JP2012071250A - Method of manufacturing regenerated cellulose multilayer structure flat membrane - Google Patents

Method of manufacturing regenerated cellulose multilayer structure flat membrane Download PDF

Info

Publication number
JP2012071250A
JP2012071250A JP2010217672A JP2010217672A JP2012071250A JP 2012071250 A JP2012071250 A JP 2012071250A JP 2010217672 A JP2010217672 A JP 2010217672A JP 2010217672 A JP2010217672 A JP 2010217672A JP 2012071250 A JP2012071250 A JP 2012071250A
Authority
JP
Japan
Prior art keywords
membrane
film
regenerated cellulose
multilayer structure
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010217672A
Other languages
Japanese (ja)
Inventor
Tetsuro Oike
尾池哲郎
Seiichi Manabe
真鍋征一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sepa Sigma Inc
Original Assignee
Sepa Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepa Sigma Inc filed Critical Sepa Sigma Inc
Priority to JP2010217672A priority Critical patent/JP2012071250A/en
Publication of JP2012071250A publication Critical patent/JP2012071250A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a regenerated cellulose multilayer structure flat membrane improved in particle capturability by shortening an interlayer distance, while keeping horizontal-directional pore structure, in the regenerated cellulose multilayer structure flat membrane.SOLUTION: The regenerated cellulose multilayer structure flat membrane is obtained by saponifying a cellulose derivative. In manufacturing thereof, a membrane is designed to have an average pore size of 5-500 nm and a membrane thickness of 20-500 μm, and to be constituted of 100 layers or more of layered product, of which one layer has a thickness of 0.05-0.5 μm, and is compressed along a vertical direction before saponifying the cellulose derivative, and the interlayer distance is thereby brought into 10 times a capturing objective particle diameter or less and an interlayer porosity is 50% or less, to obtain the regenerated cellulose multilayer structure flat membrane enhanced in the particle capturability.

Description


本発明は分離・精製・除去に用いられる多孔性高分子平膜に関するものである。液体および気体中に溶解あるいは分散している有用な高分子、生理活性物質の分離・精製、および有害性微粒子、感染性微生物等の高度な除去を実現するために用いられる膜の製造方法に関する。

The present invention relates to a porous polymer flat membrane used for separation, purification and removal. The present invention relates to a method for producing a membrane used for realizing high-level separation of a useful polymer dissolved in or dispersed in a liquid or gas, a physiologically active substance, and harmful particles, infectious microorganisms, and the like.

バイオテクノロジーにおいて、その原料物質中に含まれる微粒子にはプリオン、ウイルス、細菌などの感染性微粒子の他にタンパク質などの会合体や変性体などがある。これらの微粒子が最終製品の中に混在すると種々の感染症や発熱の原因となる。そのためバイオ技術で得られる製品(特にバイオ医薬品)の製造工程では上記の微粒子の除去あるいは不活化工程が必要である。バイオ医薬のみに限らず生物由来の原料を利用する食品や化粧品の製造工程中では微粒子対策は不可欠である。 In biotechnology, fine particles contained in the raw material include aggregates and denatured bodies such as proteins in addition to infectious fine particles such as prions, viruses and bacteria. When these fine particles are mixed in the final product, it causes various infectious diseases and fever. Therefore, in the production process of products obtained by biotechnology (particularly biopharmaceuticals), the above-described removal or inactivation process of fine particles is necessary. In addition to biopharmaceuticals, countermeasures for fine particles are indispensable in the manufacturing process of foods and cosmetics that use biological materials.

微粒子対策としてウイルス除去膜や除菌フィルターは既に商品化されており、除プリオン膜技術も近い将来市場に出現する可能性がある。膜分離方法としては膜間差圧を物質移動の駆動力とする膜濾過技術と、最近では膜中の孔を通して物質の濃度勾配を駆動力とした孔拡散技術が開発されている。 Virus removal membranes and sterilization filters have already been commercialized as countermeasures against fine particles, and removal prion membrane technology may also appear in the market in the near future. As membrane separation methods, a membrane filtration technique using a transmembrane differential pressure as a driving force for mass transfer and a pore diffusion technique using a concentration gradient of a substance through a pore in the membrane as a driving force have been developed recently.

