JP2012078269A - 測距方法及びレーザ測距装置 - Google Patents

測距方法及びレーザ測距装置 Download PDF

Info

Publication number
JP2012078269A
JP2012078269A JP2010225371A JP2010225371A JP2012078269A JP 2012078269 A JP2012078269 A JP 2012078269A JP 2010225371 A JP2010225371 A JP 2010225371A JP 2010225371 A JP2010225371 A JP 2010225371A JP 2012078269 A JP2012078269 A JP 2012078269A
Authority
JP
Japan
Prior art keywords
light
measurement
axis direction
laser
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010225371A
Other languages
English (en)
Inventor
Naoyuki Furuyama
直行 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010225371A priority Critical patent/JP2012078269A/ja
Publication of JP2012078269A publication Critical patent/JP2012078269A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】レーザ光の特徴である可干渉性を利用しながら、光学系に機械的手段を用いずに被測定物に関する測距を高精度に行う測距方法及びレーザ測距装置を提供する。
【解決手段】反射部14を所定の角度θだけ傾けて設置することで、参照光の光路長を光路内で連続的に変化させることができる。これにより、受光部18が受光する測定光と参照光による干渉光には干渉縞が形成され、この受光部18の各受光器の光強度データに基づいて明暗データを作成することができる。そして、この明暗データに基づいて測距を行うため、光学系に機械的手段を用いずに被測定物に関する測距を高精度に行うことができる。
【選択図】図1

