WO2007119652A1 - Heat-storing composition, and heat-storing fiber, sheet and film each made of the same - Google Patents

Heat-storing composition, and heat-storing fiber, sheet and film each made of the same Download PDF

Info

Publication number
WO2007119652A1
WO2007119652A1 PCT/JP2007/057435 JP2007057435W WO2007119652A1 WO 2007119652 A1 WO2007119652 A1 WO 2007119652A1 JP 2007057435 W JP2007057435 W JP 2007057435W WO 2007119652 A1 WO2007119652 A1 WO 2007119652A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
resin
temperature adjusting
adjusting agent
temperature
Prior art date
Application number
PCT/JP2007/057435
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuhiko Ubara
Masanori Sera
Osamu Isogai
Takenori Fujimura
Original Assignee
Idemitsu Technofine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Technofine Co., Ltd. filed Critical Idemitsu Technofine Co., Ltd.
Priority to JP2008510915A priority Critical patent/JPWO2007119652A1/en
Publication of WO2007119652A1 publication Critical patent/WO2007119652A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • Thermal storage composition and thermal storage fiber, sheet and film comprising the same
  • the present invention relates to a heat storage composition, and a heat storage fiber, sheet, and Finolem obtained by processing the composition.
  • a microphone mouth capsule in which a substance having a melting point near room temperature is sealed, or a synthetic resin containing microcapsules is spun, and the resulting heat storage fiber is used as a fabric. Is known.
  • Patent Document 1 a composite fiber having a core material composed of a paraffin wax which is a heat storage material and a polyethylene resin is proposed.
  • a heat storage fiber has been proposed, characterized in that a composition having a temperature control function in which a heat storage material is dispersed is extended in the length direction of the yarn (Patent Documents 2 to 4). .
  • the present applicant has proposed a heat storage composite fiber using a heat storage composition obtained by blending a heat storage material having a polymer or oligomer power, or a heat storage material composed of a crosslinked product thereof with a synthetic resin. Speak (Patent Document 5).
  • Patent Document 1 Japanese Patent Laid-Open No. 8-311716
  • Patent Document 2 Japanese Patent Publication No. 2004-510068
  • Patent Document 3 Japanese Patent Publication No. 2005-515317
  • Patent Document 4 Japanese Translation of Special Publication 2005-503497
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-003087 [0005]
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a heat storage composition that can be processed without spinning during spinning.
  • a heat storage composition containing a temperature adjusting agent and a thermoplastic resin, wherein the temperature adjusting agent is a polymer, an oligomer or a crosslinked oligomer, and the melting point of the temperature adjusting agent is 10 to: LOO ° C, latent heat Is a heat storage composition having a weight average molecular weight of 5,000-65,000.
  • thermoplastic resin a thermoplastic resin
  • average particle size of the temperature adjusting agent is less than 13 m.
  • thermoplastic resin 30 to 95% by mass.
  • thermosetting agent has a weight average molecular weight of 5,000 to 30,000.
  • the thermoplastic resin is a polypropylene resin, a polyethylene resin, a polyester resin, a polystyrene resin, a polyamide resin, an ABS resin, a polycarbonate resin, and an ethylene butyl alcohol copolymer resin.
  • the heat storage composition according to any one of 1 to 4, which is a seed.
  • a heat storage fiber obtained by melt spinning the heat storage composition according to any one of 1 to 5 above.
  • a sheet or film comprising the heat storage composition according to any one of 1 to 5 above.
  • a heat storage composition that can reduce yarn breakage during spinning can be provided. Moreover, when a sheet or film is formed using this heat storage composition, fogging and thickness change can be reduced.
  • the heat storage composition of the present invention includes a temperature adjusting agent and a thermoplastic resin.
  • the temperature adjusting agent used in the present invention is a polymer, oligomer or oligomer crosslinked product having a melting point of ⁇ 10 to 100 ° C. and a latent heat of 30 j / g or more.
  • the temperature-controlling agent has a weight average molecular weight (Mw) of 5,000 to 65,000.
  • Mw weight average molecular weight
  • the temperature adjusting agent is highly dispersed in the thermoplastic resin. This makes spinning The thread breakage at the time can be effectively prevented. Note that if the Mw is less than 5,000, the temperature adjusting agent may bleed on the surface of the yarn and become liquefied during use, which may cause stickiness.
  • Mw is preferably ⁇ 5,000 to 30,000, more preferably ⁇ 5,000 to 20,000.
  • Examples of the temperature adjusting agent that is a polymer, an oligomer and a crosslinked product of the oligomer include the following (A) to (C).
  • oligomer A polymer composed of a main chain part X, a bond part Y and a side chain Z represented by the formula (1), wherein the side chain Z can be crystallized together. Or oligomer
  • a polymer or oligomer having as a main component a unit having a main chain that is a polyether and side chains that can be crystallized with each other.
  • these temperature adjusting agents are in the desired temperature range!
  • the phase change (melting, solidification) is caused by non-crystallization or crystallization of the side chain Z.
  • the phase change (melting and solidification) occurs due to the aggregation and dissociation of the side chain, and at that time, large latent heat is released or absorbed. Therefore, these temperature regulators absorb and melt heat when the outside air temperature rises, and release and heat solidify when the outside air temperature falls, so that fluctuations in the outside air temperature are moderated and a constant temperature is easily maintained. It functions as a temperature regulator.
  • the main chain portion X of the formula (1) does not melt in the above temperature range, and in the temperature adjusting agent (B), a three-dimensional network structure is formed by crosslinking. So the shape is maintained without the whole material flowing out. It is.
  • these temperature control agents (A), (B) and (C) can easily adjust the melting point by adjusting the length of the side chain.
  • the main chain portion X of the formula (1) is not particularly limited as long as it does not have a structure that inhibits the crystallization of the side chain Z.
  • They are at least one type selected.
  • the bond part Y is a part that connects the main chain part X and the side chain Z, and means a one-atom unit.
  • the side chain Z is not particularly limited as long as it can be crystallized, but preferably includes a hydrocarbon group having 9 or more carbon atoms, and more preferably includes a linear alkyl group having 9 or more carbon atoms.
  • Bond and chain J chain Y—Z is preferably at least one selected from CO—O—R, 1 O—CO—R, 1 O—R, 1 CHR force, and R is 9 carbon atoms. With more hydrocarbon groups
  • the crystalline unit comprising the main chain part X, the bonding part Y and the side chain Z is shown in the following, polymetatalylate type, polyatarylate type, polybule ester type, polyvinyl ether type. Or it is a hydrocarbon type.
  • R C 14 or more linear alkyl group
  • R C 12 or more linear alkyl group
  • R C 9 or more linear alkyl group
  • R C 10 or more linear alkyl group Hydrocarbon
  • R linear alkyl group of C 9 or more Preferred examples of the temperature control agent (A) include polydocosyl methacrylate, polyheneicosyl methacrylate, polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl Tallylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate Polyheptadecyl Metatalylate, Polynonadecyl Metatalylate, Polyeicosyl Metatalylate, Polystearyl Metatalylate, Poly (palmityl z-stearyl) Metatalylate, Polybulurlaurate, Polyvinylmyristate, Polyvinylpalmitate, Polybulstear Examples thereof
  • a poly high-grade aolefin is an a-olefin having 10 or more carbon atoms, more preferably an ⁇ -olefin having 16 to 18 carbon atoms.
  • Poly-high ⁇ -olefins may be higher ⁇ -olefin homopolymers or copolymers that contain structural units derived from higher ⁇ -olefins, and copolymers with ethylene, propylene and other olefins. It may be combined.
  • the content of the higher ⁇ Orefin units in poly higher ⁇ Orefin particularly preferably preferably be 50 mol 0/0 or instrument is 100 mol%.
  • the content of the higher ⁇ -olefin unit is 50 mol% or more, the crystallinity increases, so that the ability as an efficient heat storage material can be obtained.
  • examples of preferred U and temperature adjusting agent ( ⁇ ) include the cross-linked products of specific examples of the above temperature adjusting agent ( ⁇ ).
  • the weights of the main chain portion X, the binding portion ridge, and the side chain ridge satisfy the following formula.
  • the proportion of the side chain residues in the crystalline unit is 75% by weight or more. If it is less than 75% by weight, side chain ridges cannot be crystallized, and temperature control may not be achieved.
  • the temperature adjusting agents ( ⁇ ) and ( ⁇ ) do not impair their properties! / And can include other units within a range to exhibit a desired function.
  • the temperature control agents ( ⁇ ) and ( ⁇ ) can contain hydrophilic units. These temperature adjusting agents have a high hydrophobicity because they have a long-chain hydrocarbon group as a side chain, but their hydrophilicity can be enhanced by including a hydrophilic unit. In addition, these temperature control agents When used in combination with other substances, adhesion to other substances is improved.
  • Monomers that form such a hydrophilic unit are not particularly limited, and include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like.
  • the hydrophilic unit formed from 2-hydroxyethyl methacrylate is represented by the following formula (4). Further, the hydrophilic unit formed from 2-hydroxychetyl acrylate is represented by the following formula (5).
  • the content of the hydrophilic unit is preferably 50% by weight or less, and more preferably 30% by weight or less. If it exceeds 50% by weight, the crystallinity of the side chain Z may be lowered.
  • the method for producing the temperature adjusting agents (A) and (B) is not particularly limited!
  • the temperature adjusting agent (A) can be produced by polymerizing a monomer capable of forming a crystalline unit, or a monomer capable of forming a crystalline unit and a hydrophilic unit.
  • the above-described poly-higher ⁇ -olefin is preferably synthesized with a homogeneous catalyst called a so-called meta-catacene catalyst.
  • a metallocene catalyst is described in International Publication No. W 003/070790.
  • a catalyst containing the following (a) and (b) is preferred.
  • the above-mentioned bibridged transition metal compound is a transition metal compound having a double-bridged biscyclopentaenyl derivative as a ligand, and includes silicon in the bridging group between the ligands.
  • Preferred examples include (1, 2, 1-dimethylsilylene) (2, 1, -dimethylsilylene) bis (3-trimethylsilylmethylindul) zirconium dichloride.
  • component (b-1) examples include dimethylamine-tetrakispentafluorophenolate.
  • Examples of the component (b-2) include chain aluminoxanes such as methylaluminoxane and cyclic aroxanes.
  • organic aluminum compounds such as trimethylaluminum and triisobutylaluminum can be used as the component (c).
  • the temperature adjusting agent (B) can be produced by polymerizing a monomer capable of forming a crystalline unit or a monomer capable of forming a crystalline unit and a hydrophilic unit together with a crosslinking agent.
  • a monomer capable of forming a crystalline unit or a monomer capable of forming a crystalline unit and a hydrophilic unit together with a crosslinking agent.
  • the cross-linking agent (monomer) that forms cross-links include polyethylene glycol (1000) diatalate, polyethylene glycol (1000) dimetatalate, ethylene glycol diatalate, ethylene glycol dimetatalate, and preferably polyethylene.
  • the amount of the crosslinking agent is usually preferably 0.1 to 20% by weight, more preferably 0.2 to 3% by weight, based on the monomer capable of forming the crystalline unit and the hydrophilic unit. 0
  • the temperature adjusting agent (C) is a polymer or oligomer having as a main component a unit having a main chain that is a polyether and side chains that can be crystallized with each other.
  • the side chain is not particularly limited as long as it can be crystallized.
  • temperature adjusting agent (C) examples include a polyglycerin system having a unit represented by the formula (2) or a polyalkylene glycol system having a unit represented by the formula (3).
  • R 1 is at least one kind of hydrocarbon group having 11 or more carbon atoms, which is also selected,
  • R 2 is at least one selected from hydrocarbon base forces having 14 or more carbon atoms.
  • R 1 or R 2 is preferably a linear alkyl group having the above carbon number. Specific examples include undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, heneicosyl group, docosyl group, tricosyl group and the like. .
  • tridecyl group C13
  • pentadecyl group C15
  • heptadecyl group C13
  • the temperature control agent of the present invention has units represented by formula (6) or formula (7), respectively. Have.
  • the main chain does not crystallize, but long side chains can crystallize with each other.
  • polyglycerin-based temperature control agents include decaglycerin lauric acid (C12) reaction product, strong glycerin-myristic acid (C14) reaction product, decaglycerin-normitic acid (C16) reaction product, decaglycerin-stearin Acid (C18) reaction product, decaglycerin-behenic acid (C22) reaction product, and the like.
  • C12 decaglycerin lauric acid
  • C14 strong glycerin-myristic acid
  • C16 decaglycerin-normitic acid
  • C18 decaglycerin-stearin Acid
  • decaglycerin-behenic acid (C22) reaction product and the like.
  • preferred are a decaglycerin myristic acid reaction product, a decaglycerin palmitic acid reaction product, a decaglycerin-stearic acid reaction product, and a decadalylserine-behenic acid reaction
