JP2012072207A - 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 - Google Patents
光半導体装置用ダイボンド材及びそれを用いた光半導体装置 Download PDFInfo
- Publication number
- JP2012072207A JP2012072207A JP2010216026A JP2010216026A JP2012072207A JP 2012072207 A JP2012072207 A JP 2012072207A JP 2010216026 A JP2010216026 A JP 2010216026A JP 2010216026 A JP2010216026 A JP 2010216026A JP 2012072207 A JP2012072207 A JP 2012072207A
- Authority
- JP
- Japan
- Prior art keywords
- group
- optical semiconductor
- die bond
- formula
- silicone resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】揮発分の発生量を少なくして、該揮発分による周囲の汚染を抑制できる光半導体装置用ダイボンド材を提供する。
【解決手段】本発明に係る光半導体装置用ダイボンド材は、珪素原子に結合した水素原子を有する第1のシリコーン樹脂と、珪素原子に結合した水素原子を有さずかつアルケニル基を有する第2のシリコーン樹脂と、ヒドロシリル化反応用触媒と、多孔質シリカとを含む。上記多孔質シリカの比表面積は150m2/g以上であり、細孔容積は0.1mL/g以上であり、細孔径は0.5nm以上、10nm以下である。
【選択図】図1
【解決手段】本発明に係る光半導体装置用ダイボンド材は、珪素原子に結合した水素原子を有する第1のシリコーン樹脂と、珪素原子に結合した水素原子を有さずかつアルケニル基を有する第2のシリコーン樹脂と、ヒドロシリル化反応用触媒と、多孔質シリカとを含む。上記多孔質シリカの比表面積は150m2/g以上であり、細孔容積は0.1mL/g以上であり、細孔径は0.5nm以上、10nm以下である。
【選択図】図1
Description
本発明は、発光ダイオード(LED)素子などの光半導体素子をダイボンディングするために用いられる光半導体装置用ダイボンド材、並びに該光半導体装置用ダイボンド材を用いた光半導体装置に関する。
発光ダイオード(LED)素子などの光半導体素子が、表示装置の光源等に広く用いられている。光半導体素子を用いた光半導体装置の消費電力は低く、かつ寿命は長い。また、光半導体装置は、過酷な環境下でも使用され得る。従って、光半導体装置は、携帯電話用バックライト、液晶テレビ用バックライト、自動車用ランプ、照明器具及び看板などの幅広い用途で使用されている。
下記の特許文献1には、LED素子が基板上に実装された光半導体装置が開示されている。この光半導体装置では、LED素子は、基板の上面にダイボンド材を用いて接合されている。このダイボンド材は、アルケニル基含有ポリオルガノシロキサンと、珪素原子に結合した水素原子を3個以上有するポリオルガノハイドロジェンシロキサンと、白金触媒と、接着性付与剤とを含む。上記アルケニル基含有ポリオルガノシロキサンは、珪素原子に結合する水酸基量が50〜3000ppmであり、珪素原子に結合したアルケニル基を平均1個以上有し、かつSiO4/2単位を有するポリオルガノシロキサンを含む。
上記光半導体装置を得る際には、先ず、ダイボンダーと呼ばれる塗布装置を用いて、基板上にダイボンド材を塗布又は積層し、ダイボンド層を形成する。次に、ダイボンド層上に、光半導体素子を積層する。その後、ダイボンド層を硬化させて、光半導体装置を得る。
上記ダイボンド層の硬化時に、比較的低分子量のポリオルガノシロキサンなどの揮発分が揮発し、光半導体素子が汚染されることがある。このため、光半導体素子の電気的な接続を行うためのワイヤーボンディングを精度よく行うことが困難なことがある。このため、光半導体装置の生産効率が悪くなるという問題がある。
本発明の目的は、揮発分の発生量を少なくして、該揮発分による周囲の汚染を抑制できる光半導体装置用ダイボンド材、並びに該光半導体装置用ダイボンド材を用いた光半導体装置を提供することである。
本発明の広い局面によれば、珪素原子に結合した水素原子を有する第1のシリコーン樹脂と、珪素原子に結合した水素原子を有さず、かつアルケニル基を有する第2のシリコーン樹脂と、ヒドロシリル化反応用触媒と、多孔質シリカとを含み、上記多孔質シリカの比表面積が150m2/g以上であり、細孔容積が0.1mL/g以上であり、細孔径が0.5nm以上、10nm以下である、光半導体装置用ダイボンド材が提供される。
本発明に係る光半導体装置用ダイボンド材のある特定の局面では、上記第1のシリコーン樹脂は、下記式(1A)又は下記式(1B)で表され、かつ珪素原子に結合した水素原子を有する第1のシリコーン樹脂であり、上記第2のシリコーン樹脂は、下記式(51A)又は下記式(51B)で表され、かつ珪素原子に結合した水素原子を有さず、かつアルケニル基を有する第2のシリコーン樹脂である。
上記式(1A)中、a、b及びcは、a/(a+b+c)=0.05〜0.50、b/(a+b+c)=0〜0.40及びc/(a+b+c)=0.30〜0.80を満たし、R1〜R6は、少なくとも1個が水素原子を表し、水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表す。
上記式(1B)中、a、b、c及びdは、a/(a+b+c+d)=0.05〜0.50、b/(a+b+c+d)=0〜0.40、c/(a+b+c+d)=0.30〜0.80及びd/(a+b+c+d)=0.01〜0.40を満たし、R1〜R6は、少なくとも1個が水素原子を表し、水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表し、R11は、炭素数1〜8の2価の炭化水素基を表す。
上記式(51A)中、p、q及びrは、p/(p+q+r)=0.05〜0.50、q/(p+q+r)=0〜0.40及びr/(p+q+r)=0.30〜0.80を満たし、R51〜R56は、少なくとも1個がアルケニル基を表し、アルケニル基以外のR51〜R56は、炭素数1〜8の炭化水素基を表す。
上記式(51B)中、p、q、r及びsは、p/(p+q+r+s)=0.05〜0.50、q/(p+q+r+s)=0〜0.40、r/(p+q+r+s)=0.30〜0.80及びs/(p+q+r+s)=0.01〜0.40を満たし、R51〜R56は、少なくとも1個がアルケニル基を表し、アルケニル基以外のR51〜R56は炭素数1〜8の炭化水素基を表し、R57〜60はそれぞれ、炭素数1〜8の炭化水素基を表し、R61は、炭素数1〜8の2価の炭化水素基を表す。
本発明に係る光半導体装置用ダイボンド材の他の特定の局面では、上記第1のシリコーン樹脂は、珪素原子に結合した水素原子と、アルケニル基とを有する第1のシリコーン樹脂である。
本発明に係る光半導体装置は、本発明に従って構成された光半導体装置用ダイボンド材と、接続対象部材と、上記光半導体装置用ダイボンド材を用いて上記接続対象部材に接続された光半導体素子とを備える。
本発明に係る光半導体装置用ダイボンド材は、珪素原子に結合した水素原子を有する第1のシリコーン樹脂と、珪素原子に結合した水素原子を有さずかつアルケニル基を有する第2のシリコーン樹脂と、ヒドロシリル化反応用触媒と、多孔質シリカとを含み、更に該多孔質シリカの比表面積が150m2/g以上であり、細孔容積が0.1mL/g以上であり、細孔径が0.5nm以上、10nm以下であるので、ダイボンド材の硬化時に、揮発分の発生量が少なくなり、該揮発分による周囲の汚染を抑制できる。
以下、本発明の詳細を説明する。
本発明に係る光半導体装置用ダイボンド材は、第1のシリコーン樹脂と、第2のシリコーン樹脂と、ヒドロシリル化反応用触媒と、多孔質シリカとを含む。上記第1のシリコーン樹脂は、珪素原子に結合した水素原子を有する。上記第2のシリコーン樹脂は、珪素原子に結合した水素原子を有さず、かつアルケニル基を有する。
上記多孔質シリカの比表面積は150m2/g以上であり、細孔容積は0.1mL/g以上であり、細孔径は0.5nm以上、10nm以下である。
上記組成の採用により、ダイボンダー等の塗布装置を用いて、本発明に係る光半導体装置用ダイボンド材を基板等の塗布対象部材上に塗布し、該ダイボンド材上に光半導体素子を積層した後、ダイボンド材を硬化させたときに、ダイボンド材中の揮発分の発生量が少なくなる。これは、特定の多孔質シリカ内に揮発分が効果的に保持されることなどにより、揮発が効果的に抑えられるためであると考えられる。該揮発分は、例えば、第1,第2のシリコーン樹脂の合成時に生成される比較的低分子量のシリコーン樹脂などである。上記揮発分の発生量が少ないと、揮発分が基板及び光半導体素子に付着し難くなる。このため、光半導体素子の電極の電気的な接続を行うためのワイヤーボンディングを精度よくかつ効率的に行うことができる。従って、光半導体装置の生産効率を高めることができる。さらに、得られた光半導体装置の信頼性を高めることができる。
また、上記揮発分の発生が抑えられることによって、ダイボンド材と基板及び光半導体素子等の接着対象部材と接着界面に揮発分が配置され難くなる。このため、ダイボンド材と接着対象部材との接着性も高くなる。
(第1のシリコーン樹脂)
本発明に係る光半導体装置用ダイボンド材に含まれている第1のシリコーン樹脂は、珪素原子に結合した水素原子を有する。該水素原子は、珪素原子に直接結合している。ダイボンド材のガスバリア性をより一層高める観点からは、第1のシリコーン樹脂は、珪素原子に結合した水素原子と、アリール基とを有することが好ましい。該アリール基としては、無置換のフェニル基、置換フェニル基、無置換のフェニレン基、及び置換フェニレン基が挙げられる。
本発明に係る光半導体装置用ダイボンド材に含まれている第1のシリコーン樹脂は、珪素原子に結合した水素原子を有する。該水素原子は、珪素原子に直接結合している。ダイボンド材のガスバリア性をより一層高める観点からは、第1のシリコーン樹脂は、珪素原子に結合した水素原子と、アリール基とを有することが好ましい。該アリール基としては、無置換のフェニル基、置換フェニル基、無置換のフェニレン基、及び置換フェニレン基が挙げられる。
ガスバリア性により一層優れたダイボンド材を得る観点からは、上記第1のシリコーン樹脂は、珪素原子に結合した水素原子と、アルケニル基とを有することが好ましい。
ガスバリア性により一層優れたダイボンド材を得る観点からは、上記第1のシリコーン樹脂は、下記式(1A)又は下記式(1B)で表される第1のシリコーン樹脂であることが好ましい。ただし、第1のシリコーン樹脂として、下記式(1A)又は下記式(1B)で表される第1のシリコーン樹脂以外の第1のシリコーン樹脂を用いてもよい。下記式(1B)で表される第1のシリコーン樹脂は、フェニレン基を有していてもよく、フェニレン基を有していなくてもよい。上記第1のシリコーン樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記式(1A)中、a、b及びcは、a/(a+b+c)=0.05〜0.50、b/(a+b+c)=0〜0.40及びc/(a+b+c)=0.30〜0.80を満たし、R1〜R6は、少なくとも1個が水素原子を表し、水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表す。なお、上記式(1A)中、(R4R5SiO2/2)で表される構造単位及び(R6SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
