JP2012072514A - Propylene-based resin composition for melt spinning-type electrospinning and method of melt-spinning ultra fine fiber using the same - Google Patents

Propylene-based resin composition for melt spinning-type electrospinning and method of melt-spinning ultra fine fiber using the same Download PDF

Info

Publication number
JP2012072514A
JP2012072514A JP2010217959A JP2010217959A JP2012072514A JP 2012072514 A JP2012072514 A JP 2012072514A JP 2010217959 A JP2010217959 A JP 2010217959A JP 2010217959 A JP2010217959 A JP 2010217959A JP 2012072514 A JP2012072514 A JP 2012072514A
Authority
JP
Japan
Prior art keywords
propylene
spinning
based resin
resin composition
electrospinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217959A
Other languages
Japanese (ja)
Other versions
JP5437213B2 (en
Inventor
Tomoki Uchida
智樹 内田
Yuichi Yamanaka
勇一 山中
Junichi Nishimura
淳一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2010217959A priority Critical patent/JP5437213B2/en
Publication of JP2012072514A publication Critical patent/JP2012072514A/en
Application granted granted Critical
Publication of JP5437213B2 publication Critical patent/JP5437213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an ultra fine fiber by use of a propylene-based resin material in the melt spinning-type electrospinning method.SOLUTION: A resin material is suitable for spinning an ultra fine fiber by continuously extruding in the heat melted state with the melt spinning-type electrospinning method. The material comprises 0.01 to 2.5 pts.wt. of an additive having a triazine ring structure based on 100 pts.wt. of a propylene-based resin.

Description

本発明は溶融紡糸型エレクトロスピニング用プロピレン系樹脂組成物及びそれによる極細繊維の溶融紡糸方法に関わり、詳しくは、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸するプロピレン系樹脂組成物、及び溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸する、ポリプロピレン系極細繊維の製造方法、並びにその製造方法により紡糸されたポリプロピレン系極細繊維及びその繊維製品に係るものである。   The present invention relates to a propylene-based resin composition for melt spinning type electrospinning and a melt spinning method of ultrafine fibers thereby, and more specifically, by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method. Propylene-based resin composition to be spun, and polypropylene-based ultrafine fiber produced by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method, and a polypropylene spun by the production method Related to ultrafine fibers and their textile products.

近年においてナノカーボンやナノチューブに代表されるナノテクノロジーが開発され、その極細構造による特異な機能や用途が注目されて、バイオテクノロジーなどと共に、新しい基本技術として重用されている。
ナノテクノロジーの分野において、一般にナノファイバーと呼ばれる繊維径がナノオーダー(数μm程度以下)の極細繊維も出現し、その極細繊維は表面積が非常に大きく、また、その極細構造による特異な機能も発現されるので、非常に広い各種の技術分野における用途が展開され有効利用されつつある。
In recent years, nanotechnology typified by nanocarbon and nanotubes has been developed, and their special functions and applications due to their ultrafine structure have attracted attention, and are being used as a new basic technology along with biotechnology.
In the field of nanotechnology, ultrafine fibers with a diameter of nanometers (about several μm or less), which are generally called nanofibers, have emerged. The ultrafine fibers have a very large surface area and also exhibit unique functions due to their ultrafine structure. Therefore, the use in a very wide variety of technical fields is being developed and used effectively.

その新しい用途としては、電池用セパレーター、電磁波シールド材、フィルター、人工皮革、人工血管、細胞培養基材、ICチップ、有機EL、太陽電池などに代表される各種の用途開発が期待されている。
特に、(i)半導体産業、製薬産業、バイオ産業などにおける、高い捕集性能を有する高性能フィルターユニットとして、(ii)細胞が接着及び増殖しやすく取り扱いが容易な細胞培養繊維体として、(iii)医療分野における生体人工器官の表面全体のコーティング材料や生物学的機能を置換向上させる新材料として、(iv)優れたイオン透過性と充放電特性を有する分離膜とそれを利用した電気化学素子として、(v)超高感度の金属酸化物ガスセンサーとして、(vi)電子ペーパーにおける高性能なエレクトロクロミック表示素子として、及び、(vii)光発電性能の高い色素増感型太陽電池用電極や高い光電変換効率を実現し得る光電変換素子として、多々の重要な用途展開が行われている。
As such new applications, various application developments such as battery separators, electromagnetic shielding materials, filters, artificial leather, artificial blood vessels, cell culture substrates, IC chips, organic EL, and solar cells are expected.
In particular, (i) as a high-performance filter unit having high collection performance in the semiconductor industry, pharmaceutical industry, bio-industry, etc., (ii) as a cell culture fiber body in which cells are easy to adhere and proliferate and is easy to handle (iii) ) As a new material to replace and improve the coating material and biological function of the entire surface of biological prosthesis in the medical field, (iv) a separation membrane having excellent ion permeability and charge / discharge characteristics and an electrochemical device using the same (Vi) as an ultrasensitive metal oxide gas sensor, (vi) as a high performance electrochromic display element in electronic paper, and (vii) a dye-sensitized solar cell electrode with high photovoltaic power generation performance, Many important applications have been developed as photoelectric conversion elements that can realize high photoelectric conversion efficiency.

ナノファイバー分野におけるその製造方法としては、繊維径がナノオーダーと極めて細いため、通常の繊維を製造する紡糸方法では製造することが極めて難しいために、最近において、新しい紡糸法として、エレクトロスピニング法が開発され、それにより製造する技術手法が広く研究され新しい各種手法が提示されている。
エレクトロスピニング法としては、基本的に、ポリマーを溶剤に溶解又は分散したポリマー溶液をノズルからターゲットに向けて垂らすと共にノズルがプラス電極になり、ターゲットがマイナス電極になるように5〜100kVの高電圧を印加する方法が知られている(例えば、特許文献1を参照)。
しかし、このエレクトロスピニング法は溶液エレクトロスピニング法であり、使用し得るポリマーは溶剤に溶解するポリマーに限定され、また、ポリマーを溶解した溶剤がエレクトロスピニングする際に蒸発するため、この方法でナノファイバーを製造する際には蒸発した溶剤を回収しなければならず、巨大な溶剤回収装置が必要であるという欠点が内在している。また、得られた繊維に溶剤に起因する成分が残留する問題があり、繊維に溶剤が残留すると、後に溶剤に起因する成分が滲み出して繊維製品に不都合を生じる惧れもある。
As a manufacturing method in the field of nanofibers, since the fiber diameter is extremely small on the order of nanometers, it is extremely difficult to manufacture by a spinning method for manufacturing a normal fiber. The technical methods that have been developed and manufactured thereby have been extensively studied and various new methods have been presented.
As an electrospinning method, a high voltage of 5 to 100 kV is basically applied so that a polymer solution in which a polymer is dissolved or dispersed in a solvent is dropped from a nozzle toward a target, the nozzle becomes a positive electrode, and the target becomes a negative electrode. Is known (see, for example, Patent Document 1).
However, since this electrospinning method is a solution electrospinning method, the polymer that can be used is limited to a polymer that dissolves in a solvent, and the solvent in which the polymer is dissolved evaporates when electrospinning. However, the production of the product requires the recovery of the evaporated solvent, and a huge solvent recovery device is necessary. In addition, there is a problem that a component due to the solvent remains in the obtained fiber, and when the solvent remains in the fiber, there is a possibility that the component due to the solvent oozes out later and causes a problem in the fiber product.

このような欠点を解消するために溶剤を使用することなく、熱可塑性樹脂を加熱溶解してエレクトロスピニングする、溶融エレクトロスピニング法が研究開発されている。
この方法としては、基本的な手法として、導電性筒状ノズルに熱可塑性樹脂糸状物を挿通し、ノズル先端部を加熱溶融すると共に導電性筒状ノズルがプラス電極になり、ターゲットがマイナス電極になるよう高電圧を印加する、溶融静電紡糸方法とその装置が開示されている(特許文献2,3を参照)。
しかし、溶融静電紡糸法においては、高分子を静電紡糸可能な粘度まで下げるために熱を加えるが、長時間の加熱滞留によって熱分解して、高分子の物性低下を招く場合があった。
ポリマーの加熱分解を回避するために、レーザー光線を照射して加熱溶融させるエレクトロスピニング法(特許文献4を参照)が提示され、更には、ノズルの先端をヒートガンで加熱するエレクトロスピニング法や、真空中で溶融エレクトロスピニングする方法なども提案されている。
In order to eliminate such drawbacks, a melt electrospinning method in which a thermoplastic resin is heated and melted and electrospun without using a solvent has been researched and developed.
As a basic method, a thermoplastic resin thread is inserted into a conductive cylindrical nozzle, the tip of the nozzle is heated and melted, the conductive cylindrical nozzle becomes a positive electrode, and a target becomes a negative electrode. A melt electrostatic spinning method and an apparatus for applying such a high voltage are disclosed (see Patent Documents 2 and 3).
However, in the melt electrospinning method, heat is applied to reduce the polymer to a viscosity capable of electrospinning, but thermal decomposition may occur due to prolonged heat retention, leading to deterioration of physical properties of the polymer. .
In order to avoid thermal decomposition of the polymer, an electrospinning method (see Patent Document 4) in which a laser beam is irradiated and melted by heating is presented. Furthermore, an electrospinning method in which the tip of a nozzle is heated with a heat gun, A method of performing melt electrospinning by using this method has also been proposed.