Description

本発明は、レーザ光の干渉を用いて被測定物までの距離もしくは厚み方向の距離もしくは厚みを高精度に測定する測距方法及びレーザ測距装置に関するものである。
従来のレーザ光を用いたレーザ測距方法は、例えばレーザ光を参照光と測定光とに分割し、その参照光と被測定物で反射された測定光との時間差から両者の光路差を求めることで被測定物までの距離を測定する。このような参照光と測定光との時間差から測距を行う従来のレーザ測距方法では、その測距精度はレーザ光の波長レベル、即ちnm(ナノメートル)オーダーには遠く及ばない。
そこで本願発明者は下記[特許文献1]に示すように、波長の異なる複数のレーザ光を用い、さらにその光路差を変化させることでレーザ光の特徴である可干渉性を利用した高精度のレーザ測距方法及びそのレーザ測距方法を行うレーザ測距装置に関する発明を行った。
国際公報第2008/099788号パンフレット
[特許文献1]に開示された発明により被測定物までの距離を高精度に測距することが可能となった。しかしながら、[特許文献1]の発明では光路差の変化をモータ等の機械的手段により行っている。よって、高精度の測距には位置精度の高い高価な機械的手段が必要となり、コストが増大するという問題点がある。また、いかに位置精度の高い機械的手段であってもバックラッシュ(逆動作)などにより誤差が生じる可能性があり、この点で更なる改善が望まれる。
本発明は上記事情に鑑みてなされたものであり、レーザ光の特徴である可干渉性を利用しながら、光学系に機械的手段を用いずに被測定物までの距離もしくは厚み方向の距離もしくは厚みを高精度に測距する測距方法及びレーザ測距装置を提供することを目的とする。
本発明は、
(1)異なる波長の第1レーザ光と第2レーザ光とを分割部12で参照光と測定光とにそれぞれ分割し、傾けて設置された反射部14がそれぞれの参照光を所定の反射角で反射し、
複数の受光器22で構成された受光部18が反射部14で反射した参照光と被測定物6で反射した測定光とを受光して各受光器22の光強度データを演算部20に出力する光強度出力ステップと、
前記光強度データに基づいて明暗データを作成する明暗データ作成ステップと、
作成された明暗データにフーリエ変換を施して当該明暗データに含まれる第1レーザ光の測定光と参照光による干渉光の周期、位相、振幅と、第2レーザ光の測定光と参照光による干渉光の周期、位相、振幅と、を取得するフーリエ変換ステップと、
取得された干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
取得された明部の位置のうち、第1レーザ光の測定光と参照光による干渉光と第2レーザ光の測定光と参照光による干渉光とが同一位置で明部を取り、且つ当該明部の位置前後で他の明部の位置が対称となる位置を検出し、前記明暗データの任意の起点から当該明部の位置までの距離データLa’(La)を取得する距離データ取得ステップと、
前記距離データLa’(La)に基づいて予め求められた基準点から被測定物6までの距離Lを算出する測距ステップと、
を有することを特徴とする測距方法を提供することにより、上記課題を解決する。
(2)異なる波長の第1レーザ光と第2レーザ光とを分割部12で参照光と測定光とにそれぞれ分割し、測定光をさらに測定光分割部28で第1測定光と第2測定光とに分割し、傾けて設置された反射部14が前記それぞれの参照光を所定の反射角で反射し、第1レーザ光及び第2レーザ光の第1測定光を被測定物6の第1測定点S1で反射させるとともに第1レーザ光及び第2レーザ光の第2測定光を第2測定点S2で反射させ、
複数の受光器22で構成された受光部18が反射部14で反射した参照光と第1測定点S1で反射した各レーザ光の第1測定光と第2測定点S2で反射した各レーザ光の第2測定光とを受光して各受光器22の光強度データを演算部20に出力する光強度出力ステップと、
前記光強度データに基づいて明暗データを作成する明暗データ作成ステップと、
作成された明暗データにフーリエ変換を施して前記明暗データに含まれる第1レーザ光の第1測定光と参照光による第1干渉光の周期、位相、振幅と、第1レーザ光の第2測定光と参照光による第2干渉光の周期、位相、振幅と、第2レーザ光の第1測定光と参照光による第3干渉光の周期、位相、振幅と、第2レーザ光の第2測定光と参照光による第4干渉光の周期、位相、振幅と、をそれぞれ取得するフーリエ変換ステップと、
取得された各干渉光の振幅に基づいて、第1測定光と参照光による干渉光の周期、位相、振幅と、第2測定光と参照光による干渉光の周期、位相、振幅と、を判別する判別ステップと、
取得された各干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
取得された明部の位置のうち、第1干渉光と第3干渉光とが同一位置で明部を取り且つ当該明部の位置前後で第1干渉光及び第3干渉光の他の明部の位置が対称となる位置を検出し、前記明暗データの任意の起点から当該明部の位置までの第1距離データL1’(L1)を取得するとともに、第2干渉光と第4干渉光とが同一位置で明部を取り且つ当該明部の位置前後で第2干渉光及び第4干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までの第2距離データL2’(L2)を取得する距離データ取得ステップと、
第1距離データL1’(L1)と第2距離データL2’(L2)とに基づいて被測定物6の第1測定点S1から第2測定点S2までの厚み方向の距離Lを算出する測距ステップと、
を有することを特徴とする測距方法を提供することにより、上記課題を解決する。
(3)無測定物状態における前記起点からの測定光の光路長Lo’(Lo)を取得する光路長取得ステップをさらに有し
第2測定点S2が第1測定点S1の裏面に位置し、
第2測定光が第2測定点S2で反射することで、
測距ステップが第1距離データL1’(L1)と第2距離データL2’(L2)と前記測定光の光路長Lo’(Lo)とに基づいて被測定物6の厚みtを算出することを特徴とする上記(2)記載の測距方法を提供することにより、上記課題を解決する。
(4)異なる波長の第1レーザ光と第2レーザ光とを分割部12で参照光と測定光とにそれぞれ分割し、傾けて設置された反射部14が前記それぞれの参照光を所定の反射角で反射し、前記測定光をさらにX軸方向の第1測定光LZ(X1)とX軸方向の第2測定光LZ(X2)とY軸方向の第1測定光LZ(Y1)とY軸方向の第2測定光LZ(Y2)とZ軸方向の測定光LZ(Z)とに分割し、
第1レーザ光及び第2レーザ光のX軸方向の第1測定光LZ(X1)を被測定物のX軸方向の第1測定点Sx1で反射させ、第1レーザ光及び第2レーザ光のX軸方向の第2測定光LZ(X2)をX軸方向の第1測定点Sx1の裏面に位置するX軸方向の第2測定点Sx2で反射させ、第1レーザ光及び第2レーザ光のY軸方向の第1測定光LZ(Y1)を被測定物のY軸方向の第1測定点Sy1で反射させ、第1レーザ光及び第2レーザ光のY軸方向の第2測定光LZ(Y2)をY軸方向の第1測定点Sy1の裏面に位置するY軸方向の第2測定点Sy2で反射させ、第1レーザ光及び第2レーザ光のZ軸方向の測定光LZ(Z)を被測定物のZ軸方向の測定点Szで反射させ、
無測定物状態における任意の起点からのX軸方向の測定光の光路長Lox’(Lox)とY軸方向の測定光の光路長Loy’(Loy)とZ軸方向の測定光LZ(Z)の光路長Loz’(Loz)とを取得する光路長取得ステップと、
複数の受光器22で構成された受光部18が反射部14で反射した参照光と各測定点で反射した各測定光とを受光して、各受光器22の光強度データを演算部20に出力する光強度出力ステップと、
前記光強度データから明暗データを作成する明暗データ作成ステップと、
作成された明暗データにフーリエ変換を施して前記明暗データに含まれる各干渉光の干渉縞の周期、位相、振幅を取得するフーリエ変換ステップと、
取得された各干渉光の振幅に基づいて、X軸方向の第1測定光LZ(X1)と参照光による干渉光の周期、位相、振幅と、X軸方向の第2測定光LZ(X2)と参照光による干渉光の周期、位相、振幅と、Y軸方向の第1測定光LZ(Y1)と参照光による干渉光の周期、位相、振幅と、Y軸方向の第2測定光LZ(Y2)と参照光による干渉光の周期、位相、振幅と、Z軸の測定光LZ(Z)と参照光による干渉光の周期、位相、振幅と、をそれぞれ判別する判別ステップと、
取得された各干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
X軸方向の第1測定光LZ(X1)と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該X軸方向の第1測定光LZ(X1)と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記明暗データの前記起点から当該明部の位置までのX軸方向の第1距離データLx1’(Lx1)を取得し、X軸方向の第2測定光LZ(X2)と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該X軸方向の第2測定光LZ(X2)と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのX軸方向の第2距離データLx2’(Lx2)を取得し、Y軸方向の第1測定光LZ(Y1)と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Y軸方向の第1測定光LZ(Y1)と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのY軸方向の第1距離データLy1’(Ly1)を取得し、Y軸方向の第2測定光LZ(Y2)と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Y軸方向の第2測定光LZ(Y2)と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのY軸方向の第2距離データLy2’(Ly2)を取得し、Z軸方向の測定光LZ(Z)と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Z軸方向の測定光LZ(Z)と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのZ軸方向の距離データLz’(Lz)を取得する距離データ取得ステップと、
X軸方向の第1距離データLx1’(Lx1)と第2距離データLx2’(Lx2)とX軸方向の測定光の光路長Lox’(Lox)とに基づいて被測定物6のX軸方向の厚みtxを算出し、Y軸方向の第1距離データLy1’(Ly1)と第2距離データLy2’(Ly2)とY軸方向の測定光の光路長Loy’(Loy)とに基づいて被測定物6のY軸方向の厚みtyを算出し、Z軸方向の距離データLz’(Lz)とZ軸方向の測定光LZ(Z)の光路長Loz’(Loz)とに基づいて被測定物6のZ軸方向の厚みtzを算出する測距ステップと、
を有することを特徴とする測距方法を提供することにより、上記課題を解決する。
(5)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部12と、それぞれの参照光を所定の反射角で反射する反射部14と、複数の受光器22で構成され反射部14で反射した参照光と被測定物6で反射した測定光とを受光して各受光器22の光強度データを出力する受光部18と、各受光器22の光強度データが入力する演算部20と、を有し、
上記(1)記載の光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、予め求められた基準点から被測定物6までの距離Lを算出することを特徴とするレーザ測距装置50aを提供することにより、上記課題を解決する。