上記式(1B)中、a、b、c及びdは、a/(a+b+c+d)=0.05〜0.50、b/(a+b+c+d)=0〜0.40、c/(a+b+c+d)=0.30〜0.80及びd/(a+b+c+d)=0.01〜0.40を満たし、R1〜R6は、少なくとも1個が水素原子を表し、水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表し、R11は、炭素数1〜8の2価の炭化水素基を表す。なお、上記式(1B)中、(R4R5SiO2/2)で表される構造単位、(R6SiO3/2)で表される構造単位、(R7R8R9R10Si2R11O2/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1A)中、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個が水素原子を表し、フェニル基及び水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1B)中、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個が水素原子を表し、フェニル基及び水素原子以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1A)中、R1〜R6は、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、水素原子及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1B)中、R1〜R6は、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、水素原子及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1A)中、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、フェニル基、水素原子及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記式(1B)中、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、フェニル基、水素原子及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表すことが好ましい。
上記式(1A)及び式(1B)は平均組成式を示す。上記式(1A)及び式(1B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(1A)及び(1B)中のR1〜R6は同一であってもよく、異なっていてもよい。上記式(1B)中のR7〜R10は同一であってもよく、異なっていてもよい。
上記式(1A)及び(1B)中、(R4R5SiO2/2)で表される構造単位における酸素原子部分、(R6SiO3/2)で表される構造単位における酸素原子部分、(R7R8R9R10Si2R11O2/2)で表される構造単位における酸素原子部分はそれぞれ、シロキサン結合を形成している酸素原子部分、アルコキシ基の酸素原子部分、又はヒドロキシ基の酸素原子部分を示す。
なお、一般に、上記式(1A)及び式(1B)の各構造単位において、アルコキシ基の含有量は少なく、更にヒドロキシ基の含有量も少ない。これは、一般に、第1のシリコーン樹脂を得るために、アルコキシシラン化合物などの有機珪素化合物を加水分解し、重縮合させると、アルコキシ基及びヒドロキシ基の多くは、シロキサン結合の部分骨格に変換されるためである。すなわち、アルコキシ基の酸素原子及びヒドロキシ基の酸素原子の多くは、シロキサン結合を形成している酸素原子に変換される。上記式(1A)及び式(1B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合には、シロキサン結合の部分骨格に変換されなかった未反応のアルコキシ基又はヒドロキシ基がわずかに残存していることを示す。後述の式(51A)及び(51B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合に関しても、同様のことがいえる。
上記式(1A)及び式(1B)における炭素数1〜8の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、t−ペンチル基、イソへキシル基、シクロヘキシル基、ビニル基、アリル基及びフェニル基等が挙げられる。
上記式(1B)における炭素数1〜8の2価の炭化水素基としては特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基及びフェニレン基等が挙げられる。
上記式(1A)及び式(1B)中、アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。ガスバリア性をより一層高める観点からは、第1のシリコーン樹脂におけるアルケニル基及び上記式(1A)及び式(1B)中のアルケニル基は、ビニル基又はアリル基であることが好ましく、ビニル基であることがより好ましい。
上記第1のシリコーン樹脂における下記式(X1)より求められるアリール基の含有比率は10モル%以上、50モル%以下であることが好ましい。このアリール基の含有比率が10モル%以上であると、ガスバリア性がより一層高くなる。アリール基の含有比率が50モル%以下であると、ダイボンド材の剥離が生じ難くなる。ガスバリア性を更に一層高める観点からは、アリール基の含有比率は20モル%以上であることがより好ましい。ダイボンド材の剥離をより一層生じ難くする観点からは、アリール基の含有比率は、40モル%以下であることがより好ましい。
アリール基の含有比率(モル%)=(上記第1のシリコーン樹脂の1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/上記第1のシリコーン樹脂の数平均分子量)×100 ・・・式(X1)
上記第1のシリコーン樹脂として、上記式(1A)又は上記式(1B)で表される第1のシリコーン樹脂を用いる場合には、上記式(X1)中、「第1のシリコーン樹脂」は、「平均組成式が上記式(1A)又は上記式(1B)で表される第1のシリコーン樹脂」を示す。
上記式(1A)で表され、フェニル基を有する第1のシリコーン樹脂を用いる場合には、上記式(X1)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
上記式(1B)で表され、フェニル基とフェニレン基とを有する第1のシリコーン樹脂を用いる場合には、上記式(X1)におけるアリール基はフェニル基とフェニレン基とを示し、アリール基の含有比率はフェニル基とフェニレン基との合計の含有比率を示す。
上記式(1B)で表され、フェニル基を有し、かつフェニレン基を有さない第1のシリコーン樹脂を用いる場合には、上記式(X1)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
ガスバリア性をより一層高める観点からは、上記式(1B)中、(R7R8R9R10Si2R11O2/2)の構造単位は、下記式(1b−1)で表される構造単位であることが好ましい。下記式(1b−1)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。本明細書において、「フェニレン基」の用語には、炭素数1〜8の炭化水素基がベンゼン環に置換した置換フェニレン基も含まれる。なお、下記式(1b−1)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。
上記式(1b−1)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。上記炭化水素基は直鎖状であってもよく、分岐状であってもよい。なお、上記式(1b−1)中のベンゼン環に結合している3つの基の結合部位は特に限定されない。
上記式(1B)中、(R7R8R9R10Si2R11O2/2)の構造単位は、下記式(1b−2)で表される構造単位であることが好ましい。下記式(1b−2)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。下記式(1b−2)中のベンゼン環に結合しているRaの結合部位は特に限定されない。
上記式(1b−2)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(1B)中、(R7R8R9R10Si2R11O2/2)の構造単位は、下記式(1b−3)で表される構造単位であることがより好ましい。下記式(1b−3)で表される構造単位はフェニレン基を有し、該フェニレン基は無置換のフェニレン基である。
上記式(1b−3)中、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(1A)又は式(1B)で表される第1のシリコーン樹脂において、(R4R5SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(1−2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R4R5SiXO1/2) ・・・式(1−2)
(R4R5SiO2/2)で表される構造単位は、下記式(1−b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−2−b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R4及びR5で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R4R5SiO2/2)で表される構造単位に含まれる。具体的には、アルコキシ基がシロキサン結合の部分骨格に変換された場合には、(R4R5SiO2/2)で表される構造単位は、下記式(1−b)で表される構造単位の破線で囲まれた部分を示す。未反応のアルコキシ基が残存している場合、又はアルコキシ基がヒドロキシ基に変換された場合には、残存アルコキシ基又はヒドロキシ基を有する(R4R5SiO2/2)で表される構造単位は、下記式(1−2−b)で表される構造単位の破線で囲まれた部分を示す。
上記式(1−2)及び(1−2−b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−b)、(1−2)及び(1−2−b)中のR4及びR5は、上記式(1A)又は式(1B)中のR4及びR5と同様の基である。
上記式(1A)又は式(1B)で表される第1のシリコーン樹脂において、(R6SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(1−3)又は(1−4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。
(R6SiX2O1/2) ・・・式(1−3)
(R6SiXO2/2) ・・・式(1−4)