  • Examples of the polyalkylene glycol-based temperature adjusting agent include polymers of alkylene oxides such as dodecylene oxide, tetradecylene oxide, hexadecylene oxide, and octadecylene oxide. Of these, hexadecylene oxide is preferable, Polymers such as octadecylenoxide.
  • the temperature adjusting agent (C) can also exhibit a desired function by changing the functional group of the side chain as long as its properties are not impaired.
  • the temperature adjusting agent (C) has a long chain hydrocarbon group as a side chain, it is highly hydrophobic.
  • hydrophilic functional group such as alcohol
  • hydrophilicity can be enhanced.
  • adhesion to the substrate or the like is improved.
  • the temperature adjusting agent (C) usually has a 5% weight loss temperature in air measured by a TG-DTA measuring device, preferably 200 ° C or higher, more preferably 240 ° C or higher. Below 200 ° C, it may evaporate during the heating process.
  • the 5% weight loss temperature is the temperature at which 5% by weight of the total temperature is reduced by heating the temperature adjustment agent (C).
  • the method for producing the temperature adjusting agent (C) is not particularly limited.
  • a polyglycerin-based temperature control agent uses a known esterification reaction between a hydroxyl group present in polyglycerin (polyether main chain) and a carboxyl group of rubonic acid (side chain) having a linear alkyl group. It can be manufactured from Kako.
  • the polyalkylene glycol temperature adjusting agent can be produced by ring-opening polymerization of an alkylene oxide.
  • the side chain undergoes reversible crystallization and non-crystallization phase transition with a large latent heat in a predetermined temperature range, but the main chain has a force. There is no such phase transition. For this reason, it is difficult to cause bleed-out compared to wax or the like, so there is no need to use microcapsules.
  • the melting point of the temperature adjusting agent used in the present invention is -10 to: LOO ° C.
  • the lower limit of this range is preferably 0 ° C, more preferably 10 ° C.
  • the upper limit of this range is preferably 80 ° C, more preferably 50 ° C, particularly preferably 40 ° C.
  • these temperature adjusting agents When the melting point exceeds 100 ° C, these temperature adjusting agents always exist in a solid state under the daily use atmosphere, and therefore, the property of absorbing the heat of crystallization at the time of temperature rise cannot be used! , It will be difficult to fully function as a temperature regulator.
  • these temperature adjusting agents always exist in a liquid state under the daily use atmosphere, and therefore, the property of releasing heat during solidification cannot be used. It becomes difficult to sufficiently function as a temperature control agent.
  • the difference between the melting point and the freezing point of the temperature adjusting agent is usually preferably within 15 ° C.
  • the interval between heat absorption and heat dissipation is wide, so that it becomes difficult to function as a temperature adjusting agent in a desired narrow temperature range.
  • the latent heat of the temperature adjusting agent is 30 jZg or more, preferably 50 jZg or more, more preferably 70 jZg or more, within the above melting point range. If the latent heat is less than 30jZg, the effect as a temperature control agent may be insufficient.
  • the melting point, freezing point, and latent heat are measured by differential scanning calorimetry (DSC), respectively, the melting point means the temperature at the top of the melting peak, and the freezing point means the temperature at the top of the crystallization peak.
  • DSC differential scanning calorimetry
  • the melting point is the temperature at the top of the melting peak obtained when the temperature is once heated to a temperature higher than the end of the melting peak, cooled to a predetermined temperature, and then heated again.
  • the thermoplastic resin constituting the heat storage composition of the present invention preferably has a melting point of 100 ° C or higher.
  • polyurethane resin, acrylic resin, polyamide resin, polysalt resin resin (PVC resin), polypropylene resin, polyethylene resin, polystyrene resin, polyester resin (for example, , PET), polycarbonate resin, ethylene butyl alcohol copolymer resin, thermoplastic elastomer resin, polyphenylene sulfide resin, ABS resin and the like are preferable. These may be used alone or in combination of two or more.
  • the thermoplastic resin may be a resin specific to wet spinning (for example, rayon).
  • the temperature adjusting agent is highly dispersed in the thermoplastic resin.
  • the average particle diameter of the temperature adjusting agent is dispersed to less than 13 m.
  • the temperature adjusting agent can be highly dispersed in the thermoplastic resin by using a temperature adjusting agent having a relatively low weight average molecular weight. As a result, yarn breakage during spinning can be greatly reduced. If the average particle size of the temperature control agent is 13 m or more, thread breakage may occur during spinning.
  • the average particle diameter of the temperature adjusting agent is a random selection of the long diameters of a plurality of dispersed temperature adjusting agents by observing the composition cross section with a transmission electron microscope of the composition (for example, pellets) before spinning. Measured and averaged. In addition, when the temperature adjustment agent is further highly dispersed and compatible with each other, the average particle size may not be measured.
  • the average particle diameter of the temperature adjusting agent dispersed in the heat storage composition of the present invention is more preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. is there.
  • the average particle size of the temperature adjusting agent can be adjusted by controlling the molecular weight of the temperature adjusting agent, the molecular weight of the thermoplastic resin, and the like.
  • the ratio of the temperature adjusting agent and the thermoplastic resin in the heat storage composition of the present invention is preferably the temperature adjusting agent Z thermoplastic resin (mass%): 5Z95 to 70Z30. If the temperature adjusting agent is less than 5% by mass, the temperature control function may not be sufficiently exerted, and if it exceeds 70% by mass, sufficient dispersion may not be obtained. More preferably, it is 5-50 mass%.
  • the heat storage composition of the present invention may contain an epoxy group-containing acrylic polymer, a aryl ether copolymer, or the like as a compatibility improver.
  • a compatibility improver As a result, the compatibility between the thermoplastic resin and the temperature adjusting agent is improved, and the blending amount of the temperature adjusting agent can be increased.
  • the heat storage composition of the present invention includes various additives such as an antioxidant, a light-resistant agent, an inorganic filler (calcium carbonate, talc, etc.), a foaming agent (chemical foaming) as long as the characteristics are not impaired. Materials), anti-aging agents, antibacterial agents, antifungal agents, colorants, pigments, antistatic agents, flame retardants, processing aids, stabilizers, plasticizers, crosslinking agents, reaction accelerators, etc. it can.
  • the latent heat of the heat storage composition of the present invention is usually from -10 to: LOO ° C, preferably from UZg or more, more preferably from 5 jZg or more, in terms of heat storage function. If the latent heat is less than UZg, the heat storage effect may not be sufficient. Further, it is preferably ⁇ 10 to 80 ° C., more preferably 0 to 50 ° C., preferably UZg or more, more preferably 5 jZg or more. Due to this characteristic, the temperature control function can be sufficiently exerted with respect to the outside air temperature and the like.
  • the heat storage composition of the present invention can be produced by kneading the temperature adjusting agent and the thermoplastic resin with a known method, for example, a kneading extruder.
  • a heat storage fiber can be manufactured by melt-spinning the heat storage composition of this invention with a well-known etastruder type compound spinning machine.
  • the heat storage fiber of the present invention is preferably a core sheath Structure.
  • the resin constituting the sheath part is polyamide resin, polyester resin, polyurethane resin, ethylene vinyl acetate copolymer, polysalt vinylidene resin, polychlorinated resin resin.
  • Acrylic resin, polyethylene resin, polypropylene resin, etc. can be used.
  • the particle diameter of the temperature adjusting agent is preferably 1Z3 or less, more preferably 1Z5 or less, with respect to the yarn diameter (in the core-sheath structure, the diameter of the core portion).
  • the spinning temperature varies depending on the fiber raw material used, but is usually about 180 to 350 ° C.
  • a hygroscopic agent a wetting agent, a colorant, a stabilizer, a flame retardant, an electrostatic agent
  • Antiaging agents, antioxidants, antibacterial agents, antifungal agents, pigments, antistatic agents, flame retardants, processing aids, plasticizers, crosslinking agents, reaction accelerators, foaming agents, and the like can be added.
  • the cross-sectional shape of the heat storage fiber is not limited to a circular shape, and may be an irregular cross-section such as a triangle or a quadrangle.
  • the temperature adjusting agent used for producing the heat storage fiber has a relatively high molecular weight as compared with the wax and the monomer, so there is no problem of evaporation or leakage.
  • it since it is an oligomer or polymer, it can be kneaded and fiberized, and can be easily processed by continuous spinning and weaving. That is, the heat storage fiber of the present invention is excellent in spinnability and easy to manufacture.
  • the heat storage fiber Since the core part of the heat storage fiber includes the above-mentioned temperature adjusting agent! /, The heat storage fiber generates latent heat at the melting point of the temperature adjusting agent. That is, ⁇ 10 ⁇ : At LOO ° C., latent heat of preferably lj / g or more, more preferably 5jZg or more is generated. If the latent heat is less than UZg, the heat storage effect may not be sufficient. Further, it preferably generates a latent heat of ⁇ 10 to 80 ° C., more preferably 0 to 50 ° C., preferably UZg or more, more preferably 5 jZg or more. With this characteristic, the temperature adjustment function can be sufficiently exerted with respect to the outside air temperature or the like.
  • the temperature adjusting agent can be uniformly dispersed in the fiber, and the variation in spinning diameter and tensile strength can be suppressed.
  • the surface of the fiber can be made the same as a conventional synthetic fiber, and processing or dyeing into a woven or knitted fabric can be performed in the same manner as before. , Easy to handle.
  • a sheet or film can be produced by molding the heat storage composition of the present invention by a known method, for example, an extruder equipped with a sheet or film mold.
  • a known method for example, an extruder equipped with a sheet or film mold.
  • fogging white turbidity due to poor dispersion of the temperature adjusting agent is unlikely to occur.
  • the composition produced in (1) above was melted and extruded into a strand form from a mold using a kneading extruder (KCK-80, manufactured by Casey Engineering Co., Ltd.). Extrusion was performed at 240 ° C, and a strand of 2 m in height was allowed to flow down the floor. We observed whether or not this strand was broken. Evaluation was performed according to the following criteria. The results are shown in Table 1.
  • the yarn diameter means the diameter of the cured strand. As shown in Table 1, the yarn diameter was changed from 7 ⁇ m to 1000 ⁇ m for evaluation. The yarn diameter was adjusted by adjusting the discharge rate of the extruder (screw speed, etc.).
  • a 500 m thick sheet was formed using a multi-layer extruder (2 types, 3 layers molding machine) (manufactured by Tanabe Plastics Machinery Co., Ltd.). Using the composition prepared in (1) above as the core oil, Polypropylene (manufactured by Prime Polymer Co., Ltd., E-203GV) was used as the resin. The molding temperature was 200 ° C, the thickness of the core was 300 ⁇ m, and the thickness of the surface layer was 150 ⁇ m. About this sheet
  • a heat storage composition was prepared and evaluated in the same manner as in Example 1 except that the molecular weight Mw of the temperature adjusting agent was changed as shown in Table 1. The results are shown in Table 1.
  • Table 2 shows the physical properties of the temperature control agent used in each example and the average particle size in the pellet-like composition.
  • Example 1 Molecular weight (Mw) Melting point C) Latent heat (J / g) Average particle size ( ⁇ ) Example 1 8500 27 to 29 70 0. 3
  • Example 2 10000 27 to 29 70 0.5
  • Example 3 15000 27-29 70 0 75
  • Example 4 20000 27-29 70 1.04
  • Example 5 40000 27-29 70 5.
  • Example 6 65000 27-29 70 6.
  • Comparative Example 1 100000 27-29 70 8. 2
  • DSC-7 differential scanning calorimeter
  • Mw weight average molecular weight
  • the cross section of the pellet of the composition was evaluated by observation with a transmission electron microscope (TEM).
  • the heat storage composite fiber obtained from the heat storage composition of the present invention has a temperature adjustment function, it is suitable for temperature adjustment with respect to body temperature by using it in contact with or non-contact with the surroundings of the body.
  • sports clothing such as skiwear and rainwear, winter clothing, socks, pantyhose, shirts, suits such as suits, bedding such as batting, gloves, shoes, furniture, artificial leather for automobiles, It can be used for food packaging materials, building materials, etc. that are required to be kept warm and cold, and particularly suitable for textile products, furniture, and leather products for automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