(6)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部12と、それぞれの参照光を所定の反射角で反射する反射部14と、前記測定光を第1測定光と第2測定光とに分割する測定光分割部28と、第1測定光を出射する第1出射口16aと、第2測定光を出射する第2出射口16bと、複数の受光器22で構成され反射部14で反射した参照光と被測定物6の第1測定点S1で反射した第1測定光と被測定物6の第2測定点S2で反射した第2測定光とを受光して各受光器22の光強度データを出力する受光部18と、各受光器22の光強度データが入力する演算部20と、を有し、
上記(2)記載の光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物6の第1測定点S1から第2測定点S2までの厚み方向の距離Lを算出することを特徴とするレーザ測距装置50bを提供することにより、上記課題を解決する。
(7)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部12と、それぞれの参照光を所定の反射角で反射する反射部14と、前記測定光を第1測定光と第2測定光とに分割する測定光分割部28と、第1測定光を出射する第1出射口16aと、当該第1出射口16aと対向する位置に設けられ第2測定光を出射する第2出射口16bと、複数の受光器22で構成され反射部14で反射した参照光と被測定物6の第1測定点S1で反射した第1測定光と当該第1測定点S1の裏面に位置する第2測定点S2で反射した第2測定光とを受光して各受光器22の光強度データを出力する受光部18と、各受光器22の光強度データが入力する演算部20と、を有し、
上記(3)記載の光路長取得ステップと光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物6の厚みtを算出することを特徴とするレーザ測距装置50cを提供することにより、上記課題を解決する。
(8)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部12と、それぞれの参照光を所定の反射角で反射する反射部14と、前記測定光をX軸方向の第1測定光LZ(X1)とX軸方向の第2測定光LZ(X2)とY軸方向の第1測定光LZ(Y1)とY軸方向の第2測定光LZ(Y2)とZ軸方向の測定光LZ(Z)とに分割する測定光分割部(第1測定光分割部28a〜第4測定光分割部28d)と、
X軸方向の第1測定光LZ(X1)を被測定物6のX軸方向の第1測定点Sx1で反射させ、X軸方向の第2測定光LZ(X2)を当該第1測定点Sx1の裏面に位置する第2測定点Sx2で反射させ、Y軸方向の第1測定光LZ(Y1)を被測定物6のY軸方向の第1測定点Sy1で反射させ、Y軸方向の第2測定光LZ(Y2)を当該第1測定点Sy1の裏面に位置する第2測定点Sy2で反射させ、Z軸方向の測定光LZ(Z)を被測定物のZ軸方向の測定点Szで反射させ、複数の受光器22で構成され反射部14で反射した参照光と各測定点で反射した各測定光とを受光して各受光器22の光強度データを出力する受光部18と、
各受光器22の光強度データが入力する演算部20と、を有し、
上記(4)記載の光路長取得ステップと光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物6のX軸方向の厚みtxとY軸方向の厚みtyとZ軸方向の厚みtzとを算出することを特徴とするレーザ測距装置50dを提供することにより、上記課題を解決する。
本発明に係る測距方法及びレーザ測距装置によれば、光学系に機械的手段を用いずに被測定物までの距離もしくは厚み方向の距離もしくは厚みを高精度に測定することができる。
本発明に係る第1のレーザ測距装置の概略構成を示す図である。 本発明の参照光と測定光の光路差を説明する図である。 本発明の受光部と明暗データの作成を説明する図である。 本発明に係る第1のレーザ測距装置の他の測定例を示す図である。 本発明に係る第2のレーザ測距装置の概略構成を示す図である。 本発明に係る第3のレーザ測距装置の概略構成を示す図である。 本発明に係る第4のレーザ測距装置の概略構成を示す図である。
本発明に係る測距方法及びレーザ測距装置の実施の形態について図面に基づいて説明する。尚、図1及び後述の図4〜図8中の破線はレーザ光の光路を示す。
先ず、本発明に係るレーザ測距装置に共通する構成を図1の第1のレーザ測距装置50aを用いて説明する。
本発明に係るレーザ測距装置は、波長の異なる2つのレーザ光(第1レーザ光、第2レーザ光)をそれぞれ出射する第1レーザ照射手段10aと第2レーザ照射手段10bとを有している。第1レーザ照射手段10a、第2レーザ照射手段10bとしてはコヒーレンス長の比較的長い、ヘリウムネオンレーザや半導体励起固体レーザ、半導体DFBレーザ、などを用いることが好ましい。尚、第1レーザ光と第2レーザ光とは、第1レーザ光の波長をλa、第2レーザ光の波長をλbとしたときに、
0.9λa>λb 程度の波長の差を有していることが好ましい。
そして、第1レーザ照射手段10aから出射した第1レーザ光は、第1レーザ光の光路上に設けられたミラー4aで反射され分割部12に向う。また、第2レーザ照射手段10bから出射した第2レーザ光は、第2レーザ光の光路上に設けられたハーフミラー4bで反射され第1レーザ光と同一光路上を通り分割部12に向う。
分割部12としてはハーフミラーやビームスプリッタ等が用いられ、分割部12に到達した第1レーザ光及び第2レーザ光は分割部12で2分割される。そして、一方は参照光として反射部14に向かい、もう一方は測定光として被測定物6の側に向う。
分割部12で分割された第1レーザ光及び第2レーザ光の参照光は反射部14にて反射される。このとき、反射部14を分割部12からの参照光の入射方向に垂直に設置するのではなく、所定の角度θだけ傾けて設置する。よって、参照光は図2に示すように、所定の反射角(入射方向から見て2θ)で反射する。そして、所定の反射角で反射した参照光は分割部12を通過して受光部18に到達する。
また、分割部12で分割された第1レーザ光及び第2レーザ光の測定光は被測定物6に照射される。尚、後述の第2〜第4の測距方法では第1レーザ光及び第2レーザ光の測定光はさらに複数に分割され、被測定物6のそれぞれの測定点で反射される。被測定物6の測定点で反射された測定光は分割部12を経由して受光部18に到達する。
受光部18は例えばCCDやCMOSのように複数の受光器22で構成され、受光器22毎に光強度データを出力可能なものが用いられる。ここで、受光部18が受光する参照光と測定光とを図2を用いて説明する。前述のように反射部14は参照光の入射方向に垂直な方向から所定の角度θだけ傾けて設置されている。このため、図2の反射部14上の点aで反射した参照光の点a−a’間の光路長をLraとし、点aから距離Dだけ離れた反射部14上の点bで反射した参照光の点b−b’間の光路長をLrbとし、受光部18上の点a’−b’間の距離をD’とすると、光路長Lrbと光路長Lraとの光路差(Lrb−Lra)は
(Lrb−Lra)=D’sin2θ となる。
よって、参照光の光路長は反射点としての点aから点b(受光点における点a’から点b’)に向うに従って、即ち、反射部14上の距離D(受光部18上の距離D’)が大きくなるに伴って増加する。これに対し、受光部18に受光する測定光の光路長は全て等しい。よって、受光部18での測定光と参照光との光路差は、受光部18上の点a’から点b’に向うにつれ大きくなる。そして、レーザ光が1つの場合、測定光と参照光とが干渉した干渉光の強度は測定光と参照光の光路差によって周期的に変化する。このため、受光部18には点a’から点b’に向って干渉縞が生じる。ここで仮に、図3(a)に示すように、受光部18を構成する複数の受光器22の縦の列が干渉縞に沿うように受光部18を設置した場合を考える。尚、図3においては説明の都合上、照射するレーザ光が1つの場合を示している。また、干渉縞の暗部をBとして示している。この場合、例えば受光器22の任意の横列n及び横列n−1の光強度データを縦列a’から縦列b’に向けて結ぶと、図3(b)に示すように干渉光の明暗データが得られる。以上が受光器22の光強度データから明暗データを作成する原理である。
ただし実際には、図3(c)に示すように、受光器22の列が干渉縞の方向と一致しないように設置することが好ましい。この設置方向を最適化すれば、図3(c)、図3(d)に示すように、多数の横列の受光器22の光強度データを明暗データの作成に用いることができる。これにより、第1レーザ光と第2レーザ光の両方の干渉光が受光しても後述の演算を行うに十分詳細な明暗データを作成することができる。尚、明暗データには受光部18を構成する全ての受光器22の光強度データを使用する必要はなく、明暗データの作成に十分な領域の受光器22の光強度データを用いれば良い。受光器22の使用領域及び、明暗データ作成時の光強度データの配列等は、レーザ測距装置50a〜50dの出荷前に予め取得しておき、レーザ測距装置50a〜50d内のメモリ等に記憶しておくことが好ましい。また、上記の光強度データの配列等の取得時には、使用するレーザ光を一つとし、明瞭な干渉縞で行うことが好ましい。
尚、上記の手法により得られる明暗データの長さは明暗データの基となる受光器22のデータ数、もしくは、明暗データを作成する際の受光部18の長さ、即ち、図2における距離D’となり、実際の長さ(Lrb−Lra)とは異なっている。尚、この受光器22に基づく長さを、以後、ピクセル長さと記述する。
ここで、例えばレーザ光の波長をλとすると、このレーザ光の干渉光の波長λ1、即ち干渉縞の波長λ1は
λ1=λ/2 となる。
そして、この波長λのレーザ光を用いたときの明暗データ上の干渉縞の波長(周期)がピクセル長さでλ2である場合、あるピクセル長さの距離L’と実際の距離Lとは
L=L’×(λ1/λ2)=L’λ/(2×λ2) の関係が成立する。
よって、受光器22の使用領域の測定時に、使用するレーザ光(第1レーザ光もしくは第2レーザ光)の波長λと、ピクセル長さでの干渉縞の波長λ2とを取得すれば、上の換算式によりピクセル長さから実際の長さを算出することができる。尚、ピクセル長さから実際の長さへの換算は明暗データの作成時に行っても良いが、途中の演算をピクセル長さで行い測距ステップの最終段階においてピクセル長さから実際の長さに換算することが誤差低減の観点から好ましい。尚、本例では途中の演算をピクセル長さで行い測距ステップの最終段階において実際の長さに換算する例を説明するものとする。
レーザ測距装置の説明に戻り、受光部18は各受光器22の光強度データを演算部20に出力する。演算部20は受光部18からの各受光器22の光強度データを用いて、前述の説明のように明暗データを作成する。そして、この明暗データに基づいて目的の距離を算出する。
次に、本発明に係る第1の測距方法及び第1のレーザ測距装置50aの動作を説明する。本発明に係る第1の測距方法では、予め基準点の距離データLb(ピクセル長さの距離データLb’が好ましい)を取得する必要がある。レーザ測距装置50aに好適な基準点の距離データLb’の取得方法は後述する。
先ず、図1(a)に示すように、被測定物6を設置する。次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。照射された第1レーザ光及び第2レーザ光は分割部12で参照光と測定光とに2分割される。
分割部12で分割された第1レーザ光及び第2レーザ光の参照光は反射部14にて反射され、分割部12を通過して受光部18に到達する。また、分割部12で分割された第1レーザ光及び第2レーザ光の測定光は出射口16から出射し、被測定物6の測定点Sで反射した後、分割部12で反射して受光部18に到達する。尚、測距時等に参照光と測定光との光路差がコヒーレンス長の範囲内となるようにし、測定光の光路長と参照光の光路長とは略同等とすることが好ましい。
