効果を得ることができる。
本発明の具体的な実施例について、詳細に説明する。この発明はこれらの実施例に限定されるものではない。
<実施例1−1−1>
以下の手順により、図1および図2に示した円筒型のリチウムイオン二次電池を作製した。
まず、正極21を作製した。この場合には、最初に、炭酸リチウム(Li2CO3)と炭酸コバルト(CoCO3)とを0.5:1のモル比で混合したのち、空気中で900℃×5時間焼成してリチウムコバルト複合酸化物(LiCoO2)を得た。続いて、正極活物質としてLiCoO291質量部と、正極導電剤としてグラファイト6質量部と、正極結着剤としてポリフッ化ビニリデン3質量部とを混合して、正極合剤とした。続いて、N−メチル−2−ピロリドンに正極合剤を分散させて、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体21Aの両面に正極合剤スラリーを均一に塗布してから乾燥させて、正極活物質層21Bを形成した。この正極集電体21Aとしては、帯状のアルミニウム箔(12μm厚)を用いた。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。
次に、負極22を作製した。この場合には、最初に、負極活物質として人造黒鉛97質量部と、負極結着剤としてポリフッ化ビニリデン3質量部とを混合して、負極合剤とした。続いて、N−メチル−2−ピロリドンに負極合剤を分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体22Aの両面に負極合剤スラリーを均一に塗布してから乾燥させて、負極活物質層22Bを形成した。この負極集電体22Aとしては、帯状の電解銅箔(15μm厚)を用いた。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。
次に、液状の電解質である電解液を調製した。この際、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸ジエチル(DEC)、炭酸メチルプロピル(MPC)、トリメチル酢酸メチル(MPV)から選ばれる少なくとも一種以上の溶媒(以下、溶媒Mとする)としては、炭酸ジメチル(DMC)を用いた。
溶媒Mとして炭酸ジメチルを含む溶媒に、電解質塩を溶解することにより電解液を調製した。溶媒は、炭酸エチレンと、4-フルオロ−1,3−ジオキソラン−2−オン(以下、FECと称する)と、炭酸ジメチルと、式(1)で表される化合物を表1に示す組成(EC:FEC:DMC:式(1)=10.9:9.1:74.6:5.4(質量比))となるように混合することにより調製した。溶媒に溶解する電解質塩としては、六フッ化リン酸リチウム(LiPF6)を用い、その含有量を溶媒に対して1mol/kgとした。
最後に、正極21および負極22と共に電解液を用いて二次電池を組み立てた。この場合には、最初に、正極集電体21Aに正極リード25を溶接すると共に、負極集電体22Aに負極リード26を溶接した。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入した。このセパレータ23としては、微孔性ポリプロピレンフィルム(厚さ=25μm)を用いた。続いて、一対の絶縁板12,13で巻回電極体20を挟みながら、ニッケル鍍金された鉄製の電池缶11の内部に収納した。この際、正極リード25を安全弁機構15に溶接すると共に、負極リード26を電池缶11に溶接した。続いて、減圧方式により電池缶11の内部に電解液を注入してセパレータ23に含浸させた。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめて、それらを固定した。これにより、円筒型の二次電池が完成した。なお、この二次電池を作製する場合には、正極活物質層21Bの厚さを調節して、満充電時において負極22にリチウム金属が析出しないようにした。
<実施例1−1−2〜実施例1−1−20>
電解液の調製の際に、溶媒組成を表1に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<比較例1−1−1〜比較例1−1−13>
電解液の調製の際に、溶媒組成を表1に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<実施例1−2−1〜実施例1−2−16>
電解液の調製の際に、溶媒組成を表1に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<比較例1−2−1〜比較例1−2−14>
電解液の調製の際に、溶媒組成を表1に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<実施例2−1−1〜実施例2−1−23>
電解液の調製の際に、溶媒組成を表2に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<実施例2−2−1〜実施例2−2−7>
電解液の調製の際に、溶媒組成を表1に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
<比較例2−1−1〜比較例2−1−3>