Disclosed is a heat-storing composition containing a temperature regulating agent and a thermoplastic resin. This heat-storing composition is characterized in that the temperature regulating agent is composed of a polymer, an oligomer or a crosslinked product of an oligomer, while having a melting point of from -10 to 100˚C, a latent heat of not less than 30 J/g, and a weight average molecular weight of 5,000-65,000.

Description

明 細 書  Specification
蓄熱性組成物、並びにそれからなる蓄熱性繊維、シート及びフィルム 技術分野  Thermal storage composition, and thermal storage fiber, sheet and film comprising the same
[0001] 本発明は、蓄熱性組成物、並びにこれを加工して得られる蓄熱性繊維、シート及び フイノレムに関する。  [0001] The present invention relates to a heat storage composition, and a heat storage fiber, sheet, and Finolem obtained by processing the composition.
背景技術  Background art
[0002] 温度変化が著しい環境において使用される衣服等には、様々な温度調節用蓄熱 性部材が利用されている。  [0002] Various heat storage members for temperature adjustment are used for clothes and the like used in an environment where temperature changes are remarkable.
温度調節用蓄熱性部材としては、常温付近に融点を有する物質を封入したマイク 口カプセルを布に固着したものや、マイクロカプセルを含有する合成樹脂を紡糸し、 得られた蓄熱性繊維を布地にしたものが知られている。  As the heat storage member for temperature control, a microphone mouth capsule in which a substance having a melting point near room temperature is sealed, or a synthetic resin containing microcapsules is spun, and the resulting heat storage fiber is used as a fabric. Is known.
[0003] 蓄熱性繊維としては、蓄熱性物質であるパラフィンワックスと、ポリエチレン榭脂から なる組成物を芯材とした複合繊維が提案されて ヽる (特許文献 1)。 [0003] As a heat storage fiber, a composite fiber having a core material composed of a paraffin wax which is a heat storage material and a polyethylene resin is proposed (Patent Document 1).
また、蓄熱性物質を分散させた温調機能を有する組成物を、糸の長さ方向に延在 させたことを特徴として 、る蓄熱性繊維が提案されて 、る (特許文献 2〜4)。  Further, a heat storage fiber has been proposed, characterized in that a composition having a temperature control function in which a heat storage material is dispersed is extended in the length direction of the yarn (Patent Documents 2 to 4). .
し力しながら、これらの繊維は、紡糸時に糸切れが多発するため、安定した製造が できな 、と!/、う課題を有して 、た。  However, these fibers have a problem that they cannot be stably produced because yarn breakage frequently occurs during spinning.
[0004] 本出願人は、ポリマー若しくはオリゴマー力 なる蓄熱材料、又はこれらの架橋体か らなる蓄熱材料を合成樹脂に配合してなる蓄熱性組成物を使用した蓄熱性複合繊 維を提案して ヽる (特許文献 5)。 [0004] The present applicant has proposed a heat storage composite fiber using a heat storage composition obtained by blending a heat storage material having a polymer or oligomer power, or a heat storage material composed of a crosslinked product thereof with a synthetic resin. Speak (Patent Document 5).
し力しながら、糸径等、紡糸の条件によっては安定した製造ができない場合があり、 さらなる検討が必要であった。  However, stable production may not be possible depending on the spinning conditions such as the yarn diameter, and further investigation is required.
特許文献 1:特開平 8 - 311716号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-311716
特許文献 2:特表 2004 - 510068号公報  Patent Document 2: Japanese Patent Publication No. 2004-510068
特許文献 3:特表 2005 - 515317号公報  Patent Document 3: Japanese Patent Publication No. 2005-515317
特許文献 4:特表 2005 - 503497号公報  Patent Document 4: Japanese Translation of Special Publication 2005-503497
特許文献 5:特開 2004 - 003087号公報 [0005] 本発明は上述の問題に鑑みなされたものであり、紡糸の際に糸切れせずに加工で きる蓄熱性組成物を提供することを目的とする。 Patent Document 5: Japanese Patent Application Laid-Open No. 2004-003087 [0005] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a heat storage composition that can be processed without spinning during spinning.
発明の開示  Disclosure of the invention
[0006] 本発明によれば、以下の蓄熱性組成物等が提供される。  [0006] According to the present invention, the following heat storage composition and the like are provided.
1.温調剤及び熱可塑性榭脂を含む蓄熱性組成物であって、前記温調剤が、ポリマ 一、オリゴマー又はオリゴマーの架橋体であり、前記温調剤の融点が 10〜: LOO°C 、潜熱が 30jZg以上、重量平均分子量が 5, 000-65, 000である蓄熱性組成物。 1. A heat storage composition containing a temperature adjusting agent and a thermoplastic resin, wherein the temperature adjusting agent is a polymer, an oligomer or a crosslinked oligomer, and the melting point of the temperature adjusting agent is 10 to: LOO ° C, latent heat Is a heat storage composition having a weight average molecular weight of 5,000-65,000.
2.前記温調剤が熱可塑性榭脂に分散して存在し、温調剤の平均粒径が 13 m未 満である 1に記載の蓄熱性組成物。 2. The heat storage composition according to 1, wherein the temperature adjusting agent is dispersed in a thermoplastic resin, and the average particle size of the temperature adjusting agent is less than 13 m.
3.蓄熱性組成物に占める前記温調剤の割合が 5〜70質量%であり、前記熱可塑性 榭脂の割合が 30〜95質量%である 1又は 2に記載の蓄熱性組成物。  3. The heat storage composition according to 1 or 2, wherein a ratio of the temperature adjusting agent in the heat storage composition is 5 to 70% by mass, and a ratio of the thermoplastic resin is 30 to 95% by mass.
4.前記温調剤の重量平均分子量が 5, 000〜30, 000である 1〜3のいずれかに記 載の蓄熱性組成物。  4. The heat storage composition according to any one of 1 to 3, wherein the temperature adjusting agent has a weight average molecular weight of 5,000 to 30,000.
5.前記熱可塑性榭脂が、ポリプロピレン榭脂、ポリエチレン榭脂、ポリエステル榭脂 、ポリスチレン榭脂、ポリアミド榭脂、 ABS榭脂、ポリカーボネート榭脂及びエチレン ビュルアルコール共重合榭脂力 選択される少なくとも 1種である 1〜4のいずれか に記載の蓄熱性組成物。  5. The thermoplastic resin is a polypropylene resin, a polyethylene resin, a polyester resin, a polystyrene resin, a polyamide resin, an ABS resin, a polycarbonate resin, and an ethylene butyl alcohol copolymer resin. The heat storage composition according to any one of 1 to 4, which is a seed.
6.上記 1〜5の 、ずれかに記載の蓄熱性組成物を溶融紡糸してなる蓄熱性繊維。 6. A heat storage fiber obtained by melt spinning the heat storage composition according to any one of 1 to 5 above.
7.上記 1〜5のいずれかに記載の蓄熱性組成物からなるシート又はフィルム。 7. A sheet or film comprising the heat storage composition according to any one of 1 to 5 above.
[0007] 本発明によれば、紡糸の際の糸切れを低減できる蓄熱性組成物が提供できる。ま た、この蓄熱性組成物を使用してシートやフィルムを成形すると、曇や厚み変化を低 減できる。 [0007] According to the present invention, a heat storage composition that can reduce yarn breakage during spinning can be provided. Moreover, when a sheet or film is formed using this heat storage composition, fogging and thickness change can be reduced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明の蓄熱性組成物は、温調剤及び熱可塑性榭脂を含む。 [0008] The heat storage composition of the present invention includes a temperature adjusting agent and a thermoplastic resin.
本発明で使用する温調剤は、融点が— 10〜100°Cで、潜熱が 30j/g以上である ポリマー、オリゴマー又はオリゴマーの架橋体である。この温調剤の重量平均分子量 (Mw)は 5, 000〜65, 000である。本発明では、 Mwが上記範囲である温調剤を使 用することにより、熱可塑性榭脂に温調剤を高度に分散させている。これにより紡糸 時の糸切れを有効に防止できる。尚、 Mwが 5, 000未満では、温調剤が糸表面にプ リード、使用時に液化し、べトツキ等の原因となる場合がある。一方、 65, 000を超え ると、温調剤としての分散性が悪化するため、紡糸、成形加工性が低下する場合が ある。 Mwは、好まし <は 5, 000〜30, 000、より好まし <は、 5, 000〜20, 000であ る。 The temperature adjusting agent used in the present invention is a polymer, oligomer or oligomer crosslinked product having a melting point of −10 to 100 ° C. and a latent heat of 30 j / g or more. The temperature-controlling agent has a weight average molecular weight (Mw) of 5,000 to 65,000. In the present invention, by using a temperature adjusting agent having Mw in the above range, the temperature adjusting agent is highly dispersed in the thermoplastic resin. This makes spinning The thread breakage at the time can be effectively prevented. Note that if the Mw is less than 5,000, the temperature adjusting agent may bleed on the surface of the yarn and become liquefied during use, which may cause stickiness. On the other hand, if it exceeds 65,000, the dispersibility as a temperature adjusting agent deteriorates, so that the spinning and molding processability may be lowered. Mw is preferably <5,000 to 30,000, more preferably <5,000 to 20,000.
[0009] ポリマー、オリゴマー及びオリゴマーの架橋体である温調剤としては、例えば、以下 の(A)〜(C)が挙げられる。  [0009] Examples of the temperature adjusting agent that is a polymer, an oligomer and a crosslinked product of the oligomer include the following (A) to (C).
[0010] (A)式(1)に示される主鎖部 X、結合部 Y及び側鎖 Zから構成され、側鎖 Zが互 、 に結晶化しうる結晶性ユニットを、主構成成分とするポリマー又はオリゴマー [0010] (A) A polymer composed of a main chain part X, a bond part Y and a side chain Z represented by the formula (1), wherein the side chain Z can be crystallized together. Or oligomer
[化 1]  [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
[0011] (B)上記式(1)に示される主鎖部 X、結合部 Y及び側鎖 Zから構成され、側鎖 Zが 互いに結晶化しうる結晶性ユニットを、主構成成分とするポリマー又はオリゴマー架 橋体 (架橋温調剤)。 [0011] (B) a polymer comprising a main chain component composed of a main chain part X, a bond part Y and a side chain Z represented by the above formula (1), wherein the side chain Z can be crystallized with each other; Oligomer bridge (crosslinking temperature regulator).
[0012] (C)ポリエーテルである主鎖と、互いに結晶化しうる側鎖とを有するユニットを、主構 成成分とするポリマー又はオリゴマー(ポリエーテル温調剤)。  [0012] (C) A polymer or oligomer (polyether temperature adjusting agent) having as a main component a unit having a main chain that is a polyether and side chains that can be crystallized with each other.
[0013] これらの温調剤は、所望の温度範囲にお!、て、温調剤 (A)及び (B)にあっては、側 鎖 Zの非結晶化又は結晶化により相変化 (融解、凝固)し、また、温調剤 (C)にあって は、側鎖の凝集解離により相変化 (融解、凝固)し、その際、大きな潜熱を放出又は 吸収する。従って、これらの温調剤は、外気温度が上昇すると熱を吸収して融解し、 外気温度が低下すると熱を放出して凝固するので、外気温度の変動を和らげ、一定 の温度が保たれ易ぐ温調剤としての機能を発揮する。また、温調剤 (A)及び (B)で は、式(1)の主鎖部 Xが、上記の温度範囲では融解せず、さらに、温調剤(B)では、 架橋によって三次元網目構造となるので、材料全体が流出することなく形状は保持さ れる。また、これらの温調剤 (A)、(B)及び (C)は、側鎖の長さを調節することにより、 融点を容易に調節できる。 [0013] These temperature adjusting agents are in the desired temperature range! In the temperature adjusting agents (A) and (B), the phase change (melting, solidification) is caused by non-crystallization or crystallization of the side chain Z. In addition, in the case of the temperature adjusting agent (C), the phase change (melting and solidification) occurs due to the aggregation and dissociation of the side chain, and at that time, large latent heat is released or absorbed. Therefore, these temperature regulators absorb and melt heat when the outside air temperature rises, and release and heat solidify when the outside air temperature falls, so that fluctuations in the outside air temperature are moderated and a constant temperature is easily maintained. It functions as a temperature regulator. In addition, in the temperature adjusting agents (A) and (B), the main chain portion X of the formula (1) does not melt in the above temperature range, and in the temperature adjusting agent (B), a three-dimensional network structure is formed by crosslinking. So the shape is maintained without the whole material flowing out. It is. Moreover, these temperature control agents (A), (B) and (C) can easily adjust the melting point by adjusting the length of the side chain.
[0014] まず、温調剤 (A)及び (B)につ 、て説明する。 [0014] First, the temperature adjusting agents (A) and (B) will be described.
温調剤 (A)及び (B)において、式(1)の主鎖部 Xは、側鎖 Zの結晶化を阻害する構 造でなければ特に限定されな 、が、好ましくは、  In the temperature adjusting agents (A) and (B), the main chain portion X of the formula (1) is not particularly limited as long as it does not have a structure that inhibits the crystallization of the side chain Z.
[化 2]  [Chemical 2]
Figure imgf000005_0001
カゝら選択される少なくとも一種類である。
Figure imgf000005_0001
They are at least one type selected.
結合部 Yは、主鎖部 Xと側鎖 Zを結合する部であり、 1原子ユニットを意味する。側 鎖 Zは、結晶化できれば特に限定はされないが、好ましくは、炭素数 9以上の炭化水 素基を含み、さらに好ましくは、炭素数 9以上の直鎖アルキル基を含む。  The bond part Y is a part that connects the main chain part X and the side chain Z, and means a one-atom unit. The side chain Z is not particularly limited as long as it can be crystallized, but preferably includes a hydrocarbon group having 9 or more carbon atoms, and more preferably includes a linear alkyl group having 9 or more carbon atoms.
結合言と佃 J鎖 Y—Zは、好ましくは、 CO— O— R、 一 O— CO— R、 一 O— R、 一 C H R力 選択される少なくとも一種類であり、 Rは、炭素数 9以上の炭化水素基で Bond and chain J chain Y—Z is preferably at least one selected from CO—O—R, 1 O—CO—R, 1 O—R, 1 CHR force, and R is 9 carbon atoms. With more hydrocarbon groups
2 2
あり、さらに好ましくは、炭素数 9以上の直鎖アルキル基である。  More preferably a linear alkyl group having 9 or more carbon atoms.
