JP2012072471A - 炉頂バンカー及びこれに使用した高炉への原料装入方法 - Google Patents

炉頂バンカー及びこれに使用した高炉への原料装入方法 Download PDF

Info

Publication number
JP2012072471A
JP2012072471A JP2010219747A JP2010219747A JP2012072471A JP 2012072471 A JP2012072471 A JP 2012072471A JP 2010219747 A JP2010219747 A JP 2010219747A JP 2010219747 A JP2010219747 A JP 2010219747A JP 2012072471 A JP2012072471 A JP 2012072471A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
raw material
charging
top bunker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010219747A
Other languages
English (en)
Inventor
Naoyuki Takeuchi
直幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010219747A priority Critical patent/JP2012072471A/ja
Publication of JP2012072471A publication Critical patent/JP2012072471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

【課題】RARの高炉操業において、通気性悪化による炉況不調を招くことなく、しかも、炉の周辺部のガス利用率を高めることにより、更なる低RAR化を図ることができる炉頂バンカー及びこれを使用した高炉への原料装入方法を提供する。
【解決手段】焼結鉱、ペレット、塊状鉱石などの鉱石類原料等の高炉装入原料の炉内への装入を旋回シュート16で行う高炉の炉頂に配置して、前記高炉装入原料を一時貯留してから前記旋回シュートへ払い出す炉頂バンカー12であって、内部に前記高炉装入原料が当接して落下方向を変更させる傾動自在な偏析制御板21を配設し、該偏析制御板の前記高炉装入原料が当接する面とは反対側の面に原料堆積面への前記高炉装入原料の単位面積当たりの装入量を低下させる磁石22を配置した。
【選択図】図1