受光部18は反射部14で反射した第1レーザ光及び第2レーザ光の参照光と被測定物6の測定点Sで反射した第1レーザ光及び第2レーザ光の測定光とを受光する。このとき、第1レーザ光の参照光と第1レーザ光の測定光とは干渉し干渉光を形成する。また、第2レーザ光の参照光と第2レーザ光の測定光とは干渉し干渉光を形成する。尚、第1レーザ光と第2レーザ光の干渉は“うなり”となり、時間平均すると一定値となる。そして、前述のように反射部14で反射した参照光はその反射した位置によって光路長が異なるから、第1レーザ光の測定光と参照光による干渉光と第2レーザ光の測定光と参照光による干渉光とは、明暗が周期的に生じる干渉縞を受光部18にそれぞれ形成する。ただし、第1レーザ光と第2レーザ光とは波長が異なっているため明暗の周期は異なる。そして、受光部18は各受光器22の光強度データを演算部20に出力する(第1の測距方法における光強度出力ステップ)。
演算部20は各受光器22の光強度データから第1レーザ光の測定光と参照光による干渉光と第2レーザ光の測定光と参照光による干渉光が含まれた明暗データを作成する(第1の測距方法における明暗データ作成ステップ)。
次に演算部20は、この明暗データに対してフーリエ変換を施す。これにより、第1レーザ光の測定光と参照光による干渉光の周期、位相、振幅と、第2レーザ光の測定光と参照光による干渉光の周期、位相、振幅とが取得される(第1の測距方法におけるフーリエ変換ステップ)。
次に演算部20は、第1レーザ光の測定光と参照光による干渉光の周期、位相に基づき、任意の起点からの明部の位置を所定の範囲に亘って取得する。また、第2レーザ光の測定光と参照光による干渉光の周期、位相に基づき、前記起点からの明部の位置を所定の範囲に亘って取得する(第1の測距方法における明部取得ステップ)。尚、上記の起点は、明暗データにおける特定の受光器22の強度データの位置とすることが好ましい。
ここで、参照光の光路長と測定光の光路長とが等しく光路差が存在しない場合、どのような発振波長を有するレーザ光であってもその参照光と測定光とは強め合いその干渉光は明部をとる。反対に参照光と測定光とに光路差が存在する場合には、異なる発振波長を有するレーザ光の干渉光が同一位置で明部を取るような光路差の値は現実には存在しない。よって、第1レーザ光の測定光と参照光による干渉光と第2レーザ光の測定光と参照光による干渉光とが同一位置で明部を取る点は明暗データ中に一点しか存在しない。さらに、双方の干渉光の他の明部の位置は、同一位置で明部をとる上記位置の前後で対称性を示す。
よって演算部20は、取得された第1レーザ光の測定光と参照光による干渉光の明部の位置と第2レーザ光の測定光と参照光による干渉光の明部の位置とを比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20は前記起点からこの明部の位置までの距離データLa’(ピクセル長さ)を取得する。この距離データLa’は測定光の光路上の起点(ここでの起点は特定の受光器22と対応する位置なので、正確に図示することはできない。)と測定点S間の往復の測定光の光路長と対応する(第1の測距方法における距離データ取得ステップ)。
ここで、基準点の距離データLb’(ピクセル長さ)を取得する方法を説明する。尚、以下に示す基準点の距離データLb’の取得方法は本発明に係るレーザ測距装置50aに好適なものであるが、必ずしもこの方法を用いる必要は無い。
先ず、図1(b)に示すように、出射口16を平板5で塞ぎ、第1レーザ光及び第2レーザ光の測定光を平板5の反射点S’で反射させる。そして、第1の測距方法における光強度出力ステップ〜距離データ取得ステップを行う。このとき、これらステップにおける起点は前述の距離データLa’の取得時と同一点とする。これにより、起点から基準点までの距離データLb’が取得される。尚、この基準点の距離データLb’は測定光の光路上の起点と平板5の反射点S’間の往復の測定光の光路長と対応する。以上がレーザ測距装置50aに好適な基準点の距離データLb’を取得する方法である。
次に演算部20は、距離データ取得ステップで得られた距離データLa’から、先に得られた基準点の距離データLb’を減算した上で2で割ることで、基準点(S’)から被測定物6の測定点Sまでの距離L’(ピクセル長さ)を算出する。そして、距離L’のピクセル長さを実際の長さに換算することで、基準点(S’)から被測定物6の測定点Sまでの実際の距離Lを算出する(第1の測距方法における測距ステップ)。
尚、基準点を平板5の内面とせずに、図4(a)に示すように、被測定物6の第1測定点S1とし、第1測定点S1の距離データLb’取得後にレーザ測距装置50aもしくは被測定物6を平行移動させ、図4(b)に示すように、測定光を被測定物6の第2測定点S2で反射させて第2測定点S2の距離データLa’を取得するようにすれば、得られる距離は第1測定点S1と第2測定点S2の厚み方向の距離Lとなる。
次に、本発明に係る第2測距方法及び第2のレーザ測距装置50bの動作を図5を用いて説明する。尚、本発明に係る第2の測距方法では、レーザ測距装置50bの装置内部において第1測定光と第2測定光とに光路差が存在する場合、予めその光路差を取得しておく必要がある。ここでは先ず、装置内部において第1測定光と第2測定光とに光路差が存在しない例を説明する。
先ず始めに、図5(a)に示すように、被測定物6をその第1測定点S1に第1測定光が、第2測定点S2に第2測定光が垂直に照射するように設置する。
次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。
レーザ測距装置50bは、第1の形態のレーザ測距装置50aに加えて、測定光を第1測定光と第2測定光とに分割する測定光分割部28を有している。尚、測定光分割部28は透過光量と反射光量との比が50:50以外のものを用いる。このようにすることで、第1測定光の光量と第2測定光の光量とに差が生じ、後述の判別ステップにおいて第1測定光の干渉光の周期、位相、振幅と第2測定光の干渉光の周期、位相、振幅とをその光量、即ち振幅の値から判別することができる。
そして、測定光分割部28にて分割された第1レーザ光及び第2レーザ光の第1測定光は、ミラー8a、ミラー8bで反射され第1出射口16aから被測定物6の側に出射する。また、測定光分割部28で分割された第1レーザ光及び第2レーザ光の第2測定光はミラー8cで反射され第2出射口16bから被測定物6の側に出射する。第1出射口16aから出射した第1測定光は被測定物6の第1測定点S1で反射され、ミラー8b、ミラー8a、測定光分割部28、分割部12を経由して受光部18に到達する。また、第2出射口16bから出射した第2測定光は被測定物6の第2測定点S2で反射され、ミラー8c、測定光分割部28、分割部12を経由して受光部18に到達する。
これにより、受光部18は反射部14で反射した第1レーザ光及び第2レーザ光の参照光と、被測定物6の第1測定点S1で反射した第1レーザ光及び第2レーザ光の第1測定光と、被測定物6の第2測定点S2で反射した第1レーザ光及び第2レーザ光の第2測定光と、を受光する。このとき、第1レーザ光の参照光と第1レーザ光の第1測定光とは干渉し第1干渉光を形成する。また、第1レーザ光の参照光と第1レーザ光の第2測定光とは干渉し第2干渉光を形成する。また、第2レーザ光の参照光と第2レーザ光の第1測定光とは干渉し第3干渉光を形成する。また、第2レーザ光の参照光と第2レーザ光の第2測定光とは干渉し第4干渉光を形成する。尚、反射部14で反射した参照光はその反射した位置によって光路長が異なるから、各干渉光は受光部18に干渉縞をそれぞれ形成する。そして、受光部18は各受光器22の光強度データを演算部20に出力する(第2の測距方法における光強度出力ステップ)。
演算部20は各受光器22の光強度データから第1干渉光と第2干渉光と第3干渉光と第4干渉光とが含まれた明暗データを作成する(第2の測距方法における明暗データ作成ステップ)。
次に演算部20は、この明暗データに対してフーリエ変換を施す。これにより、第1干渉光の周期、位相、振幅と、第2干渉光の周期、位相、振幅と、第3干渉光の周期、位相、振幅と、第4干渉光の周期、位相、振幅とが取得される(第2の測距方法におけるフーリエ変換ステップ)。尚、第1レーザ光及び第2レーザ光の第1測定光と第2測定光とは光路差が一定のため、測定光同士の干渉光には干渉縞は形成されずフーリエ変換により一定値となる。また、第1レーザ光と第2レーザ光の干渉は“うなり”となり、時間平均によりこれも一定値となる。
ここで、前述のように測定光分割部28は透過光量と反射光量との比が50:50以外のものが用いられる。仮に測定光分割部28の透過光量と反射光量との比を70:30とし、分割部12の透過光量と反射光量との比を50:50とし、第1レーザ光及び第2レーザ光の強度をIとした時に、第1測定光が干渉した第1干渉光及び第3干渉光の振幅(強度)は約31×10−3×I となる。また、第2測定光が干渉した第2干渉光及び第4干渉光の振幅は約6×10−3×I となる。よって、この振幅の値から第1測定光による干渉光(第1干渉光、第3干渉光)の周期、位相、振幅と、第2測定光による干渉光(第2干渉光、第4干渉光)の周期、位相、振幅と、を判別することができる。
演算部20はフーリエ変換ステップで得られた振幅の値により、第1測定光による干渉光(第1干渉光、第3干渉光)の周期、位相、振幅と、第2測定光による干渉光(第2干渉光、第4干渉光)の周期、位相、振幅と、を判別する(第2の測距方法における判別ステップ)。尚、第1干渉光の周期、位相、振幅と第3干渉光の周期、位相、振幅、ならびに、第2干渉光の周期、位相、振幅と第4干渉光の周期、位相、振幅とは、第1レーザ光による干渉光の縞間隔(=周期)と第2レーザ光による干渉光の縞間隔(=周期)とから判別が可能である。また、第1レーザ光と第2レーザ光の出力強度を異なるものとすれば、各干渉光の振幅の値からそれぞれの干渉光を特定することができる。このことは、後述の第3の測距方法、第4の測距方法でも同様である。ただし、必ずしも各干渉光の周期、位相、振幅を全て特定する必要は無い。
次に演算部20は、各干渉光の周期、位相に基づき、明暗データ上の任意の起点からの第1干渉光、第2干渉光、第3干渉光、第4干渉光の明部の位置を所定の範囲に亘ってそれぞれ取得する。(第2の測距方法における明部取得ステップ)。
次に演算部20は、第1干渉光及び第3干渉光の明部の位置を比較して、同一の位置で第1干渉光も第3干渉光も明部を取る位置を検出する。そして、この明部の位置の前後で第1干渉光と第3干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離を第1距離データL1’(ピクセル長さ)として取得する。尚、この第1距離データL1’は第1測定光の光路上の起点と第1測定点S1間の往復の第1測定光の光路長と対応する。
また、演算部20は、第2干渉光及び第4干渉光の明部の位置を比較して、同一の位置で第2干渉光も第4干渉光も明部を取る位置を取得する。そして、この明部の位置の前後で第2干渉光と第4干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離を第2距離データL2’(ピクセル長さ)として取得する。尚、この第2距離データL2’は第2測定光の光路上の起点と第2測定点S2間の往復の第2測定光の光路長と対応する(第2の測距方法における距離データ取得ステップ)。
上記のように、第1距離データL1’は起点と第1測定点S1間の往復の第1測定光の光路長と対応し、第2距離データL2’は起点と第2測定点S2間の往復の第2測定光の光路長と対応する。よって、第1測定点S1と第2測定点S2との間の厚み方向の距離L’(ピクセル長さ)は
L’=|L2’−L1’|/2 となる。
よって演算部20は、第2距離データL2’の値から第1距離データL1’の値を減算しその絶対値をとる。そして、2で割ることで、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離L’を算出する。そして、距離L’のピクセル長さを実際の長さに換算することで、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離Lを算出する(第2の測距方法における測距ステップ)。