[0015] 特に好ま 、、主鎖部 X、結合部 Y及び側鎖 Zからなる結晶性ユニットは、以下に示 す、ポリメタタリレート系、ポリアタリレート系、ポリビュルエステル系、ポリビニルエーテ ル系又は炭化水素系である。 [0015] Particularly preferably, the crystalline unit comprising the main chain part X, the bonding part Y and the side chain Z is shown in the following, polymetatalylate type, polyatarylate type, polybule ester type, polyvinyl ether type. Or it is a hydrocarbon type.
メタクリ レート系 アタリレート系 Methacrylate system Atallate system
Figure imgf000006_0001
Figure imgf000006_0001
Z Z  Z Z
R : C 1 4以上の直鎖アルキル基 R: C 1 2以上の直鎖アルキル基 ピニルエステル系 ビニルェ一テル系  R: C 14 or more linear alkyl group R: C 12 or more linear alkyl group Pinyl ester type vinyl ether type
Figure imgf000006_0002
Figure imgf000006_0002
Z  Z
R: C 9以上の直鎖アルキル基 R: C 1 0以上の直鎖アルキル基 炭化水素系  R: C 9 or more linear alkyl group R: C 10 or more linear alkyl group Hydrocarbon
Figure imgf000006_0003
Figure imgf000006_0003
z  z
R: C 9以上の直鎖アルキル基 好ましい温調剤 (A)の例として、ポリドコシルメタタリレート、ポリヘンエイコシルメタク リレート、ポリエイコシルアタリレート、ポリノナデシルアタリレート、ポリへプタデシルァ タリレート、ポリパルミチルアタリレート、ポリペンタデシルアタリレート、ポリステアリルァ タリレート、ポリラウリルアタリレート、ポリミリスチルアタリレート、ポリミリスチルメタクリレ ート、ポリペンタデシルメタタリレート、ポリパルミチルメタタリレート、ポリへプタデシル メタタリレート、ポリノナデシルメタタリレート、ポリエイコシルメタタリレート、ポリステアリ ルメタタリレート、ポリ(パルミチル zステアリル)メタタリレート、ポリビュルラウレート、ポ リビニルミリステート、ポリビニルパルミテート、ポリビュルステアレート、ポリラウリルビ- ルエーテル、ポリミリスチルビニルエーテル、ポリパルミチルビニルエーテル、ポリステ ァリルビュルエーテル、ポリ高級 αォレフィン等が挙げられる。特に好ましくは、ポリ高 級 aォレフィンである。ここで、高級 aォレフィンとは、炭素数 10以上の aォレフィン であり、より好ましくは 16〜18の炭素数を持つ αォレフィンである。ポリ高級 αォレフ インは、高級 αォレフィンに由来する構造単位を含んでおればよぐ高級 αォレフィ ンのホモポリマーでも、共重合体でもよぐさらに、エチレン、プロピレン等のォレフィ ンとの共重合体でもよい。 R: linear alkyl group of C 9 or more Preferred examples of the temperature control agent (A) include polydocosyl methacrylate, polyheneicosyl methacrylate, polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl Tallylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate Polyheptadecyl Metatalylate, Polynonadecyl Metatalylate, Polyeicosyl Metatalylate, Polystearyl Metatalylate, Poly (palmityl z-stearyl) Metatalylate, Polybulurlaurate, Polyvinylmyristate, Polyvinylpalmitate, Polybulstear Examples thereof include rate, polylauryl vinyl ether, polymyristyl vinyl ether, polypalmityl vinyl ether, polysteryl butyl ether, poly higher α-olefin. Particularly preferred is a poly high-grade aolefin. Here, the higher a-olefin is an a-olefin having 10 or more carbon atoms, more preferably an α-olefin having 16 to 18 carbon atoms. Poly-high α-olefins may be higher α-olefin homopolymers or copolymers that contain structural units derived from higher α-olefins, and copolymers with ethylene, propylene and other olefins. It may be combined.
ポリ高級 αォレフィンにおける高級 αォレフィン単位の含有量は、 50モル0 /0以上で あることが好ましぐ特に好ましくは 100モル%である。高級 αォレフィン単位の含有 量が 50モル%以上であることにより、結晶性が大きくなるため、効率的な蓄熱材とし ての能力を得ることができる。 The content of the higher α Orefin units in poly higher α Orefin particularly preferably preferably be 50 mol 0/0 or instrument is 100 mol%. When the content of the higher α-olefin unit is 50 mol% or more, the crystallinity increases, so that the ability as an efficient heat storage material can be obtained.
[0017] また、好ま U、温調剤 (Β)の例として、上記温調剤 (Α)の具体例の架橋体が挙げら れる。 [0017] Further, examples of preferred U and temperature adjusting agent (Β) include the cross-linked products of specific examples of the above temperature adjusting agent (Α).
[0018] 好ましくは、主鎖部 X、結合部 Υ及び側鎖 Ζの重量は、以下の式を満たす。  [0018] Preferably, the weights of the main chain portion X, the binding portion ridge, and the side chain ridge satisfy the following formula.
Z/ (X+Y+Z)≥0. 75  Z / (X + Y + Z) ≥0.75
即ち、側鎖 Ζの結晶性ユニットに占める割合は 75重量%以上である。 75重量%未 満では、側鎖 Ζが結晶化できなくなり、温調性を発揮することができない恐れがある。  That is, the proportion of the side chain residues in the crystalline unit is 75% by weight or more. If it is less than 75% by weight, side chain ridges cannot be crystallized, and temperature control may not be achieved.
[0019] 温調剤 (Α)及び (Β)は、その特性を損なわな!/、範囲にぉ 、て、他のユニットを含む ことにより、所望の機能を発揮させることもできる。 [0019] The temperature adjusting agents (Α) and (Β) do not impair their properties! / And can include other units within a range to exhibit a desired function.
例えば、温調剤 (Α)及び (Β)は、親水性ユニットを含むことができる。これらの温調 剤は、側鎖として長鎖炭化水素基を有するため疎水性が高いが、親水性ユニットを 含ませることにより、親水性を高めることができる。また、これらの温調剤を、他の親水 性物質と組み合わせて用いるとき、他の物質に対する密着性が向上する。 For example, the temperature control agents (Α) and (Β) can contain hydrophilic units. These temperature adjusting agents have a high hydrophobicity because they have a long-chain hydrocarbon group as a side chain, but their hydrophilicity can be enhanced by including a hydrophilic unit. In addition, these temperature control agents When used in combination with other substances, adhesion to other substances is improved.
[0020] このような親水性ユニットを形成するモノマーは、特に限定されないが、 2—ヒドロキ シェチルアタリレート、 2—ヒドロキシェチルメタタリレート等がある。 2—ヒドロキシェチ ルメタタリレートから形成される親水性ユニットは、下記式 (4)で表される。また、 2—ヒ ドロキシェチルアタリレートから形成される親水性ユニットは、下記式(5)で表される。  [0020] Monomers that form such a hydrophilic unit are not particularly limited, and include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like. The hydrophilic unit formed from 2-hydroxyethyl methacrylate is represented by the following formula (4). Further, the hydrophilic unit formed from 2-hydroxychetyl acrylate is represented by the following formula (5).
[化 4]  [Chemical 4]
Figure imgf000008_0001
Figure imgf000008_0001
(4) (5) (4) (5)
[0021] 親水性ユニットの含有量は、好ましくは、 50重量%以下であり、より好ましくは、 30 重量%以下である。 50重量%を越えると、側鎖 Zの結晶性が低下する恐れがある。 [0021] The content of the hydrophilic unit is preferably 50% by weight or less, and more preferably 30% by weight or less. If it exceeds 50% by weight, the crystallinity of the side chain Z may be lowered.
[0022] 温調剤 (A)及び (B)の製造方法は、特に限定されな!、。  [0022] The method for producing the temperature adjusting agents (A) and (B) is not particularly limited!
例えば、温調剤 (A)は、結晶性ユニットを形成し得るモノマー、又は結晶性ユニット 及び親水性ユニットを形成し得るモノマーを重合することにより製造できる。  For example, the temperature adjusting agent (A) can be produced by polymerizing a monomer capable of forming a crystalline unit, or a monomer capable of forming a crystalline unit and a hydrophilic unit.
尚、上述したポリ高級 αォレフィンについては、いわゆるメタ口セン触媒と呼ばれる 均一系の触媒で合成することが好ましい。メタ口セン系触媒は、例えば、国際公開 W 003/070790号公報に記載されている。その中でも特に、ァイソタクチックポリマー を合成できる、 C2対称及び、 C1対称の遷移金属化合物を用いることが好ましい。具 体的には、下記 (a)及び (b)を含む触媒が好ま ヽ。  The above-described poly-higher α-olefin is preferably synthesized with a homogeneous catalyst called a so-called meta-catacene catalyst. For example, the metallocene catalyst is described in International Publication No. W 003/070790. Among them, it is particularly preferable to use a C2 symmetric and C1 symmetric transition metal compound that can synthesize a isotactic polymer. Specifically, a catalyst containing the following (a) and (b) is preferred.
(a)二架橋型の遷移金属化合物  (a) Bi-bridged transition metal compound
(b): (b— 1)上記 (a)成分の遷移金属化合物又はその派生物と反応してイオン性 の錯体を形成しうる化合物、及び (b— 2)アルミノキサン力 選ばれる少なくとも一種 類の成分 重合用触媒の存在下、炭素数 10以上の高級 αォレフインを重合させる。 (b): (b—1) a compound capable of reacting with the transition metal compound of the above component (a) or a derivative thereof to form an ionic complex, and (b-2) at least one selected from aluminoxane force component In the presence of a polymerization catalyst, higher α-olefins with 10 or more carbon atoms are polymerized.
[0023] 上記二架橋型の遷移金属化合物としては、二重架橋型ビスシクロペンタジェニル 誘導体を配位子とする遷移金属化合物であって、配位子間の架橋基に珪素を含む ものが好ましぐ例えば(1, 2, 一ジメチルシリレン) (2, 1,—ジメチルシリレン)ビス(3 -トリメチルシリルメチルインデュル)ジルコニウムジクロライド等が挙げられる。 [0023] The above-mentioned bibridged transition metal compound is a transition metal compound having a double-bridged biscyclopentaenyl derivative as a ligand, and includes silicon in the bridging group between the ligands. Preferred examples include (1, 2, 1-dimethylsilylene) (2, 1, -dimethylsilylene) bis (3-trimethylsilylmethylindul) zirconium dichloride.
(b— 1)成分としては、ジメチルァ-リニゥムテトラキスペンタフルオロフェ-ルボレー ト等が挙げられる。  Examples of the component (b-1) include dimethylamine-tetrakispentafluorophenolate.
(b— 2)成分としては、メチルアルミノキサン等の鎖状アルミノキサン、環状アルノキ サンが挙げられる。  Examples of the component (b-2) include chain aluminoxanes such as methylaluminoxane and cyclic aroxanes.
また、上記 (a)及び (b)成分の他に(c)成分として、トリメチルアルミニウム、トリイソブ チルアルミニウム等の有機アルミニウム化合物を用いることができる。  In addition to the components (a) and (b), organic aluminum compounds such as trimethylaluminum and triisobutylaluminum can be used as the component (c).
[0024] 温調剤 (B)は、結晶性ユニットを形成し得るモノマー、又は結晶性ユニット及び親 水性ユニットを形成し得るモノマーを、架橋剤と共に重合することにより製造できる。 架橋を形成する架橋剤(モノマー)としては、ポリエチレングリコール(1000)ジアタリ レート、ポリエチレングリコール(1000)ジメタタリレート、エチレングリコールジアタリレ ート、エチレングリコールジメタタリレート等があり、好ましくは、ポリエチレングリコール[0024] The temperature adjusting agent (B) can be produced by polymerizing a monomer capable of forming a crystalline unit or a monomer capable of forming a crystalline unit and a hydrophilic unit together with a crosslinking agent. Examples of the cross-linking agent (monomer) that forms cross-links include polyethylene glycol (1000) diatalate, polyethylene glycol (1000) dimetatalate, ethylene glycol diatalate, ethylene glycol dimetatalate, and preferably polyethylene. Glycol
(1000)ジメタタリレート、エチレングリコールジメタタリレートである。 (1000) dimetatalate, ethylene glycol dimetatalate.
架橋剤の量は、結晶性ユニット及び親水性ユニットを形成し得るモノマーに対し、 通常、好ましくは、 0. 1〜20重量%であり、より好ましくは、 0. 2〜3重量%である。 0 The amount of the crosslinking agent is usually preferably 0.1 to 20% by weight, more preferably 0.2 to 3% by weight, based on the monomer capable of forming the crystalline unit and the hydrophilic unit. 0
. 1重量%未満では、架橋効果がほとんど表れない。一方、 20重量%を越えてもほと んど効果に差がない。 If it is less than 1% by weight, the crosslinking effect hardly appears. On the other hand, even if it exceeds 20% by weight, there is almost no difference in effect.
[0025] 次に、温調剤 (C)について説明する [0025] Next, the temperature adjusting agent (C) will be described.
温調剤(C)は、上述したように、ポリエーテルである主鎖と、互いに結晶化し得る側 鎖とを有するユニットを、主構成成分とするポリマー又はオリゴマーである。  As described above, the temperature adjusting agent (C) is a polymer or oligomer having as a main component a unit having a main chain that is a polyether and side chains that can be crystallized with each other.
温調剤(C)において、側鎖は、結晶化できれば特に限定はされない。  In the temperature adjusting agent (C), the side chain is not particularly limited as long as it can be crystallized.
具体的な温調剤(C)としては、式(2)に示すユニットを有するポリグリセリン系、又は 式(3)に示すユニットを有するポリアルキレングリコール系が挙げられる。  Specific examples of the temperature adjusting agent (C) include a polyglycerin system having a unit represented by the formula (2) or a polyalkylene glycol system having a unit represented by the formula (3).
[0026] [化 5] [0026] [Chemical 5]
Figure imgf000010_0001
Figure imgf000010_0001
(2) (3) (twenty three)
(式中、 R1は、炭素数 11以上の炭化水素基力も選択される少なくとも一種類であり、(In the formula, R 1 is at least one kind of hydrocarbon group having 11 or more carbon atoms, which is also selected,
R2は、炭素数 14以上の炭化水素基力も選択される少なくとも一種類である。 ) R 2 is at least one selected from hydrocarbon base forces having 14 or more carbon atoms. )
[0027] R1又は R2は、好ましくは上記の炭素数を有する直鎖アルキル基である。具体例とし ては、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へ キサデシル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、エイコシル基、ヘン エイコシル基、ドコシル基、トリコシル基等が挙げられる。 [0027] R 1 or R 2 is preferably a linear alkyl group having the above carbon number. Specific examples include undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, heneicosyl group, docosyl group, tricosyl group and the like. .
特に好ましいのは、トリデシル基(C13)、ペンタデシル基(C15)、ヘプタデシル基( Particularly preferred are tridecyl group (C13), pentadecyl group (C15), heptadecyl group (
C17)、ヘンエイコシル基(C21)である。 C17), heneicosyl group (C21).
[0028] 例えば、 R1が炭素数 13のトリデシル基、 R2が炭素数 14のテトラデシル基であるとき は、本発明の温調剤は、それぞれ式 (6)又は式 (7)に示すユニットを有する。 [0028] For example, when R 1 is a tridecyl group having 13 carbon atoms and R 2 is a tetradecyl group having 14 carbon atoms, the temperature control agent of the present invention has units represented by formula (6) or formula (7), respectively. Have.
[0029] [化 6] [0029] [Chemical 6]
Figure imgf000011_0001
Figure imgf000011_0001
[0030] 上記のような構成において、所定の温度で、主鎖は結晶化しないが、長い側鎖同 士が互いに結晶化しうる。 [0030] In the above configuration, at a predetermined temperature, the main chain does not crystallize, but long side chains can crystallize with each other.