Description

本発明は、炉内への原料装入を旋回シュートで行うベルレス式高炉における旋回シュートに原料を供給する炉頂バンカー及びこれを使用した高炉への原料装入方法に関する。
近年、高炉の生産性が増加傾向にある中で、炭酸ガス排出量の増加による地球温暖化も問題となっており、製鉄業においてもCO2削減は重要な課題である。これを受け、最近の高炉操業では低RAR(Reducing Agent Ratio:還元材比 溶銑1t製造当たりの、吹き込み燃料と炉頂から装入されるコークスの合計量)操業が強力に推進されている。
そのためには、原料粒度の低下による着熱効率の向上や、原料性状改善による還元性向上、高炉内の周辺ガス流の抑制によるガス利用率向上と、炉体からの抜熱低減などが有効である。しかし、低RAR操業時には、炉内の原料とコークスとの存在比(以下、O/Cと称す)が大きくなり、炉上部での通気性の悪化、融着帯(炉内の原料温度が、約1200〜1400℃に達したときに、通気抵抗の高い半溶融状態になる領域)の変形や肥大化による炉下部通気性の悪化が引き起こされ、安定した高炉操業を行うことが困難とされている。
特に、RDI(Reduction Degradation Index:還元粉化指数)の高い劣質原料を多量に使用する高炉操業においては、非特許文献1や非特許文献2で紹介されるように、原料温度が400〜600℃付近に達した際、炉内での還元粉化が促され、高炉内圧力損失の変動を招く原因となり、安定した操業を実施することが困難となる。
それゆえ、実操業においては、安定操業を維持するために、炉内のガス利用率を犠牲にしても、周辺部のO/Cを低下させて炉内通気性の確保を図っている。また、原料コストを犠牲とした、低RDIの高品位原料を使用する高炉操業においても、炉体からの抜熱低減やガス利用率を高めるといった目的のため、周辺部のO/Cを増加させ、周辺ガス流を抑制した操業を実施すると、高炉下部で融着帯が肥大化するため、通気性悪化が懸念される。
低RAR操業の高炉において、上記の課題を解決した安定操業実現のためには、周辺部のO/Cを増加させずに、周辺ガス流速を抑制した上で、中心ガス流速を強化する必要があり、これまでに様々な研究が実施されてきた。
その中のひとつに、高炉内への装入原料粒度分布制御技術が挙げられる。この技術は、高炉への原料装入時に、炉内半径方向に中心部に粗粒鉱石,周辺部に細粒鉱石というように粒度分布変化を持たせることにより、炉上部での中心ガス流を維持した状態で、周辺ガス流を抑制する手法である。それと同時に、炉下部では、周辺部の融着帯は肥大化せずに、炉下部での通気の安定性も図れる(図11)。
炉内への原料装入時の粒度分布制御について、例えば非特許文献3には、図12中に示す貯鉱槽(高炉に装入する原料の種類、量を管理するホッパー)100及び炉頂バンカー101の原料排出特性を定量的に調査し、高炉103内に原料を装入する段階での排出粒度分布を制御する方法について検討している。同文献では、炉頂バンカー101の内部に整流板102を設け、その位置を変えることにより、炉頂バンカー101からの時経列的な排出粒度分布変化を自由に制御可能であるという結果を得ている。
また、特許文献1には、旋回シュートの傾動方向の如何にかかわらず、傾動自在な可動板(以下、偏析制御板と称す)を炉頂バンカー内部に設置することにより、炉頂バンカー内部に堆積する原料の粗細粒を偏析させ、排出される原料排出粒度分布を自在に粒度別に排出させる方法を提示している。
特開2008−179899号公報
中島ら、「鉄と鋼」日本鉄鋼協会73(1987年)第1064頁 岩永、「鉄と鋼」日本鉄鋼協会68(1982年)第740頁 福武ら、「川崎製鉄技法」JFEスチール 14(1982年)第405頁
非特許文献3の手法は、炉頂バンカーの持つファンネルフロー(初めに排出口の直上領域から排出され、周辺部が後から排出される)という排出特性を、整流板を設置することで、マスフロー(ホッパーの下部から順に排出)に変化させることによって成り立っている。しかし、原料が堆積している炉頂バンカー内部に、特に原料に埋没する形式で構造物を設けることは、バンカー内部での原料棚吊りが発生するため、実用的ではない。特に、屋外に一時的に保管し、風雨に曝された原料を使用する場合、原料は多くの湿分を持つため、炉頂バンカー内部での原料付着が多く、棚吊りは起こりやすくなる。
また、特許文献1の手法は、原料の旋回シュートからの装入を順傾動(旋回初期に炉の周辺部に装入し、徐々にその傾動角を狭めつつ、中心部に装入するパターン)で行う場合、炉頂バンカーからの原料排出初期は細粒,排出末期は粗粒となるように、偏析制御板の角度を調整している。一方、逆傾動(旋回初期に中心部に装入し、徐々にその傾動角を広げつつ、周辺部に装入するパターン)で装入する場合は、炉頂バンカーからの原料排出初期は粗粒,排出末期は細粒となるように、偏析制御板の角度を調整している。この手法は、周辺部のO/Cを増加させずに周辺ガス流を抑制することが可能であり、炉下部でも融着帯の肥大化を抑制することができるため、ガス利用率向上に大変効果があるといえる。