多層構造膜とは、膜の断面方向から電子顕微鏡で観察すると0.01〜1μmの厚さの層が認められ、この層が100層以上積層した膜である。膜の表面からの電子顕微鏡観察では網目状または粒子間の隙間が孔として、また粒子相互は融着した様子が観察される膜である。   The multilayer structure film is a film in which a layer having a thickness of 0.01 to 1 μm is observed when observed with an electron microscope from the cross-sectional direction of the film, and 100 or more of these layers are laminated. In the electron microscope observation from the surface of the film, it is a film in which a network or a gap between particles is formed as a hole and particles are fused.

平膜とは平面状の膜であり、その平均孔径は(粘度・膜厚・濾過速度/膜間差圧・空孔率)の平方根で与えられる。ここで濾過速度は一平方メートル当りの純水の濾過速度でml/minの単位で測定され、膜厚はミクロン単位、粘度はセンチポイズ、膜間差圧はmmHg単位で、空孔率は無次元単位である。この際の平均孔径はnm単位となる。空孔率は次式で与えられる。
空孔率=(1−膜の密度/素材高分子の密度)
膜の密度は(膜の重量/膜の面積×膜の厚さ)で算出される。素材高分子の密度は空孔率0%の時の膜の密度で、これはすでに文献で与えられる。
A flat membrane is a planar membrane, and the average pore diameter is given by the square root of (viscosity, film thickness, filtration rate / intermembrane differential pressure, porosity). Here, the filtration rate is the filtration rate of pure water per square meter, measured in units of ml / min, the film thickness is in microns, the viscosity is in centipoise, the transmembrane pressure is in mmHg, and the porosity is a dimensionless unit. It is. The average pore diameter at this time is in nm units. The porosity is given by:
Porosity = (1- membrane density / material polymer density)
The density of the film is calculated by (film weight / film area × film thickness). The density of the material polymer is the density of the membrane when the porosity is 0%, and this is already given in the literature.

基本的なミクロ相分離法による多層構造膜の作製方法は特許文献1に詳しい。この方法では膜の表面の平均孔径が小さく、膜裏面の平均孔径は表面の3倍以上となる(特許文献2)。 A method for producing a multilayer structure film by a basic microphase separation method is detailed in Patent Document 1. In this method, the average pore size on the surface of the membrane is small, and the average pore size on the back surface of the membrane is at least three times the surface (Patent Document 2).

乾式によるミクロ相分離法で作製される多層構造膜における膜表面とは気層に接し且つ良溶媒が蒸発する面であり、膜裏面とは固体(支持体)に接する面である。 The film surface in the multilayer structure film produced by the dry microphase separation method is a surface in contact with the gas layer and the good solvent evaporates, and the film back surface is a surface in contact with the solid (support).

セルロース系の平膜を圧縮し、膜の性質を改善する方法は、特許文献3、特許文献4および特許文献5にみられる。特許文献3は逆浸透膜に関するものであり、薄膜自体を圧縮するものではなく、支持体を圧縮し、圧密化することで高圧下でも安定した運転が可能な逆浸透膜を提供するものである。 Methods for compressing a cellulosic flat membrane and improving the properties of the membrane can be found in Patent Document 3, Patent Document 4 and Patent Document 5. Patent Document 3 relates to a reverse osmosis membrane, and does not compress the thin film itself, but provides a reverse osmosis membrane capable of stable operation even under high pressure by compressing and compacting a support. .

また特許文献4はセルロース系高分子と熱可塑性高分子を分子レベルで複合化された平膜に関するものである。セルロース系高分子と熱可塑性高分子などからなる混練物を、圧縮あるいは押し出しによって成形して、平膜を製膜する。 Patent Document 4 relates to a flat film in which a cellulosic polymer and a thermoplastic polymer are combined at the molecular level. A kneaded material composed of a cellulosic polymer and a thermoplastic polymer is formed by compression or extrusion to form a flat film.

孔構造を有した平膜(多孔質体)を圧縮する方法としては、特許文献5にみられる。この方法は厚さ2mmの多孔質体に圧力をかけ、膜厚0.8〜1.5mmとし、白血球に対して安定した捕捉性をもつ分離材を得るものである。
Patent Document 5 shows a method for compressing a flat membrane (porous body) having a pore structure. In this method, pressure is applied to a porous body having a thickness of 2 mm to obtain a separation material having a film thickness of 0.8 to 1.5 mm and having a stable capturing property for leukocytes.