電解液の調製の際に、溶媒組成を表2に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例1−1−1〜実施例1−1−20、実施例1−2−1〜実施例1−2−16および比較例1−1−1〜比較例1−1−13、並びに、実施例2−1−1〜実施例2−1−23、実施例2−2−1〜実施例2−2−7、および比較例2−1−1〜比較例2−1−3について、以下のように負荷特性、保存維持率、サイクル維持率を測定した。
(サイクル維持率)
サイクル維持率を調べる際には、最初に、23℃の雰囲気中で2サイクル充放電して放電容量を測定した。続いて、同雰囲気中でサイクル数の合計が100サイクルとなるまで繰り返し充放電して放電容量を測定した。最後に、サイクル維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充電時には、0.2Cの電流で上限電圧4.2Vまで定電流定電圧充電した。放電時には、0.2Cの電流で終止電圧2.5Vまで定電流放電した。この「0.2C」とは、理論容量を5時間で放電しきる電流値である。
(保存維持率)
保存維持率を調べる際には、最初に、23℃の雰囲気中で2サイクル充放電して放電容量を測定した。続いて、再び充電させた状態で80℃の恒温槽中に10日間保存したのち、23℃の雰囲気中で放電して放電容量を測定した。最後に、保存維持率(%)=(保存後の放電容量/保存前の放電容量)×100を算出した。充電時には、0.2Cの電流で上限電圧4.2Vまで定電流定電圧充電した。放電時には、0.2Cの電流で終止電圧2.5Vまで定電流放電した。この「0.2C」とは、理論容量を5時間で放電しきる電流値である。
(負荷特性)
負荷特性を調べる際には、23℃の雰囲気中で1サイクル充放電したのち、再び充電して充電容量を測定した。続いて、同雰囲気中で放電して放電容量を測定した。最後に、負荷維持率(%)=(2サイクル目の充電容量/2サイクル目の放電容量)×100を算出した。充放電の条件は、電流を3Cに変更したことを除き、サイクル維持率を調べた場合と同様である。この「3C」とは、理論容量を1/3時間で放電しきる電流値である。
表1および表2に負荷特性、保存維持率およびサイクル維持率の測定結果を示す。
Figure 2012079593
Figure 2012079593
Figure 2012079593
Figure 2012079593
表1および表2から以下のことがわかる。
実施例1−1−1〜実施例1−1−20では、負荷特性、保存維持率、サイクル維持率が、比較例1−1−1〜比較例1−1−13より良好であった。実施例1−2−1〜実施例1−2−16では、負荷特性、保存維持率、サイクル維持率が、比較例1−2−1〜比較例1−2−14より良好であった。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
比較例1−1−1〜比較例1−1−13、比較例1−2−1〜比較例1−2−14では、式(1)で表される化合物の含有量が多く(5.4<B)、電解液の電極への浸みこみが悪化したため、充電時の金属リチウム析出を引き起こし、そのリチウムと電解液との副反応により負荷特性、保存維持率が低下したと考えられる。負極材料であるグラファイトより、金属リチウムのほうが充放電効率が低いため、サイクル維持率が低下したと考えられる。また、式(1)で表される化合物の質量百分率Bが、多い(5.4<B)ことから、電解液の粘度が向上するため、負荷特性が低下したと考えられる。式(1)で表される化合物がリチウムイオンと強く配位するため、初回充電時に環状炭酸エステル由来の保護皮膜が十分に形成されなかったため、保存維持率およびサイクル維持率が低下したと考えられる。
また、実施例1−1−1〜実施例1−1−20では、実施例1−2−1〜実施例1−2−16より、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。実施例2−1−1〜実施例2−1−23では、実施例2−2−1〜実施例2−2−7より、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であると共に、0.11≦E/M≦0.49、且つ、0.8≦E/F≦18を満たすため、負荷特性、保存維持率およびサイクル維持率をより向上できた。
溶媒が0.11≦E/M≦0.49を満たす場合には、電解液の粘性と、イオン導電率とのバランスを取ることができるため、負荷特性を良好にできると考えられる。なお、溶媒M(炭酸ジメチル)の含有量(質量分率M)が多すぎる場合には、保存中での正極上における反応量が多く、保存維持率が悪化すると考えられる。また、溶媒が0.8≦E/F≦18を満たす場合には、炭酸エチレンとFEC由来の保護皮膜が形成されるため、サイクル維持率が向上すると考えられる。なお、炭酸エチレンが少なく、FECの含有量が多い場合には、電解液中に未反応のFECが残存するため、これが保存中に分解し、保存維持率が悪化すると考えられる。
式(1)で表される化合物は、炭酸ジメチルのような鎖状炭酸エステルよりも強くリチウムイオンに配位すると考えられるため、これを含有させることによって、保存中の正極上における炭酸ジメチルの分解を抑制できるため、保存維持率が向上したと考えられる。それと同時に、FECの正極上での反応をも抑制できるため、サイクル維持率がより向上したと考えられる。