近年の高炉操業では生産性が出銑比(1日の出銑量を高炉の内容積で割った値)が2.0t/d/m3以上と高く、炉頂バンカーへの原料装入量、装入速度も当然高い。偏析制御板の効果は、
1)原料の全量が偏析制御板に衝突するかどうか
2)炉頂バンカー内部での原料流れ込み(堆積面の崩壊、崩れ)現象が発生せずに、十分に細粒,粗粒の偏析が行われているかどうか
という要因に大きく左右されてしまうため、生産量が多く、原料の装入速度の高い現在の高炉操業においては、その効果が薄れているといえる。
そこで、本発明は、上記従来技術の課題に着目してなされたものであり、低RARの高炉操業において、通気性悪化による炉況不調を招くことなく、しかも、炉の周辺部のガス利用率を高めることにより、更なる低RAR化を図ることができる炉頂バンカー及びこれを使用した高炉への原料装入方法を提供することを目的としている。
上記目的を達成するために、本発明の一の形態に係る炉頂バンカーは、焼結鉱、ペレット、塊状鉱石などの鉱石類原料等の高炉装入原料の炉内への装入を旋回シュートで行う高炉の炉頂に配置して、前記高炉装入原料を一時貯留してから前記旋回シュートへ払い出す炉頂バンカーであって、内部に前記高炉装入原料が当接して落下方向を変更させる傾動自在な偏析制御板を配設し、該偏析制御板の前記高炉装入原料が当接する面とは反対側の面に原料堆積面への前記高炉装入原料の単位面積当たりの装入量を低下させる磁石を配置したことを特徴としている。
この構成によると、炉頂バンカーに供給される高炉装入原料が偏析制御板に当接する際に、磁石の吸引力によって、当該偏析制御板への高炉装入原料の当接幅を拡張し、これによって高炉装入原料の原料堆積面に対する単位面積当たりの装入量を低下させて、堆積面での崩壊や崩れを防止して炉頂バンカー内での細粒及び粗粒の偏析現象を強化し、炉頂バンカーからの原料排出粒度分布を所望パターンに制御する。
また、本発明の他の形態に係る炉頂バンカーは、前記磁石は永久磁石で構成されていることを特徴としている。
この構成によると、磁石が永久磁石で構成されているので、電磁石のように電力を供給する必要がなく、偏析制御板の構成を簡易化することができる。
また、本発明の他の形態に係る高炉への原料装入方法は、焼結鉱、ペレット、塊状鉱石などの鉱石類原料等の高炉装入原料の炉内への装入を旋回シュートで行い、該旋回シュートへの前記高炉装入原料の供給が炉頂バンカーを介して行われる高炉の操業方法であって、前記高炉装入原料を高炉に装入する際に、前記旋回シュートに高炉装入原料を供給する炉頂バンカーの内部に、磁石を有する偏析制御板を設置して、当該偏析制御板上での高炉装入原料の流れを全面に拡張し、炉頂バンカー原料堆積面での単位面積当たりの原料装入量を低下させるようにしたことを特徴としている。
この構成によると、炉頂バンカー内部の偏析制御板に設けた磁石の磁力によって、原料堆積面への原料装入速度すなわち単位面積当たりの装入量を極力低減することができ、原料堆積面での崩壊や崩れを防止して炉頂バンカー内での細粒及び粗粒の偏析現象を強化し、炉頂バンカーからの原料排出粒度分布を所望パターンに制御する。このため、回転シュートを順傾動及び逆傾動の一方に制御する場合に、傾動態様に応じた原料排出粒度分布を形成することができ、高炉内の周辺部のO/Cを増加させることなく、周辺ガス流速を抑制することが可能となる。このため、炉上部での中心ガス流を維持した状態で、周辺ガス流を抑制することができる。
また、本発明の他の形態に係る高炉への原料装入方法は、記偏析制御板は、高炉装入原料が当接する当接面とは反対側の面に永久磁石が配置されていることを特徴としている。
この構成によると、磁石が永久磁石で構成されているので、電磁石のように電力を供給する必要がなく、偏析制御板の構成を簡易化することができる。
本発明によれば、炉頂バンカー内に設けた偏析制御板の高炉装入原料が当接する面とは反対側の面に磁石を配置するようにしたので、磁石の吸引力によって偏析制御板に当接する高炉装入原料の当接幅を拡張することができ、これによって炉頂バンカー堆積面での単位面積当たりの原料装入量を低下させて、堆積面の崩壊や崩れを防止し、細粒及び粗粒の偏析現象をより強化して炉頂バンカーからの原料排出粒度分布を自由に調整することができる。
したがって、高炉の旋回シュートからの装入を例えば順傾動で行う場合は、炉頂バンカーからの原料排出粒度分布を初期に細粒、末期に粗粒とすることが可能となり、炉内の粒度分布としては周辺部に細粒を配置し、中心部に粗粒を配置することができる。この結果、周辺部のO/Cを増加させることなく、周辺ガス流速を抑制することが可能となる。この場合に、炉上部での中心ガス流を維持した状態で、周辺ガス流を抑制することができる。
これと同時に、炉下部では、周辺部の融着帯は肥大せずに、炉下部での通気の安定性も図れるため、安定した低RAR操業を維持することが可能となる。