尚、レーザ測距装置50bの装置内部において第1測定光と第2測定光とに光路差が存在する場合には、予めその光路差Ld(ピクセル長さの光路差Ld’が好ましい)を取得する。ここで、レーザ測距装置50bに好適な光路差Ld’(ピクセル長さ)の取得方法を説明する。
先ず、図5(b)に示すように、第1出射口16aと第2出射口16bとを表面が平滑な平板5で塞ぐ。このとき、第1出射口16aから平板5までの距離と第2出射口16bから平板5までの距離とは等しい。そして、第1測定光を平板5の第1測定点S1’で反射させ第2測定光を平板5の第2測定点S2’で反射させた上で、第2の測距方法における光強度出力ステップ〜距離データ取得ステップを行う。これにより得られる第1距離データL1’は起点と平板5の第1測定点S1’間の往復の測定光の光路長と対応する。また、第2距離データL2’は起点と平板5の第2測定点S2’間の往復の測定光の光路長と対応する。ここで、第1測定点S1’と第2測定点S2’とは第1出射口16a、第2出射口16bから等距離にあるから、よって、第2距離データL2’と第1距離データL1’との差の絶対値|L2’−L1’|は、第1測定光と第2測定光との装置内部における光路差Ld’に相当する。以上が測距装置50bに好適な光路差Ld’の取得方法である。尚、光路差Ldは、図5(b)においては測定光分割部28とミラー8cとの間の距離の2倍に相当する。
そして、第1測定光と第2測定光とに光路差が存在する場合には、測距ステップにおいて、被測定物6の測距時の第1距離データL1’と第2距離データL2’と光路差Ld’とから、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離L’を、図5(b)に示す測距装置50bの場合には、
L’=|L2’−L1’−Ld’|/2 の式で算出し、
図5(b)に示す測距装置50bとは逆に、装置内部において第1測定光の光路長の方が第2測定光の光路長より長い場合、即ち、第2距離データL2’よりも第1距離データL1’の方が大きい場合には、
L’=|L1’−L2’−Ld’|/2 の式で算出する。
そして、距離L’のピクセル長さを実際の長さに換算することで、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離Lを算出する。
次に、本発明に係る第3の測距方法及び第3のレーザ測距装置50cの動作を図6を用いて説明する。尚、第3の形態のレーザ測距装置50cは被測定物6の一面側に位置する第1測定点S1と、当該第1測定点S1の裏面に位置する第2測定点S2との間の厚み方向の距離を測距することで、被測定物6の厚みtを測距するものである。従って、その構成は第1測定光と第2測定光との光学経路が異なる以外、第2の形態のレーザ測距装置50bと基本的に同等である。また、本発明に係る第3の測距方法では、予め光路長取得ステップを行って無測定物状態における測定光の(起点からの)光路長Lo(ピクセル長さの光路長Lo’が好ましい)を取得する必要がある。レーザ測距装置50cに好適な光路長Lo’の取得方法は後述する。
第3の形態のレーザ測距装置50cでは、測定光分割部28にて分割された第1測定光は、ミラー8a、ミラー8b、ミラー8dで反射され第1出射口16aから第2出射口16bに向けて出射する。また、測定光分割部28で分割された第2測定光はミラー8c、ミラー8eで反射され第2出射口16bから第1出射口16aに向けて出射する。尚、測定光分割部28は第2の形態のレーザ測距装置50bと同様、透過光量と反射光量との比が50:50以外のものを用いる。
第1出射口16aと第2出射口16bとは対向する位置に設けられ、被測定物6は、図6(a)に示されるように、この第1出射口16aと第2出射口16bとの間に配置される。尚、第1出射口16aと第2出射口16bとの間に何も存在しない無測定物状態の場合には、図6(b)に示すように、第1出射口16aから出射した第1測定光は、第2出射口16bから再度レーザ測距装置50c内に入射してミラー8e、ミラー8cで反射され測定光分割部28に帰還する。また、第2出射口16bから出射した第2測定光は第1出射口16aから再度レーザ測距装置50c内に入射してミラー8d、ミラー8b、ミラー8aで反射され測定光分割部28に帰還する。よって、無測定物状態においては第1測定光と第2測定光とは同じ光路を互いに逆方向に進んで測定光分割部28に帰還することとなる。従って、このときの第1測定光と第2測定光との光路長Loは等しくなる。尚、測距時等に参照光と各測定光との光路差がコヒーレンス長の範囲内となるようにし、測定光分割部28から第1出射口16aまでの第1測定光の光路長と測定光分割部28から第2出射口16bまでの第2測定光の光路長とを略同等とし、さらに参照光の光路長と測定光の光路長Loとを略同等とすることが好ましい。
次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。これにより、第1レーザ光及び第2レーザ光の参照光は反射部14で反射され受光部18に到達する。また、測定光分割部28で分割された第1レーザ光及び第2レーザ光の第1測定光は第1出射口16aから出射した後、被測定物6の第1測定点S1で反射され、ミラー8d、ミラー8b、ミラー8a、測定光分割部28、分割部12を経由して受光部18に到達する。また、第1レーザ光及び第2レーザ光の第2測定光は第2出射口16bから出射した後、被測定物6の第1測定点S1の裏面に位置する第2測定点S2で反射され、ミラー8e、ミラー8c、測定光分割部28、分割部12を経由して受光部18に到達する。受光部18は、第1レーザ光及び第2レーザ光の参照光と、第1レーザ光及び第2レーザ光の第1測定光と、第1レーザ光及び第2レーザ光の第2測定光とを受光する。このとき、第1レーザ光の参照光と第1レーザ光の第1測定光とは干渉し第1干渉光を形成する。また、第1レーザ光の参照光と第1レーザ光の第2測定光とは干渉し第2干渉光を形成する。また、第2レーザ光の参照光と第2レーザ光の第1測定光とは干渉し第3干渉光を形成する。また、第2レーザ光の参照光と第2レーザ光の第2測定光とは干渉し第4干渉光を形成する。そして、受光部18は各受光器22の光強度データを演算部20に出力する(第3の測距方法における光強度出力ステップ)。
次に、演算部20は第2の測距方法と同様の明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップとを行う。これにより第1測定点S1に関する第1距離データL1’(ピクセル長さ)と第2測定点S2に関する第2距離データL2’(ピクセル長さ)とが取得される。
このときの第1距離データL1’は、起点から第1測定点S1までの第1測定光の往復の光路長に対応する。また、このときの第2距離データL2’は、起点から第2測定点S2までの第2測定光の往復の光路長に対応する。よって、演算部20は、第1距離データL1’と第2距離データL2’と、予め取得されている第1測定光(=第2測定光)の起点から当該起点までの光路長Lo’(ピクセル長さ)とから、以下の式により第1測定点S1と第2測定点S2との間の厚み方向の距離、即ち、被測定物6の厚みt’(ピクセル長さ)を算出する。
t’=(2Lo’−L1’−L2’)/2
そして、厚みt’のピクセル長さを実際の長さに換算することで、被測定物6の厚みtを算出する(第3の測距方法における測距ステップ)。
次に、光路長Lo’を取得する方法を説明する。光路長Lo’の取得は、図6(b)に示すように、無測定物状態において第3の測距方法における光強度出力ステップ〜距離データ取得ステップを行う。これにより得られる第1距離データL1’、第2距離データL2’は双方とも測定光(=第1測定光=第2測定光)の起点から当該起点までの光路長Lo’に相当する。以上がレーザ測距装置50cに好適な光路長Lo’(ピクセル長さ)の取得方法である(光路長取得ステップ)。尚、この光路長Lo’の取得方法は本発明に係るレーザ測距装置50cに好適なものであるが、必ずしもこの方法を用いる必要は無い。さらに、光路長Lo’の取得は測定毎に行う必要は無く、レーザ測距装置の出荷時等に行ってメモリ等に記録しておいても良い。
次に、図7に本発明に係る第4の形態のレーザ測距装置50dを示す。第4の形態のレーザ測距装置50dは、第3の形態のレーザ測距装置50cの測定光の光学系をX軸方向に一基、Y軸方向に一基設け、さらに、第1の形態のレーザ測距装置50aの測定光の光学系をZ軸方向に一基設けたものである。
従って、レーザ測距装置50dでは、分割部12で分割された測定光は第1測定光分割部28a、第2測定光分割部28b、第3測定光分割部28c、第4測定光分割部28dによって、X軸方向の第1測定光LZ(X1)とX軸方向の第2測定光LZ(X2)とY軸方向の第1測定光LZ(Y1)とY軸方向の第2測定光LZ(Y2)とZ軸方向の測定光LZ(Z)とに分割される。尚、図7に示すレーザ測距装置50dの例では、分割部12で分割された測定光は、先ず第1測定光分割部28aによってZ軸方向の測定光LZ(Z)とその他の測定光とに分割される。その他の測定光は第2測定光分割部28bによってX軸方向の測定光とY軸方向の測定光とに分割される。X軸方向の測定光は第3測定光分割部28cによってX軸方向の第1測定光LZ(X1)とX軸方向の第2測定光LZ(X2)とに分割される。また、Y軸方向の測定光は第4測定光分割部28dによってY軸方向の第1測定光LZ(Y1)とY軸方向の第2測定光LZ(Y2)とに分割される。尚、第1〜第4測定光分割部28a〜28dは、レーザ測距装置50cと同様、透過光量と反射光量との比が50:50以外のものを用いる。また、測距時等に参照光と各測定光との光路差がコヒーレンス長の範囲内となるようにし、後述の各測定光の光路長と参照光の光路長とは略同等とすることが好ましい。
そして、分割されたX軸方向の第1測定光LZ(X1)は、X軸方向の第1出射口16axからX軸方向の第2出射口16bxに向けて出射する。また、X軸方向の第2測定光LZ(X2)は、X軸方向の第2出射口16bxからX軸方向の第1出射口16axに向けて出射する。また、Y軸方向の第1測定光LZ(Y1)は、Y軸方向の第1出射口16ayからY軸方向の第2出射口16byに向けて出射する。また、Y軸方向の第2測定光LZ(Y2)は、Y軸方向の第2出射口16byからY軸方向の第1出射口16ayに向けて出射する。また、Z軸方向の測定光LZ(Z)はZ軸方向の出射口16zから被測定物6を載置する定盤11に向けて出射する。尚、X軸方向の第1出射口16axと第2出射口16bxとは対向する位置に設けられ、Y軸方向の第1出射口16ayと第2出射口16byとは対向する位置に設けられる。よって、被測定物6が定盤11に載置されると、被測定物6はX軸方向の第1出射口16axと第2出射口16bxとの間に位置し、且つY軸方向の第1出射口16ayと第2出射口16byとの間に位置する。そして、図7(b)に示すように、X軸方向の第1測定光LZ(X1)は被測定物6のX軸方向の第1測定点Sx1で反射された後、光路を逆に辿って受光部18に到達する。また、X軸方向の第2測定光LZ(X2)は第1測定点Sx1の裏面に位置する第2測定点Sx2で反射された後、光路を逆に辿って受光部18に到達する。また、Y軸方向の第1測定光LZ(Y1)は被測定物6のY軸方向の第1測定点Sy1で反射された後、光路を逆に辿って受光部18に到達する。また、Y軸方向の第2測定光LZ(Y2)は第1測定点Sy1の裏面に位置する第2測定点Sy2で反射された後、光路を逆に辿って受光部18に到達する。また、Z軸方向の測定光LZ(Z)は被測定物6のZ軸方向の測定点Szで反射された後、光路を逆に辿って受光部18に到達する。尚、無測定物状態の場合には、X軸方向の第1出射口16axから出射したX軸方向の第1測定光LZ(X1)は、第2出射口16bxから再度レーザ測距装置50d内に入射して受光部18に到達する。また、X軸方向の第2出射口16bxから出射したX軸方向の第2測定光LZ(X2)は、第1出射口16axから再度レーザ測距装置50d内に入射して受光部18に到達する。また、Y軸方向の第1出射口16ayから出射したY軸方向の第1測定光LZ(Y1)は、第2出射口16byから再度レーザ測距装置50d内に入射して受光部18に到達する。また、Y軸方向の第2出射口16byから出射したY軸方向の第2測定光LZ(Y2)は、第1出射口16ayから再度レーザ測距装置50d内に入射して受光部18に到達する。