また、実施例2−1−1〜実施例2−1−23では、比較例2−1−1〜比較例2−1−3より、負荷特性、保存維持率、サイクル維持率が良好であった。
比較例2−1−1〜比較例2−1−3では、溶媒は0.11≦E/M≦0.49、且つ、0.8≦E/F≦18を満たすが、式(1)で表される化合物を含まないため、負荷特性、保存維持率が実施例2−1−1〜実施例2−1−23よりも低く、また、サイクル維持率も低かった。これは、溶媒が式(1)で表される化合物を含まないため、電極表面に良好な被膜が形成されなかったから考えられる。
<実施例3−1〜実施例3−14>
溶媒Mとして、炭酸ジメチルと、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピルまたはトリメチル酢酸メチルとを含む電解液を使用した二次電池を作製した。具体的には、溶媒組成を表3に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例3−1〜実施例3−14について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表3に示す。
Figure 2012079593
表3から以下のことがわかる。溶媒Mとして炭酸ジメチルと、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピルまたはトリメチル酢酸メチルとを用いた場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例4−1−1〜実施例4−1−8、実施例4−2−1〜実施例4−2−2>
溶媒Mとして炭酸ジメチルおよび炭酸エチルメチルを含み、溶媒M、式(1)で表される化合物およびFEC以外のその他の溶媒として炭酸プロピレンを含む電解液を使用した二次電池を作製した。具体的には、溶媒組成を表4に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例4−1−1〜実施例4−1−8、実施例4−2−1〜実施例4−2−2について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表4に示す。
Figure 2012079593
表4から以下のことがわかる。電解液が、溶媒M、式(1)で表される化合物およびFEC以外に炭酸プロピレンを含む場合にも以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
一方、実施例4−2−1では、E/F>18となる溶媒を用いているため、実施例4−1−1に比べて、負荷特性、保存維持率が低下し、サイクル維持率も低下した。実施例4−2−1では、FECの含有量が少なく、炭酸プロピレンの含有量が多いことから、保護皮膜の形成が不十分であるために、サイクル維持率が低下したと考えられる。また、同様の理由により、保存中の反応を抑制できないため、保存維持率が低下したと考えられる。
実施例4−2−2では、E/M<0.1となる溶媒を用いているため、実施例4−1−2に比べて、負荷特性、保存維持率が低下し、サイクル維持率も低下した。実施例4−1−2は、炭酸ジメチルの含有量が多いため、保存中での正極上における反応量が多く、保存維持率が悪化したと考えられる。また、炭酸エチレンの含有量が少ないため、保護皮膜の形成が不十分であるために、サイクル特性が悪化したと考えられる。
<実施例5−1〜実施例5−9>
溶媒M、式(1)で表される化合物およびFEC以外に、炭酸ビニレン(VC)、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)、スクシノニトリル(SCN)を含む電解液を使用した二次電池を作製した。具体的には、溶媒組成を表5に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例5−1〜実施例5−9について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表5に示す。
Figure 2012079593
表5から以下のことがわかる。電解液が、溶媒M、式(1)で表される化合物およびFEC以外に、炭酸ビニレン、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、スクシノニトリルを含む場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例6−1〜実施例6−4>
溶媒M、式(1)で表される化合物およびFEC以外に、酸無水物である、こはく酸無水物、無水プロパンジスルホン酸、プロペンスルトン、無水スルホプロピオン酸を含有させた電解液を使用した二次電池を作製した。具体的には、溶媒組成を表6に示す組成にした点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例6−1〜実施例6−4について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表6に示す。
Figure 2012079593