[0031] ポリグリセリン系温調剤の例としては、デカグリセリン ラウリン酸 (C12)反応物、デ 力グリセリン—ミリスチン酸 (C14)反応物、デカグリセリン—ノルミチン酸 (C16)反応 物、デカグリセリン—ステアリン酸 (C18)反応物、デカグリセリン—ベヘン酸 (C22)反 応物等が挙げられる。このうち、好ましいのは、デカグリセリン ミリスチン酸反応物、 デカグリセリン パルミチン酸反応物、デカグリセリンーステアリン酸反応物、デカダリ セリン—ベヘン酸反応物である。  [0031] Examples of polyglycerin-based temperature control agents include decaglycerin lauric acid (C12) reaction product, strong glycerin-myristic acid (C14) reaction product, decaglycerin-normitic acid (C16) reaction product, decaglycerin-stearin Acid (C18) reaction product, decaglycerin-behenic acid (C22) reaction product, and the like. Among these, preferred are a decaglycerin myristic acid reaction product, a decaglycerin palmitic acid reaction product, a decaglycerin-stearic acid reaction product, and a decadalylserine-behenic acid reaction product.
[0032] また、ポリアルキレングリコール系温調剤の例としては、ドデシレンォキシド、テトラデ シレンォキシド、へキサデシレンォキシド、ォクタデシレンォキシド等のアルキレンォ キシドの重合物等が挙げられる。このうち、好ましいのは、へキサデシレンォキシド、 ォクタデシレンォキシド等の重合物である。 [0032] Examples of the polyalkylene glycol-based temperature adjusting agent include polymers of alkylene oxides such as dodecylene oxide, tetradecylene oxide, hexadecylene oxide, and octadecylene oxide. Of these, hexadecylene oxide is preferable, Polymers such as octadecylenoxide.
[0033] 温調剤 (C)は、その特性を損なわない範囲において、側鎖の官能基を変えることに より、所望の機能を発揮させることもできる。  [0033] The temperature adjusting agent (C) can also exhibit a desired function by changing the functional group of the side chain as long as its properties are not impaired.
例えば、温調剤 (C)は、側鎖として長鎖炭化水素基を有するため疎水性が高いが For example, although the temperature adjusting agent (C) has a long chain hydrocarbon group as a side chain, it is highly hydrophobic.
、アルコール等の親水性官能基を含ませることにより、親水性を高めることができる。 その結果、温調剤を基材等に塗布するとき、基材等に対する密着性が向上する。 By including a hydrophilic functional group such as alcohol, hydrophilicity can be enhanced. As a result, when the temperature adjusting agent is applied to a substrate or the like, adhesion to the substrate or the like is improved.
[0034] 温調剤 (C)は、 TG— DTA測定装置で測定した空気中での 5%重量減少温度が、 通常、好ましくは 200°C以上、より好ましくは 240°C以上である。 200°C未満では、加 熱加工処理時に蒸発する場合がある。尚、 5%重量減少温度とは、温調剤 (C)をカロ 熱して、全体の 5重量%が減少したときの温度である。 [0034] The temperature adjusting agent (C) usually has a 5% weight loss temperature in air measured by a TG-DTA measuring device, preferably 200 ° C or higher, more preferably 240 ° C or higher. Below 200 ° C, it may evaporate during the heating process. The 5% weight loss temperature is the temperature at which 5% by weight of the total temperature is reduced by heating the temperature adjustment agent (C).
[0035] 温調剤 (C)の製造方法は、特に限定されな!ヽ。例えば、ポリグリセリン系温調剤は、 ポリグリセリン (ポリエーテル主鎖)に存在する水酸基と、直鎖アルキル基を有する力 ルボン酸 (側鎖)のカルボキシル基とを、公知のエステル化反応を用いて反応させる こと〖こより製造できる。 [0035] The method for producing the temperature adjusting agent (C) is not particularly limited. For example, a polyglycerin-based temperature control agent uses a known esterification reaction between a hydroxyl group present in polyglycerin (polyether main chain) and a carboxyl group of rubonic acid (side chain) having a linear alkyl group. It can be manufactured from Kako.
一方、ポリアルキレングリコール系温調剤は、アルキレンォキシドを開環重合するこ とにより製造できる。  On the other hand, the polyalkylene glycol temperature adjusting agent can be produced by ring-opening polymerization of an alkylene oxide.
[0036] 上述した温調剤 (A)乃至 (C)は、所定の温度範囲で、側鎖が大きな潜熱を伴って 可逆的に結晶化、非結晶化の相転移をするが、主鎖は力かる相転移はしない。この ため、ワックス等と比較してブリードアウトを起こしにくいことから、マイクロカプセルを 用いる必要はない。  [0036] In the temperature adjusting agents (A) to (C) described above, the side chain undergoes reversible crystallization and non-crystallization phase transition with a large latent heat in a predetermined temperature range, but the main chain has a force. There is no such phase transition. For this reason, it is difficult to cause bleed-out compared to wax or the like, so there is no need to use microcapsules.
[0037] 本発明で使用する温調剤の融点は、― 10〜: LOO°Cである。この範囲の下限は、好 ましくは 0°C、より好ましくは 10°Cである。この範囲の上限は、好ましくは 80°C、より好 ましくは 50°C、特に好ましくは 40°Cである。  [0037] The melting point of the temperature adjusting agent used in the present invention is -10 to: LOO ° C. The lower limit of this range is preferably 0 ° C, more preferably 10 ° C. The upper limit of this range is preferably 80 ° C, more preferably 50 ° C, particularly preferably 40 ° C.
融点が 100°Cを超えると、これらの温調剤は、日常の使用雰囲気下において、常に 固体状態で存在するため、昇温時に結晶化熱を吸収する性質を利用することができ な!、ため、温調剤としての機能を十分に果たし難くなる。  When the melting point exceeds 100 ° C, these temperature adjusting agents always exist in a solid state under the daily use atmosphere, and therefore, the property of absorbing the heat of crystallization at the time of temperature rise cannot be used! , It will be difficult to fully function as a temperature regulator.
また、融点が 10°C未満では、 日常の使用雰囲気下において、これらの温調剤は 、常に液体状態で存在するため、凝固時に熱を放出する性質を利用できないため、 温調剤としての機能を十分に果たし難くなる。 In addition, if the melting point is less than 10 ° C, these temperature adjusting agents always exist in a liquid state under the daily use atmosphere, and therefore, the property of releasing heat during solidification cannot be used. It becomes difficult to sufficiently function as a temperature control agent.
[0038] 温調剤の融点と凝固点の差は、通常、好ましくは 15°C以内である。 15°Cより大きく なると、吸熱、放熱する間隔が広いため、温調剤として所望の狭い温度範囲で機能 を発揮し難くなる。  [0038] The difference between the melting point and the freezing point of the temperature adjusting agent is usually preferably within 15 ° C. When the temperature is higher than 15 ° C, the interval between heat absorption and heat dissipation is wide, so that it becomes difficult to function as a temperature adjusting agent in a desired narrow temperature range.
[0039] 温調剤の潜熱は、上記の融点の範囲にぉ 、て、 30jZg以上、好ましくは 50jZg以 上、より好ましくは 70jZg以上である。潜熱が 30jZg未満では、温調剤としての効果 が不十分となる恐れがある。  [0039] The latent heat of the temperature adjusting agent is 30 jZg or more, preferably 50 jZg or more, more preferably 70 jZg or more, within the above melting point range. If the latent heat is less than 30jZg, the effect as a temperature control agent may be insufficient.
[0040] 尚、本願において融点、凝固点及び潜熱とは、それぞれ示差走査熱量測定 (DSC )で測定し、融点は、融解ピークの頂点の温度を、凝固点は、結晶化ピークの頂点の 温度を意味する CFIS K 7121)。ここで融点は、一度融解ピーク終了時より高い温 度まで加熱し、所定温度まで冷却した後、再度加熱した時に得られる融解ピークの 頂点の温度である。  [0040] In the present application, the melting point, freezing point, and latent heat are measured by differential scanning calorimetry (DSC), respectively, the melting point means the temperature at the top of the melting peak, and the freezing point means the temperature at the top of the crystallization peak. CFIS K 7121). Here, the melting point is the temperature at the top of the melting peak obtained when the temperature is once heated to a temperature higher than the end of the melting peak, cooled to a predetermined temperature, and then heated again.
[0041] 本発明の蓄熱性組成物を構成する熱可塑性榭脂は、融点が 100°C以上のものが 好ましい。具体的には、ポリウレタン榭脂、アクリル榭脂、ポリアミド榭脂、ポリ塩ィ匕ビ- ル榭脂 (PVC榭脂)、ポリプロピレン榭脂、ポリエチレン榭脂、ポリスチレン榭脂、ポリ エステル榭脂(例えば、 PET)、ポリカーボネート榭脂、エチレン ビュルアルコール 共重合榭脂、熱可塑性エラストマー榭脂、ポリフエ-レンサルファイド榭脂、 ABS榭 脂等が挙げられる。このうち、好ましくはポリプロピレン榭脂、ポリエチレン榭脂、ポリエ ステル樹脂、ポリスチレン榭脂、ポリアミド榭脂、 ABS榭脂、ポリカーボネート榭脂及 びエチレン ビニルアルコール共重合榭脂である。これらは、一種単独で用いてもよ ぐまた、二種以上を組み合わせて用いてもよい。  [0041] The thermoplastic resin constituting the heat storage composition of the present invention preferably has a melting point of 100 ° C or higher. Specifically, polyurethane resin, acrylic resin, polyamide resin, polysalt resin resin (PVC resin), polypropylene resin, polyethylene resin, polystyrene resin, polyester resin (for example, , PET), polycarbonate resin, ethylene butyl alcohol copolymer resin, thermoplastic elastomer resin, polyphenylene sulfide resin, ABS resin and the like. Of these, polypropylene resin, polyethylene resin, polyester resin, polystyrene resin, polyamide resin, ABS resin, polycarbonate resin and ethylene vinyl alcohol copolymer resin are preferable. These may be used alone or in combination of two or more.
尚、熱可塑性榭脂は湿式紡糸特有の榭脂 (例えばレーヨン)でもよ 、。  The thermoplastic resin may be a resin specific to wet spinning (for example, rayon).
[0042] 本発明の蓄熱性組成物では、温調剤が熱可塑性榭脂中に高度に分散して ヽる。 [0042] In the heat storage composition of the present invention, the temperature adjusting agent is highly dispersed in the thermoplastic resin.
具体的には、温調剤の平均粒径が 13 m未満に分散していることが好ましい。本発 明では、温調剤の重量平均分子量が比較的小さいものを使用することによって、温 調剤を熱可塑性榭脂中に高度に分散できる。これにより、紡糸の際の糸切れを大幅 に低減できる。温調剤の平均粒径が 13 m以上である場合、紡糸時に糸切れを起 こす恐れがある。 ここで、温調剤の平均粒径とは、紡糸前の組成物(例えば、ペレット)を透過型電子 顕微鏡で組成物断面を観察し、分散している複数の温調剤の長径を無作為に選択 して測定し平均したものを意味する。尚、温調剤が、さらに高度に分散し相溶ィ匕して V、る場合は、平均粒径は測定できな 、場合がある。 Specifically, it is preferable that the average particle diameter of the temperature adjusting agent is dispersed to less than 13 m. In the present invention, the temperature adjusting agent can be highly dispersed in the thermoplastic resin by using a temperature adjusting agent having a relatively low weight average molecular weight. As a result, yarn breakage during spinning can be greatly reduced. If the average particle size of the temperature control agent is 13 m or more, thread breakage may occur during spinning. Here, the average particle diameter of the temperature adjusting agent is a random selection of the long diameters of a plurality of dispersed temperature adjusting agents by observing the composition cross section with a transmission electron microscope of the composition (for example, pellets) before spinning. Measured and averaged. In addition, when the temperature adjustment agent is further highly dispersed and compatible with each other, the average particle size may not be measured.
[0043] 本発明の蓄熱性組成物中で分散している温調剤の平均粒径は、より好ましくは 10 μ m以下、より好ましくは 5 μ m以下、特に好ましくは 0. 5 μ m以下である。  [0043] The average particle diameter of the temperature adjusting agent dispersed in the heat storage composition of the present invention is more preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 0.5 μm or less. is there.
温調剤の平均粒径は、温調剤の分子量や熱可塑性榭脂の分子量等を制御するこ とにより調整することができる。  The average particle size of the temperature adjusting agent can be adjusted by controlling the molecular weight of the temperature adjusting agent, the molecular weight of the thermoplastic resin, and the like.
[0044] 本発明の蓄熱性組成物における、温調剤及び熱可塑性榭脂の割合は、好ましくは 温調剤 Z熱可塑性榭脂 (質量%) : 5Z95〜70Z30である。温調剤が 5質量%未満 では、その温度調節機能が十分に発揮されない恐れがあり、 70質量%を超える場合 、充分な分散が得られない恐れがある。より好ましくは 5〜50質量%である。  [0044] The ratio of the temperature adjusting agent and the thermoplastic resin in the heat storage composition of the present invention is preferably the temperature adjusting agent Z thermoplastic resin (mass%): 5Z95 to 70Z30. If the temperature adjusting agent is less than 5% by mass, the temperature control function may not be sufficiently exerted, and if it exceeds 70% by mass, sufficient dispersion may not be obtained. More preferably, it is 5-50 mass%.
[0045] 本発明の蓄熱性組成物には、相溶性改良材として、エポキシ基含有アクリル系ポリ マーや、ァリルエーテルコポリマー等を配合することができる。これにより、熱可塑性 榭脂と温調剤の相溶性が向上し、温調剤の配合量を増加することが可能となる。 また、本発明の蓄熱性組成物には、その特性を損なわない範囲で、種々の添加剤 、例えば、酸化防止剤、耐光剤、無機充填剤 (炭酸カルシウム、タルク等)、発泡剤( 化学発泡材等)、老化防止剤、抗菌剤、防カビ剤、着色剤、顔料、帯電防止剤、難燃 剤、加工助剤、安定剤、可塑剤、架橋剤、反応促進剤等を配合することができる。  [0045] The heat storage composition of the present invention may contain an epoxy group-containing acrylic polymer, a aryl ether copolymer, or the like as a compatibility improver. As a result, the compatibility between the thermoplastic resin and the temperature adjusting agent is improved, and the blending amount of the temperature adjusting agent can be increased. Further, the heat storage composition of the present invention includes various additives such as an antioxidant, a light-resistant agent, an inorganic filler (calcium carbonate, talc, etc.), a foaming agent (chemical foaming) as long as the characteristics are not impaired. Materials), anti-aging agents, antibacterial agents, antifungal agents, colorants, pigments, antistatic agents, flame retardants, processing aids, stabilizers, plasticizers, crosslinking agents, reaction accelerators, etc. it can.