(R6SiO3/2)で表される構造単位は、下記式(1−c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−3−c)又は(1−4−c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R6で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R6SiO3/2)で表される構造単位に含まれる。
上記式(1−3)、(1−3−c)、(1−4)及び(1−4−c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−c)、(1−3)、(1−3−c)、(1−4)及び(1−4−c)中のR6は、上記式(1A)又は(1B)中のR6と同様の基である。
上記式(1B)で表される第1のシリコーン樹脂において、(R7R8R9R10Si2R11O2/2)で表される構造単位は、下記式(1−5)で表される構造、すなわち、(R7R8R9R10Si2R11O2/2)の構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R7R8R9R10Si2R11XO1/2) ・・・式(1−5)
(R7R8R9R10Si2R11O2/2)で表される構造単位は、下記式(1−d)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−5−d)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R7、R8、R9、R10及びR11で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R7R8R9R10Si2R11O2/2)で表される構造単位に含まれる。
上記式(1−5)及び(1−5−d)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−d)、(1−5)及び(1−5−d)中のR7〜R11は、上記式(1B)中のR7〜R11と同様の基である。
上記式(1−b)〜(1−d)、式(1−2)〜(1−5)、並びに式(1−2−b)、(1−3−c)、(1−4−c)、及び(1−5−d)において、直鎖状又は分岐状の炭素数1〜4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基及びt−ブトキシ基が挙げられる。
上記式(1A)中、a/(a+b+c)の下限は0.05、上限は0.50である。a/(a+b+c)が上記下限以上及び上限以下であると、ダイボンド材の耐熱性をより一層高めることができ、かつダイボンド材の剥離をより一層抑制できる。上記式(1A)中、a/(a+b+c)の好ましい下限は0.10、より好ましい下限は0.15であり、好ましい上限は0.45、より好ましい上限は0.40である。
上記式(1A)中、b/(a+b+c)の下限は0、上限は0.40である。b/(a+b+c)が上記上限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。なお、bが0であり、b/(a+b+c)が0である場合、上記式(1A)中、(R4R5SiO2/2)の構造単位は存在しない。
上記式(1A)中、c/(a+b+c)の下限は0.30、上限は0.80である。c/(a+b+c)が上記下限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。c/(a+b+c)が上記上限を満たすと、ダイボンド材の耐熱性が高くなり、かつ高温環境下でダイボンド材の硬化物の厚みが減少し難くなる。上記式(1A)中、c/(a+b+c)の好ましい下限は0.35、より好ましい下限は0.40、好ましい上限は0.75である。
上記式(1B)中、a/(a+b+c+d)の下限は0.05、上限は0.50である。a/(a+b+c+d)が上記下限及び上限を満たすと、ダイボンド材の耐熱性をより一層高めることができ、かつダイボンド材の剥離をより一層抑制できる。上記式(1A)中、a/(a+b+c+d)の好ましい下限は0.10、より好ましい下限は0.15であり、好ましい上限は0.45、より好ましい上限は0.40である。
上記式(1B)中、b/(a+b+c+d)の下限は0、上限は0.40である。b/(a+b+c)が上記上限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。なお、bが0であり、b/(a+b+c+d)が0である場合、上記式(1B)中、(R4R5SiO2/2)の構造単位は存在しない。
上記式(1B)中、c/(a+b+c+d)の下限は0.30、上限は0.80である。c/(a+b+c+d)が上記下限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。c/(a+b+c+d)が上記上限を満たすと、ダイボンド材の耐熱性が高くなり、かつ高温環境下でダイボンド材の硬化物の厚みが減少し難くなる。c/(a+b+c+d)の好ましい下限は0.35、より好ましい下限は0.40、好ましい上限は0.75である。
上記式(1B)中、d/(a+b+c+d)の下限は0.01、上限は0.40である。d/(a+b+c+d)が上記下限及び上限を満たすと、腐食性ガスに対して高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離が生じ難い光半導体装置用ダイボンド材を得ることができる。腐食性ガスに対してより一層高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離がより一層生じ難い光半導体装置用ダイボンド材を得る観点からは、上記式(1B)中、d/(a+b+c+d)の好ましい下限は0.03、より好ましい下限は0.05、好ましい上限は0.35、より好ましい上限は0.30である。
上記第1のシリコーン樹脂について、テトラメチルシラン(以下、TMS)を基準に29Si−核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(1A)及び式(1B)中の(R1R2R3SiO1/2)aで表される構造単位に相当するピークは+10〜−5ppm付近に現れ、上記式(1A)及び式(1B)中の(R4R5SiO2/2)b及び(1−2)の二官能構造単位に相当する各ピークは−10〜−50ppm付近に現れ、上記式(1A)及び式(1B)中の(R6SiO3/2)c、並びに(1−3)及び(1−4)の三官能構造単位に相当する各ピークは−50〜−80ppm付近に現れ、上記式(1B)中の(R7R8R9R10Si2R11O2/2)dに相当するピークは0〜−5ppm付近に現れる。
従って、29Si−NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(1A)及び式(1B)中の各構造単位の比率を測定できる。
但し、上記TMSを基準にした29Si−NMRの測定で上記式(1A)及び式(1B)中の構造単位の見分けがつかない場合は、29Si−NMRの測定結果だけではなく、1H−NMRの測定結果を必要に応じて用いることにより、上記式(1A)及び式(1B)中の各構造単位の比率を見分けることができる。
(第2のシリコーン樹脂)
本発明に係る光半導体装置用ダイボンド材に含まれている第2のシリコーン樹脂は、アルケニル基を有する。該アルケニル基は、珪素原子に直接結合している。上記アルケニル基の炭素−炭素二重結合における炭素原子が、珪素原子に結合していてもよく、上記アルケニル基の炭素−炭素二重結合における炭素原子とは異なる炭素原子が、珪素原子に結合していてもよい。
本発明に係る光半導体装置用ダイボンド材に含まれている第2のシリコーン樹脂は、アルケニル基を有する。該アルケニル基は、珪素原子に直接結合している。上記アルケニル基の炭素−炭素二重結合における炭素原子が、珪素原子に結合していてもよく、上記アルケニル基の炭素−炭素二重結合における炭素原子とは異なる炭素原子が、珪素原子に結合していてもよい。
ダイボンド材のガスバリア性をより一層高める観点からは、第2のシリコーン樹脂は、アルケニル基と、アリール基とを有することが好ましい。該アリール基としては、無置換のフェニル基、置換フェニル基、無置換のフェニレン基、及び置換フェニレン基が挙げられる。
ガスバリア性により一層優れたダイボンド材を得る観点からは、上記第2のシリコーン樹脂は、下記式(51A)又は下記式(51B)で表される第2のシリコーン樹脂であることが好ましい。ただし、第2のシリコーン樹脂として、下記式(51A)又は下記式(51B)で表される第2のシリコーン樹脂以外の第2のシリコーン樹脂を用いてもよい。下記式(51B)で表される第2のシリコーン樹脂は、フェニレン基を有していてもよく、フェニレン基を有していなくてもよい。上記第2のシリコーン樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記式(51A)中、p、q及びrは、p/(p+q+r)=0.05〜0.50、q/(p+q+r)=0〜0.40及びr/(p+q+r)=0.30〜0.80を満たし、R51〜R56は、少なくとも1個がアルケニル基を表し、アルケニル基以外のR51〜R56は、炭素数1〜8の炭化水素基を表す。なお、上記式(51A)中、(R54R55SiO2/2)で表される構造単位及び(R56SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
上記式(51B)中、p、q、r及びsは、p/(p+q+r+s)=0.05〜0.50、q/(p+q+r+s)=0〜0.40、r/(p+q+r+s)=0.30〜0.80及びs/(p+q+r+s)=0.01〜0.40を満たし、R51〜R56は、少なくとも1個がアルケニル基を表し、アルケニル基以外のR51〜R56は炭素数1〜8の炭化水素基を表し、R57〜60はそれぞれ、炭素数1〜8の炭化水素基を表し、R61は、炭素数1〜8の2価の炭化水素基を表す。なお、上記式(51B)中、(R54R55SiO2/2)で表される構造単位、(R56SiO3/2)で表される構造単位、(R57R58R59R60Si2R61O2/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
上記式(51A)及び式(51B)は平均組成式を示す。上記式(51A)及び式(51B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(51A)及び式(51B)中のR51〜R56は同一であってもよく、異なっていてもよい。上記式(51B)中のR57〜R60は同一であってもよく、異なっていてもよい。
上記式(51A)及び式(51B)中、アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。ガスバリア性をより一層高める観点からは、第2のシリコーン樹脂におけるアルケニル基及び上記式(51A)及び式(51B)中のアルケニル基は、ビニル基又はアリル基であることが好ましく、ビニル基であることがより好ましい。
上記式(51A)及び式(51B)における炭素数1〜8の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、t−ペンチル基、イソへキシル基、シクロヘキシル基、ビニル基、アリル基及びフェニル基が挙げられる。上記式(51B)における炭素数1〜8の2価の炭化水素基としては特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基、及びフェニレン基等が挙げられる。