表6から以下のことがわかる。電解液が、溶媒M、式(1)で表される化合物およびFEC以外に、こはく酸無水物、無水プロパンジスルホン酸、プロペンスルトン、または無水スルホプロピオン酸を含む場合に以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例7−1〜実施例7−9>
LiPF6の他に電解質塩(Li2PFO3および/またはLiPF22)を含有させた電解液を使用した二次電池を作製した。具体的には、溶媒組成を表7に示す組成にした。LiPF6の他に表7に示す電解質塩を表7に示す含有量でさらに含有させた。以上の点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例7−1〜実施例7−9について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表7に示す。
Figure 2012079593
表7から以下のことがわかる。電解液が、LiPF6の他に式(2)で表されるLi2PFO3、式(3)で表されるLiPF22を含む場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例8−1〜実施例8−9>
溶媒組成を表8に示す組成にした。電解質塩組成を、表8に示す電解質塩0.1mol/kg、LiPF60.9mol/kgにした。以上の点以外は、実施例1−1−1と同様にして、各二次電池を作製した。
実施例8−1〜実施例8−9について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表8に示す。
Figure 2012079593
表8から以下のことがわかる。LiBF4等のリチウム塩を溶媒に対して、0.1mol/kg、LiPF6の含有量を0.9mol/kgとした場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例9−1−1〜実施例9−1−20、実施例9−2−1〜実施例9−2−16、比較例9−1−1〜比較例9−1−13、比較例9−2−1〜比較例9−2−14>
負極活物質としてケイ素を用いて、二次電池を作製した。具体的には、負極22を以下のようにして作製した点以外は、実施例1−1−1〜実施例1−1−20、実施例1−2−1〜実施例1−2−16、比較例1−1−1〜比較例1−1−13、比較例1−2−1〜比較例1−2−14と同様にして、各二次電池を作製した。負極22を作製する場合には、蒸着法(電子ビーム蒸着法)で負極集電体22Aの表面にケイ素を堆積させて負極活物質層22Bを形成した。この場合には、10回の堆積工程を繰り返して、負極活物質層22Bの総厚を6μmとした。
実施例9−1−1〜実施例9−1−20、実施例9−2−1〜実施例9−2−16、比較例9−1−1〜比較例9−1−13、比較例9−2−1〜比較例9−2−14について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表9に示す。
Figure 2012079593
Figure 2012079593
表9から以下のことがわかる。負極活物質としてケイ素を用いた場合に、以下のことが確認できた。すなわち、負極活物質として炭素材料を用いた場合と同様、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例10−1−1〜実施例10−1−23、実施例10−2−1〜実施例10−2−7、比較例10−1−1〜比較例10−1−3>
負極活物質としてケイ素を用いると共に、溶媒Mとして炭酸ジエチルを含む電解液を使用した二次電池を作製した。具体的には、溶媒組成を表10に示す組成とした点以外は、実施例9−1−1と同様にして、各二次電池を作製した。
Figure 2012079593
Figure 2012079593
表10から以下のことがわかる。負極活物質としてケイ素を用い、溶媒Mとして炭酸ジエチルMを含む電解液を使用した場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例11−1〜実施例11−9>
負極活物質としてケイ素を用いると共に、溶媒Mとして炭酸ジエチルを含み、電解質塩(Li2PFO3および/またはLiPF22)を含有させた電解液を使用した二次電池を作製した。具体的には、溶媒組成を表11に示す組成として、LiPF6の他に表11に示す電解質塩(Li2PFO3および/またはLiPF22)を表11に示す含有量でさらに加えた点以外は、実施例9−1−1と同様にして、各二次電池を作製した。
Figure 2012079593
表11から以下のことがわかる。負極活物質としてケイ素を用い、溶媒Mとして炭酸ジエチルを含み、LiPF6の他に電解質塩(Li2PFO3および/またはLiPF22)を含有させた電解液を使用した場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例12−1〜実施例12−9>
負極活物質としてケイ素を用いると共に、溶媒Mとし炭酸ジエチルを含み、溶媒M、FEC、式(1)で表される化合物以外のその他の溶媒として炭酸ビニレン、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、スクシノニトリルを含む電解液を使用した二次電池を作製した。具体的には、溶媒組成を表12に示す組成とした点以外は、実施例9−1−1と同様にして、各二次電池を作製した。