[0046] 本発明の蓄熱性組成物の潜熱は、通常、― 10〜: LOO°Cにおいて、蓄熱機能上、 好ましくは UZg以上であり、より好ましくは 5jZg以上である。潜熱が UZg未満では 、蓄熱の効果が十分でない場合がある。また、好ましくは— 10〜80°C、より好ましく は 0〜50°Cにおいて、好ましくは UZg以上、より好ましくは 5jZg以上である。この特 性により、外気温度等に対して、温度調節機能が十分に発揮できる。  [0046] The latent heat of the heat storage composition of the present invention is usually from -10 to: LOO ° C, preferably from UZg or more, more preferably from 5 jZg or more, in terms of heat storage function. If the latent heat is less than UZg, the heat storage effect may not be sufficient. Further, it is preferably −10 to 80 ° C., more preferably 0 to 50 ° C., preferably UZg or more, more preferably 5 jZg or more. Due to this characteristic, the temperature control function can be sufficiently exerted with respect to the outside air temperature and the like.
[0047] 本発明の蓄熱性組成物は、温調剤と熱可塑性榭脂とを、公知の方法、例えば、混 練押出機等で混練することより製造できる。  [0047] The heat storage composition of the present invention can be produced by kneading the temperature adjusting agent and the thermoplastic resin with a known method, for example, a kneading extruder.
また、本発明の蓄熱性組成物を、公知のエタストルーダ型複合紡糸機等により溶融 紡糸することで、蓄熱性繊維を製造できる。本発明の蓄熱性繊維は、好ましくは芯鞘 構造である。 Moreover, a heat storage fiber can be manufactured by melt-spinning the heat storage composition of this invention with a well-known etastruder type compound spinning machine. The heat storage fiber of the present invention is preferably a core sheath Structure.
芯鞘構造である場合、鞘部を構成する榭脂としては、ポリアミド榭脂、ポリエステル 榭脂、ポリウレタン榭脂、エチレン酢酸ビニル共重合体、ポリ塩ィ匕ビユリデン榭脂、ポ リ塩化ビュル榭脂、アクリル榭脂、ポリエチレン榭脂、ポリプロピレン榭脂等が使用で きる。  In the case of the core-sheath structure, the resin constituting the sheath part is polyamide resin, polyester resin, polyurethane resin, ethylene vinyl acetate copolymer, polysalt vinylidene resin, polychlorinated resin resin. Acrylic resin, polyethylene resin, polypropylene resin, etc. can be used.
[0048] 紡糸の際、通常、糸径 (芯鞘構造では芯部の径)に対し温調剤の粒径が 1Z3以下 であることが好ましぐ 1Z5以下であるとより好ましい。  [0048] Usually, when spinning, the particle diameter of the temperature adjusting agent is preferably 1Z3 or less, more preferably 1Z5 or less, with respect to the yarn diameter (in the core-sheath structure, the diameter of the core portion).
紡糸温度は、使用する繊維原料により異なるが、通常 180〜350°C程度である。  The spinning temperature varies depending on the fiber raw material used, but is usually about 180 to 350 ° C.
[0049] 尚、上記の蓄熱性繊維を製造するとき、その特性を損なわな!/、範囲にぉ 、て、適 宜、吸湿剤、湿潤剤、着色剤、安定剤、難燃剤、静電剤、老化防止剤、酸化防止剤 、抗菌剤、防カビ剤、顔料、帯電防止剤、難燃剤、加工助剤、可塑剤、架橋剤、反応 促進剤、発泡剤等を添加できる。 [0049] It should be noted that when the above heat-storable fibers are produced, the characteristics thereof are not impaired! /, As long as the range is appropriate, a hygroscopic agent, a wetting agent, a colorant, a stabilizer, a flame retardant, an electrostatic agent Antiaging agents, antioxidants, antibacterial agents, antifungal agents, pigments, antistatic agents, flame retardants, processing aids, plasticizers, crosslinking agents, reaction accelerators, foaming agents, and the like can be added.
また、蓄熱性繊維の断面形状は、円形に限られず、三角形や四角形等の異形断面 でもよい。  Further, the cross-sectional shape of the heat storage fiber is not limited to a circular shape, and may be an irregular cross-section such as a triangle or a quadrangle.
[0050] 本発明では、蓄熱性繊維を製造するときに使用する温調剤が、ワックスやモノマー と比べて、比較的高分子量なので、蒸発、漏洩の問題がない。また、オリゴマー又は ポリマーなので、練り込み、繊維化が可能であり、連続紡糸、織り込み等の加工が容 易である。即ち、本発明の蓄熱性繊維は、紡糸性に優れ、製造が容易である。  [0050] In the present invention, the temperature adjusting agent used for producing the heat storage fiber has a relatively high molecular weight as compared with the wax and the monomer, so there is no problem of evaporation or leakage. In addition, since it is an oligomer or polymer, it can be kneaded and fiberized, and can be easily processed by continuous spinning and weaving. That is, the heat storage fiber of the present invention is excellent in spinnability and easy to manufacture.
[0051] 蓄熱性繊維の芯部は、上記の温調剤を含んで!/、るので、蓄熱性繊維は、温調剤の 融点において、潜熱を発生する。即ち、— 10〜: LOO°Cにおいて、好ましくは lj/g以 上、より好ましくは 5jZg以上の潜熱を発生する。潜熱が UZg未満では、蓄熱の効 果が十分でない場合がある。また、好ましくは— 10〜80°C、より好ましくは 0〜50°C において、好ましくは UZg以上、より好ましくは 5jZg以上の潜熱を発生する。 この特性により、外気温度等に対して、温度調節機能が十分に発揮できる。  [0051] Since the core part of the heat storage fiber includes the above-mentioned temperature adjusting agent! /, The heat storage fiber generates latent heat at the melting point of the temperature adjusting agent. That is, −10˜: At LOO ° C., latent heat of preferably lj / g or more, more preferably 5jZg or more is generated. If the latent heat is less than UZg, the heat storage effect may not be sufficient. Further, it preferably generates a latent heat of −10 to 80 ° C., more preferably 0 to 50 ° C., preferably UZg or more, more preferably 5 jZg or more. With this characteristic, the temperature adjustment function can be sufficiently exerted with respect to the outside air temperature or the like.
また、芯部を上記の温調剤又は熱可塑性榭脂とすることにより、温調剤を繊維中に 均一に分散させることができ、紡糸径ゃ引張り強度のばらつき等を抑制することがで きる。また、鞘部を上記の熱可塑性榭脂とすることにより、繊維の表面を従来の合成 繊維と同様にでき、織'編物への加工や染色等も従来と同様の方法で行うことができ 、取扱いが容易となる。 Further, by using the above-mentioned temperature adjusting agent or thermoplastic resin as the core, the temperature adjusting agent can be uniformly dispersed in the fiber, and the variation in spinning diameter and tensile strength can be suppressed. In addition, by using the above-mentioned thermoplastic resin as the sheath, the surface of the fiber can be made the same as a conventional synthetic fiber, and processing or dyeing into a woven or knitted fabric can be performed in the same manner as before. , Easy to handle.
[0052] 本発明の蓄熱性組成物を、公知の方法、例えば、シート又はフィルム用の金型を装 着した押出機により成形することにより、シート又はフィルムを製造することができる。 本発明の蓄熱性組成物は、上述したように温調剤が高度に分散しているため、温調 剤の分散不良による曇り(白濁)が生じにくい。  [0052] A sheet or film can be produced by molding the heat storage composition of the present invention by a known method, for example, an extruder equipped with a sheet or film mold. In the heat storage composition of the present invention, since the temperature adjusting agent is highly dispersed as described above, fogging (white turbidity) due to poor dispersion of the temperature adjusting agent is unlikely to occur.
[実施例]  [Example]
[0053] 以下、本発明を実施例によってさらに具体的に説明する。  [0053] Hereinafter, the present invention will be described more specifically with reference to Examples.
実施例 1  Example 1
(1)蓄熱性組成物の作製  (1) Preparation of heat storage composition
温調剤として 1一へキサデセン · 1ーォクタデセン共重合体 [ (C Η ) - (C Η )  1-Hexadecene / 1-octadecene copolymer [(C Η)-(C Η)
16 32 m 18 36 n 16 32 m 18 36 n
] (Mw=8500)を 30質量0 /0、熱可塑性榭脂として、ポリプロピレン (プライムポリマー 社製、 Y2005GP)を 70質量%、押出造粒機 (池貝社製)に投入し、溶融混練してぺ レツト状の組成物を得た。このときの造粒温度は 280°Cとした。 ] (Mw = 8500) 30 wt 0/0, as the thermoplastic榭脂, polypropylene (Prime Polymer Co., Y2005GP) 70 wt%, was charged into an extrusion granulator (manufactured by Ikegai, Ltd.), and melt-kneading A pellet-like composition was obtained. The granulation temperature at this time was 280 ° C.
この組成物にお ヽて、温調剤の分散状態を透過型電子顕微鏡 (TEM)で観察した ところ、温調剤の平均粒径は 0. 3 mであった。  In this composition, when the dispersion state of the temperature adjusting agent was observed with a transmission electron microscope (TEM), the average particle size of the temperature adjusting agent was 0.3 m.
[0054] (2)紡糸性評価 [0054] (2) Spinnability evaluation
混練押出機 (KCK— 80、ケイシーケィエンジニアリング社製)にて、上記(1)で作 製した組成物を溶融し、金型からストランド状に押出した。 240°Cにて押出し、高さ 2 m力も床面にストランドを垂れ流した。このストランドに糸切れが発生する力否かを観 察した。評価は以下の基準で行なった。結果を表 1に示す。尚、糸径は硬化したスト ランドの直径を意味し、表 1に示すように 7 μ mから 1000 μ mまで変化させて評価し た。糸径は押出機の吐出量を調整 (スクリュー回転数等)することにより行なった。  The composition produced in (1) above was melted and extruded into a strand form from a mold using a kneading extruder (KCK-80, manufactured by Casey Engineering Co., Ltd.). Extrusion was performed at 240 ° C, and a strand of 2 m in height was allowed to flow down the floor. We observed whether or not this strand was broken. Evaluation was performed according to the following criteria. The results are shown in Table 1. The yarn diameter means the diameter of the cured strand. As shown in Table 1, the yarn diameter was changed from 7 μm to 1000 μm for evaluation. The yarn diameter was adjusted by adjusting the discharge rate of the extruder (screw speed, etc.).
〇:1分間に断糸がない場合  〇: When there is no breakage in 1 minute
△: 1分間に 10回未満の断糸があった場合  △: When there are less than 10 breaks per minute
X: 1分間に 10回以上の断糸があった場合  X: When there are 10 or more breaks per minute
[0055] (3)シートの評価 [0055] (3) Evaluation of sheet
多層押出機(2種 3層成形機)(田辺プラスチックス機械社製)により、厚さ 500 m のシートを成形した。芯部榭脂として上記(1)で作製した組成物を使用し、表層部の 榭脂としてポリプロピレン (プライムポリマー社製、 E— 203GV)を使用した。成形温 度を 200°Cとし、芯部の厚さは 300 μ m、表層部の厚さは、それぞれ 150 μ mとした。 このシートについて、その表面を目視で観察し以下の基準で評価した。結果を表 1 に示す。 A 500 m thick sheet was formed using a multi-layer extruder (2 types, 3 layers molding machine) (manufactured by Tanabe Plastics Machinery Co., Ltd.). Using the composition prepared in (1) above as the core oil, Polypropylene (manufactured by Prime Polymer Co., Ltd., E-203GV) was used as the resin. The molding temperature was 200 ° C, the thickness of the core was 300 µm, and the thickness of the surface layer was 150 µm. About this sheet | seat, the surface was observed visually and the following references | standards evaluated. The results are shown in Table 1.
〇: 10cm角のシートに曇がなく透明である場合  ◯: When the 10cm square sheet is clear and not cloudy
△ : 10cm角のシートに曇が 5箇所以内ある場合  △: When there is less than 5 fog on a 10cm square sheet
X: 10cm角のシートに曇が 6箇所以上ある場合  X: When there are more than 6 fogs on a 10cm square sheet
[0056] 実施例 2— 6 比較例 1 [0056] Examples 2-6 Comparative Example 1
温調剤の分子量 Mwを表 1に示すように変えた他は、実施例 1と同様にして蓄熱性 組成物を作製し、評価した。結果を表 1に示す。尚、各例で使用した温調剤の物性、 及びペレット状組成物中での平均粒径を表 2に示す。  A heat storage composition was prepared and evaluated in the same manner as in Example 1 except that the molecular weight Mw of the temperature adjusting agent was changed as shown in Table 1. The results are shown in Table 1. Table 2 shows the physical properties of the temperature control agent used in each example and the average particle size in the pellet-like composition.
[0057] [表 1] [0057] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0058] [表 2] 分子量 (Mw) 融点 C) 潜熱 (J/g) 平均粒径 (歸) 実施例 1 8500 27〜29 70 0. 3 実施例 2 10000 27〜29 70 0. 5 実施例 3 15000 27-29 70 0. 75 実施例 4 20000 27-29 70 1. 04 実施例 5 40000 27〜29 70 5. 2 実施例 6 65000 27〜29 70 6. 1 比較例 1 100000 27〜29 70 8. 2 [0058] [Table 2] Molecular weight (Mw) Melting point C) Latent heat (J / g) Average particle size (歸) Example 1 8500 27 to 29 70 0. 3 Example 2 10000 27 to 29 70 0.5 Example 3 15000 27-29 70 0 75 Example 4 20000 27-29 70 1.04 Example 5 40000 27-29 70 5. 2 Example 6 65000 27-29 70 6. 1 Comparative Example 1 100000 27-29 70 8. 2
[0059] 尚、温調剤の評価は下記の方法で行った。 [0059] Evaluation of the temperature adjusting agent was performed by the following method.
(1)融点、潜熱  (1) Melting point, latent heat
示差走査熱量計 (DSC— 7:パーキンエルマ一ジャパン社製)にて、試料量: 3mg、 昇温、降温速度: 10分 Z分で測定した。  Using a differential scanning calorimeter (DSC-7: manufactured by PerkinElmer Japan Co., Ltd.), the sample amount was 3 mg, the temperature was raised and the temperature was lowered at a rate of 10 minutes and Z minutes.
(2)分子量 (Mw)  (2) Molecular weight (Mw)
GPC測定装置(日本分光社製)にて測定した。  It measured with the GPC measuring apparatus (made by JASCO Corporation).
'カラム: TOSO GMHHR— H(S)HT  'Column: TOSO GMHHR— H (S) HT
'検出器:液体クロマトグラム用 RI検出器 WATERS 150C  'Detector: RI detector for liquid chromatogram WATERS 150C
'測定温度: 145°C  'Measurement temperature: 145 ° C
'溶媒: 1, 2, 4 トリクロルベンゼン  'Solvent: 1, 2, 4 Trichlorobenzene
•試料濃度: 2.2mg/ml  • Sample concentration: 2.2mg / ml
重量平均分子量 (Mw)は、標準ポリスチレンの検量線から求めたポリスチレン換算 値を用いた。  As the weight average molecular weight (Mw), a polystyrene conversion value obtained from a standard polystyrene calibration curve was used.
(3)温調剤の平均粒径  (3) Average particle size of temperature control agent
組成物のペレットの断面を透過型電子顕微鏡 (TEM)で観察して評価した。  The cross section of the pellet of the composition was evaluated by observation with a transmission electron microscope (TEM).
[0060] [製造例] [0060] [Production Example]