本発明の高炉への原料装入方法の一実施形態を示す模式図である。 図1の炉頂バンカーを示す拡大断面図である。 原料装入実験を行った高炉模型を示す模式図である。 炉頂バンカー内の原料排出順序を示す図である。 炉頂バンカーの実験条件を示す図である。 炉頂バンカーからの原料排出粒度分布を示す特性線図である。 偏析制御板上の原料流れを示す図であって、(a)は偏析制御板のみを用いた条件2の原料流れを示し、(b)は永久磁石を配置した偏析制御板を用いた条件3の原料流れを示す説明図である。 実機における高炉炉体内における径方向の粒度分布を示す特性線図である。 実機における炉頂バンカーからの原料排出粒度分布を示す特性線図である。 実機における高炉炉内圧力損失を示す棒グラフである。 高炉における鉱石粒度分布制御手法を周辺部のO/Cを増加する手法と構成粒径分布制御手法とを説明する説明図である。 従来例の高炉への原料装入方法を示す模式図である。
以下、本発明の一実施形態を図面に基づいて説明する。
図1は本発明による高炉への原料装入方法の一実施形態を模式的に示す図である。
図中、1は、焼結鉱、ペレット及び塊状鉱石の少なくとも一つからなる鉱石類原料2を貯蔵する鉱石類原料ホッパー、3はコークス4を貯蔵するコークスホッパーである。これら鉱石原料ホッパー1及びコークスホッパー3から所定比率で切出された鉱石類原料2及びコークス4は鉱石コンベア5によって上方に搬送されてリザービングホッパー6に鉱石類原料2及びコークス4が混合された高炉装入原料7として貯留される。このリザービングホッパー6から切出された高炉装入原料7は装入コンベア8によって高炉10の炉頂に搬送され、レシービングシュート11を介して複数例えば3つの炉頂バンカー12に交互に搬入される。
そして、炉頂バンカー12から流量調整ゲート13により所定の流量に調整されて排出された高炉装入原料7は、集合ホッパー14を介してベルレス式装入装置15へ送られ、このベルレス式装入装置15の旋回シュート16により高炉10内に装入される。
ここで、旋回シュート16は、高炉10の中心軸を中心に旋回すると同時に高炉10の炉壁側から炉中心側へ向かって傾動するように構成され、炉頂バンカー12から排出された高炉装入原料7が炉壁側から炉中心側へと順方向に装入を行う順傾動装入方式で装入される。
一方、炉頂バンカー12は、図2に示すように、高炉10の炉中心側の側壁が垂直壁12aに形成され、炉壁側が上部側の垂直壁12bとこの垂直壁12bの下端側から垂直壁12b側に傾斜延長する傾斜壁12cとで構成され、垂直壁12a及び傾斜壁12cとの下端部に排出口12dが形成されている。
また、炉頂バンカー12は、その上部の内部にレシービングシュート11から装入される高炉装入原料7を受ける偏析制御板21が図示しない傾動装置によって傾動角を任意に調整可能に配設されている。この偏析制御板21は、耐磨耗性を有する磁性体で形成されており、高炉装入原料7が当接する原料当接面21aとは反対側に全面に亘って永久磁石22が接着等の固定手段で固定されている。
この永久磁石22は、板厚方向に磁束を生じるように例えば偏析制御板21側がN極に、その反対側がS極となるように着磁されている。
このように炉頂バンカー12に偏析制御板21を配設することにより、レシービングシュート11から装入される高炉装入原料7が、偏析制御板21の原料当接面21aに当接し、これによって落下方向が高炉10の炉中心側に方向を変えて垂直壁12aに沿って落下する。このとき、細粒31は図2に示すように、垂直壁12aに沿って貯留され、中粒32は細粒31の外側に貯留され、粗粒33は中粒32の外側に傾斜壁12cに沿って貯留されることになり、良好な偏析現象を生じさせることができる。
本発明者は、ベルレス式高炉への炉頂バンカーからの原料排出粒度分布制御の強化方法を調査するため、高炉装入装置の縮尺模型を用いて実験を行った。この実験に用いた縮尺模型は、図3に示すように、実機高炉の1/18縮尺模型装置であり、実機の原料排出状況を中実に再現するために、貯留槽50、鉱石コンベア51、リザービングホッパー52、装入コンベア53、レシービングシュート54、3つの炉頂バンカー55を有する3パラレル式ベルレス式装入装置56、旋回シュート57を有する高炉炉体58で構成した。
高炉装入原料は、実機と同じ化学組成をもつ焼結鉱を、模型の縮尺に合わせて粉砕したものを使用した。炉頂バンカー55からの原料排出状況調査については、図3に示すように、旋回シュート57を取り外して、垂直シュート59の下部にベルトコンベア60を設置し、炉頂バンカー55へ原料装入御、ベルトコンベア60上にサンプリングボックス61を設け、炉頂バンカー55からの原料切出しに合わせてサンプリングボックス61を送り出した。その後、採取した試料をサンプリングボックス毎に分級し、それぞれの調和平均粒径を求めた。
高炉炉体58への装入実験では、想定した実験条件に基づき所定の装入パターン、装入量を決定した。例えば、高炉の装入パターンは1チャージにつき、コークス、コークス、鉱石類原料、鉱石類原料の4バッチで装入し、コークスと鉱石類原料を各バッチに分割して装入する場合、それぞれの装入量を模型の縮尺比によって粒度分布毎に決め、炉頂バンカー55からの排出速度を実機との相似条件に応じて決定した。