ところで、このような溶融エレクトロスピニング法においては、ポリプロピレンのような体積固有抵抗値が高いものでは、電圧を印加しても電荷を持ち難く、効率よく伸張延伸できないので、極細繊維化することは非常に困難である。
それゆえに、現状においては、溶融エレクトロスピニング法に適しない、ポリプロピレンのような樹脂に関しては、溶融エレクトロスピニング法における研究は未だ殆どなされていない。
By the way, in such a melt electrospinning method, a material having a high volume resistivity such as polypropylene is difficult to have a charge even when a voltage is applied and cannot be stretched and stretched efficiently. It is difficult to.
Therefore, at present, regarding the resin such as polypropylene which is not suitable for the melt electrospinning method, there has been little research on the melt electrospinning method.

特表2008−531860号公報JP-T 2008-53860 Publication 特開2007−321246号公報JP 2007-32246 A 特開2009−150039号公報JP 2009-150039 A 特開2007−239114号公報JP 2007-239114 A

背景技術における段落0006に前述したように、溶融エレクトロスピニング法に適しない、ポリプロピレンのような樹脂に関しては、溶融エレクトロスピニング法における研究は未だ殆どなされていず、プロピレン系樹脂においては溶融エレクトロスピニング法の適用により極細繊維を製造する手法の開発が望まれている現況を鑑みて、本発明はそのような極細繊維の製法を実現することを発明が解決すべき課題とするものである。   As described above in paragraph 0006 of the background art, regarding the resin such as polypropylene which is not suitable for the melt electrospinning method, there has been little research on the melt electrospinning method. In view of the present situation where development of a technique for producing ultrafine fibers is desired by application, the present invention makes it a problem to be solved by the present invention to realize such a process for producing ultrafine fibers.

本発明者らは、上記の課題を解決することを図り、溶融エレクトロスピニング法の紡糸装置や紡糸条件及びプロピレン系樹脂材料の物性や性能規定、更には、プロピレン系樹脂の改質や組成物などに亘り、種々考察し実験的検索などを行い、その結果として、体積固有抵抗値が高く電圧を印加しても電荷を持ち難くて、効率よく伸張延伸できないプロピレン系樹脂においても、特定の化学的構造を有する添加剤を配合したプロピレン系樹脂組成物を採用すれば、体積固有抵抗値が高いプロピレン系樹脂においても、溶融紡糸型エレクトロスピニング法により極細繊維を製造できることを見い出して、本発明を創作するに至った。
ここで、本発明における特定の添加剤は、一般式(I)に示される、化学構造としてのトリアジン環構造を有する添加剤である。
In order to solve the above-mentioned problems, the inventors of the present invention have prepared the spinning device and spinning conditions of the melt electrospinning method, the physical properties and performance specifications of the propylene-based resin material, and further the modification and composition of the propylene-based resin. As a result, the propylene-based resin, which has a high volume resistivity and is difficult to hold a charge even when a voltage is applied, cannot be efficiently stretched and stretched. The present invention was created by finding that if a propylene resin composition containing an additive having a structure is employed, ultrafine fibers can be produced by melt spinning type electrospinning even in a propylene resin having a high volume resistivity. It came to do.
Here, the specific additive in the present invention is an additive having a triazine ring structure as a chemical structure represented by the general formula (I).

Figure 2012072514
(I)
Figure 2012072514
(I)

しかして、本発明における基本的な発明は、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸する樹脂材料であって、上記の添加剤が配合されるプロピレン系樹脂組成物であり、その配合量はプロピレン系樹脂100重量部に対して0.01〜2.5重量部と規定される。
なお、本発明におけるかかる構成の要件(発明の特定事項)の合理性と有意性は、後記する実施例及び実施例と比較例の対照により実証されている。
Therefore, the basic invention in the present invention is a resin material for spinning ultrafine fibers by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method, and the propylene blended with the above additives The amount of the resin composition is defined as 0.01 to 2.5 parts by weight with respect to 100 parts by weight of the propylene resin.
In addition, the rationality and significance of the requirements (specific matters of the invention) of such a configuration in the present invention are verified by Examples and Comparative Examples described later.

そして、本発明における付帯的な発明としては、上記の基本発明において、プロピレン系樹脂がプロピレン単独重合体又はα−オレフィン(エチレンを含む)との共重合体である発明であり、プロピレン系樹脂組成物が、更に、他の重合体及び/又は各種添加剤を含む発明であり、また、プロピレン系樹脂が次の特性を満たすプロピレン系樹脂組成物である発明であり〔a)MFR(温度230℃・荷重21.2N)が50〜5,000g/10minである b)DSC(示差走査熱量計測定)法により測定される融解ピーク温度(Tm)が110〜150℃である〕、このプロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸するポリプロピレン系極細繊維を製造する方法の発明であり、当方法において加熱溶融がレーザー加熱により行われるポリプロピレン系極細繊維を製造する発明である。
更にまた、プロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って紡糸することにより得られたポリプロピレン系極細繊維の発明であり、この極細繊維を使用して製造された各種の繊維製品の発明である。
As an incidental invention in the present invention, in the above basic invention, the propylene resin is an invention in which the propylene resin is a propylene homopolymer or a copolymer with an α-olefin (including ethylene), and the propylene resin composition The invention further includes another polymer and / or various additives, and the invention in which the propylene resin is a propylene resin composition satisfying the following characteristics: [a) MFR (temperature 230 ° C. The load 21.2N) is 50 to 5,000 g / 10 min. B) The melting peak temperature (Tm) measured by DSC (differential scanning calorimetry) method is 110 to 150 ° C.], this propylene resin A polypropylene-based ultrafine fiber is obtained by spinning a composition by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method. It is an invention of a method for forming a inventions heating and melting in those methods for producing a polypropylene microfine fibers is performed by laser heating.
Furthermore, it is an invention of a polypropylene-based ultrafine fiber obtained by spinning a propylene-based resin composition by continuous extrusion spinning in a heat-melted state by a melt spinning type electrospinning method, and this ultrafine fiber is used. It is an invention of various fiber products manufactured in this way.

本発明は、上記した各発明により、体積固有抵抗値が高いプロピレン系樹脂においても、溶融紡糸型エレクトロスピニング法により極細繊維を工業的に生産効率よく製造できることを初めて見出したものであり、段落0007に記載した特許文献を含め従来の特許文献を精査しても、本発明の新しい構成の要件(発明の特定事項)を些かも窺うことはできない。   The present invention has been found for the first time by the above-described inventions that even in a propylene-based resin having a high volume resistivity, ultrafine fibers can be produced industrially and efficiently by the melt spinning type electrospinning method, paragraph 0007 Even if the conventional patent documents including the patent documents described in 1) are scrutinized, the requirements (specific matters of the invention) of the new configuration of the present invention cannot be obtained.

以上においては、本発明が創作される経緯と、本発明の基本的な構成要素と特徴について概観的に記述したので、ここで本発明の全体を俯瞰すると、本発明は次の発明の単位群から構成されるものであって、[1]の発明を基本的発明とし、それ以下は、基本発明の付帯的発明又は実施態様化発明である。なお、発明群の全体をまとめて、「本発明」という。   In the above, since the background of the creation of the present invention and the basic components and features of the present invention have been described in overview, the present invention can be summarized as a unit group of the following invention. The invention of [1] is a basic invention, and the following is an incidental invention or an embodiment invention of the basic invention. The entire invention group is collectively referred to as “the present invention”.

[1]溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸する樹脂材料であって、プロピレン系樹脂100重量部に対して、一般式(I)に示されるトリアジン環構造を有する添加剤を0.01〜2.5重量部配合することを特徴とする、エレクトロスピニング紡糸用プロピレン系樹脂組成物。   [1] A resin material that spins ultrafine fibers by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method, and is represented by the general formula (I) with respect to 100 parts by weight of a propylene-based resin. A propylene-based resin composition for electrospinning spinning, comprising 0.01 to 2.5 parts by weight of an additive having a triazine ring structure.