ダイボンド材のガスバリア性をより一層高め、かつ剥離をより一層生じ難くする観点からは、上記第2のシリコーン樹脂が、下記式(51A)又は下記式(51B)で表され、かつ珪素原子に結合した水素原子を有さず、かつアルケニル基及びアリール基を有する第2のシリコーン樹脂であることが好ましい。
ガスバリア性により一層優れたダイボンド材を得る観点からは、上記式(51A)中、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR51〜R56は、炭素数1〜8の炭化水素基を表すことが好ましい。
ガスバリア性により一層優れたダイボンド材を得る観点からは、上記式(51B)中、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR51〜R56は炭素数1〜8の炭化水素基を表し、R57〜60はそれぞれ、炭素数1〜8の炭化水素基を表し、R61は、炭素数1〜8の2価の炭化水素基を表すことが好ましい。
上記第2のシリコーン樹脂における下記式(X51)より求められるアリール基の含有比率は10モル%以上、50モル%以下であることが好ましい。このアリール基の含有比率が10モル%以上であると、ガスバリア性がより一層高くなる。アリール基の含有比率が50モル%以下であると、ダイボンド材の剥離が生じ難くなる。ガスバリア性を更に一層高める観点からは、アリール基の含有比率は20モル%以上であることがより好ましい。剥離をより一層生じ難くする観点からは、アリール基の含有比率は、40モル%以下であることがより好ましい。
アリール基の含有比率(モル%)=(第2のシリコーン樹脂の1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/第2のシリコーン樹脂の数平均分子量)×100 ・・・式(X51)
上記式(51A)又は上記式(51B)で表される第2のシリコーン樹脂を用いる場合には、上記式(X51)中、「第2のシリコーン樹脂」は、「平均組成式が上記式(51A)又は上記式(51B)で表される第2のシリコーン樹脂」を示す。
上記式(51A)で表され、フェニル基を有する第2のシリコーン樹脂を用いる場合には、上記式(X51)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
上記式(51B)で表され、フェニル基とフェニレン基とを有する第2のシリコーン樹脂を用いる場合には、上記式(X51)におけるアリール基はフェニル基とフェニレン基とを示し、アリール基の含有比率はフェニル基とフェニレン基との合計の含有比率を示す。
上記式(51B)で表され、フェニル基を有し、かつフェニレン基を有さない第2のシリコーン樹脂を用いる場合には、上記式(X51)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
ガスバリア性をより一層高める観点からは、上記式(51B)中、(R57R58R59R60Si2R61O2/2)の構造単位は、下記式(51b−1)で表される構造単位であることが好ましい。下記式(51b−1)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。
上記式(51b−1)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。上記炭化水素基は直鎖状であってもよく、分岐状であってもよい。なお、上記式(51b−1)中のベンゼン環に結合している3つの基の結合部位は特に限定されない。
上記式(51B)中、(R57R58R59R60Si2R61O2/2)の構造単位は、下記式(51b−2)で表される構造単位であることが好ましい。下記式(51b−2)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。下記式(51b−2)中のベンゼン環に結合しているRbの結合部位は特に限定されない。
上記式(51b−2)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(51B)中、(R57R58R59R60Si2R61O2/2)の構造単位は、下記式(51b−3)で表される構造単位であることがより好ましい。下記式(51b−3)で表される構造単位はフェニレン基を有し、該フェニレン基は無置換のフェニレン基である。
上記式(51b−3)中、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(51A)又は式(51B)で表される第2のシリコーン樹脂において、(R54R55SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(51−2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R54R55SiXO1/2) ・・・式(51−2)
(R54R55SiO2/2)で表される構造単位は、下記式(51−b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−2−b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R54及びR55で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R54R55SiO2/2)で表される構造単位に含まれる。
上記式(51−2)及び(51−2−b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−b)、(51−2)及び(51−2−b)中のR54及びR55は、上記式(51A)又は式(51B)中のR54及びR55と同様の基である。
上記式(51A)又は式(51B)で表される第2のシリコーン樹脂において、(R56SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(51−3)又は(51−4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。
(R56SiX2O1/2) ・・・式(51−3)
(R56SiXO2/2) ・・・式(51−4)
(R56SiO3/2)で表される構造単位は、下記式(51−c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−3−c)又は(51−4−c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R56で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R56SiO3/2)で表される構造単位に含まれる。
上記式(51−3)、(51−3−c)、(51−4)及び(51−4−c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−c)、(51−3)、(51−3−c)、(51−4)及び(51−4−c)中のR56は、上記式(51A)及び(51B)中のR56と同様の基である。
上記式(51B)で表される第2のシリコーン樹脂において、(R57R58R59R60Si2R61O2/2)で表される構造単位は、下記式(51−5)で表される構造、すなわち、(R57R58R59R60Si2R61O2/2)の構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R57R58R59R60Si2XR61O1/2) ・・・式(51−5)
(R57R58R59R60Si2R61O2/2)で表される構造単位は、下記式(51−d)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−5−d)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R57、R58、R59、R60及びR61で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R57R58R59R60Si2R61O2/2)で表される構造単位に含まれる。
上記式(51−5)及び(51−5−d)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−d)、(51−5)及び(51−5−d)中のR57〜R61は、上記式(51B)中のR57〜R61と同様の基である。
上記式(51−b)〜(51−d)、式(51−2)〜(51−5)、並びに式(51−2−b)、(51−3−c)、(51−4−c)、及び(51−5−d)において、直鎖状又は分岐状の炭素数1〜4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基及びt−ブトキシ基が挙げられる。
上記式(51A)中、p/(p+q+r)の下限は0.05、上限は0.50である。p/(p+q+r)が上記下限及び上限を満たすと、ダイボンド材の耐熱性をより一層高めることができ、かつダイボンド材の剥離をより一層抑制できる。上記式(51A)中、中、p/(p+q+r)の好ましい下限は0.10、より好ましい下限は0.15であり、好ましい上限は0.45、より好ましい上限は0.40である。
上記式(51A)中、q/(p+q+r)の下限は0、上限は0.40である。q/(p+q+r)上記上限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。上記式(51A)中、q/(p+q+r)の好ましい上限は0.35、より好ましい上限は0.30である。なお、qが0であり、q/(p+q+r)が0である場合、上記式(51A)中、(R54R55SiO2/2)の構造単位は存在しない。
上記式(51A)中、r/(p+q+r)の下限は0.30、上限は0.80である。r/(p+q+r)が上記下限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。r/(p+q+r)が上記上限を満たすと、ダイボンド材の耐熱性が高くなり、かつ高温環境下でダイボンド材の硬化物の厚みが減少し難くなる。
上記式(51B)中、p/(p+q+r+s)の下限は0.05、上限は0.50である。p/(p+q+r+s)が上記上限を満たすと、ダイボンド材の耐熱性をより一層高めることができ、かつダイボンド材の剥離をより一層抑制できる。
上記式(51B)中、q/(p+q+r+s)の下限は0、上限は0.40である。q/(p+q+r+s)が上記上限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。なお、qが0であり、q/(p+q+r+s)が0である場合、上記式(51B)中、(R54R55SiO2/2)の構造単位は存在しない。
上記式(51B)中、r/(p+q+r+s)の下限は0.30、上限は0.80である。r/(p+q+r+s)が上記下限を満たすと、ダイボンド材の高温での貯蔵弾性率を高くすることができる。上記上限を満たすと、ダイボンド材の耐熱性が高くなり、かつ高温環境下でダイボンド材の硬化物の厚みが減少し難くなる。
上記式(51B)中、s/(p+q+r+s)の下限は0.01、上限は0.40である。s/(p+q+r+s)が上記下限及び上限を満たすと、腐食性ガスに対して高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離が生じ難い光半導体装置用ダイボンド材を得ることができる。腐食性ガスに対してより一層高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離がより一層生じ難い光半導体装置用ダイボンド材を得る観点からは、上記式(51B)中、s/(p+q+r+s)の好ましい下限は0.03、より好ましい下限は0.05、好ましい上限は0.35、より好ましい上限は0.30である。