特開2009-274010粒子捕捉性能が表裏面で異なる多層構造膜およびその製法JP 2009-274010 Multilayer structure film having different particle trapping performance on front and back surfaces and method for producing the same 特開昭58-089628再生セルロース多孔膜JP-A-58-089628 Regenerated cellulose porous membrane 特開2000-288368複合逆浸透膜JP 2000-288368 composite reverse osmosis membrane 特開2004-283696セルロース複合多孔膜JP 2004-283696 CELLULOSE COMPOSITE POROUS MEMBRANE 特開平1-224325白血球分離材の製法Method for producing leukocyte separator

本発明では、アプリケータを用いてあらかじめ設定された厚さでセルロース誘導体溶液を表面の平滑性の優れた支持体上に流延し、良溶媒の蒸発によりミクロ相分離を起こさせた後、アルカリ性溶液中にてケン化処理を行う乾式の平膜製膜方法で平均孔径5〜500nmの平膜を作製すると、表裏面の電子顕微鏡観察より算出される空孔率が50%であるのに比較して、見掛け密度法での空孔率が大きくなりすぎる課題があった。 In the present invention, a cellulose derivative solution is cast on a support having excellent surface smoothness with a preset thickness using an applicator, microphase separation is caused by evaporation of a good solvent, and then alkaline When a flat film having an average pore diameter of 5 to 500 nm is prepared by a dry flat film forming method in which a saponification treatment is performed in a solution, the porosity calculated by observation with an electron microscope on the front and back surfaces is 50%. As a result, there is a problem that the porosity in the apparent density method becomes too large.

具体的には見掛け密度法での空孔率が0.8以上となり、これは電子顕微鏡の観察結果から、層と層の間の距離である層間距離が大きくなっていることが原因の一つであると考えられた。 Specifically, the porosity in the apparent density method is 0.8 or more, and this is one of the reasons that the distance between layers, which is the distance between layers, is increased from the observation result of the electron microscope. It was thought that.

当該膜の粒子対数除去率を測定したところ、平均孔径から推測される粒子対数除去率よりも低くなる傾向が見られた。粒子対数除去率は次式で定義される。
粒子対数除去率(LRV)≡-log10(ろ液中の粒子数/ろ過前液中の粒子数)
粒子対数除去率は粒子径20nmの水酸化鉄コロイド粒子を1200ppmの濃度で分散させた溶液をろ過することにより評価する。
When the particle logarithmic removal rate of the film was measured, a tendency was found to be lower than the particle logarithmic removal rate estimated from the average pore size. The particle log removal rate is defined by the following equation.
Logarithmic particle removal rate (LRV) ≡-log 10 (number of particles in the filtrate / number of particles in the solution before filtration)
The particle log removal rate is evaluated by filtering a solution in which iron hydroxide colloid particles having a particle diameter of 20 nm are dispersed at a concentration of 1200 ppm.

粒子対数除去率低下の要因のひとつとして層間距離が大きくなっていることが考えられた。層間距離が大きいため、粒子が層内で層に平行に移動し、層内に存在する孔のうち、孔径の大きい孔に選択的に流れることによって、結果として粒子が通り抜け、粒子対数除去率が低下している可能性があると考えられた。 It was thought that the interlayer distance was increasing as one of the causes of the particle log removal rate. Since the interlayer distance is large, the particles move parallel to the layer within the layer, and by selectively flowing to the holes having a large hole diameter among the holes existing in the layer, the particles pass through, resulting in a particle logarithmic removal rate. It was thought that it might have declined.

セルロース系の平膜を圧縮する方法としては、特許文献3および特許文献4に示すような方法があるが、いずれも上記に示したような層間距離に焦点を絞った手法とは言い難い。特許文献3の手法では、膜の性質を本質的に改善する手法ではなく、膜を支える支持体を改質することで、安定性を増すものである。 As methods for compressing a cellulosic flat membrane, there are methods as shown in Patent Document 3 and Patent Document 4, but it is difficult to say that both methods focus on the interlayer distance as described above. The technique of Patent Document 3 is not a technique that essentially improves the properties of the membrane, but improves the stability by modifying the support that supports the membrane.

また特許文献4の方法では、原料溶液(混練物)を製膜する際に圧縮力を加えるものであり、層間距離だけではなく、平面方向の孔径にまで影響が及ぶ可能性がある。 Further, in the method of Patent Document 4, a compressive force is applied when forming a raw material solution (kneaded material), which may affect not only the distance between layers but also the hole diameter in the planar direction.