Figure 2012072514
(I)
Figure 2012072514
(I)

[2]プロピレン系樹脂がプロピレン単独重合体又はα−オレフィン(エチレンを含む)との共重合体であることを特徴とする、[1]におけるエレクトロスピニング紡糸用プロピレン系樹脂組成物。
[3]プロピレン系樹脂組成物が、更に、他の重合体及び/又は各種添加剤を含むことを特徴とする、[2]におけるエレクトロスピニング紡糸用プロピレン系樹脂組成物。
[4]プロピレン系樹脂が下記の特性を満たすことを特徴とする、[1]〜[3]のいずれかにおけるエレクトロスピニング紡糸用プロピレン系樹脂組成物。
a)MFR(温度230℃・荷重21.2N)が50〜5,000g/10minである
b)DSC(示差走査熱量計測定)法により測定される融解ピーク温度(Tm)が110〜150℃である
[2] The propylene resin composition for electrospinning according to [1], wherein the propylene resin is a propylene homopolymer or a copolymer with an α-olefin (including ethylene).
[3] The propylene resin composition for electrospinning according to [2], wherein the propylene resin composition further contains another polymer and / or various additives.
[4] The propylene resin composition for electrospinning spinning according to any one of [1] to [3], wherein the propylene resin satisfies the following characteristics.
a) MFR (temperature 230 ° C., load 21.2 N) is 50 to 5,000 g / 10 min b) melting peak temperature (Tm) measured by DSC (differential scanning calorimetry) method is 110 to 150 ° C. is there

[5][4]におけるプロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸することを特徴とする、ポリプロピレン系極細繊維を製造する方法。
[6]加熱溶融がレーザー加熱により行われることを特徴とする、[5]におけるポリプロピレン系極細繊維を製造する方法。
[5] Propylene-based resin composition according to [4] is manufactured by continuous extrusion spinning in a heat-melted state by a melt spinning type electrospinning method to spin ultrafine fibers. Method.
[6] The method for producing a polypropylene-based ultrafine fiber according to [5], wherein the heat-melting is performed by laser heating.

[7][4]におけるプロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って紡糸することにより得られたことを特徴とする、ポリプロピレン系極細繊維。
[8][7]における極細繊維を使用して製造されたことを特徴とする、各種の繊維製品。
[7] A polypropylene-based ultrafine fiber obtained by spinning the propylene-based resin composition according to [4] by continuous extrusion spinning in a heat-melted state by a melt spinning type electrospinning method.
[8] Various fiber products manufactured using the ultrafine fiber according to [7].

本発明においては、従来では溶融紡糸型エレクトロスピニング法により極細繊維を製造できなかった、体積固有抵抗値が高いプロピレン系樹脂においても、溶融紡糸型エレクトロスピニング法により極細繊維を工業的に生産効率よく製造することができる。   In the present invention, even in a propylene-based resin having a high volume resistivity, which could not be produced conventionally by the melt spinning type electrospinning method, the ultrafine fiber is industrially produced efficiently by the melt spinning type electrospinning method. Can be manufactured.

本発明の紡糸方法に用いる、溶融紡糸型エレクトロスピニング装置の説明図である。It is explanatory drawing of the melt spinning type electrospinning apparatus used for the spinning method of this invention.

本発明は、基本的発明として、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸する樹脂材料であって、プロピレン系樹脂100重量部に対して、段落0027に提示される、一般式(I)に示されるトリアジン環構造を有する添加剤を0.01〜2.5重量部配合することを特徴とする、エレクトロスピニング紡糸用プロピレン系樹脂組成物である。
そして、以下においては、基本的発明の各要件について、更に、基本的発明に付帯する発明及び実施の態様について、具体的かつ詳細に記述する。
The present invention, as a basic invention, is a resin material in which ultrafine fibers are spun by continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method, with respect to 100 parts by weight of a propylene-based resin. A propylene-based resin composition for electrospinning spinning, characterized in that 0.01 to 2.5 parts by weight of an additive having a triazine ring structure represented by the general formula (I) presented in (1) is blended.
In the following, each requirement of the basic invention will be described specifically and in detail with respect to the invention and the embodiments accompanying the basic invention.

(1)プロピレン系樹脂材料
本発明で使用されるプロピレン系樹脂は、プロピレンの単独重合体、プロピレンと他のα−オレフィンとの共重合体のいずれであってもよいが、プロピレンとα−オレフィンの共重合体、特にプロピレン・α−オレフィンランダム共重合体が好ましい。好ましく用いられるプロピレン・α−オレフィンランダム共重合体は、プロピレンから誘導される構成単位を主成分としたプロピレンとα−オレフィンのランダム共重合体である。コモノマーとして用いられるα−オレフィンは、好ましくはエチレン又は炭素数4〜18のα−オレフィンである。
(1) Propylene resin material The propylene resin used in the present invention may be either a propylene homopolymer or a copolymer of propylene and another α-olefin, but propylene and α-olefin. Of these, a propylene / α-olefin random copolymer is preferred. The propylene / α-olefin random copolymer preferably used is a random copolymer of propylene and an α-olefin mainly composed of a structural unit derived from propylene. The α-olefin used as a comonomer is preferably ethylene or an α-olefin having 4 to 18 carbon atoms.

α−オレフィンの具体的には、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1などを挙げることができる。また、α−オレフィンとしては、1種単独又は2種以上の組み合わせでもよい。
かかるプロピレン・α−オレフィンランダム共重合体の具体例としては、プロピレン・エチレンランダム共重合体、プロピレン・1−ブテンランダム共重合体、プロピレン・1−ヘキセンランダム共重合体、プロピレン・エチレン・1−オクテンランダム共重合体、プロピレン・エチレン・1−ブテンランダム共重合体などが挙げられる。
Specific examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4, 4 -Dimethylpentene-1 etc. can be mentioned. Moreover, as an alpha olefin, 1 type individual or 2 or more types of combination may be sufficient.
Specific examples of the propylene / α-olefin random copolymer include propylene / ethylene random copolymer, propylene / 1-butene random copolymer, propylene / 1-hexene random copolymer, propylene / ethylene / 1- Examples include octene random copolymers and propylene / ethylene / 1-butene random copolymers.

このようなプロピレン系重合体は、典型的には、個体状チタン触媒と有機金属化合物を主体とするチーグラー系触媒、又はメタロセン化合物を触媒の一成分として用いたメタロセン系触媒の存在下で、プロピレンを重合或いはプロピレンと他のα−オレフィンを共重合させることによって製造することができる。
重合法としては、上記触媒の存在下に、不活性溶媒を用いたスラリー法、溶液法、実質的に溶媒を用いない気相法や、或いは重合モノマーを溶媒とするバルク重合法などが挙げられる。
Such a propylene polymer is typically produced in the presence of a Ziegler catalyst mainly composed of a solid titanium catalyst and an organometallic compound, or a metallocene catalyst using a metallocene compound as a component of the catalyst. Can be produced by polymerizing or copolymerizing propylene and other α-olefins.
Examples of the polymerization method include a slurry method using an inert solvent in the presence of the catalyst, a solution method, a gas phase method substantially using no solvent, or a bulk polymerization method using a polymerization monomer as a solvent. .

(2)プロピレン系樹脂組成物
本発明における基本発明のプロピレン系樹脂組成物においては、一般式(I)に示されるトリアジン環構造を有する添加剤を0.01〜2.5重量部配合、より好ましくは0.1〜2.0重量部することを主要な要件としている。
(2) Propylene-based resin composition In the propylene-based resin composition of the basic invention in the present invention, 0.01 to 2.5 parts by weight of an additive having a triazine ring structure represented by the general formula (I) is added. The main requirement is preferably 0.1 to 2.0 parts by weight.

Figure 2012072514
(I)
Figure 2012072514
(I)

本発明で規定されたトリアジン環を化学構造として有する添加剤としては、特に限定されないが、代表的な添加剤として、N,N´−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ] −6−クロロ−1,3,5−トリアジン縮合物(BASF社製;キマソープ(R)119FL(以下、成分Aと定義する。))、ポリ[(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル)((2,2,6,6−テトラメチル−4−ピペリジル)イミノ)ヘキサメチレン((2,2,6,6−テトラメチル−4−ピペリジル)イミノ)](BASF社製;キマソーブ(R)944LD(以下、成分Bと定義する。))、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−((ヘキシル)オキシ)−フェノール(BASF社製、チヌビン(R)1577FF)などが挙げられる。   Although it does not specifically limit as an additive which has a triazine ring prescribed | regulated by this invention as a chemical structure, As a typical additive, N, N'-bis (3-aminopropyl) ethylenediamine-2,4-bis [ N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate (manufactured by BASF; Chimasoap (R) 119FL ( Hereinafter defined as component A))), poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) ((2,2 , 6,6-tetramethyl-4-piperidyl) imino) hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (manufactured by BASF; Kimasorb (R) 944LD (hereinafter, component) Defined as B.) , 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5 - ((hexyl) oxy) - phenol (BASF Corp., Tinuvin (R) 1577FF) and the like.

この規定されたトリアジン環を化学構造に有する添加剤を配合することにより、電圧を印加して樹脂がエレクトロスピニング紡糸をされる際、樹脂がより帯電し易くなり、強い静電気力にて高速で紡糸が行われるため、溶融エレクトロスピニング法において得られる繊維径が細繊化されると考えられる。   By blending an additive with this defined triazine ring in the chemical structure, when the resin is electrospun by applying a voltage, the resin is more easily charged and spins at high speed with strong electrostatic force. Therefore, it is considered that the fiber diameter obtained in the melt electrospinning method is made finer.