上記第2のシリコーン樹脂について、テトラメチルシラン(以下、TMS)を基準に29Si−核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(51A)及び式(51B)中の(R51R52R53SiO1/2)pで表される構造単位に相当するピークは+10〜−5ppm付近に現れ、上記式(51A)及び式(51B)中の(R54R55SiO2/2)q及び(51−2)の二官能構造単位に相当する各ピークは−10〜−50ppm付近に現れ、上記式(51A)及び式(51B)中の(R56SiO3/2)r、並びに(51−3)及び(51−4)の三官能構造単位に相当する各ピークは−50〜−80ppm付近に現れ、上記式(51B)中の(R57R58R59R60Si2R61O2/2)dに相当するピークは0〜−5ppm付近に現れる。
従って、29Si−NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(51A)及び式(51B)中の各構造単位の比率を測定できる。
但し、上記TMSを基準にした29Si−NMRの測定で上記式(51A)及び式(51B)中の構造単位の見分けがつかない場合は、29Si−NMRの測定結果だけではなく、1H−NMRの測定結果を必要に応じて用いることにより、上記式(51A)及び式(51B)中の各構造単位の比率を見分けることができる。
上記第1のシリコーン樹脂100重量部に対して、上記第2のシリコーン樹脂の含有量は10重量部以上、400重量部以下であることが好ましい。第1,第2のシリコーン樹脂の含有量がこの範囲内であると、高温での貯蔵弾性率がより一層高く、かつガスバリア性により一層優れたダイボンド材を得ることができる。高温での貯蔵弾性率がさらに一層高く、かつガスバリア性にさらに一層優れたダイボンド材を得る観点からは、上記第1のシリコーン樹脂100重量部に対して、上記第2のシリコーン樹脂の含有量のより好ましい下限は30重量部、更に好ましい下限は50重量部、より好ましい上限は300重量部、更に好ましい上限は200重量部である。
上記光半導体装置用ダイボンド材100重量%中、第1,第2のシリコーン樹脂の合計の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下である。第1,第2のシリコーン樹脂の含有量が上記下限以上及び上記上限以下であると、ダイボンド材の粘度を適度な範囲に容易に調整でき、かつダイボンド材の硬化性を高めることができる。
ガスバリア性により一層優れているダイボンド材を得る観点からは、本発明に係る光半導体装置用ダイボンド材は、上記式(1B)で表される第1のシリコーン樹脂及び上記式(51B)で表される第2のシリコーン樹脂の内の少なくとも一方を含むことが好ましい。
(第1,第2のシリコーン樹脂の他の性質及びその合成方法)
上記第1,第2のシリコーン樹脂のアルコキシ基の含有量の好ましい下限は0.5モル%、より好ましい下限は1モル%、好ましい上限は10モル%、より好ましい上限は5モル%である。アルコキシ基の含有量が上記好ましい範囲内であると、ダイボンド材の密着性を高めることができる。
上記第1,第2のシリコーン樹脂のアルコキシ基の含有量の好ましい下限は0.5モル%、より好ましい下限は1モル%、好ましい上限は10モル%、より好ましい上限は5モル%である。アルコキシ基の含有量が上記好ましい範囲内であると、ダイボンド材の密着性を高めることができる。
アルコキシ基の含有量が上記好ましい下限を満たすと、ダイボンド材の密着性を高めることができる。アルコキシ基の含有量が上記好ましい上限を満たすと、第1,第2のシリコーン樹脂及びダイボンド材の貯蔵安定性が高くなり、ダイボンド材の耐熱性がより一層高くなる。
上記アルコキシ基の含有量は、第1,第2のシリコーン樹脂の平均組成式中に含まれる上記アルコキシ基の量を意味する。
上記第1,第2のシリコーン樹脂はシラノール基を含有しないほうが好ましい。第1,第2のシリコーン樹脂がシラノール基を含有しないと、第1,第2のシリコーン樹脂及びダイボンド材の貯蔵安定性が高くなる。上記シラノール基は、真空下での加熱により減少させることができる。シラノール基の含有量は、赤外分光法を用いて測定できる。
上記第1,第2のシリコーン樹脂の数平均分子量(Mn)の好ましい下限は500、より好ましい下限は800、更に好ましい下限は1000、好ましい上限は50000、より好ましい上限は15000である。数平均分子量が上記好ましい下限を満たすと、熱硬化時に揮発成分が少なくなり、高温環境下でダイボンド材の硬化物の厚みが減少しにくくなる。数平均分子量が上記好ましい上限を満たすと、粘度調節が容易である。
上記数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレンを標準物質して求めた値である。上記数平均分子量(Mn)は、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF−804(長さ300mm)を2本、測定温度:40℃、流速:1mL/分、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いて測定された値を意味する。
上記第1,第2のシリコーン樹脂を合成する方法としては特に限定されず、アルコキシシラン化合物を加水分解し縮合反応させる方法、クロロシラン化合物を加水分解し縮合させる方法が挙げられる。なかでも、反応の制御の観点からアルコキシシラン化合物を加水分解する方法が好ましい。
アルコキシシラン化合物を加水分解し縮合反応させる方法としては、例えば、アルコキシシラン化合物、水と酸性触媒又は塩基性触媒との存在下で反応させる方法が挙げられる。また、ジシロキサン化合物を加水分解して用いてもよい。
上記第1,第2のシリコーン樹脂にフェニル基を導入するための有機珪素化合物としては、トリフェニルメトキシシラン、トリフェニルエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチル(フェニル)ジメトキシシラン、及びフェニルトリメトキシシラン等が挙げられる。
上記第1,第2のシリコーン樹脂に(R57R58R59R60Si2R61O2/2)、(R7R8R9R10Si2R11O2/2)を導入するための有機珪素化合物としては、例えば、1,4−ビス(ジメチルメトキシシリル)ベンゼン、1,4−ビス(ジエチルメトキシシリル)ベンゼン、1,4ービス(エトキシエチルメチルシリル)ベンゼン、1,6−ビス(ジメチルメトキシシリル)ヘキサン、1,6−ビス(ジエチルメトキシシリル)ヘキサン及び1,6−ビス(エトキシエチルメチルシリル)ヘキサン等が挙げられる。
上記第1,第2のシリコーン樹脂にアルケニル基を導入するための有機珪素化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、メトキシジメチルビニルシラン、ビニルジメチルエトキシシラン及び1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン等が挙げられる。
上記第1のシリコーン樹脂に珪素原子に結合した水素原子を導入するための有機珪素化合物としては、トリメトキシシラン、トリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、及び1,1,3,3−テトラメチルジシロキサン等が挙げられる。
上記第1,第2のシリコーン樹脂を得るために用いることができる他の有機珪素化合物としては、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、イソプロピル(メチル)ジメトキシシラン、シクロヘキシル(メチル)ジメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン及びオクチルトリメトキシシラン等が挙げられる。
上記酸性触媒としては、例えば、無機酸、有機酸、無機酸の酸無水物及びその誘導体、並びに有機酸の酸無水物及びその誘導体が挙げられる。
上記無機酸としては、例えば、塩酸、リン酸、ホウ酸及び炭酸が挙げられる。上記有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、リンゴ酸、酒石酸、クエン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸及びオレイン酸が挙げられる。
上記塩基性触媒としては、例えば、アルカリ金属の水酸化物、アルカリ金属のアルコキシド及びアルカリ金属のシラノール化合物が挙げられる。
上記アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム及び水酸化セシウムが挙げられる。上記アルカリ金属のアルコキシドとしては、例えば、ナトリウム−t−ブトキシド、カリウム−t−ブトキシド及びセシウム−t−ブトキシドが挙げられる。
上記アルカリ金属のシラノール化合物としては、例えば、ナトリウムシラノレート化合物、カリウムシラノレート化合物及びセシウムシラノレート化合物が挙げられる。なかでも、カリウム系触媒又はセシウム系触媒が好適である。
(ヒドロシリル化反応用触媒)
本発明に係る光半導体装置用ダイボンド材に含まれているヒドロシリル化反応用触媒は、上記第1のシリコーン樹脂中の珪素原子に結合した水素原子と、上記第2のシリコーン樹脂中のアルケニル基とをヒドロシリル化反応させる触媒である。
本発明に係る光半導体装置用ダイボンド材に含まれているヒドロシリル化反応用触媒は、上記第1のシリコーン樹脂中の珪素原子に結合した水素原子と、上記第2のシリコーン樹脂中のアルケニル基とをヒドロシリル化反応させる触媒である。
上記ヒドロシリル化反応用触媒として、ヒドロシリル化反応を進行させる各種の触媒を用いることができる。上記ヒドロシリル化反応用触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ヒドロシリル化反応用触媒としては、例えば、白金系触媒、ロジウム系触媒及びパラジウム系触媒等が挙げられる。ダイボンド材の透明性を高くすることができるため、白金系触媒が好ましい。
上記白金系触媒としては、白金粉末、塩化白金酸、白金−アルケニルシロキサン錯体、白金−オレフィン錯体及び白金−カルボニル錯体が挙げられる。特に、白金−アルケニルシロキサン錯体又は白金−オレフィン錯体が好ましい。
上記白金−アルケニルシロキサン錯体におけるアルケニルシロキサンとしては、例えば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、及び1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等が挙げられる。上記白金−オレフィン錯体におけるオレフィンとしては、例えば、アリルエーテル及び1,6−ヘプタジエン等が挙げられる。
上記白金−アルケニルシロキサン錯体及び白金−オレフィン錯体の安定性を向上させることができるため、上記白金−アルケニルシロキサン錯体又は白金−オレフィン錯体に、アルケニルシロキサン、オルガノシロキサンオリゴマー、アリルエーテル又はオレフィンを添加することが好ましい。上記アルケニルシロキサンは、好ましくは1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンである。上記オルガノシロキサンオリゴマーは、好ましくはジメチルシロキサンオリゴマーである。上記オレフィンは、好ましくは1,6−ヘプタジエンである。