また、旋回シュート57の傾動角パターンや旋回速度は、パターンに応じて自動的に変化させるように制御した。原料の落下運動は、慣性力と重力の比であるフルード数を実機と一致させ、また、原料堆積時の条件については、内部摩擦力と重量の比、ガス抗力と重量の比を一致させた。高炉装入原料の装入中、バッチ毎にレーザー式プロフィール計を用いて炉頂堆積形状を測定した。1サイクルの実験前後の堆積形状(前回の装入時と最終堆積形状と、今回の最終堆積状況)が一致するまで高炉装入原料の装入を行った。高炉装入原料の装入の終了後、炉頂堆積面上の径方向に直径30mm、高さ150mmの円筒管を差し込んで、上部から吸い込んで原料を採取し、炉の径方向の粒度分布を測定した。模型実験の条件を決定した実機操業諸元を下記表1に示す。
Figure 2012072471
図4に模型実験から得られた、炉頂バンカー内の原料排出順序を示す。炉頂バンカー内部の原料は、最初に排出口の直上部(高炉の中心軸側)より排出され、次に原料表面部、最後に周辺部が排出されていた。また、偏析制御板の効果検討については、旋回シュートを順傾動で使用する中心軸側に向けた条件で調査し、図5に示すように、下記のように設定した。
条件1)図5(a)に示す偏析制御板を使用しない場合
条件2)図5(b)に示す偏析制御板62を中心軸側に面を向け、その傾きを70度に設定する場合
条件3)図5(c)に示す偏析制御板62の裏面(原料が衝突する面を表面とする)の全面に永久磁石63を設置し、偏析制御板62を中心軸側に面を向け、その傾きを70度に設定する場合
また、図6には炉頂バンカー55からの原料排出粒度分布の結果を示す。
この図6から明らかなように、偏析整流板62を設けない条件1では、炉頂バンカー55の内部での偏析制御が行われていないため、原料排出初期では粗粒が、末期では細粒が排出されていた。このことは、旋回シュート57を順傾動で使用すると、炉の周辺部に粗粒を、中心部に細粒を装入することとなり、高炉炉体58内の通気性が悪化する上に、ガス利用率が低下するといった最悪な状況を招くことを示している。
これに対して、偏析制御板62のみを設けた条件2では、偏析制御板62の設置により、炉頂バンカー55の内部での偏析現象によって、粗粒鉱石が図4で示す最末期で排出される領域に偏析するため、排出末期での粒度が増加している。
さらに、偏析制御板62の裏面側に永久磁石63を配置した条件3では、条件2よりも更に偏析が強化されており、目標とする排出初期に細粒、排出末期に粗粒という粒度分布制御が達成された。
図7には、炉頂バンカー55への高炉装入原料装入中に、炉頂バンカー55の上部より偏析制御板62を流れる高炉装入原料を正面から観測した際の模式図を示す。
この図7から明らかなように、偏析制御板62のみを設けた条件2においては、図7(a)に示すように、偏析制御板62上を流れる高炉装入原料の主流幅は、偏析制御板62の全面に広がっておらず、高炉装入原料の装入速度が高くなることにより、炉頂バンカー55内の堆積面を崩しながらに勢い良く装入されていた。
一方、裏面に永久磁石63を設けた偏析制御板62を用いた条件3においては、図7(b)に示すように、偏析制御板62の裏面側すなわち原料当接面とは反対側の面に永久磁石63が固定され、この永久磁石63の着磁方向が、板厚方向とされているので、この永久磁石63の吸引力によって、強磁性体である鉱石類原料が吸引されることにより、偏析制御板62上を流れる高炉装入原料の主流幅は、偏析制御板62の幅方向の全面に広がり、これによって高炉装入原料の装入速度が減少するとともに、原料堆積面の単位面積当たりの原料装入量が低下し、炉頂バンカー55内の堆積面を崩すことなく、緩やかに装入されていた。
また、図8には、模型実験から得られた高炉炉体58内の堆積面の径方向粒度分布結果を示す。偏析制御板62に永久磁石63を設置した条件3の高炉炉体58内における粒度分布は、偏析制御板62のみを設けた条件2に対して、周辺部の粒度は抑制され、中心部の粒度は増加することが明らかとなり、炉頂バンカー55内部の細粒、粗粒の偏析現象をより強化して、高精度の粒度分布を形成することができる。
以上のことから、本模型実験によれば、炉頂バンカー55内に永久磁石63を有する偏析制御板62を設置することにより、偏析制御板62上での高炉装入原料の流れを全面に拡張することができ、炉頂バンカー55の原料堆積面での単位面積当たりの原料装入量を低下させ、原料堆積面の崩壊、崩れを防止し、炉頂バンカー55内部の細粒、粗粒の偏析現象をより強化し、炉頂バンカー55からの原料排出粒度分布を自由に制御することが可能となる。
従って、高炉装入原料の旋回シュート57からの装入を順傾動で行う場合は、炉頂バンカー55からの原料排出粒度分布を、装入初期に細粒,装入末期に粗粒とすることが可能となり、高炉炉体58内の粒度分布としては、周辺部に細粒,中心部に粗粒を配置することができる。その結果、周辺部のO/Cを増加させずに、周辺ガス流速を抑制することが可能となる。また、結果として高炉炉体58の炉上部での中心ガス流を維持した状態で、周辺ガス流を抑制することができる。それと同時に、高炉炉体58の炉下部では、周辺部の融着帯は肥大化せずに、炉下部での通気の安定性も図れるため、安定した低RAR操業を維持することが可能になる。