Figure 2012079593
表12から以下のことがわかる。負極活物質としてケイ素を用い、溶媒Mとして炭酸ジエチルを含み、その他の溶媒として、炭酸ビニレン、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、スクシノニトリルを含む電解液を使用した場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例13−1〜実施例13−4>
負極活物質としてケイ素を用いると共に、溶媒Mとして炭酸ジエチルを含み、酸無水物である、こはく酸無水物、無水プロパンジスルホン酸、プロペンスルトン、無水スルホプロピオン酸を含有させた電解液を使用した二次電池を作製した。具体的には、溶媒組成を表13に示す組成とした点以外は、実施例9−1−1と同様にして、各二次電池を作製した。
実施例13−1〜実施例13−4について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表13に示す。
Figure 2012079593
表13から以下のことがわかる。負極活物質としてケイ素を用い、溶媒Mとして炭酸ジエチルを含み、こはく酸無水物、無水プロパンジスルホン酸、プロペンスルトンまたは無水スルホプロピオン酸を含む電解液を使用した場合に、以下のことが確認できた。すなわち、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
<実施例14−1−1〜実施例14−1−20、実施例14−2−1〜実施例14−1−16、比較例14−1−1〜比較例14−1−13、比較例14−2−1〜比較例14−2−14>
負極活物質としてSnCoC含有材料を用いて、二次電池を作製した。具体的には、負極22を以下のようにして作製した点以外は、実施例1−1−1〜実施例1−1−20、実施例1−2−1〜実施例1−1−16、比較例1−1−1〜比較例1−1−13、比較例1−2−1〜比較例1−2−14と同様にして、各二次電池を作製した。
負極22を作製する場合には、最初に、コバルト粉末およびスズ粉末を合金化してコバルト・スズ合金粉末としたのち、炭素粉末を加えて乾式混合した。続いて、伊藤製作所製の遊星ボールミルの反応容器中に、上記した混合物10gを直径9mmの鋼玉約400gと一緒にセットした。続いて、反応容器中をアルゴン雰囲気に置換したのち、毎分250回転の回転速度による10分間の運転と10分間の休止とを運転時間の合計が20時間になるまで繰り返した。続いて、反応容器を室温まで冷却してSnCoC含有材料を取り出したのち、280メッシュのふるいを通して粗粉を取り除いた。
得られたSnCoC含有材料の組成を分析したところ、スズの含有量は49.5質量%、コバルトの含有量は29.7質量%、炭素の含有量は19.8質量%、スズおよびコバルトの割合(Co/(Sn+Co))は37.5質量%であった。この際、スズおよびコバルトの含有量については誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分析で測定し、炭素の含有量については炭素・硫黄分析装置で測定した。また、X線回折法によりSnCoC含有材料を分析したところ、2θ=20°〜50°の範囲に半値幅を有する回折ピークが観察された。さらに、XPSによりSnCoC含有材料を分析したところ、図9に示したように、ピークP1が得られた。このピークP1を解析すると、表面汚染炭素のピークP2と、それよりも低エネルギー側(284.5eVよりも低い領域)にSnCoC含有材料中におけるC1sのピークP3とが得られた。この結果から、SnCoC含有材料中の炭素は他の元素と結合していることが確認された。
SnCoC含有材料を得たのち、負極活物質としてSnCoC含有材料80質量部と、負極結着剤としてポリフッ化ビニリデン8質量部と、負極導電剤としてグラファイト11質量部およびアセチレンブラック1質量部とを混合して、負極合剤とした。続いて、N−メチル−2−ピロリドンに負極合剤を分散させて、ペースト状の負極合剤スラリーとした。最後に、コーティング装置で負極集電体22Aの両面に負極合剤スラリーを塗布してから乾燥させて負極活物質層22Bを形成したのち、ロールプレス機で負極活物質層22Bを圧縮成型した。
実施例14−1−1〜実施例14−1−20、実施例14−2−1〜実施例14−1−16、比較例14−1−1〜比較例14−1−13、比較例14−2−1〜比較例14−2−14について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表14に示す。
<実施例15−1−1〜実施例15−1−23、実施例15−2−1〜実施例15−2−8、比較例15−1−1〜比較例15−1−3>
負極活物質としてSnCoC含有材料を用いて、二次電池を作製した。具体的には、溶媒組成を表15に示す組成とした点以外は、実施例14−1−1と同様にして、各二次電池を作製した。