ダイボンド材100重量%中、上記ヒドロシリル化反応用触媒の含有量は、0.01〜0.5重量%の範囲内であることが好ましい。上記ヒドロシリル化反応用触媒の含有量が上記下限以上であると、ダイボンド材を十分に硬化させることが容易であり、ダイボンド材のガスバリア性をより一層高めることができる。上記ヒドロシリル化反応用触媒の含有量が上記上限以下であると、ダイボンド材がより一層変色し難くなる。上記ヒドロシリル化反応用触媒の含有量は、より好ましくは0.02重量%以上、より好ましくは0.3重量%以下である。
(多孔質シリカ)
本発明に係る光半導体装置用ダイボンド材は、多孔質シリカをさらに含む。該多孔質シリカの比表面積は150m2/g以上であり、細孔容積は0.1mL/g以上であり、細孔径は0.5nm以上、10nm以下である。上記多孔質シリカは内部に、複数の孔を有する。このような多孔質シリカの使用により、塗布対象部材上に塗布されたダイボンド材の厚みを均一にすることができる。上記多孔質シリカは、1種のみが用いられてもよく、2種以上が併用されてもよい。
本発明に係る光半導体装置用ダイボンド材は、多孔質シリカをさらに含む。該多孔質シリカの比表面積は150m2/g以上であり、細孔容積は0.1mL/g以上であり、細孔径は0.5nm以上、10nm以下である。上記多孔質シリカは内部に、複数の孔を有する。このような多孔質シリカの使用により、塗布対象部材上に塗布されたダイボンド材の厚みを均一にすることができる。上記多孔質シリカは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記多孔質シリカの比表面積は150m2/g以上である。ダイボンド材の硬化時に揮発分の発生量をより一層少なくする観点からは、多孔質シリカの比表面積は、好ましくは300m2/g以上、好ましくは500m2/g以下、より好ましくは400m2/g以下である。また、上記多孔質シリカの比表面積が上記上限以下であると、多孔質シリカの凝集が生じ難くなり、分散性を高くすることができ、更にダイボンド材の硬化物の透明性をより一層高くすることができる。
上記比表面積は、具体的には、BET比表面積を示す。
上記多孔質シリカの細孔容積は、0.1mL/g以上である。ダイボンド材の硬化時に揮発分の発生量をより一層少なくする観点からは、多孔質シリカの細孔容積は、好ましくは0.1mL/g以上、好ましくは10mL/g以下、より好ましくは5mL/g以下である。
上記細孔容積とは、具体的には、全細孔容積を示す。
上記細孔径は、0.5nm以上、10nm以下である。ダイボンド材の硬化時に揮発分の発生量をより一層少なくする観点からは、揮発分である物質の分子径に近い値が好ましく、多孔質シリカの細孔径は、好ましくは1nm以上、好ましくは8nm以下である。
上記細孔径とは、細孔直径を示す。
上記多孔質シリカとしては特に限定されず、例えば、フュームドシリカ及び溶融シリカ等の乾式法で製造されたシリカ、並びにコロイダルシリカ、ゾルゲルシリカ及び沈殿シリカ等の湿式法で製造されたシリカ等が挙げられる。なかでも、揮発成分が少なく、かつ透明性がより一層高いダイボンド材を得る観点からは、上記多孔質シリカとして、フュームドシリカが好適に用いられる。
さらに、多孔質シリカとしては、具体的には、天然シリカ原料を粉砕して得られる結晶性シリカ、天然シリカ原料を火炎溶融し、粉砕して得られる破砕溶融シリカ、天然シリカ原料を火炎溶融して得られる球状溶融シリカ、天然シリカ原料を粉砕及び火炎溶融して得られる球状溶融シリカ、及びゾルゲル法シリカなどの合成シリカ等が挙げられる。
上記フュームドシリカとしては、例えば、Aerosil 50(比表面積:50m2/g)、Aerosil 90(比表面積:90m2/g)、Aerosil 130(比表面積:130m2/g)、Aerosil 200(比表面積:200m2/g)、Aerosil 300(比表面積:300m2/g)、及びAerosil 380(比表面積:380m2/g)(いずれも日本アエロジル社製)等が挙げられる。
上記多孔質シリカは、有機珪素化合物により表面処理されていることが好ましい。この表面処理により、多孔質シリカの分散性が非常に高くなり、硬化前のダイボンド材の温度上昇による粘度の低下をより一層抑制できる。
上記有機珪素化合物としては特に限定されず、例えば、アルキル基を有するシラン系化合物、ジメチルシロキサン等のシロキサン骨格を有する珪素系化合物、アミノ基を有する珪素系化合物、(メタ)アクリロイル基を有する珪素系化合物、及びエポキシ基を有する珪素系化合物等が挙げられる。上記「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基とを意味する。
上記多孔質シリカの分散性をさらに一層高める観点からは、表面処理に用いられる上記有機珪素化合物は、トリメチルシリル基を有する有機珪素化合物及びポリジメチルシロキサン基を有する有機珪素化合物の内の少なくとも1種であることが好ましい。上記多孔質シリカは、トリメチルシリル基を有する有機珪素化合物及びポリジメチルシロキサン基を有する有機珪素化合物の内の少なくとも1種により表面処理されていることが好ましい。
有機珪素化合物により表面処理する方法の一例として、トリメチルシリル基を有する有機珪素化合物を用いる場合には、例えば、ヘキサメチルジシラザン、トリメチルシリルクロライド及びトリメチルメトキシシラン等を用いて、多孔質シリカを表面処理する方法が挙げられる。ポリジメチルシロキサン基を有する有機珪素化合物を用いる場合には、ポリジメチルシロキサン基の末端にシラノール基を有する化合物及び環状シロキサン等を用いて、多孔質シリカを表面処理する方法が挙げられる。
上記トリメチルシリル基を有する有機珪素化合物により表面処理された多孔質シリカの市販品としては、RX200(比表面積:140m2/g)、及びR8200(比表面積:140m2/g)(いずれも日本アエロジル社製)等が挙げられる。
上記ポリジメチルシロキサン基を有する有機珪素化合物により表面処理された多孔質シリカの市販品としては、RY200(比表面積:120m2/g)(日本アエロジル社製)等が挙げられる。
上記有機珪素化合物により多孔質シリカを表面処理する方法は特に限定されない。この方法としては、例えば、ミキサー中に多孔質シリカを添加し、攪拌しながら有機珪素化合物を添加する乾式法、多孔質シリカのスラリー中に有機珪素化合物を添加するスラリー法、並びに、多孔質シリカの乾燥後に有機珪素化合物をスプレー付与するスプレー法などの直接処理法等が挙げられる。上記乾式法で用いられるミキサーとしては、ヘンシェルミキサー及びV型ミキサー等が挙げられる。上記乾式法では、有機珪素化合物は、直接、又は、アルコール水溶液、有機溶媒溶液若しくは水溶液として添加される。
上記有機珪素化合物により表面処理されている多孔質シリカを得るために、光半導体装置用ダイボンド材を調製する際に、多孔質シリカと上記第1,第2のシリコーン樹脂等のマトリクス樹脂との混合時に、有機珪素化合物を直接添加するインテグレルブレンド法等を用いてもよい。
上記光半導体装置用ダイボンド材100重量%中、上記多孔質シリカの含有量は、5重量%以上、30重量%以下であることが好ましい。上記ダイボンド材100重量%中、上記多孔質シリカの含有量は、より好ましくは25重量%以下である。上記多孔質シリカの含有量が上記下限以上であると、ダイボンド材の硬化物の耐熱性及び耐光性を損なうことなく、硬化前のダイボンド材の粘度を適当な範囲に調整できる。上記多孔質シリカの含有量が上記上限以下であると、ダイボンド材の粘度をより一層適正な範囲に制御でき、かつダイボンド材の透明性をより一層高めることができる。
本発明に係る光半導体装置用ダイボンド材が、上記有機珪素化合物により表面処理された多孔質シリカを含有することにより、アリール基を有する第2のシリコーン樹脂又はアリール基を有する第1のシリコーン樹脂を含有していても、ダイボンド材の高温での粘度を十分な高さに維持できる。これにより、ダイボンド材が高温に加熱された時の粘度を適切な範囲に調整でき、ダイボンド材中の多孔質シリカの分散状態を良好にすることができる。このため、ダイボンド材の透明性をより一層高めることができる。
(カップリング剤)
本発明に係る光半導体装置用ダイボンド材は、接着性を付与するために、カップリング剤をさらに含んでいてもよい。
本発明に係る光半導体装置用ダイボンド材は、接着性を付与するために、カップリング剤をさらに含んでいてもよい。
上記カップリング剤としては特に限定されず、例えば、シランカップリング剤等が挙げられる。該シランカップリング剤としては、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、及びN−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。カップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(他の成分)
本発明に係る光半導体装置用ダイボンド材は、必要に応じて、紫外線吸収剤、酸化防止剤、溶剤、着色剤、充填剤、消泡剤、表面処理剤、難燃剤、粘度調節剤、分散剤、分散助剤、表面改質剤、可塑剤、防黴剤、レベリング剤、安定剤、カップリング剤、タレ防止剤又は蛍光体等を含有してもよい。
本発明に係る光半導体装置用ダイボンド材は、必要に応じて、紫外線吸収剤、酸化防止剤、溶剤、着色剤、充填剤、消泡剤、表面処理剤、難燃剤、粘度調節剤、分散剤、分散助剤、表面改質剤、可塑剤、防黴剤、レベリング剤、安定剤、カップリング剤、タレ防止剤又は蛍光体等を含有してもよい。
(光半導体装置用ダイボンド材の詳細及び用途)
本発明に係る光半導体装置用ダイボンド材は、ペースト状であってもよく、フィルム状であってもよい。本発明に係る光半導体装置用ダイボンド材は、ペースト状であることが好ましい。
本発明に係る光半導体装置用ダイボンド材は、ペースト状であってもよく、フィルム状であってもよい。本発明に係る光半導体装置用ダイボンド材は、ペースト状であることが好ましい。
上記第1のシリコーン樹脂と、上記第2のシリコーン樹脂と、上記ヒドロシリル化反応用触媒とは、これらを1種又は2種以上含む液を別々に調製しておき、使用直前に複数の液を混合して、本発明に係る光半導体装置用ダイボンド材を調製してもよい。例えば、上記第2のシリコーン樹脂及び上記ヒドロシリル化反応用触媒を含むA液と、第1のシリコーン樹脂を含むB液とを別々に調製しておき、使用直前にA液とB液を混合して、ダイボンド材を調製してもよい。この場合に、上記多孔質シリカは、A液に含まれていてもよく、B液に含まれていてもよい。このように上記第2のシリコーン樹脂及び上記ヒドロシリル化反応用触媒と上記第1のシリコーン樹脂とを別々に、第1の液と第2の液との2液にすることによって保存安定性を向上させることができる。
本発明に係る光半導体装置用ダイボンド材の製造方法としては特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリウムミキサー、ニーダー、三本ロール又はビーズミル等の混合機を用いて、常温又は加温下で、上記第1のシリコーン樹脂、上記第2のシリコーン樹脂、上記ヒドロシリル化反応用触媒、上記多孔質シリカ及び必要に応じて配合される他の成分を混合する方法等が挙げられる。
本発明に係る光半導体装置用ダイボンド材を、基板等の接続対象部材上に配置し、又は光半導体素子の下面に配置し、ダイボンド材を介して接続対象部材と光半導体素子とを接続することにより、光半導体装置を得ることができる。