次に、本発明に係る第4の測距方法を図7を用いて説明する。本発明に係る第4の測距方法では、予め無測定物状態で後述の各ステップを行い、X軸方向の第1測定光LZ(X1)(=第2測定光LZ(X2))の起点からの光路長Lox’(ピクセル長さ)と、Y軸方向の第1測定光LZ(Y1)(=第2測定光LZ(Y2))の起点からの光路長Loy’(ピクセル長さ)と、Z軸方向の測定光LZ(Z)の起点から定盤11までの往復の光路長Loz’(ピクセル長さ)と、を取得する(第4の測距方法における光路長取得ステップ)。尚、上記の光路長Lox’、光路長Loy’、光路長Loz’の取得方法は本発明に係るレーザ測距装置50dに好適なものであるが、必ずしもこの方法を用いる必要は無い。さらに、光路長Lox’、光路長Loy’、光路長Loz’の取得は測定毎に行う必要は無く、レーザ測距装置の出荷時等に行ってメモリ等に記録しておいても良い。
次に、定盤11上に被測定物6を載置する。このとき被測定物6の各軸がレーザ測距装置50dの各測定光の光軸と一致するようにする。
次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。これにより、受光部18は反射部14で反射した第1レーザ光及び第2レーザ光の参照光と、被測定物6のX軸方向の第1測定点Sx1で反射した第1レーザ光及び第2レーザ光の第1測定光LZ(X1)と、X軸方向の第2測定点Sx2で反射した第1レーザ光及び第2レーザ光の第2測定光LZ(X2)と、Y軸方向の第1測定点Sy1で反射した第1レーザ光及び第2レーザ光の第1測定光LZ(Y1)と、Y軸方向の第2測定点Sy2で反射した第1レーザ光及び第2レーザ光の第2測定光LZ(Y2)と、Z軸方向の測定点Szで反射した第1レーザ光及び第2レーザ光の測定光LZ(Z)と、を受光する。そして、受光部18は各受光器22の光強度データを演算部20に出力する(第4の測距方法における光強度出力ステップ)。
演算部20は各受光器22の光強度データから参照光と各測定光とが干渉した干渉光を全て含む明暗データを作成する(第4の測距方法における明暗データ作成ステップ)。
次に演算部20は、この明暗データに対してフーリエ変換を施す。これにより、全ての干渉光の周期、位相、振幅が取得される(第4の測距方法におけるフーリエ変換ステップ)。
ここで、仮に第1測定光分割部28aの透過光量と反射光量との比を80:20とし、第2測定光分割部28bの透過光量と反射光量との比を60:40とし、第3測定光分割部28cの透過光量と反射光量との比を60:40とし、第4測定光分割部28dの透過光量と反射光量との比を70:30とし、第1レーザ光及び第2レーザ光の強度をIとすると、X軸方向の第1測定光LZ(X1)による干渉光の振幅(強度)は約2.3×10−3×I となる。また、X軸方向の第2測定光LZ(X2)による干渉光の振幅(強度)は約5.2×10−3×I となる。また、Y軸方向の第1測定光LZ(Y1)による干渉光の振幅(強度)は約0.6×10−3×I となる。また、Y軸方向の第2測定光LZ(Y2)による干渉光の振幅(強度)は約3.1×10−3×I となる。また、Z軸方向の測定光LZ(Z)による干渉光の振幅(強度)は約2.5×10−3×I となる。
よって、演算部20は上記の振幅の値により、第1レーザ光及び第2レーザ光のX軸方向の第1測定光LZ(X1)と参照光による干渉光の周期、位相、振幅と、第1レーザ光及び第2レーザ光のX軸方向の第2測定光LZ(X2)と参照光による干渉光の周期、位相、振幅と、第1レーザ光及び第2レーザ光のY軸方向の第1測定光LZ(Y1)と参照光による干渉光の周期、位相、振幅と、第1レーザ光及び第2レーザ光のY軸方向の第2測定光LZ(Y2)と参照光による干渉光の周期、位相、振幅と、第1レーザ光及び第2レーザ光のZ軸方向の測定光LZ(Z)と参照光による干渉光の周期、位相、振幅と、をそれぞれ判別する(第4の測距方法における判別ステップ)。尚、第1レーザ光と第2レーザ光による干渉は“うなり”となり時間平均で一定値となり、第1レーザ光及び第2レーザ光の測定光同士の干渉光は光路差が一定のため干渉縞が形成されずフーリエ変換により一定値となる。
次に演算部20は、第1測定光LZ(X1)と参照光による干渉光、第2測定光LZ(X2)と参照光による干渉光、第1測定光LZ(Y1)と参照光による干渉光、第2測定光LZ(Y2)と参照光による干渉光、測定光LZ(Z)と参照光による干渉光のそれぞれの周期、位相に基づき起点からの各干渉光の明部の位置を所定の範囲に亘ってそれぞれ取得する。(第4の測距方法における明部取得ステップ)。
次に演算部20は、第1レーザ光及び第2レーザ光のX軸方向の第1測定光LZ(X1)と参照光による干渉光の明部の位置を比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離をX軸方向の第1距離データLx1’(ピクセル長さ)として取得する。尚、このX軸方向の第1距離データLx1’はX軸方向の第1測定光LZ(X1)の起点からX軸方向の第1測定点Sx1までの往復の光路長と対応する。また、演算部20は、第1レーザ光及び第2レーザ光のX軸方向の第2測定光LZ(X2)と参照光による干渉光の明部の位置を比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離をX軸方向の第2距離データLx2’(ピクセル長さ)として取得する。尚、このX軸方向の第2距離データLx2’はX軸方向の第2測定光LZ(X2)の起点からX軸方向の第2測定点Sx2までの往復の光路長と対応する。また、演算部20は、第1レーザ光及び第2レーザ光のY軸方向の第1測定光LZ(Y1)と参照光による干渉光の明部の位置を比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離をY軸方向の第1距離データLy1’(ピクセル長さ)として取得する。尚、このY軸方向の第1距離データLy1’はY軸方向の第1測定光LZ(Y1)の起点からY軸方向の第1測定点Sy1までの往復の光路長と対応する。また、演算部20は、第1レーザ光及び第2レーザ光のY軸方向の第2測定光LZ(Y2)と参照光による干渉光の明部の位置を比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離をY軸方向の第2距離データLy2’(ピクセル長さ)として取得する。尚、このY軸方向の第2距離データLy2’はY軸方向の第2測定光LZ(Y2)の起点からY軸方向の第2測定点Sy2までの往復の光路長と対応する。また、演算部20は、第1レーザ光及び第2レーザ光のZ軸方向の測定光LZ(Z)と参照光による干渉光の明部の位置を比較して、同一の位置で双方の干渉光が明部を取る位置を検出する。そして、この明部の位置の前後で双方の干渉光の他の明部の位置が対称となることを確認する。これらの条件を満たした場合、演算部20はこの明部の起点からの距離をZ軸方向の距離データLz’(ピクセル長さ)として取得する。尚、この距離データLz’はZ軸方向の測定光LZ(Z)の起点からZ軸方向の測定点Szまでの往復の光路長と対応する(第4の測距方法における距離データ取得ステップ)。
次に、演算部20は第3の測距方法における測距ステップと同様に、X軸方向の第1距離データLx1’とX軸方向の第2距離データLx2’とX軸方向の測定光の光路長Lox’とから、被測定物6のX軸方向の厚みtx’(ピクセル長さ)を、
tx’=(2Lox’−Lx1’−Lx2’)/2 の式で算出する。
また、演算部20はY軸方向の第1距離データLy1’とY軸方向の第2距離データLy2’とY軸方向の測定光の光路長Loy’とから、被測定物6のY軸方向の厚みty’(ピクセル長さ)を、
ty’=(2Loy’−Ly1’−Ly2’)/2 の式で算出する。
また、演算部20はZ軸方向の距離データLz’とZ軸方向の定盤11で反射された測定光の光路長Loz’とから、被測定物6のZ軸方向の厚みtz’(ピクセル長さ)を、
tz’=(Loz’−Lz’)/2 の式で算出する。
そして、X軸方向の厚みtx’、Y軸方向の厚みty’、Z軸方向の厚みtz’のピクセル長さを実際の長さに換算することで、被測定物6のX軸方向の厚みtx、Y軸方向の厚みty、Z軸方向の厚みtzをそれぞれ算出する。以上が、第4の測距方法における測距ステップに相当する。
尚、レーザ測距装置50dでは定盤11をX軸、Y軸、Z軸方向に移動可能としても良い。この構成において、例えば図7(b)の状態で被測定物6を定盤11ごとY軸方向に(図中左手前から右奥側に)移動させたとする。この場合、Y軸方向の第1距離データLy1は増加し、その分だけ第2距離データLy2が減少する。そして、被測定物6の段差の位置においてZ軸方向の距離データLzがtz1の分だけ増加する。これにより、被測定物6のZ軸方向の厚みは、変化前の厚みtzからtz1減算したtz2となる。ここで、このZ軸方向の厚みが変化したときのY軸方向の第1距離データをLy1(a)として記録する。そして、被測定物6をさらに移動させると、Z軸方向の測定光LZ(Z)が被測定物6から外れる位置においてZ軸方向の距離データLzがさらにtz2増加して光路長Lozと等しくなる。このときのY軸方向の第1距離データをLy1(b)として記録する。この場合、演算部20は、被測定物6のZ軸方向の厚みがtz2からtzに変化するY軸方向の厚みty1を第1距離データLy1(a)及びLy1(b)とから
ty1=(Ly1(a)−Ly1(b))/2 の式で算出することができる。
このように、レーザ測距装置50dでは定盤11をX軸、Y軸、Z軸方向に移動して、被測定物6を走査するように測距することで、被測定物6を3次元的に測距することができる。このとき、定盤11の移動に機械的手段を用いても、被測定物6のX軸、Y軸、Z軸方向の距離データは光学的な手法に基づき算出されるため、高精度な3次元測定を行うことができる。尚、レーザ測距装置50dでは全範囲を走査するように測距しても良いし、測定者の指示した範囲を走査するようにしても良い。
以上のように、本発明に係る測距方法及びレーザ測距装置によれば、反射部14を所定の角度θだけ傾けて設置することで、参照光の光路長を光路内で連続的に変化させることができる。これにより、受光部18が受光する測定光と参照光による干渉光には干渉縞が形成され、この受光部18の各受光器22の光強度データに基づいて明暗データを作成することができる。そして、この明暗データに基づいて測距を行うため、光学系に機械的手段を用いずに被測定物までの距離もしくは厚み方向の距離もしくは厚みを高精度に測距することができる。また、本発明に係る第4の測距方法及び第4の形態のレーザ測距装置50dによれば、定盤11をX軸、Y軸、Z軸方向に移動して、被測定物6を走査するように測距することで、被測定物6を3次元的に測距することができる。このとき、定盤11の移動に機械的手段を用いても、被測定物6のX軸、Y軸、Z軸方向の距離データは光学的な手法に基づき算出されるため、高精度な3次元測定を行うことができる。
尚、上記のレーザ測距装置50a〜50dの光路は一例であるから、図1、図5〜図7に限定されるものではない。また、レーザ測距装置50a〜50dの参照光の光路長と各測定光の光路長とは略同等とすることが好ましいが、これに限定されるものではない。さらに、レーザ測距装置50a〜50dの各部の構成等は、本発明の要旨を逸脱しない範囲で変更して実施することが可能である。
6 被測定物
10a 第1レーザ照射手段
10b 第2レーザ照射手段
12 分割部
14 反射部
16a 第1出射口
16b 第2出射口
18 受光部
20 演算部
22 受光器
28 測定光分割部
50a〜50d レーザ測距装置
S1 第1測定点
S2 第2測定点
t (被測定物の)厚み