以下、上記実施例及び比較例で使用したポリ高級 OCォレフィン温調剤(1一へキサ デセン' 1一才クタデセン共重合体)の製造方法を示す。  Hereinafter, the production method of the poly higher OC olefin fin temperature adjusting agent (1 hexadecene 1-year-old kutadecene copolymer) used in the above Examples and Comparative Examples will be shown.
[0061] 合成例 1「(1, 2,—ジメチルシリレン)(2, 1,—ジメチルシリレン)ビス(3 トリメチルシ リルメチルインデュル)ジルコニウムクロライド (以下、触媒 A)の製造」 Synthesis Example 1 “(1,2, -Dimethylsilylene) (2,1, -dimethylsilylene) bis (3 trimethylsilane” Production of (rulymethylindul) zirconium chloride (hereinafter referred to as catalyst A) "
窒素気流下、 200ミリリットルのシュレンク瓶に(1, 2,—ジメチルシリレン) (2, 1,— ジメチルシリレン)ビス(インデン) 2. 5g (7. 2ミリモル)とエーテル 100ミリリットルを加 えた。—78°Cに冷却し、 n—ブチルリチウム(n—BuLi)のへキサン溶液(1. 60モル Zリットル)を 9. 0ミリリットル(14. 8ミリモル)カ卩えた後、室温で 12時間撹拌した。 溶媒を留去し、得られた固体をへキサン 20ミリリットルで洗浄し、減圧乾燥すること により、 (1, 2,—ジメチルシリレン) (2, 1,—ジメチルシリレン)ビス (インデン)のリチウ ム塩を白色固体として定量的に得た。  Under a nitrogen stream, 2.5 g (7.2 mmol) of (1, 2, -dimethylsilylene) (2, 1, -dimethylsilylene) bis (indene) and 100 ml of ether were added to a 200 ml Schlenk bottle. After cooling to -78 ° C and adding 9.0 ml (14.8 mmol) of n-butyllithium (n-BuLi) in hexane (1.60 mol Z liter), stirring at room temperature for 12 hours did. The solvent was distilled off, and the resulting solid was washed with 20 ml of hexane and dried under reduced pressure to obtain lithium (1,2, -dimethylsilylene) (2,1, -dimethylsilylene) bis (indene). The salt was obtained quantitatively as a white solid.
得られたリチウム塩 6. 97ミリモルを、シュレンク瓶中で THF (テトラヒドロフラン) 50ミ リリットルに溶解し、室温でョードメチルトリメチルシラン 2. 1ミリリットル(14. 2ミリモル) をゆっくりと滴下し、 12時間撹拌した。  6. 97 mmol of the resulting lithium salt is dissolved in 50 ml of THF (tetrahydrofuran) in a Schlenk bottle, and 2.1 ml (14.2 mmol) of odomethyltrimethylsilane is slowly added dropwise at room temperature, Stir for 12 hours.
溶媒を留去し、エーテル 50ミリリットルをカ卩えて、飽和塩化アンモ-ゥム水溶液で洗 浄した。分液した後、有機相を乾燥させ溶媒を留去することにより、 (1, 2'—ジメチル シリレン)(2, 1,一ジメチルシリレン)ビス(3—トリメチルシリルメチルインデン) 3. 04g (5. 9ミリモル)を得た (収率 84%)。  The solvent was distilled off, and 50 ml of ether was added and washed with a saturated aqueous ammonium chloride solution. After liquid separation, the organic phase was dried and the solvent was distilled off to obtain (1, 2'-dimethylsilylene) (2,1, monodimethylsilylene) bis (3-trimethylsilylmethylindene) 3.04 g (5. 9 mmol) was obtained (84% yield).
次に、窒素気流下において、上記で得られた(1, 2'—ジメチルシリレン)(2, 1 '— ジメチルシリレン)ビス(3—トリメチルシリルメチルインデン) 3. 04g (5. 9ミリモル)とェ 一テル 50ミリリットルをシュレンク瓶にカ卩えた。— 78°Cに冷却し、 n—ブチルリチウム( n— BuLi)のへキサン溶液(1. 60モル Zリットル)を 7. 4ミリリットル(11. 8ミリモル) 加えた後、室温で 12時間撹拌した。  Next, in a nitrogen stream, (1, 2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindene) 3.04 g (5.9 mmol) obtained above was obtained. I put 50 ml of one ter in a Schlenk bottle. — Cool to 78 ° C, add 7.4 ml (11.8 mmol) of n-butyllithium (n-BuLi) in hexane (1.68 mol Z liter), then stir at room temperature for 12 hours .
溶媒を留去し、得られた固体をへキサン 40ミリリットルで洗浄することにより、リチウ ム塩をエーテル付カ卩体として 3. 06g得た。この1 H— NMRを求めたところ、以下の結 果が得られた。The solvent was distilled off, and the obtained solid was washed with 40 ml of hexane to obtain 3.06 g of a lithium salt as an ether-attached body. When the 1 H-NMR was determined, the following results were obtained.
— NMR(90MHz、 THF— d8) : δ 0. 04 (s, — SiMe , 18H) , 0. 48 (s, — M  — NMR (90 MHz, THF— d8): δ 0.04 (s, — SiMe, 18H), 0.48 (s, — M
3  Three
e Si- , 12H) , 1. 10 (t, — CH , 6H) , 2. 59 (s, — CH - , 4H) , 3. 38 (q, — Ce Si-, 12H), 1. 10 (t, — CH, 6H), 2. 59 (s, — CH-, 4H), 3. 38 (q, — C
2 3 2 2 3 2
H - , 4H) , 6. 2- 7. 7 (m, Ar— H, 8H)  H-, 4H), 6. 2- 7. 7 (m, Ar— H, 8H)
2  2
窒素気流下で、上記で得られたリチウム塩 3. 06gをトルエン 50ミリリットルに懸濁さ せた。これを— 78°Cに冷却し、ここに、別のシュレンク瓶中でトルエン 20ミリリットルに 懸濁させ、予め— 78°Cに冷却した四塩ィ匕ジルコニウム 1. 2g (5. 1ミリモル)を滴下し た。滴下終了後、室温で 6時間撹拌した。 Under a nitrogen stream, 3.06 g of the lithium salt obtained above was suspended in 50 ml of toluene. Cool this down to -78 ° C, and then add 20 ml of toluene in another Schlenk bottle Suspension and 1.2 g (5.1 mmol) of tetrachloride-zirconium previously cooled to −78 ° C. were added dropwise. After completion of the dropwise addition, the mixture was stirred at room temperature for 6 hours.
反応溶液の溶媒を留去した後、残渣をジクロロメタンにより再結晶化させることにより 、 (1, 2'—ジメチルシリレン)(2, 1 '—ジメチルシリレン)ビス(3—トリメチルシリルメチ ルインデュル)ジルコニウムクロライド (触媒 A)の黄色微結晶 0. 9g (l. 33ミリモル)を 得た(収率 26%)。これの1 H— NMRを求めたところ、以下の結果が得られた。After the solvent of the reaction solution was distilled off, the residue was recrystallized with dichloromethane to obtain (1, 2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-trimethylsilylmethylindul) zirconium chloride ( 0.9 g (l. 33 mmol) of yellow fine crystals of catalyst A) were obtained (yield 26%). When 1 H-NMR was obtained, the following results were obtained.
— NMR(90MHz、 CDC1 ): δ 0. 0 (s, — SiMe , 18H) , 1. 02, 1. 12 (s, - — NMR (90MHz, CDC1): δ 0. 0 (s, — SiMe, 18H), 1.02, 1.12 (s,-
3 3 3 3
Me Si- , 12H) , 2. 51 (dd, — CH - , 4H) , 7. 1— 7. 6 (m, Ar— H, 8H) Me Si-, 12H), 2. 51 (dd, — CH-, 4H), 7. 1— 7. 6 (m, Ar— H, 8H)
2 2 twenty two
[0063] 製造例 1  [0063] Production Example 1
加熱乾燥した 1リットルオートクレーブに、 1—へキサデセン(C16) 180ミリリットル、 1一才クタデセン(C18) 20ミジジッ卜ノレ、卜ノレェン 200ミジッ卜ノレをカロ; t、 を 120 °Cにした後、触媒 Aを 2マイクロモル、ジメチルァ-リュウムテトラキスペンタフルォロ ボレートを 4マイクロモルカ卩え、さらに水素を 0. 8MPa導入し、 2時間重合した。重合 反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理すること により、高級 α—ォレフィン重合体を 260g得た。得られた重合体の Mwは 8500であ つた o  1-hexadecene (C16) 180ml, 1-year-old Kutadecene (C18) 20midgenore, 200-200g 2 micromoles of A, 4 micromoles of dimethyl-arium tetrakispentafluoroborate, 0.8 MPa of hydrogen were further introduced, and polymerization was performed for 2 hours. After the completion of the polymerization reaction, the reaction product was precipitated with acetone and then dried under heating and reduced pressure to obtain 260 g of a higher α-olefin polymer. Mw of the obtained polymer was 8500 o
[0064] 製造例 2  [0064] Production Example 2
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 120°Cにした後、トリイソプチ ルアルミニウム 2. 0ミリモル、触媒 Aを 2マイクロモル、ジメチルァユリ-ゥムテトラキス ペンタフルォロボレートを 4マイクロモルカ卩え、さらに水素を 0. 8MPa導入し、 2時間 重合した。重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾 燥処理することにより、高級 α—ォレフィン重合体を 250g得た。得られた重合体の M wは 10000であった。  Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a heat-dried 1 liter autoclave, bring the polymerization temperature to 120 ° C, and then add 2.0 mmol of triisobutylaluminum and 2 of catalyst A. Micromol, dimethylaureum tetrakis pentafluoroborate were added in 4 micromol, hydrogen was further introduced at 0.8 MPa, and polymerization was carried out for 2 hours. After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 250 g of a higher α-olefin polymer. M w of the obtained polymer was 10,000.
[0065] 製造例 3 [0065] Production Example 3
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 110°Cにした後、触媒 Aを 2 マイクロモル、ジメチノレア-リニゥムテトラキスペンタフノレォロボレートを 4マイクロモノレ 加え、さらに水素を 0. IMPa導入し、 2時間重合した。重合反応終了後、反応物をァ セトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級 α -ォレフィン 重合体を 290g得た。得られた重合体の Mwは 15000であった。 Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a heat-dried 1 liter autoclave and bring the polymerization temperature to 110 ° C. Tetrakis pentafunoleborate 4 micro monolayer In addition, hydrogen was further introduced at 0. IMPa and polymerized for 2 hours. After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 290 g of a higher α-olefin polymer. Mw of the obtained polymer was 15000.
[0066] 製造例 4 [0066] Production Example 4
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 100°Cにした後、触媒 Aを 2 マイクロモル、ジメチノレア-リニゥムテトラキスペンタフノレォロボレートを 4マイクロモノレ 加え、さらに水素を 0. 3MPa導入し、 2時間重合した。重合反応終了後、反応物をァ セトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級 α—ォレフィ ン重合体を 255g得た。得られた重合体の Mwは 20000であった。  Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a heat-dried 1 liter autoclave, bring the polymerization temperature to 100 ° C, then add 2 μmol of catalyst A, dimethylenorea-linium. Tetrakispentafluororeborate was added in 4 micromonolayers, hydrogen was further introduced at 0.3 MPa, and polymerization was carried out for 2 hours. After the completion of the polymerization reaction, the reaction product was precipitated with aceton and then dried under heating and reduced pressure to obtain 255 g of a higher α-olefin polymer. Mw of the obtained polymer was 20000.
[0067] 製造例 5 [0067] Production Example 5
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 90°Cにした後、トリイソブチル アルミニウム 2. 0ミリモル、触媒 Aを 2マイクロモル、ジメチルァユリ-ゥムテトラキスべ ンタフルォロボレートを 4マイクロモルカ卩え、さらに水素を 0. 15MPa導入し、 2時間重 合した。重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥 処理することにより、高級 α—ォレフィン重合体を 280g得た。得られた重合体の Mw は 40000であった。  Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a heat-dried 1 liter autoclave, bring the polymerization temperature to 90 ° C, then add 2.0 mmol of triisobutylaluminum and 2 of catalyst A. Four micromoles of micromolar and dimethylaureum tetrakis benzofluoroborate were added, 0.15 MPa of hydrogen was further introduced, and polymerization was performed for 2 hours. After the completion of the polymerization reaction, the reaction product was precipitated with acetone and then dried under heating and reduced pressure to obtain 280 g of a higher α-olefin polymer. Mw of the obtained polymer was 40000.
[0068] 製造例 6 [0068] Production Example 6
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 80°Cにした後、触媒 Aを 2マ イク口モル、ジメチルァ-リュウムテトラキスペンタフルォロボレートを 4マイクロモルカロ え、さらに水素を 0. 2MPa導入し、 2時間重合した。重合反応終了後、反応物をァセ トンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級 α—ォレフイン 重合体を 210g得た。得られた重合体の Mw65, 000であった。  Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a heat-dried 1 liter autoclave to bring the polymerization temperature to 80 ° C, then add catalyst A to 2 micromoles of dimethylmetallium. Tetrakispentafluoroborate was added at 4 micromolar, and hydrogen was further introduced at 0.2 MPa, followed by polymerization for 2 hours. After completion of the polymerization reaction, the reaction product was precipitated with acetone, and then dried under heating and reduced pressure to obtain 210 g of a higher α-olefin polymer. It was Mw 65,000 of the obtained polymer.
[0069] 製造例 7 [0069] Production Example 7
加熱乾燥した 1リットルオートクレーブに、 1一へキサデセン(C16) 360ミリリットル、 1—ォクタデセン (C18) 40ミリリットルを加え、重合温度 75°Cにした後、トリイソブチル アルミニウム 2. 0ミリモル、触媒 Aを 2マイクロモル、ジメチルァユリ-ゥムテトラキスべ ンタフルォロボレートを 4マイクロモルカ卩え、さらに水素を 0. 05MPa導入し、 2時間重 合した。重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥 処理することにより、高級 α—ォレフイン重合体を 220g得た。得られた重合体の Mw は 100, 000であった。 Add 1 ml of hexadecene (C16) 360 ml and 1-octadecene (C18) 40 ml to a 1 liter autoclave that has been dried by heating, and bring the polymerization temperature to 75 ° C. 2.0 millimoles of aluminum, 2 micromoles of catalyst A, 4 micromoles of dimethylaureum tetrakis benzofluoroborate, 0.05 ppm of hydrogen were further introduced, and polymerization was conducted for 2 hours. After completion of the polymerization reaction, the reaction product was precipitated with acetone and then dried under heating and reduced pressure to obtain 220 g of a higher α-olefin polymer. Mw of the obtained polymer was 100,000.
産業上の利用可能性 Industrial applicability
本発明の蓄熱性組成物から得られる蓄熱性複合繊維は、温度調整機能を有する ため、体の周囲に接触又は非接触して用いて、体温に対して温度調節するのに適す る。  Since the heat storage composite fiber obtained from the heat storage composition of the present invention has a temperature adjustment function, it is suitable for temperature adjustment with respect to body temperature by using it in contact with or non-contact with the surroundings of the body.
具体的には、スキーウエア、レインウェア等のスポーツ衣料、防寒衣料、靴下、パン テイストッキング、シャツ、背広等の一般衣料、中綿等の寝具、手袋、靴材、家具用、 自動車用人工レザー、保温、保冷が要求される食品包装材、建材等に使用でき、特 に、繊維製品、家具及び自動車用レザー製品等に好適に使用できる。  Specifically, sports clothing such as skiwear and rainwear, winter clothing, socks, pantyhose, shirts, suits such as suits, bedding such as batting, gloves, shoes, furniture, artificial leather for automobiles, It can be used for food packaging materials, building materials, etc. that are required to be kept warm and cold, and particularly suitable for textile products, furniture, and leather products for automobiles.