本発明に係る光半導体装置用ダイボンド材の硬化温度は特に限定されない。光半導体装置用ダイボンド材の硬化温度は、好ましくは80℃以上、より好ましくは100℃以上、好ましくは180℃以下、より好ましくは150℃以下である。硬化温度が上記好ましい下限以上であると、ダイボンド材の硬化が充分に進行する。硬化温度が上記好ましい上限以下であると、ダイボンド材及びダイボンド材により接合される部材の熱劣化が起こり難い。
硬化には特に限定されないが、ステップキュア方式を用いることが好ましい。ステップキュア方式は、一旦低温で仮硬化させておき、その後に高温で硬化させる方法である。ステップキュア方式の使用により、ダイボンド材の硬化収縮を抑えることができる。
(光半導体装置)
本発明に係る光半導体装置は、光半導体装置用ダイボンド材と、接続対象部材と、上記光半導体装置用ダイボンド材を用いて上記接続対象部材に接続された光半導体素子とを備える。
本発明に係る光半導体装置は、光半導体装置用ダイボンド材と、接続対象部材と、上記光半導体装置用ダイボンド材を用いて上記接続対象部材に接続された光半導体素子とを備える。
本発明に係る光半導体装置としては、具体的には、例えば、発光ダイオード装置、半導体レーザー装置及びフォトカプラ等が挙げられる。このような光半導体装置は、例えば、液晶ディスプレイ等のバックライト、照明、各種センサー、プリンター及びコピー機等の光源、車両用計測器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト並びにスイッチング素子等に好適に用いることができる。
上記光半導体素子である発光素子としては、半導体を用いた発光素子であれば特に限定されず、例えば、上記発光素子が発光ダイオードである場合、例えば、基板上にLED形式用半導体材料を積層した構造が挙げられる。この場合、半導体材料としては、例えば、GaAs、GaP、GaAlAs、GaAsP、AlGaInP、GaN、InN、AlN、InGaAlN、及びSiC等が挙げられる。
上記基板の材料としては、例えば、サファイア、スピネル、SiC、Si、ZnO、及びGaN単結晶等が挙げられる。また、必要に応じ基板と半導体材料との間にバッファー層が形成されていてもよい。上記バッファー層の材料としては、例えば、GaN及びAlN等が挙げられる。
図1は、本発明の一実施形態に係る光半導体装置を示す正面断面図である。
本実施形態の光半導体装置1は、接続対象部材であるハウジング2と、光半導体素子3とを有する。ハウジング2内にLED素子である光半導体素子3が実装されている。この光半導体素子3の周囲を、ハウジング2の光反射性を有する内面2aが取り囲んでいる。本実施形態では、光半導体により形成された発光素子として、光半導体素子3が用いられている。
ハウジング2の内面2aは、内面2aの径が開口端に向かうにつれて大きくなるように形成されている。従って、光半導体素子3から発せられた光のうち、内面2aに到達した光B1が内面2aにより反射され、光半導体素子3の前方側に進行する。
光半導体素子3は、ハウジング2に設けられたリード電極4に、ダイボンド材5を用いて接続されている。ダイボンド材5は、光半導体装置用ダイボンド材である。光半導体素子3に設けられたボンディングパッド(図示せず)とリード電極4とが、ボンディングワイヤー6により電気的に接続されている。光半導体素子3及びボンディングワイヤー6を封止するように、内面2aで囲まれた領域内には、封止剤7が充填されている。
ダイボンド材5は、光半導体素子3の底部からはみ出してその周囲を囲むように配置されてもよく、光半導体素子3の底部からはみ出さないように配置されてもよい。ダイボンド材5の厚みは、2〜50μmの範囲内であることが好ましい。
光半導体装置1では、光半導体素子3を駆動すると、破線Aで示すように光が発せられる。この場合、光半導体素子3からリード電極4の上面とは反対側すなわち上方に照射される光だけでなく、ダイボンド材5に到達した光が矢印B2で示すように反射される光もある。
なお、図1に示す構造は、本発明に係る光半導体装置の一例にすぎず、光半導体素子3の実装構造等には適宜変形され得る。
以下に、実施例を挙げて本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
(第1,第2のシリコーン樹脂)
第1,第2のシリコーン樹脂を以下のようにして合成した。
第1,第2のシリコーン樹脂を以下のようにして合成した。
(合成例1)第1のシリコーン樹脂の合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルメトキシシラン120g、メチルトリメトキシシラン54g、及び1,1,3,3−テトラメチルジシロキサン40gを入れ、50℃で攪拌した。その中に、塩酸1.2gと水83gとの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(A)を得た。
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルメトキシシラン120g、メチルトリメトキシシラン54g、及び1,1,3,3−テトラメチルジシロキサン40gを入れ、50℃で攪拌した。その中に、塩酸1.2gと水83gとの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(A)を得た。
得られたポリマー(A)の数平均分子量(Mn)は1500であった。29Si−NMRより化学構造を同定した結果、ポリマー(A)は、下記の平均組成式(A1)を有していた。
(HMe2SiO1/2)0.20(Me2SiO2/2)0.50(MeSiO3/2)0.30 …式(A1)
上記式(A1)中、Meはメチル基を示す。
なお、合成例1及び合成例2〜3で得られた各ポリマーの分子量は、10mgにテトラヒドロフラン1mLを加え、溶解するまで攪拌し、GPC測定により測定した。GPC測定では、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC
LF−804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。
LF−804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。
(合成例2)第1のシリコーン樹脂の合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、メチルトリメトキシシラン204g、ビニルメチルジメトキシシラン40g、及び1,1,3,3−テトラメチルジシロキサン80gを入れ、50℃で攪拌した。その中に、塩酸1.2gと水102gとの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(B)を得た。
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、メチルトリメトキシシラン204g、ビニルメチルジメトキシシラン40g、及び1,1,3,3−テトラメチルジシロキサン80gを入れ、50℃で攪拌した。その中に、塩酸1.2gと水102gとの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(B)を得た。
得られたポリマー(B)の数平均分子量(Mn)は1500であった。29Si−NMRより化学構造を同定した結果、ポリマー(B)は、下記の平均組成式(B1)を有していた。
(HMe2SiO1/2)0.40(ViMeSiO2/2)0.10(MeSiO3/2)0.50 …式(B1)
上記式(B1)中、Meはメチル基、Viはビニル基を示す。
(合成例3)第2のシリコーン樹脂の合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン41g、ジメチルジメトキシシラン72g、メチルトリメトキシシラン81g、及びビニルメチルジメトキシシラン52gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水114gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(C)を得た。
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン41g、ジメチルジメトキシシラン72g、メチルトリメトキシシラン81g、及びビニルメチルジメトキシシラン52gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水114gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(C)を得た。
得られたポリマー(C)の数平均分子量(Mn)は2000であった。29Si−NMRより化学構造を同定した結果、ポリマー(C)は、下記の平均組成式(C1)を有していた。
(Me3SiO1/2)0.20(ViMeSiO2/2)0.20(Me2SiO2/2)0.30(MeSiO3/2)0.30 …式(C1)
上記式(C1)中、Meはメチル基、Viはビニル基を示す。
(他の成分)
実施例及び比較例では、下記のヒドロシリル化反応用触媒を用いた。
実施例及び比較例では、下記のヒドロシリル化反応用触媒を用いた。
白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体
実施例及び比較例では、下記の多孔質シリカを用いた。
多孔質シリカA(富士シリシア社製「スーパーマイクロビーズシリカゲルA」、比表面積200m2/g、細孔容積5mL/g、細孔径1nm)
多孔質シリカB(富士シリシア社製「スーパーマイクロビーズシリカゲルB」、比表面積300m2/g、細孔容積10mL/g、細孔径6nm)
多孔質シリカC(富士シリシア社製「スーパーマイクロビーズシリカゲルC」、比表面積250m2/g、細孔容積0.2mL/g、細孔径6nm)
多孔質シリカD(富士シリシア社製「スーパーマイクロビーズシリカゲルD」、比表面積250m2/g、細孔容積0.05mL/g、細孔径4nm)
多孔質シリカE(富士シリシア社製「スーパーマイクロビーズシリカゲルE」、比表面積300m2/g、細孔容積5mL/g、細孔径20nm)
多孔質シリカB(富士シリシア社製「スーパーマイクロビーズシリカゲルB」、比表面積300m2/g、細孔容積10mL/g、細孔径6nm)
多孔質シリカC(富士シリシア社製「スーパーマイクロビーズシリカゲルC」、比表面積250m2/g、細孔容積0.2mL/g、細孔径6nm)
多孔質シリカD(富士シリシア社製「スーパーマイクロビーズシリカゲルD」、比表面積250m2/g、細孔容積0.05mL/g、細孔径4nm)
多孔質シリカE(富士シリシア社製「スーパーマイクロビーズシリカゲルE」、比表面積300m2/g、細孔容積5mL/g、細孔径20nm)
(実施例1)
ポリマーA5重量部、ポリマーC5重量部、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体0.02重量部、及び多孔質シリカ2.2重量部を混合し、脱泡を行い、光半導体素子用ダイボンド材を得た。
ポリマーA5重量部、ポリマーC5重量部、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体0.02重量部、及び多孔質シリカ2.2重量部を混合し、脱泡を行い、光半導体素子用ダイボンド材を得た。
(実施例2〜4及び比較例1〜3)