Claims (8)

  1. 異なる波長の第1レーザ光と第2レーザ光とを分割部で参照光と測定光とにそれぞれ分割し、
    傾けて設置された反射部がそれぞれの参照光を所定の反射角で反射し、
    複数の受光器で構成された受光部が反射部で反射した参照光と被測定物で反射した測定光とを受光して各受光器の光強度データを演算部に出力する光強度出力ステップと、
    前記光強度データに基づいて明暗データを作成する明暗データ作成ステップと、
    作成された明暗データにフーリエ変換を施して当該明暗データに含まれる第1レーザ光の測定光と参照光による干渉光の周期、位相、振幅と、第2レーザ光の測定光と参照光による干渉光の周期、位相、振幅と、を取得するフーリエ変換ステップと、
    取得された干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
    取得された明部の位置のうち、第1レーザ光の測定光と参照光による干渉光と第2レーザ光の測定光と参照光による干渉光とが同一位置で明部を取り、且つ当該明部の位置前後で他の明部の位置が対称となる位置を検出し、前記明暗データの任意の起点から当該明部の位置までの距離データを取得する距離データ取得ステップと、
    前記距離データに基づいて予め求められた基準点から被測定物までの距離を算出する測距ステップと、
    を有することを特徴とする測距方法。
  2. 異なる波長の第1レーザ光と第2レーザ光とを分割部で参照光と測定光とにそれぞれ分割し、
    測定光をさらに測定光分割部で第1測定光と第2測定光とに分割し、
    傾けて設置された反射部が前記それぞれの参照光を所定の反射角で反射し、
    第1レーザ光及び第2レーザ光の第1測定光を被測定物の第1測定点で反射させるとともに第1レーザ光及び第2レーザ光の第2測定光を第2測定点で反射させ、
    複数の受光器で構成された受光部が反射部で反射した参照光と第1測定点で反射した各レーザ光の第1測定光と第2測定点で反射した各レーザ光の第2測定光とを受光して各受光器の光強度データを演算部に出力する光強度出力ステップと、
    前記光強度データに基づいて明暗データを作成する明暗データ作成ステップと、
    作成された明暗データにフーリエ変換を施して前記明暗データに含まれる第1レーザ光の第1測定光と参照光による第1干渉光の周期、位相、振幅と、第1レーザ光の第2測定光と参照光による第2干渉光の周期、位相、振幅と、第2レーザ光の第1測定光と参照光による第3干渉光の周期、位相、振幅と、第2レーザ光の第2測定光と参照光による第4干渉光の周期、位相、振幅と、をそれぞれ取得するフーリエ変換ステップと、
    取得された各干渉光の振幅に基づいて、第1測定光と参照光による干渉光の周期、位相、振幅と、第2測定光と参照光による干渉光の周期、位相、振幅と、を判別する判別ステップと、
    取得された各干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
    取得された明部の位置のうち、第1干渉光と第3干渉光とが同一位置で明部を取り且つ当該明部の位置前後で第1干渉光及び第3干渉光の他の明部の位置が対称となる位置を検出し、前記明暗データの任意の起点から当該明部の位置までの第1距離データを取得するとともに、第2干渉光と第4干渉光とが同一位置で明部を取り且つ当該明部の位置前後で第2干渉光及び第4干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までの第2距離データを取得する距離データ取得ステップと、
    第1距離データと第2距離データとに基づいて被測定物の第1測定点から第2測定点までの厚み方向の距離を算出する測距ステップと、
    を有することを特徴とする測距方法。
  3. 無測定物状態における前記起点からの測定光の光路長を取得する光路長取得ステップをさらに有し
    第2測定点が第1測定点の裏面に位置し、
    第2測定光が第2測定点で反射することで、
    測距ステップが第1距離データと第2距離データと前記測定光の光路長とに基づいて被測定物の厚みを算出することを特徴とする請求項2記載の測距方法。
  4. 異なる波長の第1レーザ光と第2レーザ光とを分割部で参照光と測定光とにそれぞれ分割し、
    傾けて設置された反射部が前記それぞれの参照光を所定の反射角で反射し、
    前記測定光をさらにX軸方向の第1測定光とX軸方向の第2測定光とY軸方向の第1測定光とY軸方向の第2測定光とZ軸方向の測定光とに分割し、
    第1レーザ光及び第2レーザ光のX軸方向の第1測定光を被測定物のX軸方向の第1測定点で反射させ、第1レーザ光及び第2レーザ光のX軸方向の第2測定光をX軸方向の第1測定点の裏面に位置するX軸方向の第2測定点で反射させ、第1レーザ光及び第2レーザ光のY軸方向の第1測定光を被測定物のY軸方向の第1測定点で反射させ、第1レーザ光及び第2レーザ光のY軸方向の第2測定光をY軸方向の第1測定点の裏面に位置するY軸方向の第2測定点で反射させ、第1レーザ光及び第2レーザ光のZ軸方向の測定光を被測定物のZ軸方向の測定点で反射させ、
    無測定物状態における任意の起点からのX軸方向の測定光の光路長とY軸方向の測定光の光路長とZ軸方向の測定光の光路長とを取得する光路長取得ステップと、
    複数の受光器で構成された受光部が反射部で反射した参照光と各測定点で反射した各測定光とを受光して、各受光器の光強度データを演算部に出力する光強度出力ステップと、
    前記光強度データから明暗データを作成する明暗データ作成ステップと、
    作成された明暗データにフーリエ変換を施して前記明暗データに含まれる各干渉光の干渉縞の周期、位相、振幅を取得するフーリエ変換ステップと、
    取得された各干渉光の振幅に基づいて、X軸方向の第1測定光と参照光による干渉光の周期、位相、振幅と、X軸方向の第2測定光と参照光による干渉光の周期、位相、振幅と、Y軸方向の第1測定光と参照光による干渉光の周期、位相、振幅と、Y軸方向の第2測定光と参照光による干渉光の周期、位相、振幅と、Z軸の測定光と参照光による干渉光の周期、位相、振幅と、をそれぞれ判別する判別ステップと、
    取得された各干渉光の周期、位相、振幅から各干渉光の明部の位置を取得する明部取得ステップと、
    X軸方向の第1測定光と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該X軸方向の第1測定光と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記明暗データの前記起点から当該明部の位置までのX軸方向の第1距離データを取得し、X軸方向の第2測定光と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該X軸方向の第2測定光と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのX軸方向の第2距離データを取得し、Y軸方向の第1測定光と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Y軸方向の第1測定光と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのY軸方向の第1距離データを取得し、Y軸方向の第2測定光と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Y軸方向の第2測定光と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのY軸方向の第2距離データを取得し、Z軸方向の測定光と参照光による第1レーザ光及び第2レーザ光の干渉光が同一位置で明部を取り且つ当該明部の位置前後で当該Z軸方向の測定光と参照光による干渉光の他の明部の位置が対称となる位置を検出し、前記起点から当該明部の位置までのZ軸方向の距離データを取得する距離データ取得ステップと、
    X軸方向の第1距離データと第2距離データとX軸方向の測定光の光路長とに基づいて被測定物のX軸方向の厚みを算出し、Y軸方向の第1距離データと第2距離データとY軸方向の測定光の光路長とに基づいて被測定物のY軸方向の厚みを算出し、Z軸方向の距離データとZ軸方向の測定光の光路長とに基づいて被測定物のZ軸方向の厚みを算出する測距ステップと、
    を有することを特徴とする測距方法。
  5. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部と、
    それぞれの参照光を所定の反射角で反射する反射部と、
    複数の受光器で構成され反射部で反射した参照光と被測定物で反射した測定光とを受光して各受光器の光強度データを出力する受光部と、
    各受光器の光強度データが入力する演算部と、を有し、
    請求項1記載の光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、予め求められた基準点から被測定物までの距離を算出することを特徴とするレーザ測距装置。
  6. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部と、
    それぞれの参照光を所定の反射角で反射する反射部と、
    前記測定光を第1測定光と第2測定光とに分割する測定光分割部と、
    第1測定光を出射する第1出射口と、第2測定光を出射する第2出射口と、
    複数の受光器で構成され反射部で反射した参照光と被測定物の第1測定点で反射した第1測定光と被測定物の第2測定点で反射した第2測定光とを受光して各受光器の光強度データを出力する受光部と、
    各受光器の光強度データが入力する演算部と、を有し、
    請求項2記載の光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物の第1測定点から第2測定点までの厚み方向の距離を算出することを特徴とするレーザ測距装置。
  7. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部と、
    それぞれの参照光を所定の反射角で反射する反射部と、
    前記測定光を第1測定光と第2測定光とに分割する測定光分割部と、
    第1測定光を出射する第1出射口と、当該第1出射口と対向する位置に設けられ第2測定光を出射する第2出射口と、
    複数の受光器で構成され反射部で反射した参照光と被測定物の第1測定点で反射した第1測定光と当該第1測定点の裏面に位置する第2測定点で反射した第2測定光とを受光して各受光器の光強度データを出力する受光部と、
    各受光器の光強度データが入力する演算部と、を有し、
    請求項3記載の光路長取得ステップと光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物の厚みを算出することを特徴とするレーザ測距装置。
  8. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部と、
    それぞれの参照光を所定の反射角で反射する反射部と、
    前記測定光をX軸方向の第1測定光とX軸方向の第2測定光とY軸方向の第1測定光とY軸方向の第2測定光とZ軸方向の測定光とに分割する測定光分割部と、
    X軸方向の第1測定光を被測定物のX軸方向の第1測定点(Sx1)で反射させ、X軸方向の第2測定光を当該第1測定点(Sx1)の裏面に位置する第2測定点で反射させ、Y軸方向の第1測定光を被測定物のY軸方向の第1測定点(Sy1)で反射させ、Y軸方向の第2測定光を当該第1測定点(Sy1)の裏面に位置する第2測定点で反射させ、Z軸方向の測定光を被測定物のZ軸方向の測定点で反射させ、
    複数の受光器で構成され反射部で反射した参照光と各測定点で反射した各測定光とを受光して各受光器の光強度データを出力する受光部と、
    各受光器の光強度データが入力する演算部と、を有し、
    請求項4記載の光路長取得ステップと光強度出力ステップと明暗データ作成ステップとフーリエ変換ステップと判別ステップと明部取得ステップと距離データ取得ステップと測距ステップとを行って、被測定物のX軸方向の厚みとY軸方向の厚みとZ軸方向の厚みとを算出することを特徴とするレーザ測距装置。
JP2010225371A 2010-10-05 2010-10-05 測距方法及びレーザ測距装置 Pending JP2012078269A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225371A JP2012078269A (ja) 2010-10-05 2010-10-05 測距方法及びレーザ測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225371A JP2012078269A (ja) 2010-10-05 2010-10-05 測距方法及びレーザ測距装置