Claims

請求の範囲 The scope of the claims
[1] 温調剤及び熱可塑性榭脂を含む蓄熱性組成物であって、  [1] A heat storage composition comprising a temperature adjusting agent and a thermoplastic rosin,
前記温調剤が、ポリマー、オリゴマー又はオリゴマーの架橋体であり、  The temperature adjusting agent is a polymer, an oligomer or a cross-linked oligomer,
前記温調剤の融点が 10〜100°C、潜熱が 30jZg以上、重量平均分子量が 5, 0 The temperature adjusting agent has a melting point of 10 to 100 ° C., a latent heat of 30 jZg or more, and a weight average molecular weight of 5, 0.
00〜65, 000である蓄熱性組成物。 Thermal storage composition that is 00-65,000.
[2] 前記温調剤が熱可塑性榭脂に分散して存在し、温調剤の平均粒径が 13 m未満 である請求項 1に記載の蓄熱性組成物。 [2] The heat storage composition according to claim 1, wherein the temperature adjusting agent is present dispersed in a thermoplastic resin, and the average particle size of the temperature adjusting agent is less than 13 m.
[3] 蓄熱性組成物に占める前記温調剤の割合が 5〜70質量%であり、前記熱可塑性 榭脂の割合が 30〜95質量%である請求項 1又は 2に記載の蓄熱性組成物。 [3] The heat storage composition according to claim 1 or 2, wherein the ratio of the temperature adjusting agent in the heat storage composition is 5 to 70 mass%, and the ratio of the thermoplastic resin is 30 to 95 mass%. .
[4] 前記温調剤の重量平均分子量が 5, 000〜30, 000である請求項 1〜3のいずれ 力に記載の蓄熱性組成物。 [4] The heat storage composition according to any one of claims 1 to 3, wherein the temperature-controlling agent has a weight average molecular weight of 5,000 to 30,000.
[5] 前記熱可塑性榭脂が、ポリプロピレン榭脂、ポリエチレン榭脂、ポリエステル榭脂、 ポリスチレン榭脂、ポリアミド榭脂、 ABS榭脂、ポリカーボネート榭脂及びエチレン ビニルアルコール共重合樹脂から選択される少なくとも 1種である請求項 1〜4のい ずれかに記載の蓄熱性組成物。 [5] The thermoplastic resin is at least one selected from polypropylene resin, polyethylene resin, polyester resin, polystyrene resin, polyamide resin, ABS resin, polycarbonate resin, and ethylene vinyl alcohol copolymer resin. The heat storage composition according to any one of claims 1 to 4, which is a seed.
[6] 請求項 1〜5の!、ずれかに記載の蓄熱性組成物を溶融紡糸してなる蓄熱性繊維。 [6] Claims 1-5! A heat storage fiber formed by melt spinning the heat storage composition according to any one of the above.
[7] 請求項 1〜5のいずれかに記載の蓄熱性組成物からなるシート又はフィルム。 [7] A sheet or film comprising the heat storage composition according to any one of claims 1 to 5.
PCT/JP2007/057435 2006-04-11 2007-04-03 Heat-storing composition, and heat-storing fiber, sheet and film each made of the same WO2007119652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510915A JPWO2007119652A1 (en) 2006-04-11 2007-04-03 Thermal storage composition and thermal storage fiber, sheet and film comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006108265 2006-04-11
JP2006-108265 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007119652A1 true WO2007119652A1 (en) 2007-10-25

Family

ID=38609416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057435 WO2007119652A1 (en) 2006-04-11 2007-04-03 Heat-storing composition, and heat-storing fiber, sheet and film each made of the same

Country Status (4)

Country Link
JP (1) JPWO2007119652A1 (en)
KR (1) KR20090004936A (en)
CN (1) CN101421358A (en)
WO (1) WO2007119652A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503382A (en) * 2007-11-14 2011-01-27 テューリンギッシェス・インスティトゥート・フューア・テクスティル−ウント・クンストストッフ−フォルシュング・エー・ファウ Method for producing cellulosic molded product, cellulosic molded product and use thereof
JP2015034367A (en) * 2013-08-09 2015-02-19 株式会社クラレ Temperature adjustment fiber
JP2015175066A (en) * 2014-03-13 2015-10-05 株式会社クラレ Core sheath conjugate fiber having friction melt resistance, and woven or knitted fabric using the fiber
JP2018059216A (en) * 2016-09-30 2018-04-12 Kbセーレン株式会社 Sea-island type conjugate fiber and fabric composed of the same
JP2018059214A (en) * 2016-09-30 2018-04-12 Kbセーレン株式会社 Sea-island type conjugate fiber and fabric using the same
JP2018188752A (en) * 2017-04-28 2018-11-29 Kbセーレン株式会社 Composite fiber and fabric thereof
JP2019014989A (en) * 2017-07-05 2019-01-31 Kbセーレン株式会社 Sea-island type composite fiber and fabric made thereof
JP2019183288A (en) * 2018-03-31 2019-10-24 Kbセーレン株式会社 Composite fiber and fabric including the same
US11473217B2 (en) 2020-05-19 2022-10-18 Taiwan Textile Research Institute Temperature regulating nylon fiber
WO2022244848A1 (en) * 2021-05-21 2022-11-24 住友化学株式会社 Heat storage composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459523B (en) * 2014-04-09 2019-11-19 住友化学株式会社 The manufacturing method of resin combination, cross-linking agent and cross-linking agent
DE112017003147T5 (en) * 2016-06-22 2019-03-14 Dic Corporation Heat storage slide
CN115667599A (en) * 2020-05-29 2023-01-31 住友化学株式会社 Heat-accumulating composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230103A (en) * 1999-02-08 2000-08-22 Ube Ind Ltd Trans-1,4-polybutadiene composition and heat storage material
JP2003268359A (en) * 2002-03-12 2003-09-25 Idemitsu Kosan Co Ltd Heat-storage material
JP2004003087A (en) * 2002-04-08 2004-01-08 Idemitsu Technofine Co Ltd Thermal storage conjugated fiber and thermal storage cloth member
JP2004027189A (en) * 2002-03-12 2004-01-29 Idemitsu Technofine Co Ltd Heat storage film or sheet and laminated product thereof
JP2004161885A (en) * 2002-11-13 2004-06-10 Idemitsu Technofine Co Ltd Heat storage composition and its molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230103A (en) * 1999-02-08 2000-08-22 Ube Ind Ltd Trans-1,4-polybutadiene composition and heat storage material
JP2003268359A (en) * 2002-03-12 2003-09-25 Idemitsu Kosan Co Ltd Heat-storage material
JP2004027189A (en) * 2002-03-12 2004-01-29 Idemitsu Technofine Co Ltd Heat storage film or sheet and laminated product thereof
JP2004003087A (en) * 2002-04-08 2004-01-08 Idemitsu Technofine Co Ltd Thermal storage conjugated fiber and thermal storage cloth member
JP2004161885A (en) * 2002-11-13 2004-06-10 Idemitsu Technofine Co Ltd Heat storage composition and its molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503382A (en) * 2007-11-14 2011-01-27 テューリンギッシェス・インスティトゥート・フューア・テクスティル−ウント・クンストストッフ−フォルシュング・エー・ファウ Method for producing cellulosic molded product, cellulosic molded product and use thereof
JP2015034367A (en) * 2013-08-09 2015-02-19 株式会社クラレ Temperature adjustment fiber
JP2015175066A (en) * 2014-03-13 2015-10-05 株式会社クラレ Core sheath conjugate fiber having friction melt resistance, and woven or knitted fabric using the fiber
JP2018059216A (en) * 2016-09-30 2018-04-12 Kbセーレン株式会社 Sea-island type conjugate fiber and fabric composed of the same
JP2018059214A (en) * 2016-09-30 2018-04-12 Kbセーレン株式会社 Sea-island type conjugate fiber and fabric using the same
JP2018188752A (en) * 2017-04-28 2018-11-29 Kbセーレン株式会社 Composite fiber and fabric thereof
JP2019014989A (en) * 2017-07-05 2019-01-31 Kbセーレン株式会社 Sea-island type composite fiber and fabric made thereof
JP2019183288A (en) * 2018-03-31 2019-10-24 Kbセーレン株式会社 Composite fiber and fabric including the same
US11473217B2 (en) 2020-05-19 2022-10-18 Taiwan Textile Research Institute Temperature regulating nylon fiber
WO2022244848A1 (en) * 2021-05-21 2022-11-24 住友化学株式会社 Heat storage composition

Also Published As

Publication number Publication date
KR20090004936A (en) 2009-01-12
CN101421358A (en) 2009-04-29
JPWO2007119652A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2007119652A1 (en) Heat-storing composition, and heat-storing fiber, sheet and film each made of the same
JP6208793B2 (en) Polymer composite having highly reversible thermal properties and method for forming the same
JP4339006B2 (en) Thermal storage composite fiber and thermal storage cloth member
CN100471926C (en) Heat storage material, composition thereof, and use thereof
US5994482A (en) Polypropylene copolymer alloys and process for making
CN104884478B (en) Acrylic polymers
US6235664B1 (en) Polypropylene copolymer alloys for soft nonwoven fabrics
TW201414891A (en) Multi-component fibers having enhanced reversible thermal properties and fabrics thereof
US10731011B2 (en) Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
JP4088178B2 (en) Thermal storage film or sheet and laminate thereof
JP5437213B2 (en) Propylene-based resin composition for melt spinning type electrospinning and melt spinning method of ultrafine fibers thereby
US20200362477A1 (en) Bicomponent fibers, and nonwovens thereof, having improved elastic performance
JP2013540178A (en) Ethylene / α-olefin interpolymers suitable for use in fiber applications and fibers made therefrom
JP2007023398A (en) Polypropylene resin composition for filament nonwoven fabric
JP2004026971A (en) Crosslinked heat-reserving material
WO2022087889A1 (en) Microporous membrane with enhanced electrolyte wettability
JP2021510764A (en) Resin composition for two-component fiber
JP2020143402A (en) Fiber and fiber structure
WO2019124911A1 (en) Method for producing polypropylene nonwoven fabric
JP2018059216A (en) Sea-island type conjugate fiber and fabric composed of the same
JP6937719B2 (en) Composite fibers and fabrics made of them
JP2024057771A (en) Fibers and their manufacturing method
JP2019077979A (en) Core-sheath composite fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087024753

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780013349.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740871

Country of ref document: EP

Kind code of ref document: A1