実施例15−1−1〜実施例15−1−23、実施例15−2−1〜実施例15−2−7、比較例15−1−1〜比較例15−1−3について、負荷特性、保存維持率、サイクル維持率を測定した。測定結果を表15に示す。
Figure 2012079593
Figure 2012079593
Figure 2012079593
Figure 2012079593
表14および表15に示すように、負極活物質としてSnCoC含有材料を用いた場合に、以下のことが確認できた。すなわち、負極活物質として炭素材料を用いた場合と同様、溶媒の全体量に対する式(1)で表される化合物の質量百分率Bが、0<B≦5.4質量%であるため、良好な負荷特性、保存維持率およびサイクル維持率を得ることができた。
3.他の実施の形態
この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述した実施の形態および実施例では、電池構造が円筒型またはラミネートフィルム型である場合、ならびに電池素子が巻回構造を有する場合を例に挙げて説明したが、これに限定されるものではない。例えば、角型、コイン型またはボタン型等の他の電池構造を有する場合や、電池素子が複数の電極を積み重ねた構造を有する積層構造等の他の構造を有する場合についても、同様に適用可能である。
また、上記した実施の形態および実施例では、電極反応物質の元素としてリチウムを用
いる場合について説明したが、必ずしもこれに限られない。電極反応物質の元素は、例え
ば、ナトリウム(Na)またはカリウム(K)等の他の1族元素や、マグネシウムあ
るいはカルシウム等の2族元素や、アルミニウム等の他の軽金属でもよい。本発明の
効果は、電極反応物質の元素の種類に依存せずに得られるはずであるため、その種類を変
更しても、同様の効果を得ることができる。
11…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、15A…ディスク板、16…熱感抵抗素子、17…ガスケット、20,30…巻回電極体、21,33…正極、21A,33A…正極集電体、21B,33B…正極活物質層、22,34…負極、22A,34A…負極集電体、22B,34B…負極活物質層、23,35…セパレータ、24…センターピン、25,31…正極リード、26,32…負極リード、36…電解質、37…保護テープ、40…外装部材、41…密着フィルム、221…負極活物質粒子、222…酸化物含有膜、224(224A,224B)…隙間、225…空隙、226…金属材料。

Claims (10)

  1. 正極と、
    負極と、
    非水溶媒および電解質塩を含む非水電解質と
    を含み、
    上記非水溶媒は、式(1)で表される化合物を含み、
    上記非水溶媒の全体量に対する上記式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である非水電解質二次電池。
    Figure 2012079593
  2. 上記非水溶媒は、
    炭酸エチレンと、
    4-フルオロ−1,3−ジオキソラン−2−オンと、
    炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピルおよびトリメチル酢酸メチルから選ばれる少なくとも1種以上の溶媒と
    をさらに含み、
    上記非水溶媒における、上記炭酸エチレンの質量分率をE、上記4-フルオロ−1,3−ジオキソラン−2−オンの質量分率をF、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピルおよびトリメチル酢酸メチルから選ばれる少なくとも1種以上の上記溶媒の質量分率をMとした場合に、0.11≦E/M≦0.49、且つ0.8≦E/F≦18をさらに満たす請求項1記載の非水電解質二次電池。
  3. 上記式(1)で表される化合物の質量百分率Bは、0.0001質量%≦B≦1.0質量%である請求項1記載の非水電解質二次電池。
  4. 上記非水電解質は、式(2)〜式(3)で表される化合物の少なくとも1種を含む請求項1記載の非水電解質二次電池。
    Li2PFO3…式(2)
    LiPF22…式(3)
  5. 上記電解質塩は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)および式(9)〜式(14)で表される化合物うちの少なくとも1種を含む請求項1記載の非水電解質二次電池。
    Figure 2012079593
    (X31は長周期型周期表における1族元素または2族元素、またはアルミニウムである。M31は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。R31はハロゲン基である。Y31は−OC−R32−CO−、−OC−C(R33)2−または−OC−CO−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基またはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基またはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2または4であり、c3、d3、m3およびn3は1〜3の整数である。)