添加剤配合量としては、下限値として0.01重量部と規定する。これは、後記ずる比較例2に記載されているとおり、0.005重量部にては添加の効果が認められなかったためである。また上限値としては2.5重量部と規定する。これも実施例に記載されているが、2.5重量部で添加剤効果としては最大値であり、コスト面からもこれ以上の添加剤配合は望ましくないと考えるためである。   The additive content is defined as 0.01 part by weight as the lower limit. This is because the effect of addition was not observed at 0.005 parts by weight, as described in Comparative Example 2 described later. The upper limit is specified as 2.5 parts by weight. Although this is also described in the Examples, it is because the additive effect is the maximum value at 2.5 parts by weight, and it is considered that addition of more additives is not desirable from the viewpoint of cost.

(3)プロピレン系樹脂の物性の規定
本発明で使用されるプロピレン系樹脂においては、JIS K7210に準拠して、加熱温度230℃・荷重21.2Nで測定されるMFR(メルトフローレート)が、50〜5,000g/10minであることが好ましく、より好ましくは100〜4,000g/10min、最も好ましくは500〜3,600g/10minである。
50g/10min未満では溶融樹脂の粘度が高くなり過ぎ、極細繊維が得られなくなり、5,000g/10minを超えるものは、現在の重合技術と設備では製造困難である。
(3) Specification of physical properties of propylene-based resin In the propylene-based resin used in the present invention, MFR (melt flow rate) measured at a heating temperature of 230 ° C. and a load of 21.2 N in accordance with JIS K7210 is It is preferably 50 to 5,000 g / 10 min, more preferably 100 to 4,000 g / 10 min, and most preferably 500 to 3,600 g / 10 min.
If it is less than 50 g / 10 min, the viscosity of the molten resin becomes too high, and ultrafine fibers cannot be obtained, and those exceeding 5,000 g / 10 min are difficult to produce with the current polymerization technology and equipment.

本発明で使用されるプロピレン系樹脂は、示差走査熱量計(DSC)により測定された融解ピーク温度(Tm)が110〜150℃であるのが好ましい、より好ましくは、120℃〜140℃である。
融解ピーク温度が110℃未満のものは溶融されたプロピレン系樹脂の冷却固化速度が遅く、紡糸された極細繊維が互に融着するため好ましくなく、150℃を超えると溶融されたプロピレン系樹脂の冷却固化速度が速過ぎ、充分に延伸されないまま繊維が固化してしまうので、極細繊維が得られなくなるため好ましくない。
ここで、Tmの具体的測定は、示差走査熱量計(DSC)を用い、サンプル量5mgを採り、200℃で5分間保持した後、40℃まで10℃/分の降温速度で結晶化させ、更に10℃/分の昇温速度で融解させたときに描かれる曲線のピーク位置を、融解ピーク温度Tm(℃)とする。
The propylene resin used in the present invention preferably has a melting peak temperature (Tm) measured by a differential scanning calorimeter (DSC) of 110 to 150 ° C, more preferably 120 to 140 ° C. .
When the melting peak temperature is less than 110 ° C., the cooling and solidification rate of the melted propylene resin is slow, and the spun ultrafine fibers are fused with each other. The cooling and solidification rate is too high, and the fibers are solidified without being sufficiently stretched. This is not preferable because ultrafine fibers cannot be obtained.
Here, the specific measurement of Tm is performed using a differential scanning calorimeter (DSC), taking a sample amount of 5 mg, holding at 200 ° C. for 5 minutes, and then crystallizing to 40 ° C. at a rate of temperature decrease of 10 ° C./min. Further, the peak position of the curve drawn when the film is melted at a temperature rising rate of 10 ° C./min is defined as a melting peak temperature Tm (° C.).

(4)物性規定の制御方法
所望のMFRを得るためには、MFRは基本的に分子量に依存するので、分子量を制御すればよく、それには重合温度や水素ガスの供給量或いは重合停止剤などの制御を行えばよい。プロピレン系重合体を重合後、有機過酸化物を使用し溶融混練することにより調整してもよい。
プロピレン単独重合体のTmは、メタロセン触媒の錯体を選択することにより所望のTmとすることができる。α−オレフィンとの共重合体のTmを制御するには重合反応系へ供給するα−オレフィンの量を制御することにより容易に調整することができる。
(4) Physical property regulation control method In order to obtain a desired MFR, the MFR basically depends on the molecular weight, so the molecular weight may be controlled, such as the polymerization temperature, the supply amount of hydrogen gas, or the polymerization terminator. Control may be performed. You may adjust by superposing | polymerizing a propylene polymer and melt-kneading using an organic peroxide.
The Tm of the propylene homopolymer can be set to a desired Tm by selecting a metallocene catalyst complex. In order to control Tm of the copolymer with α-olefin, it can be easily adjusted by controlling the amount of α-olefin supplied to the polymerization reaction system.

(5)プロピレン系樹脂の組成物
本発明で使用されるプロピレン系樹脂組成物材料においては、組成物としては更に、他の樹脂との組成物、或いは、各種の添加剤を配合した組成物として使用することもできる。
配合される他の樹脂としては、プロピレンとα−オレフィンの各種重合体、オレフィン系重合体、その他任意の重合体を使用し得る。
他の各種の添加剤としては、樹脂材料の性能を高め、或いは、他の性能を付加するために配合され、通常ポリオレフィンに使用する公知の酸化防止剤、中和剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、金属不活性剤などの各種添加剤を、本発明の目的を損なわない範囲で配合することができる。
(5) Composition of propylene-based resin In the propylene-based resin composition material used in the present invention, the composition further includes a composition with another resin or a composition in which various additives are blended. It can also be used.
As other resins to be blended, various polymers of propylene and α-olefin, olefin polymers, and other arbitrary polymers can be used.
As other various additives, known antioxidants, neutralizers, light stabilizers, UV absorbers are usually used for polyolefins to improve the performance of resin materials or to add other performances. Various additives such as an agent, a lubricant, an antistatic agent and a metal deactivator can be blended within a range not impairing the object of the present invention.

酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤及びチオ系酸化防止剤などが例示でき、中和剤としては、ステアリン酸カルシウムやステアリン酸亜鉛などの高級脂肪酸塩類が例示でき、光安定剤及び紫外線吸収剤としては、ヒンダードアミン類、ニッケル錯化合物、ベンゾトリアゾール類、ベンゾフェノン類などが例示できる。また、滑剤としては、ステアリン酸アマイドなどの高級脂肪酸アマイド類が例示でき、帯電防止剤としては、グリセリン脂肪酸モノエステルなどの脂肪酸部分エステル類が例示でき、更には、金属不活性剤としては、フォスフォン類、エポキシ類、トリアゾール類、ヒドラジド類、オキサミド類などが例示できる。   Examples of antioxidants include phenolic antioxidants, phosphite antioxidants, and thio antioxidants, and examples of neutralizing agents include higher fatty acid salts such as calcium stearate and zinc stearate. Examples of the light stabilizer and the ultraviolet absorber include hindered amines, nickel complex compounds, benzotriazoles, and benzophenones. Examples of the lubricant include higher fatty acid amides such as stearic acid amide, examples of the antistatic agent include fatty acid partial esters such as glycerin fatty acid monoester, and examples of the metal deactivator include phosphine. Examples include phons, epoxies, triazoles, hydrazides, and oxamides.

(6)溶融紡糸型エレクトロスピニング装置及びそれによる極細繊維の製法
溶融紡糸型エレクトロスピニング装置としては、カトーテック製の加熱溶融紡糸型エレクトロスピニング装置などを使用し、樹脂を加熱溶融するシリンダー、樹脂を帯電する電極、樹脂押出用ピストン、ノズル及び極細繊維を受ける電極プレート(ターゲット)からなり、ノズルから出た溶融樹脂にノズルとターゲット間で電圧を印加し紡糸するものである。
図1は、本発明に使用した加熱溶融紡糸型エレクトロスピニング装置の概略説明図である。
紡糸工程では、適宜な加熱手段により加熱溶融させた熱可塑性樹脂の溶融部に電圧を作用させて、伸長する繊維を電気的引力によってターゲットに捕集する。この工程では、熱可塑性樹脂の溶融部に電圧を作用させて、ターゲットとは反対極の電荷を付与して帯電させることにより、溶融状態の樹脂をターゲットに向けて飛翔させて、伸長又は延伸させることにより静電紡糸する。
(6) Melt-spinning type electrospinning device and method for producing ultrafine fiber using the same As the melt-spinning type electrospinning device, a heat melting spinning type electrospinning device manufactured by Kato Tech, etc. is used. It consists of an electrode to be charged, a piston for resin extrusion, a nozzle, and an electrode plate (target) that receives ultrafine fibers. A voltage is applied between the nozzle and the target to spin the molten resin from the nozzle.
FIG. 1 is a schematic explanatory view of a hot melt spinning type electrospinning apparatus used in the present invention.
In the spinning step, a voltage is applied to the melted portion of the thermoplastic resin heated and melted by an appropriate heating means, and the extending fibers are collected on the target by electrical attraction. In this step, a voltage is applied to the melted portion of the thermoplastic resin to apply and charge the opposite polarity of the target, thereby causing the molten resin to fly toward the target and stretch or stretch. Electrospinning.