Publications (1)

Publication Number Publication Date
JP2012078269A true JP2012078269A (ja) 2012-04-19

Family

ID=46238671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225371A Pending JP2012078269A (ja) 2010-10-05 2010-10-05 測距方法及びレーザ測距装置

Country Status (1)

Country Link
JP (1) JP2012078269A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369920A1 (en) * 2014-06-20 2015-12-24 Funai Electric Co., Ltd. Electronic apparatus and method for measuring direction of output laser light

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194523A (ja) * 2001-12-21 2003-07-09 National Institute Of Advanced Industrial & Technology 測長装置
WO2008099788A1 (ja) * 2007-02-13 2008-08-21 Naoyuki Koyama 測距方法及びレーザ測距装置
JP2008209404A (ja) * 2007-01-31 2008-09-11 Tokyo Institute Of Technology 複数波長による表面形状の測定方法およびこれを用いた装置
JP2009074837A (ja) * 2007-09-19 2009-04-09 Anritsu Corp 三次元形状測定装置
JP2009288102A (ja) * 2008-05-29 2009-12-10 Mitsutoyo Corp 光学測定装置
JP2010014426A (ja) * 2008-07-01 2010-01-21 Topcon Corp 測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194523A (ja) * 2001-12-21 2003-07-09 National Institute Of Advanced Industrial & Technology 測長装置
JP2008209404A (ja) * 2007-01-31 2008-09-11 Tokyo Institute Of Technology 複数波長による表面形状の測定方法およびこれを用いた装置
WO2008099788A1 (ja) * 2007-02-13 2008-08-21 Naoyuki Koyama 測距方法及びレーザ測距装置
JP2009074837A (ja) * 2007-09-19 2009-04-09 Anritsu Corp 三次元形状測定装置
JP2009288102A (ja) * 2008-05-29 2009-12-10 Mitsutoyo Corp 光学測定装置
JP2010014426A (ja) * 2008-07-01 2010-01-21 Topcon Corp 測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369920A1 (en) * 2014-06-20 2015-12-24 Funai Electric Co., Ltd. Electronic apparatus and method for measuring direction of output laser light
US9829579B2 (en) * 2014-06-20 2017-11-28 Funai Electric Co., Ltd. Electronic apparatus and method for measuring direction of output laser light

Similar Documents

Publication Publication Date Title
JP5142502B2 (ja) 位置測定装置
US6724485B1 (en) Interferometric measuring device for determining the profile or the pitch of especially rough surfaces
JP5931225B2 (ja) 干渉計を用いて距離変化を算定するための方法
JP6269334B2 (ja) 多点距離測定装置及び形状測定装置
US20200363187A1 (en) Light sensor and coordinate measuring machine
CN110376596B (zh) 一种物体表面三维坐标测量系统以及测量方法
US20080174785A1 (en) Apparatus for the contact-less, interferometric determination of surface height profiles and depth scattering profiles
US9631924B2 (en) Surface profile measurement method and device used therein
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
CN103115585A (zh) 基于受激辐射的荧光干涉显微测量方法与装置
JP2014002139A (ja) 干渉式間隔測定装置
JP2013152191A (ja) 多波長干渉計
KR101251292B1 (ko) 편광을 이용한 3차원 형상 및 두께 측정 장치
US10222197B2 (en) Interferometric distance measuring arrangement for measuring surfaces and corresponding method with at least two parallel measurement channels and wavelength ramp
US7576864B2 (en) Interferometric measuring device for recording geometric data for surfaces
US10775150B2 (en) Optical roughness sensor for a coordinate measuring machine
JP5514641B2 (ja) レーザー干渉バンプ測定器
JP2012078269A (ja) 測距方法及びレーザ測距装置
US20150146208A1 (en) Optical measuring probe and method for optically measuring inner and outer diameters
JP5414083B2 (ja) 測距方法及びレーザ測距装置
CN109579778B (zh) 一种基于双波长分光自准直三维角度测量装置与方法
US20210278533A1 (en) Optical device for determining a distance of a measurement object
CN201940862U (zh) 基于扫频激光干涉的圆轨迹运动误差快速测量系统
JP2013029317A (ja) 光断層画像測定装置および光断層画像測定システム
US7046369B2 (en) Interferometric measuring method and device for measuring the shape of or the distance to surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131011