    Figure 2012079593
    (X41は長周期型周期表における1族元素または2族元素である。M41は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。Y41は−(O=)C−(C(R41)2b4−C(=O)−、−(R43)2C−(C(R42)2c4−C(=O)−、−(R43)2C−(C(R42)2c4−C(R43)2−、−(R43)2C−(C(R42)2c4−S(=O)2−、−(O=)2S−(C(R42)2d4−S(=O)2−または−(O=)C−(C(R42)2d4−S(=O)2−である。ただし、R41およびR43は、それぞれ独立して、水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。なお、a4、e4およびn4は1または2であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
    Figure 2012079593
    (X51は長周期型周期表における1族元素または2族元素である。M51は遷移金属元素、または長周期型周期表における13族元素、14族元素または15族元素である。Rfはフッ素化アルキル基またはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−(O=)C−(C(R51)2d5−C(=O)−、−(R52)2C−(C(R51)2d5−C(=O)−、−(R52)2C−(C(R51)2d5−C(R52)2−、−(R52)2C−(C(R51)2d5−S(=O)2−、−(O=)2S−(C(R51)2e5−S(=O)2−または−(O=)C−(C(R51)2e5−S(=O)2−である。ただし、R51は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。なお、a5、f5およびn5は1または2であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)

    LiN(Cm2m+1SO2)(Cn2n+1SO2)…(12)
    (mおよびnは1以上の整数である。)

    Figure 2012079593
    (R61は炭素数=2〜4の直鎖状または分岐状のパーフルオロアルキレン基である。)
    LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2
    …(14)
    (p、qおよびrは1以上の整数である。)
  6. 上記式(9)で表される化合物は、式(9−1)〜式(9−6)で表される化合物であり、上記式(10)で表される化合物は、式(10−1)〜式(10―8)で表される化合物であり、上記式(11)で表される化合物は、式(11―1)で表される化合物である請求項5記載の非水電解質二次電池。
    Figure 2012079593
    Figure 2012079593
    Figure 2012079593
  7. 上記負極は、負極活物質として、炭素材料、リチウム金属(Li)、または電極反応物質を吸蔵および放出することが可能であると共に金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料を含む請求項1記載の非水電解質二次電池。
  8. 上記負極は、負極活物質として、ケイ素(Si)および(Sn)のうち少なくとも一方を構成元素として含む材料を含む請求項1記載の非水電解質二次電池。
  9. 上記正極および上記負極を巻回した巻回構造または上記正極および上記負極を複数積層した積層構造を有する請求項1〜8の何れかに記載の非水電解質二次電池。
  10. 非水溶媒および電解質塩を含む非水電解質を含み、
    上記非水溶媒は、式(1)で表される化合物を含み、
    上記非水溶媒の全体量に対する上記式(1)で表される化合物の質量百分率Bは、0<B≦5.4質量%である非水電解質。
    Figure 2012079593
JP2010225030A 2010-10-04 2010-10-04 非水電解質二次電池および非水電解質 Pending JP2012079593A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225030A JP2012079593A (ja) 2010-10-04 2010-10-04 非水電解質二次電池および非水電解質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225030A JP2012079593A (ja) 2010-10-04 2010-10-04 非水電解質二次電池および非水電解質

Publications (1)

Publication Number Publication Date
JP2012079593A true JP2012079593A (ja) 2012-04-19

Family

ID=46239590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225030A Pending JP2012079593A (ja) 2010-10-04 2010-10-04 非水電解質二次電池および非水電解質