(7)極細繊維
本発明では、溶融型静電紡糸方法(エレクトロスピニング)により、繊維径の非常に小さい極細繊維(ナノ繊維)が得られる。極細繊維の平均繊維径は、例えば、5μm以下であり、好ましくは100nm〜3μm程度である。最細繊維径は1μm以下である。
繊維の繊維長は、特に限定されず、製造条件などを調整することにより、用途に応じて選択すればよい。
(7) Ultrafine fiber In the present invention, an ultrafine fiber (nanofiber) having a very small fiber diameter is obtained by the melt type electrospinning method (electrospinning). The average fiber diameter of the ultrafine fibers is, for example, 5 μm or less, and preferably about 100 nm to 3 μm. The finest fiber diameter is 1 μm or less.
The fiber length of the fiber is not particularly limited, and may be selected according to the application by adjusting the production conditions.

(8)極細繊維の利用態様
本発明により紡糸される極細繊維は、長繊維や短繊維として、通常の織布や不織布などの繊維製品に使用できる。
そして、本発明の極細繊維は、極細繊維の特殊性能と共にプロピレン系樹脂材料の性能により、段落0003において記載したように、新しい用途として、電池用セパレーター、電磁波シールド材、高性能フィルター、生体人工器材、細胞培養基材、ICチップ、有機EL、太陽電池、エレクトロクロミック表示素子、光電変換素子などに代表される各種の用途開発が期待される。
(8) Utilization mode of extra fine fiber The extra fine fiber spun by this invention can be used for textile products, such as a normal woven fabric and a nonwoven fabric, as a long fiber or a short fiber.
And, as described in paragraph 0003, the ultrafine fiber of the present invention has new properties such as a battery separator, an electromagnetic shielding material, a high performance filter, and a bioartificial device. Development of various applications represented by cell culture substrates, IC chips, organic EL, solar cells, electrochromic display elements, photoelectric conversion elements and the like is expected.

以下に本発明を実施例及び比較例によって、更に具体的に説明し、各実施例のデータ及び各実施例と各比較例の対照により、本発明の構成の合理性と有意性及び従来技術に対する卓越性を実証する。
なお、実施例及び比較例における諸物性は、下記の評価方法に従って測定し評価し、使用した樹脂として実施例と比較例に記載のものを用いた。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The rationality and significance of the configuration of the present invention and the prior art will be described based on the data of each Example and the comparison between each Example and each Comparative Example. Demonstrate excellence.
Various physical properties in Examples and Comparative Examples were measured and evaluated according to the following evaluation methods, and the resins described in Examples and Comparative Examples were used as the resins used.

イ)MFR:JIS K7210に準じて加熱温度230℃・荷重21.2Nにて測定した。
ロ)融解ピーク温度:セイコー社製DSCを用い、サンプル5.0mgを採り、20
0℃で5分間保持後、40℃まで10℃/分の降温スピードで結晶化させ、更に10℃/分の昇温スピードで融解させたときの融解ピーク温度を測定した。
ハ)最細繊維径:日立ハイテクノロジーズ社製の走査型電子顕微鏡(SEM)を用いて紡糸した繊維径の観察を行い、最細繊維径を測定した。
A) MFR: Measured according to JIS K7210 at a heating temperature of 230 ° C. and a load of 21.2 N.
B) Melting peak temperature: Using a Seiko DSC, take a sample of 5.0 mg, 20
After maintaining at 0 ° C. for 5 minutes, crystallization was performed at a rate of temperature decrease of 10 ° C./min up to 40 ° C., and the melting peak temperature when melted at a rate of temperature increase of 10 ° C./min was measured.
C) Finest fiber diameter: The diameter of the spun fiber was observed using a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation, and the finest fiber diameter was measured.

〔実施例1〕
(重合例)
(1)触媒の調整
3つ口フラスコ(容積1L)中に硫酸で逐次的に処理されたスメクタイト族ケイ酸塩(水沢化学社製ベンクレイSL)20g、ヘプタン200mLを仕込み、トリノルマルオクチルアルミニウム50mmolで処理後、ヘプタンで洗浄し、スラリー1とした。また別のフラスコ(容積200mL)中に、ヘプタン90mL、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}]ジルコニウム0.3mmol、トリイソブチルアルミニウム1.5mmolを仕込みスラリー2とした。スラリー2を、上記スラリー1に加えて、室温で60分攪拌した。その後ヘプタンを210mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのちプロピレンを10g/hrの速度でフィードし4時間40℃を保ちつつ予備重合、1時間残重合を行い予備重合触媒83gを得た。
[Example 1]
(Example of polymerization)
(1) Preparation of catalyst In a three-necked flask (volume: 1 L), 20 g of smectite group silicate (Benley SL manufactured by Mizusawa Chemical Co., Ltd.) that was sequentially treated with sulfuric acid and 200 mL of heptane were charged. After the treatment, the slurry was washed with heptane to obtain slurry 1. In another flask (volume 200 mL), heptane 90 mL, (r) -dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4H-azulenyl}] zirconium 0.3 mmol Then, 1.5 mmol of triisobutylaluminum was added to prepare slurry 2. Slurry 2 was added to the slurry 1 and stirred at room temperature for 60 minutes. Thereafter, 210 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 10 g / hr, and prepolymerization was carried out for 4 hours while maintaining 40 ° C. for 4 hours to obtain 83 g of a prepolymerized catalyst.

(2)プロピレン・α−オレフィンランダム共重合体の製造
内容積270Lの反応器に液状プロピレン、エチレン、水素、及びトリイソブチルアルミニウム(TIBA)のヘキサン希釈溶液を連続的に供給し、内温を62℃に保持した。プロピレンの供給量は、38kg/hrであり、エチレンの供給量は0.92kg/hrであり、水素の供給量は0.25g/hrであり、TIBAの供給量は18g/hrであった。前記予備重合触媒を流動パラフィンによりスラリー状とし、2.35g/hrでフィードした。その結果、12.2kg/hrのプロピレン・エチレンランダム共重合体(PP−1)を得た。
得られたプロピレン・エチレンランダム共重合体(PP−1)は、MFR=26.0g/10分、エチレン含量=4.5mol%、Tm=125℃、Q値=2.7であり、T80−T20は、6.3℃、0℃可溶分量は0.13重量%であった。
(2) Propylene / α-olefin random copolymer production A hexane-diluted solution of liquid propylene, ethylene, hydrogen, and triisobutylaluminum (TIBA) was continuously supplied to a reactor having an internal volume of 270 L, and the internal temperature was 62. Held at 0C. The supply amount of propylene was 38 kg / hr, the supply amount of ethylene was 0.92 kg / hr, the supply amount of hydrogen was 0.25 g / hr, and the supply amount of TIBA was 18 g / hr. The prepolymerized catalyst was slurried with liquid paraffin and fed at 2.35 g / hr. As a result, a 12.2 kg / hr propylene / ethylene random copolymer (PP-1) was obtained.
The resulting propylene / ethylene random copolymer (PP-1) had MFR = 26.0 g / 10 min, ethylene content = 4.5 mol%, Tm = 125 ° C., Q value = 2.7, and T80− T20 was 6.3 ° C. and 0 ° C. soluble content was 0.13% by weight.

(3)添加剤の配合
樹脂材料としてプロピレン系樹脂(PP−1)を用い、該樹脂100重量部に対し、有機過酸化物である1,3−ビス(t−ブチル−パーオキシ−イソプロピル)ベンゼン(商品名:パーカドックス14・化薬アクゾ株式会社製)0.04重量部、トリアジン環を化学構造に有する添加剤として、N,N´−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ] −6−クロロ−1,3,5−トリアジン縮合物(BASF社製;キマソープ(R)119FL:成分A)1.0重量部、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010・BASF社製)0.1重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168・BASF社製)0.1重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト・日本油脂株式会社製)0.1重量部配合し、高速攪拌式混合機(ヘンシェルミキサ−:商品名)にて室温下で3分間混合した後、押出機にて溶融混練して、MFR=80g/10minのプロピレン系樹脂ペレットを得た。
(3) Blending of additive Propylene resin (PP-1) is used as the resin material, and 1,3-bis (t-butyl-peroxy-isopropyl) benzene, which is an organic peroxide, with respect to 100 parts by weight of the resin. (Trade name: Perkadox 14, manufactured by Kayaku Akzo Co., Ltd.) 0.04 parts by weight, N, N'-bis (3-aminopropyl) ethylenediamine-2,4- as an additive having a triazine ring in the chemical structure Bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate (manufactured by BASF; Chimasorpe (R) 119FL: Component A) 1.0 part by weight, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane which is a phenolic antioxidant (Product : IRGANOX 1010 (manufactured by BASF) 0.1 parts by weight, tris (2,4-di-t-butylphenyl) phosphite (trade name: IRGAFOS 168, manufactured by BASF) 0.1 0.1 parts by weight of calcium stearate (trade name: calcium stearate, manufactured by Nippon Oil & Fats Co., Ltd.), which is a neutralizing agent, and blended with a high-speed stirring mixer (Henschel mixer: trade name) After mixing at room temperature for 3 minutes, the mixture was melt-kneaded with an extruder to obtain propylene-based resin pellets with MFR = 80 g / 10 min.