本発明者は、図1に示す炉内容積5000m3の高炉において、RAR480kg/t、O/C4.46の操業において、模型実験と同じ条件1〜3にて実機試験を行った。炉頂バンカー12からの排出粒度分布を調査するため、図1に示す炉頂バンカー12の排出口直下の下部集合ホッパー14にてサンプリングを実施した。
図9に炉頂バンカー12からの原料排出粒度分を示す。実機の鉱石排出粒度分布は、模型実験の結果と類似しており、偏析制御板21の裏面側に永久磁石22を固定配置した条件3では、永久磁石22を有さない偏析制御板21のみを用いる条件2よりも更に偏析が強化されており、目標とする排出初期に細粒、末期に粗粒という粒度分布制御を達成できることを確認した。
したがって、実機においても、偏析制御板21の裏面に永久磁石22を固定配置することで、原料堆積面の単位面積当たりの原料装入量を低減させて、原料堆積面の崩壊や崩れを防止して、細粒及び粗粒の偏析現象をより強化することができる。
因みに、永久磁石22を設けない偏析制御板21を用いる条件2の場合には、偏析制御板21上の高炉装入原料の流れる幅が前述した図3(a)に示すように狭いことにより、炉頂バンカー12の原料堆積面の単位面積当たりの原料装入量が多くなることから、原料堆積面の崩壊や崩れを生じる。このため、原料堆積面の単位面積当たりの原料装入量を低下させるためには、装入コンベア8によるレシービングシュート11への高炉装入原料7の装入量を減少させるしか方法がなく、この場合には、炉頂バンカー12への高炉装入原料の装入時間が長くなってしまい、生産量が多く、原料の装入速度が高い現在の高炉操業を行うことができない。
しかしながら、上記実施形態では、炉頂バンカー12への高炉装入原料の装入量を減少させることなく、必要な高炉装入原料の装入量を確保しながら、炉頂バンカー12の原料堆積面の単位時間当たりの原料装入量を低減することができる。
また、図10には、実験後の炉内圧力損失(羽口先から炉頂部までの圧力の差)を示す。この図10から明らかなように、偏析制御板21を設けない条件1に対し、偏析制御板21を設ける条件2、3では炉内圧力損失が低下し、通気が改善されていた。更に、通気が改善した余力分をCR(Coke Ratio: コークス比 溶銑1t製造当たりの、コークスの量)削減した操業に移行したところ、条件3では、条件1に対して4kg/t削減でき、安定した操業を維持することができた。
なお、上記実施形態においては、高炉10の旋回シュート16を順傾動させ、炉頂バンカー12の垂直壁12a側に細粒を堆積させ、傾斜壁12c側に粗粒を堆積させる粒度分布とした場合について説明したが、これに限定されるものではなく、高炉10の旋回シュート16を炉中心側から炉周壁側に傾動させる逆傾動状態で使用する場合には、炉頂バンカー12の偏析制御板21を図11に示すように、垂直壁12b側に傾斜させることにより、垂直壁12b及び傾斜壁12c側に細粒51を堆積させ、その内側に中粒52を堆積させ、さらに垂直壁12a側に粗粒53を堆積させるようにして、排出初期に粗粒を、排出末期に細粒を排出し、旋回シュート16によって炉中心部に粗粒を装入し、炉壁側に細粒を装入するようにしてもよい。
また、上記実施形態においては、偏析制御板21の裏面側に永久磁石22のみを固定配置した場合について説明したが、これに限定されるものではなく、永久磁石22の裏面側に永久磁石22より幅方向の両端で外側に突出しその突出端から前方に折り返した断面コ字状の磁気ヨークを配設して偏析制御板21の幅方向両端部の吸引力を増加させるようにしてもよい。
さらに、上記実施形態においては、偏析制御板21の裏面の全面に永久磁石22を配設した場合について説明したが、これに限定されるものではなく、偏析制御板21の裏面の幅方向の中央部を除く両側位置に永久磁石を配置するようにしてもよい。
また、上記実施形態においては、偏析制御板21に永久磁石22を固定配置した場合について説明したが、これに限定されるものではなく、永久磁石22に代えて電磁石を配置するようにしてもよい。
さらに、上記実施形態においては、偏析制御板12が平板状に形成されている場合について説明したが、これに限定されるものではなく、幅方向の両端に側板を形成するようにしてもよく、この場合には側板の裏側に永久磁石を配置するようにしてもよい。
また、上記実施形態においては、炉頂バンカー12を3つパラレル配置する場合について説明したが、これに限定されるものではなく、2つの炉頂バンカー12を設けるようにしてもよく、4つ以上の炉頂バンカー12を設けるようにしてもよい。さらには、複数の炉頂バンカー12を上下に配置するようにしてもよい。
1…鉱石類粉ホッパー、2…鉱石類原料、3…コークスホッパー、4…コークス、5…鉱石コンベア、6…リザービングホッパー、7…高炉装入原料、8…装入コンベア、10…高炉、11…レシービングシュート、12…炉頂バンカー、13…排出口、14…集合ホッパー、15…ベルレス式装入装置、16…旋回シュート、21…偏析制御板、21a…原料当接面、22…永久磁石、51…貯留槽、52…鉱石コンベア、53…リザービングホッパー、54…装入コンベア、55…炉頂バンカー、56…ベルレス式装入装置、57…旋回シュート、58…高炉炉体、59…垂直シュート、60…ベルトコンベア、61…サンプリングボックス、62…偏析制御板、63…永久磁石