Country Status (1)

Country Link
JP (1) JP2012079593A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027571A1 (ja) * 2014-08-21 2016-02-25 ソニー株式会社 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2020137560A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2023225804A1 (zh) * 2022-05-23 2023-11-30 宁德时代新能源科技股份有限公司 二次电池以及包含其的电池模块、电池包及用电装置
WO2023240191A1 (en) * 2022-06-10 2023-12-14 Tesla, Inc. Carbonate compounds for energy storage device electrolyte compositions, and methods thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027571A1 (ja) * 2014-08-21 2016-02-25 ソニー株式会社 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2016046030A (ja) * 2014-08-21 2016-04-04 ソニー株式会社 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2020137560A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7499443B2 (ja) 2018-12-28 2024-06-14 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2023225804A1 (zh) * 2022-05-23 2023-11-30 宁德时代新能源科技股份有限公司 二次电池以及包含其的电池模块、电池包及用电装置
WO2023240191A1 (en) * 2022-06-10 2023-12-14 Tesla, Inc. Carbonate compounds for energy storage device electrolyte compositions, and methods thereof

Similar Documents

Publication Publication Date Title
JP4992919B2 (ja) 二次電池
WO2010110159A1 (ja) 電解質および二次電池
US9005821B2 (en) Secondary battery
JP5278657B2 (ja) 二次電池および電子機器
JP5382413B2 (ja) 二次電池用負極および二次電池
JP2010170886A (ja) 電解質および二次電池
JP2009245923A (ja) 二次電池
US9209480B2 (en) Secondary battery containing a nonaqueous electrolyte with a sulfonic anhydride and an aromatic compound
JP5239473B2 (ja) 二次電池用電解液、二次電池および電子機器
JP5181754B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2011216406A (ja) 二次電池、二次電池用電解液、環状ポリエステル、電動工具、電気自動車および電力貯蔵システム
JP2010262800A (ja) 二次電池、電解質およびジカルボニル化合物
JP2010192327A (ja) 非水電解液および非水電解液二次電池
JP2009193696A (ja) 負極、二次電池およびそれらの製造方法
JP5463632B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用正極、リチウムイオン二次電池および電子機器
JP2010165549A (ja) 二次電池
JP5217536B2 (ja) 二次電池および電子機器
JP5256798B2 (ja) 二次電池用電解液、二次電池および電子機器
JP5181740B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2009170146A (ja) 電解液および二次電池
JP5217512B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2010262801A (ja) 二次電池および電解質
JP2012079593A (ja) 非水電解質二次電池および非水電解質
JP2009245926A (ja) 二次電池、電解質およびチオ化合物
JP2010010080A (ja) 負極、二次電池およびそれらの製造方法