(4)エレクトロスピニング紡糸
得られたプロピレン系樹脂を、図1に示す溶融紡糸型エレクトロスピニング装置において、260℃に加熱した溶融シリンダー内に4g投入し、5分間保持後、ピストンにて0.05cc/hrの吐出量で押し込み、ノズルとターゲット間に40kvの電圧を印加し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
(4) Electrospinning spinning In the melt spinning type electrospinning apparatus shown in FIG. 1, 4 g of the obtained propylene-based resin was put into a melting cylinder heated to 260 ° C., held for 5 minutes, and then 0.05 cc by a piston. It was pushed in at a discharge rate of / hr, and a voltage of 40 kv was applied between the nozzle and the target to obtain ultrafine fibers.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例2〕
樹脂組成物としてプロピレン系樹脂(PP−1)において、成分Aの代わりに、ポリ[(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル)((2,2,6,6−テトラメチル−4−ピペリジル)イミノ)ヘキサメチレン((2,2,6,6−テトラメチル−4−ピペリジル)イミノ)](BASF社製、キマソーブ(R)944LD:成分B)を1.0重量部配合した以外は、実施例1と同様に実施し、MFR=80g/10minのプロピレン系樹脂ペレットを得た。
得られたプロピレン系樹脂を、図1に示す溶融紡糸型エレクトロスピニング装置において、260℃に加熱した溶融シリンダー内に4g投入し、5分間保持後、ピストンにて0.05cc/hrの吐出量で押し込み、ノズルとターゲット間に40kvの電圧を印加し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
[Example 2]
In the propylene resin (PP-1) as the resin composition, instead of component A, poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2, 4-diyl) ((2,2,6,6-tetramethyl-4-piperidyl) imino) hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (manufactured by BASF, The same procedure as in Example 1 was conducted, except that 1.0 part by weight of Kimasorb (R) 944LD: Component B) was obtained, and propylene-based resin pellets with MFR = 80 g / 10 min were obtained.
In the melt spinning type electrospinning apparatus shown in FIG. 1, 4 g of the obtained propylene-based resin is put into a melting cylinder heated to 260 ° C., held for 5 minutes, and then discharged at a discharge amount of 0.05 cc / hr by a piston. Pushing, a voltage of 40 kv was applied between the nozzle and the target to obtain ultrafine fibers.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例3〕
樹脂組成物としてプロピレン系樹脂(PP−1)において、(成分B)を1.0重量部から2.0重量部に配合量を変更した以外は、実施例2と同様に実施し、MFR=80g/10minのプロピレン系樹脂ペレットを得た。
得られたプロピレン系樹脂を、図1に示す溶融紡糸型エレクトロスピニング装置において、260℃に加熱した溶融シリンダー内に4g投入し、5分間保持後、ピストンにて0.05cc/hrの吐出量で押し込み、ノズルとターゲット間に40kvの電圧を印加し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
Example 3
In the propylene-based resin (PP-1) as the resin composition, the same procedure as in Example 2 was performed except that the amount of (Component B) was changed from 1.0 part by weight to 2.0 parts by weight, and MFR = A propylene-based resin pellet of 80 g / 10 min was obtained.
In the melt spinning type electrospinning apparatus shown in FIG. 1, 4 g of the obtained propylene-based resin is put into a melting cylinder heated to 260 ° C., held for 5 minutes, and then discharged at a discharge amount of 0.05 cc / hr by a piston. Pushing, a voltage of 40 kv was applied between the nozzle and the target to obtain ultrafine fibers.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例4〕
樹脂組成物として、市販のポリプロピレン(WMB3:日本ポリプロ(株)社製):(PP−2)に有機過酸化物である1,3−ビス(t−ブチル−パーオキシ−イソプロピル)ベンゼン(商品名:パーカドックス14・化薬アクゾ株式会社製)0.04重量部、トリアジン環を化学構造に有する添加剤として、(成分B)1.0重量部、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010・BASF社製)0.1重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168・BASF社製)0.1重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト・日本油脂株式会社製)0.1重量部配合し、高速攪拌式混合機(ヘンシェルミキサ−:商品名)にて室温下で3分間混合した後、押出機にて溶融混練して融点142℃・MFR=80g/10minのプロピレン系樹脂ペレットを得た。
得られたプロピレン系樹脂を、図1に示す溶融紡糸型エレクトロスピニング装置において、260℃に加熱した溶融シリンダー内に4g投入し、5分間保持後、ピストンにて0.05cc/hrの吐出量で押し込み、ノズルとターゲット間に40kvの電圧を印加し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
Example 4
As a resin composition, commercially available polypropylene (WMB3: manufactured by Nippon Polypro Co., Ltd.): (PP-2) and 1,3-bis (t-butyl-peroxy-isopropyl) benzene (trade name) which is an organic peroxide. : 0.04 parts by weight of Perkadox 14 (manufactured by Kayaku Akzo Co., Ltd.), 1.0 part by weight of (Component B) as an additive having a triazine ring in the chemical structure, tetrakis [phenolic antioxidant] Methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane (trade name: IRGANOX1010, manufactured by BASF) 0.1 parts by weight, phosphite antioxidant Tris (2,4-di-t-butylphenyl) phosphite (trade name: IRGAFOS 168, manufactured by BASF) 0.1 parts by weight, and stearic acid as a neutralizing agent 0.1 part by weight of calcium (trade name: calcium stearate, manufactured by Nippon Oil & Fats Co., Ltd.) was blended, mixed for 3 minutes at room temperature with a high-speed stirring mixer (Henschel mixer: trade name), and then extruded. The resulting mixture was melt kneaded in a machine to obtain propylene-based resin pellets having a melting point of 142 ° C. and MFR = 80 g / 10 min.
In the melt spinning type electrospinning apparatus shown in FIG. 1, 4 g of the obtained propylene-based resin is put into a melting cylinder heated to 260 ° C., held for 5 minutes, and then discharged at a discharge amount of 0.05 cc / hr by a piston. Pushing, a voltage of 40 kv was applied between the nozzle and the target to obtain ultrafine fibers.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例5〕
(触媒製造例)
特開2002−284808号公報の実施例1に記載された方法に基づいてメタロセン系重合触媒を調製した。
(重合実施例)
内容積200Lの攪拌式オートクレーブ内をプロピレンで充分に置換した後、充分に脱水した液化プロピレン45kgを導入した。これにトリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)、エチレン2.03kg、水素20L(標準状態の体積として)を加え、内温を30℃に維持した。次いで、触媒製造例に従い調製したメタロセン系重合触媒を0.2g(固体触媒成分として)アルゴンで圧入して重合を開始させ、40分かけて62℃に昇温し、120分間その温度を維持した。ここでエタノール100mlを添加して反応を停止させた。残ガスをパージし、ポリプロピレン系重合体(プロピレン系樹脂(PP−3))16.6kgを得た。得られたポリプロピレン系重合体のMFRは500g/10分であり、融点は125.0℃であった。
樹脂組成物としてプロピレン系樹脂(PP−3)において、有機過酸化物である1,3−ビス(t−ブチル−パーオキシ−イソプロピル)ベンゼン(商品名:パーカドックス14・化薬アクゾ株式会社製)0.04重量部、トリアジン環を化学構造に有する添加剤として、(成分B)1.0重量部、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010・BASF社製)0.1重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168・BASF社製)0.1重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト・日本油脂株式会社製)0.1重量部配合し、高速攪拌式混合機(ヘンシェルミキサ−:商品名)にて室温下で3分間混合した後、押出機にて溶融混練して融点125℃・MFR=500g/10minのプロピレン系樹脂ペレットを得た。
得られたプロピレン系樹脂を、図1に示す溶融紡糸型エレクトロスピニング装置において、260℃に加熱した溶融シリンダー内に4g投入し、5分間保持後、ピストンにて0.05cc/hrの吐出量で押し込み、ノズルとターゲット間に40kvの電圧を印加し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
Example 5
(Catalyst production example)
A metallocene polymerization catalyst was prepared based on the method described in Example 1 of JP-A-2002-284808.
(Polymerization example)
After the inside of the stirring autoclave having an internal volume of 200 L was sufficiently substituted with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution, 2.03 kg of ethylene, and 20 L of hydrogen (as a standard state volume) were added, and the internal temperature was maintained at 30 ° C. Next, 0.2 g (as a solid catalyst component) of the metallocene polymerization catalyst prepared according to the catalyst production example was injected with argon to initiate the polymerization, the temperature was raised to 62 ° C. over 40 minutes, and the temperature was maintained for 120 minutes. . Here, 100 ml of ethanol was added to stop the reaction. The residual gas was purged to obtain 16.6 kg of a polypropylene polymer (propylene resin (PP-3)). The polypropylene polymer obtained had an MFR of 500 g / 10 min and a melting point of 125.0 ° C.
1,3-bis (t-butyl-peroxy-isopropyl) benzene which is an organic peroxide in a propylene resin (PP-3) as a resin composition (trade name: manufactured by Perkadox 14, Kayaku Akzo Corporation) 0.04 parts by weight, as an additive having a triazine ring in the chemical structure, 1.0 part by weight of (Component B), tetrakis [methylene-3- (3 ′, 5′-di) which is a phenolic antioxidant -T-butyl-4'-hydroxyphenyl) propionate] methane (trade name: IRGANOX1010, manufactured by BASF) 0.1 parts by weight, tris (2,4-di-t-) as a phosphite antioxidant Butylphenyl) phosphite (trade name: IRGAFOS 168, manufactured by BASF) 0.1 parts by weight, and calcium stearate (trade name: calcium stearate) as a neutralizing agent (Made by Nippon Oil & Fat Co., Ltd.) 0.1 parts by weight, mixed for 3 minutes at room temperature with a high-speed stirring mixer (Henschel mixer: trade name), then melt-kneaded with an extruder Propylene-based resin pellets having a melting point of 125 ° C. and MFR = 500 g / 10 min were obtained.
In the melt spinning type electrospinning apparatus shown in FIG. 1, 4 g of the obtained propylene-based resin is put into a melting cylinder heated to 260 ° C., held for 5 minutes, and then discharged at a discharge amount of 0.05 cc / hr by a piston. Pushing, a voltage of 40 kv was applied between the nozzle and the target to obtain ultrafine fibers.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例6〕
(重合実施例)
水素の量を30L(標準状態の体積として)に変更した以外は、実施例3と同様の操作を行った結果、ポリプロピレン系重合体(プロピレン系樹脂(PP−4))12.4kgを得た。得られたポリプロピレン系重合体のMFRは3,600g/10分であり、融点は125.2℃であった。
樹脂組成物としてプロピレン系樹脂(PP−3)の代わりにプロピレン系樹脂(PP−4)を用いた以外は、実施例3と同様に実施し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
Example 6
(Polymerization example)
Except for changing the amount of hydrogen to 30 L (as a standard volume), the same operation as in Example 3 was performed. As a result, 12.4 kg of a polypropylene polymer (propylene resin (PP-4)) was obtained. . The resulting polypropylene polymer had an MFR of 3,600 g / 10 min and a melting point of 125.2 ° C.
Except having used propylene resin (PP-4) instead of propylene resin (PP-3) as a resin composition, it implemented similarly to Example 3 and obtained the ultrafine fiber.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔実施例7〕
樹脂組成物としてプロピレン系樹脂(PP−2)の代わりに、市販のポリプロピレン(MA1:日本ポリプロ(株)社製):(PP−5)を用いた以外は、実施例4と同様に実施し、極細繊維を得た。
本発明の構成の要件を満たすプロピレン系樹脂組成物から得られた極細繊維として、目的とするナノファイバーが得られた。
Example 7
It implemented similarly to Example 4 except having used commercially available polypropylene (MA1: Nippon Polypro Co., Ltd. product): (PP-5) instead of propylene resin (PP-2) as a resin composition. , Ultrafine fibers were obtained.
The desired nanofiber was obtained as an ultrafine fiber obtained from the propylene-based resin composition that satisfies the requirements of the constitution of the present invention.