使用した材料の種類及び配合量を、下記の表1に示すように変更したこと以外は実施例1と同様にして、光半導体装置用ダイボンド材を得た。
使用した材料の種類及び配合量を、下記の表1に示すように変更したこと以外は実施例1と同様にして、光半導体装置用ダイボンド材を得た。
(評価)
(1)揮発分の発生量
実施例及び比較例で得られた各光半導体装置用ダイボンド材を150℃で3時間加熱し、硬化させた。この時に発生する揮発分の量を測定した。揮発分の発生量を下記の判定基準で判定した。
(1)揮発分の発生量
実施例及び比較例で得られた各光半導体装置用ダイボンド材を150℃で3時間加熱し、硬化させた。この時に発生する揮発分の量を測定した。揮発分の発生量を下記の判定基準で判定した。
[揮発分の発生量の判定基準]
○○:硬化前後での重量減少が0.5%以下
○:硬化前後での重量減少が0.5%を超え、1%以下
△:硬化前後での重量減少が1%を超え、2%以下
×:硬化前後での重量減少が2%を超える
○○:硬化前後での重量減少が0.5%以下
○:硬化前後での重量減少が0.5%を超え、1%以下
△:硬化前後での重量減少が1%を超え、2%以下
×:硬化前後での重量減少が2%を超える
(2)ワイヤーボンディング特性
ダイボンダー(キャノンマシナリー社製「BESTEM−D01R」)を用いて、銀メッキされた銅基板上に得られた光半導体装置用ダイボンド材を、厚みが5μmでダイボンド材上に積層される光半導体素子の大きさとなるように塗布し、ダイボンド層を形成した。次に、ダイボンド層上に光半導体素子を積層し、積層体を得た。
ダイボンダー(キャノンマシナリー社製「BESTEM−D01R」)を用いて、銀メッキされた銅基板上に得られた光半導体装置用ダイボンド材を、厚みが5μmでダイボンド材上に積層される光半導体素子の大きさとなるように塗布し、ダイボンド層を形成した。次に、ダイボンド層上に光半導体素子を積層し、積層体を得た。
得られた積層体を150℃で3時間加熱し、ダイボンド層を硬化させた。次に、ダイボンド層上の光半導体素子上に設けられた電極パッド上にワイヤーボンディングを行った。このときのワイヤーボンディング特性を下記の判定基準で判定した。
[ワイヤーボンディング特性の判定基準]
○○:1000サンプル中ワイヤーボンドNG(不良)無し
○:1000サンプル中ワイヤーボンドNG1サンプル
△:1000サンプル中ワイヤーボンドNG2サンプル
×:1000サンプル中ワイヤーボンドNG3サンプル以上
○○:1000サンプル中ワイヤーボンドNG(不良)無し
○:1000サンプル中ワイヤーボンドNG1サンプル
△:1000サンプル中ワイヤーボンドNG2サンプル
×:1000サンプル中ワイヤーボンドNG3サンプル以上
(3)接着性(ダイシェア強度)
AgメッキしたCu基板上に、接着面積が3mm×3mmになるように光半導体装置用ダイボンド材を塗布し、3mm角のSiチップを載せて、テストサンプルを得た。
AgメッキしたCu基板上に、接着面積が3mm×3mmになるように光半導体装置用ダイボンド材を塗布し、3mm角のSiチップを載せて、テストサンプルを得た。
得られたテストサンプルを150℃で3時間加熱し、ダイボンド材を硬化させた。次に、ダイシェアテスター(アークテック社製、型番:DAGE 4000)を用いて、300μ/秒の速度で、185℃でのダイシェア強度を評価した。
結果を下記の表1に示す。
1…光半導体装置
2…ハウジング
2a…内面
3…光半導体素子
4…リード電極
5…ダイボンド材
6…ボンディングワイヤー
7…封止剤
2…ハウジング
2a…内面
3…光半導体素子
4…リード電極
5…ダイボンド材
6…ボンディングワイヤー
7…封止剤
Claims (4)
- 珪素原子に結合した水素原子を有する第1のシリコーン樹脂と、
珪素原子に結合した水素原子を有さず、かつアルケニル基を有する第2のシリコーン樹脂と、
ヒドロシリル化反応用触媒と、
多孔質シリカとを含み、
前記多孔質シリカの比表面積が150m2/g以上であり、細孔容積が0.1mL/g以上であり、細孔径が0.5nm以上、10nm以下である、光半導体装置用ダイボンド材。 - 前記第1のシリコーン樹脂が、下記式(1A)又は下記式(1B)で表され、かつ珪素原子に結合した水素原子を有する第1のシリコーン樹脂であり、
前記第2のシリコーン樹脂が、下記式(51A)又は下記式(51B)で表され、かつ珪素原子に結合した水素原子を有さず、かつアルケニル基を有する第2のシリコーン樹脂である、請求項1に記載の光半導体装置用ダイボンド材。
- 前記第1のシリコーン樹脂が、珪素原子に結合した水素原子と、アルケニル基とを有する第1のシリコーン樹脂である、請求項1又は2に記載の光半導体装置用ダイボンド材。
- 請求項1〜3のいずれか1項に記載の光半導体装置用ダイボンド材と、
接続対象部材と、
前記光半導体装置用ダイボンド材を用いて前記接続対象部材に接続された光半導体素子とを備える、光半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010216026A JP2012072207A (ja) | 2010-09-27 | 2010-09-27 | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010216026A JP2012072207A (ja) | 2010-09-27 | 2010-09-27 | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012072207A true JP2012072207A (ja) | 2012-04-12 |
Family
ID=46168744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010216026A Withdrawn JP2012072207A (ja) | 2010-09-27 | 2010-09-27 | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012072207A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014080547A (ja) * | 2012-10-18 | 2014-05-08 | Nippon Kasei Chem Co Ltd | シリコーン樹脂組成物、シリコーン樹脂成形品、半導体発光素子用封止材及び半導体発光装置 |
WO2017122796A1 (ja) * | 2016-01-15 | 2017-07-20 | シチズン時計株式会社 | 縮合反応型のダイボンディング剤、led発光装置及びその製造方法 |
-
2010
- 2010-09-27 JP JP2010216026A patent/JP2012072207A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014080547A (ja) * | 2012-10-18 | 2014-05-08 | Nippon Kasei Chem Co Ltd | シリコーン樹脂組成物、シリコーン樹脂成形品、半導体発光素子用封止材及び半導体発光装置 |
WO2017122796A1 (ja) * | 2016-01-15 | 2017-07-20 | シチズン時計株式会社 | 縮合反応型のダイボンディング剤、led発光装置及びその製造方法 |
JPWO2017122796A1 (ja) * | 2016-01-15 | 2018-11-15 | シチズン時計株式会社 | 縮合反応型のダイボンディング剤、led発光装置及びその製造方法 |
US10461232B2 (en) | 2016-01-15 | 2019-10-29 | Citizen Watch Co., Ltd. | Condensation reaction-type die bonding agent, LED light emitting device and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4911805B2 (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
WO2011125463A1 (ja) | 光半導体装置用封止剤及び光半導体装置 | |
WO2013008842A1 (ja) | 光半導体装置用封止剤及び光半導体装置 | |
WO2012053301A1 (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
JP2012049567A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP5693063B2 (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
JP4951147B1 (ja) | 光半導体装置用硬化性組成物 | |
JP2012007136A (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
JP2012111836A (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
JP2012074416A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP2013253210A (ja) | 光半導体装置用硬化性組成物、光半導体装置及び光半導体装置の製造方法 | |
JP2012222202A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP5323037B2 (ja) | 光半導体装置用封止剤及びそれを用いた光半導体装置 | |
JP2012072207A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP2012197328A (ja) | オルガノポリシロキサンの製造方法、光半導体装置用組成物及び光半導体装置 | |
JP2013122037A (ja) | 光半導体装置用硬化性組成物及び光半導体装置 | |
JP2011249417A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP2012199345A (ja) | 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法 | |
JP5453326B2 (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP5498465B2 (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP2012222309A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
WO2012157330A1 (ja) | 光半導体装置用封止剤及び光半導体装置 | |
JP2012074512A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 | |
JP2012241051A (ja) | 光半導体装置用封止剤及び光半導体装置 | |
JP2012077171A (ja) | 光半導体装置用ダイボンド材及びそれを用いた光半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20131203 |