Claims (4)

  1. 焼結鉱、ペレット、塊状鉱石などの鉱石類原料等の高炉装入原料の炉内への装入を旋回シュートで行う高炉の炉頂に配置して、前記高炉装入原料を一時貯留してから前記旋回シュートへ払い出す炉頂バンカーであって、
    内部に前記高炉装入原料が当接して落下方向を変更させる傾動自在な偏析制御板を配設し、該偏析制御板の前記高炉装入原料が当接する面とは反対側の面に磁石を配置したことを特徴とする炉頂バンカー。
  2. 前記磁石は永久磁石で構成されていることを特徴とする請求項1に記載の炉頂バンカー。
  3. 焼結鉱、ペレット、塊状鉱石などの鉱石類原料等の高炉装入原料の炉内への装入を旋回シュートで行い、該旋回シュートへの前記高炉装入原料の供給が炉頂バンカーを介して行われる高炉の操業方法であって、
    前記高炉装入原料を高炉に装入する際に、前記旋回シュートに高炉装入原料を供給する炉頂バンカーの内部に、磁石を有する偏析制御板を設置して、当該偏析制御板上での高炉装入原料の流れを全面に拡張し、炉頂バンカー原料堆積面での単位面積当たりの原料装入量を低下させるようにしたことを特徴とする高炉への原料装入方法。
  4. 前記偏析制御板は、高炉装入原料が当接する当接面とは反対側の面に永久磁石が配置されていることを特徴とする請求項3に記載の高炉への原料装入方法。
JP2010219747A 2010-09-29 2010-09-29 炉頂バンカー及びこれに使用した高炉への原料装入方法 Pending JP2012072471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219747A JP2012072471A (ja) 2010-09-29 2010-09-29 炉頂バンカー及びこれに使用した高炉への原料装入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219747A JP2012072471A (ja) 2010-09-29 2010-09-29 炉頂バンカー及びこれに使用した高炉への原料装入方法