〔比較例1〕
樹脂組成物として、プロピレン系樹脂(PP−1)において、トリアジン環を化学構造に有する添加剤が無配合である以外は、実施例1と同様に実施し、極細繊維を得た。
本発明の構成の要件を満たさないポプロピレン系樹脂組成物から得られた極細繊維としては、目的とするナノファイバーが得られていない。
[Comparative Example 1]
As a resin composition, in the propylene-based resin (PP-1), an ultrafine fiber was obtained in the same manner as in Example 1 except that an additive having a triazine ring in the chemical structure was not blended.
As the ultrafine fiber obtained from the propylene-based resin composition that does not satisfy the requirements of the constitution of the present invention, the target nanofiber is not obtained.

〔比較例2〕
樹脂組成物として、プロピレン系樹脂(PP−1)において、トリアジン環を化学構造に有する添加剤として、(成分B)の配合量を1.0重量部から0.005重量部に変更した以外は、実施例2と同様に実施し、極細繊維を得た。
本発明の構成の要件を満たさないポプロピレン系樹脂組成物から得られた極細繊維としては、目的とするナノファイバーが得られていない。
[Comparative Example 2]
As the resin composition, in the propylene-based resin (PP-1), as an additive having a triazine ring in the chemical structure, the amount of (Component B) was changed from 1.0 part by weight to 0.005 part by weight. In the same manner as in Example 2, ultrafine fibers were obtained.
As the ultrafine fiber obtained from the propylene-based resin composition that does not satisfy the requirements of the constitution of the present invention, the target nanofiber is not obtained.

以上における、各実施例及び各比較例における測定結果を表1にまとめて掲載する。   The measurement results in each of the above examples and comparative examples are collectively shown in Table 1.

Figure 2012072514
Figure 2012072514

[実施例と比較例の結果の考察]
表1から明らかなように、実施例1〜7は本発明の構成の要件を満たしているので、比較例1〜2と対照して、極細繊維としてのナノファイバーが得られている。
比較例1〜2は、本発明の構成の要件を満たしていないので、極細繊維としてのナノファイバーにおいて最細繊維径が劣っている。
以上の結果より、本発明の構成の合理性と有意性及び従来技術に対する卓越性が明示されているといえる。
[Consideration of results of Examples and Comparative Examples]
As is clear from Table 1, Examples 1 to 7 satisfy the requirements of the constitution of the present invention, so that nanofibers as ultrafine fibers are obtained in contrast to Comparative Examples 1 and 2.
Since Comparative Examples 1 and 2 do not satisfy the requirements of the configuration of the present invention, the finest fiber diameter is inferior in the nanofiber as the ultrafine fiber.
From the above results, it can be said that the rationality and significance of the configuration of the present invention and the superiority over the prior art are clearly shown.

本発明のプロピレン系樹脂材料を用い、溶融紡糸型エレクトロスピニング装置で得られた極細繊維は、ナノ単位の極細であるため、表面積が大きく、吸液性や濾過性に優れる。
したがって、各種用途、例えば、絶縁材用セパレーターなどのエレクトロニクス用部材、産業用資材(油吸着材、皮革基布、セメント用配合剤、ゴム用配合材、各種テープ基材など)、医療・衛生材(紙おむつ、ガーゼ、包帯、医療用ガウンなど)、生活関連資材(ワイパー、印刷物基材、包装・袋物資材、収納材、エアーフィルター、液体フィルターなど)、衣料用材、内装用材(断熱材、吸音材など)、建設資材、農業・園芸用資材、土木用資材、鞄・靴材などに使用できる。
Since the ultrafine fiber obtained by the melt spinning type electrospinning apparatus using the propylene-based resin material of the present invention is ultrafine in nano units, it has a large surface area and is excellent in liquid absorbency and filterability.
Therefore, various applications, for example, electronic parts such as separators for insulating materials, industrial materials (oil adsorbents, leather base fabrics, cement compounding agents, rubber compounding materials, various tape base materials, etc.), medical and hygiene materials (Paper diapers, gauze, bandages, medical gowns, etc.), life-related materials (wipers, printed materials, packaging / bag materials, storage materials, air filters, liquid filters, etc.), clothing materials, interior materials (heat insulation materials, sound absorbing materials) Etc.), construction materials, agricultural and horticultural materials, civil engineering materials, bags and shoes.

1;ピストン 2;遮蔽板 3;溶融シリンダー 4;ノズル 5;電極プレート 6;絶縁板 7;テーブル DESCRIPTION OF SYMBOLS 1; Piston 2; Shielding plate 3; Melting cylinder 4; Nozzle 5; Electrode plate 6; Insulating plate 7;

Claims (8)

溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸する樹脂材料であって、プロピレン系樹脂100重量部に対して、一般式(I)に示されるトリアジン環構造を有する添加剤を0.01〜2.5重量部配合することを特徴とする、エレクトロスピニング紡糸用プロピレン系樹脂組成物。
Figure 2012072514
(I)
A triazine ring structure represented by the general formula (I) with respect to 100 parts by weight of a propylene-based resin, which is a resin material for spinning ultrafine fibers by performing continuous extrusion spinning in a heated and melted state by a melt spinning type electrospinning method A propylene-based resin composition for electrospinning spinning, characterized by containing 0.01 to 2.5 parts by weight of an additive having the following.
Figure 2012072514
(I)
プロピレン系樹脂がプロピレン単独重合体又はα−オレフィン(エチレンを含む)との共重合体であることを特徴とする、請求項1に記載されたエレクトロスピニング紡糸用プロピレン系樹脂組成物。 The propylene-based resin composition for electrospinning according to claim 1, wherein the propylene-based resin is a propylene homopolymer or a copolymer with an α-olefin (including ethylene). プロピレン系樹脂組成物が、更に、他の重合体及び/又は各種添加剤を含むことを特徴とする、請求項2に記載されたエレクトロスピニング紡糸用プロピレン系樹脂組成物。 The propylene-based resin composition for electrospinning according to claim 2, wherein the propylene-based resin composition further contains another polymer and / or various additives. プロピレン系樹脂が下記の特性を満たすことを特徴とする、請求項1〜請求項3のいずれかに記載されたエレクトロスピニング紡糸用プロピレン系樹脂組成物。
a)MFR(温度230℃・荷重21.2N)が50〜5,000g/10minである
b)DSC(示差走査熱量計測定)法により測定される融解ピーク温度(Tm)が110〜150℃である
The propylene resin composition for electrospinning spinning according to any one of claims 1 to 3, wherein the propylene resin satisfies the following characteristics.
a) MFR (temperature 230 ° C., load 21.2 N) is 50 to 5,000 g / 10 min b) melting peak temperature (Tm) measured by DSC (differential scanning calorimetry) method is 110 to 150 ° C. is there
請求項4に記載されたプロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って極細繊維を紡糸することを特徴とする、ポリプロピレン系極細繊維を製造する方法。 A polypropylene-based ultrafine fiber is produced by spinning the propylene-based resin composition according to claim 4 by continuous extrusion spinning in a heat-melted state by a melt spinning type electrospinning method to spin ultrafine fibers. Method. 加熱溶融がレーザー加熱により行われることを特徴とする、請求項5に記載されたポリプロピレン系極細繊維を製造する方法。 The method for producing a polypropylene-based ultrafine fiber according to claim 5, wherein the heat-melting is performed by laser heating. 請求項4に記載されたプロピレン系樹脂組成物を、溶融紡糸型エレクトロスピニング法により、加熱溶融状態において連続押出紡糸を行って紡糸することにより得られたことを特徴とする、ポリプロピレン系極細繊維。 A polypropylene-based ultrafine fiber obtained by spinning the propylene-based resin composition described in claim 4 by continuous extrusion spinning in a heat-melted state by a melt spinning type electrospinning method. 請求項7に記載された極細繊維を使用して製造されたことを特徴とする、各種の繊維製品。 Various fiber products manufactured using the ultrafine fiber according to claim 7.
JP2010217959A 2010-09-28 2010-09-28 Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby Active JP5437213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217959A JP5437213B2 (en) 2010-09-28 2010-09-28 Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217959A JP5437213B2 (en) 2010-09-28 2010-09-28 Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby

Publications (2)

Publication Number Publication Date
JP2012072514A true JP2012072514A (en) 2012-04-12
JP5437213B2 JP5437213B2 (en) 2014-03-12

Family

ID=46168971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217959A Active JP5437213B2 (en) 2010-09-28 2010-09-28 Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby

Country Status (1)

Country Link
JP (1) JP5437213B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506455A (en) * 2008-10-21 2012-03-15 フイナ・テクノロジー・インコーポレーテツド Propylene polymer for laboratory / medical devices
JP2014129614A (en) * 2012-12-28 2014-07-10 Japan Polypropylene Corp Ultrafine fiber and method for producing the same
JP2015124255A (en) * 2013-12-26 2015-07-06 サンアロマー株式会社 Propylene-based resin material for electrospinning and method for producing fiber using the same
JP2017190533A (en) * 2016-04-11 2017-10-19 花王株式会社 Composition for melting electrospinning and manufacturing method of fiber using the same
JP2019049078A (en) * 2017-09-11 2019-03-28 花王株式会社 Composition for melt-electrospinning, melt-electrospinning fiber, and method of producing the same
JP2020505481A (en) * 2017-01-05 2020-02-20 スリーエム イノベイティブ プロパティズ カンパニー Electret web containing charge enhancing additive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103651655B (en) * 2012-09-14 2019-01-08 丰益(上海)生物技术研发中心有限公司 Include the Flour product brightening agent of glycan alcohol and its application
CN107557943B (en) * 2017-10-20 2019-04-05 上海工程技术大学 Ring spray electrostatic spinning machine and purposes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226014A (en) * 1994-09-30 1996-09-03 Ciba Geigy Ag Stabilization of colored fiber with synergistic mixture of hindered amine and ultraviolet absorbent
JPH08296122A (en) * 1995-04-26 1996-11-12 Teijin Ltd Polyamide mix-spun fiber
JP2003511577A (en) * 1999-10-08 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for producing non-woven fiber electret webs with free fibers and polar liquids
JP2005503013A (en) * 2001-09-07 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Electret manufacturing method
JP2009512750A (en) * 2005-10-21 2009-03-26 バーゼル・ポリオレフィン・ゲーエムベーハー Polypropylene random copolymer with high melt flow rate for injection molding and meltblowing applications
JP2010094666A (en) * 2008-09-17 2010-04-30 Toray Ind Inc Electret filter medium and manufacturing method therefor
JP2011162636A (en) * 2010-02-09 2011-08-25 Japan Polypropylene Corp Propylene resin material for melt electrospinning and melt spinning method of ultrafine fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226014A (en) * 1994-09-30 1996-09-03 Ciba Geigy Ag Stabilization of colored fiber with synergistic mixture of hindered amine and ultraviolet absorbent
JPH08296122A (en) * 1995-04-26 1996-11-12 Teijin Ltd Polyamide mix-spun fiber
JP2003511577A (en) * 1999-10-08 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for producing non-woven fiber electret webs with free fibers and polar liquids
JP2005503013A (en) * 2001-09-07 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Electret manufacturing method
JP2009512750A (en) * 2005-10-21 2009-03-26 バーゼル・ポリオレフィン・ゲーエムベーハー Polypropylene random copolymer with high melt flow rate for injection molding and meltblowing applications
JP2010094666A (en) * 2008-09-17 2010-04-30 Toray Ind Inc Electret filter medium and manufacturing method therefor
JP2011162636A (en) * 2010-02-09 2011-08-25 Japan Polypropylene Corp Propylene resin material for melt electrospinning and melt spinning method of ultrafine fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506455A (en) * 2008-10-21 2012-03-15 フイナ・テクノロジー・インコーポレーテツド Propylene polymer for laboratory / medical devices
JP2014129614A (en) * 2012-12-28 2014-07-10 Japan Polypropylene Corp Ultrafine fiber and method for producing the same
JP2015124255A (en) * 2013-12-26 2015-07-06 サンアロマー株式会社 Propylene-based resin material for electrospinning and method for producing fiber using the same
JP2017190533A (en) * 2016-04-11 2017-10-19 花王株式会社 Composition for melting electrospinning and manufacturing method of fiber using the same
JP2020505481A (en) * 2017-01-05 2020-02-20 スリーエム イノベイティブ プロパティズ カンパニー Electret web containing charge enhancing additive
JP7076718B2 (en) 2017-01-05 2022-05-30 スリーエム イノベイティブ プロパティズ カンパニー Electret web with charge-enhancing additives
JP2019049078A (en) * 2017-09-11 2019-03-28 花王株式会社 Composition for melt-electrospinning, melt-electrospinning fiber, and method of producing the same

Also Published As

Publication number Publication date
JP5437213B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5437213B2 (en) Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby
JP5580963B2 (en) Propylene-based resin material for melt spinning type electrospinning and method for melt spinning ultrafine fibers
JP5870547B2 (en) Propylene resin composition used for melt spinning type electrospinning and melt spinning method of ultrafine fiber using the same
KR102317083B1 (en) Ultra-high molecular weight, ultra-fine particle size polyethylene, preparation method therefor and use thereof
JP5954443B2 (en) Microporous membrane, method for producing the same, battery separator, and resin composition for non-aqueous electrolyte secondary battery separator
JP5885860B2 (en) Fiber grade with improved spinning performance and mechanical properties
KR102109320B1 (en) Spunbonded nonwoven fabric made of phthalate-free PP homopolymer
ES2749429T3 (en) Phthalate-free nucleated PP homopolymers for meltblown extruded fibers
MX2007013502A (en) Polypropylene based fibers and nonwovens.
US10731011B2 (en) Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
JP6390363B2 (en) Propylene resin composition for melt spinning type electrospinning, method for producing propylene ultrafine fiber using the same, and propylene ultrafine fiber produced by the method
JP2015161051A (en) Method for manufacturing nanofiber and nanofiber
WO2007119652A1 (en) Heat-storing composition, and heat-storing fiber, sheet and film each made of the same
JP7155608B2 (en) Resin composition for polypropylene monofilament and method for producing polypropylene monofilament
CN109233113A (en) A kind of atactic copolymerized polypropene and preparation method thereof using edman degradation Edman preparation
JP5900322B2 (en) Extra fine fiber and method for producing the same
WO2016192097A1 (en) Spunbond fabrics comprising propylene-based elastomer compositions and methods thereof
JP2007023398A (en) Polypropylene resin composition for filament nonwoven fabric
KR20190029720A (en) Reinforced thermoplastic polyolefin elastomer film
JP2017190533A (en) Composition for melting electrospinning and manufacturing method of fiber using the same
WO2023190073A1 (en) Spun-bond non-woven fabric, hygienic material, and method for producing spun-bond non-woven fabric
JP2006500486A (en) Polypropylene fiber suitable for thermal bonding nonwoven fabric
KR101384489B1 (en) Polypropylene resin composition for superior pelletizing stability and potential high melt index
JP2023112282A (en) Melt blown non-woven fabric and laminated non-woven fabric made thereof
BRPI0915199B1 (en) spunbonded nonwoven fabric, and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250