Publications (1)

Publication Number Publication Date
JP2012072471A true JP2012072471A (ja) 2012-04-12

Family

ID=46168944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219747A Pending JP2012072471A (ja) 2010-09-29 2010-09-29 炉頂バンカー及びこれに使用した高炉への原料装入方法

Country Status (1)

Country Link
JP (1) JP2012072471A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039969A (ja) * 2015-08-19 2017-02-23 Jfeスチール株式会社 高炉への原料装入方法
JP2021195617A (ja) * 2020-06-12 2021-12-27 Jfeスチール株式会社 炉頂バンカーおよび高炉の原料装入方法
EP4276202A4 (en) * 2021-02-19 2024-08-14 Jfe Steel Corp PROCESS FOR CHARGING RAW MATERIAL INTO A BLAST FURNACE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039969A (ja) * 2015-08-19 2017-02-23 Jfeスチール株式会社 高炉への原料装入方法
JP2021195617A (ja) * 2020-06-12 2021-12-27 Jfeスチール株式会社 炉頂バンカーおよび高炉の原料装入方法
JP7264186B2 (ja) 2020-06-12 2023-04-25 Jfeスチール株式会社 炉頂バンカーおよび高炉の原料装入方法
EP4276202A4 (en) * 2021-02-19 2024-08-14 Jfe Steel Corp PROCESS FOR CHARGING RAW MATERIAL INTO A BLAST FURNACE

Similar Documents

Publication Publication Date Title
JP5696814B2 (ja) ベルレス高炉への原料装入方法
JP5034189B2 (ja) 高炉への原料装入方法
JP2012072471A (ja) 炉頂バンカー及びこれに使用した高炉への原料装入方法
JP6167829B2 (ja) 高炉操業方法
JPWO2012164889A1 (ja) 高炉の原料装入装置およびそれを用いた原料装入方法
JP5861392B2 (ja) 高炉操業方法
JP2021505838A (ja) シャフト溶融還元炉用の装入システム
JP6828225B2 (ja) 高炉における中心部へコークスを装入する原料装入方法
JP2006336094A (ja) 高炉原料装入装置および高炉原料装入方法
JP5515288B2 (ja) 高炉への原料装入方法
JP5338309B2 (ja) 高炉への原料装入方法
JP5338308B2 (ja) 高炉への原料装入方法
JP6943339B2 (ja) ベルレス高炉の原料装入方法および高炉操業方法
JP4765723B2 (ja) 高炉への鉱石装入方法
JP6198649B2 (ja) 高炉の原料装入方法
JP2014214331A (ja) 高炉への原料装入方法
JP2015193898A (ja) 着磁成分原料を含有する焼結配合原料の装入方法
JP2012132056A (ja) 高炉用炉頂バンカー
JP6558519B1 (ja) 高炉の原料装入方法
JP2003328019A (ja) 高炉操業方法
JP4182660B2 (ja) 高炉操業方法
JP4935529B2 (ja) ベルレス高炉の原料装入装置および装入方法
JP5966608B2 (ja) 高炉への原料装入方法
JP5338311B2 (ja) 高炉への原料装入方法
JP5056563B2 (ja) 高炉操業方法