多層構造を持つ膜の層内での孔径に影響がおよぶ方法で膜に圧縮力を加えることは、膜の粒子除去性のみでなく、ろ過の際の水の透過性やタンパク質の透過特性、平均孔径にいたるまで、膜としての孔特性を本質的に変えてしまう。平均孔径に匹敵する粒子除去性を安定的に得るためには、層内での孔径を制御あるいは予測することが重要であり、層内の孔特性を大幅に変化させないため、垂直方向の層間距離だけに影響を与える圧縮方法を検討する必要がある。 Applying a compressive force to the membrane in a way that affects the pore size within the layer of the multi-layered membrane not only removes the particles of the membrane, but also the water permeability during filtration, the protein permeability, and the average Until the pore size is reached, the pore properties of the membrane are essentially changed. In order to stably obtain particle removal performance comparable to the average pore size, it is important to control or predict the pore size in the layer, and since the pore characteristics in the layer are not significantly changed, the vertical interlayer distance It is necessary to consider the compression method that only affects.

特許文献5は、平膜(多孔質材)に対して垂直方向に圧力をかけ、粒子捕捉性能を改善する方法であるが、対象とする多孔質材は厚さが0.5〜1.5mmで、捕捉対象とする粒子は白血球であり、ミクロンオーダーの粒子を対象とする技術であり、本課題が対象するナノオーダーの孔構造を有する平膜へ適用できるものではなかった。多孔質材を構成する物質は繊維等であり、この多孔質材はデプスフィルターに分類されるもので、層状構造は観察されない。
Patent Document 5 is a method for improving the particle trapping performance by applying pressure in a direction perpendicular to a flat membrane (porous material). The target porous material has a thickness of 0.5 to 1.5 mm. The particles to be captured are leukocytes, which is a technology that targets micron-order particles, and cannot be applied to a flat membrane having a nano-order pore structure that is the subject of this problem. The substance which comprises a porous material is a fiber etc., This porous material is classified into a depth filter, and a layered structure is not observed.

再生セルロース多層構造平膜をケン化前に垂直方向に圧縮した後、ケン化処理を行うことで、垂直方向の孔構造、すなわち層間距離のみを小さくすることができることを発見し、本発明に至った。 It was discovered that by compressing a regenerated cellulose multilayer structure flat membrane in the vertical direction before saponification and then performing saponification, only the vertical pore structure, that is, the interlayer distance, can be reduced, leading to the present invention. It was.

しかもその層間距離および膜厚は圧縮処理後には、ケン化後もほとんど変化が無く、膜の使用中、たとえばろ過操作時にも同じ膜厚が保たれたままである。 In addition, the interlayer distance and the film thickness remain almost unchanged after saponification after the compression treatment, and the same film thickness is maintained even during use of the film, for example, during filtration operation.

本発明にいたる最大の発見は、ケン化前に膜を圧縮した場合の透水速度の経時変化がほぼ一定であることであった。透水速度の測定は、膜をろ過器にセットし、2気圧の水圧をかけ、RO水のろ過速度を測定する方法で行われる。圧縮していない膜の場合、透水速度は時間と共に減少するケースがあった。これは透水試験においてろ過器内で膜に垂直方向のろ過圧力が加わり、膜厚が小さくなることが原因であると思われた。すなわち、膜厚が小さくなると共に、膜が緻密になり、透水抵抗が上がるため、結果として透水速度が減少すると考えられた。これに対し、ケン化前に透水試験を行った後、すなわち膜に2気圧の加圧をかけた後、ケン化処理を行ったところ、透水速度の減少が見られない膜が得られた。この膜は、ケン化処理前の加圧を行わない膜に比べ2〜10%膜厚が小さくなっていた。すなわち、ろ過圧力が加わっても膜厚が変化しない程度に、すでに緻密化された、層間距離が小さくなった膜が得られた。 The greatest discovery leading to the present invention was that the change in water permeation rate with time when the membrane was compressed before saponification was almost constant. The water permeation rate is measured by a method in which the membrane is set in a filter, a water pressure of 2 atm is applied, and the RO water filtration rate is measured. In the case of an uncompressed membrane, the water transmission rate sometimes decreased with time. This was thought to be caused by the fact that the filtration pressure in the vertical direction was applied to the membrane in the filter in the water permeability test, and the film thickness became smaller. That is, it was considered that as the film thickness becomes smaller, the film becomes denser and the water permeation resistance increases, and as a result, the water permeation rate decreases. On the other hand, after conducting a water permeability test before saponification, that is, after applying a pressure of 2 atm to the membrane, a saponification treatment was performed. As a result, a membrane with no decrease in the water permeability rate was obtained. This film had a thickness of 2 to 10% smaller than the film not subjected to pressurization before the saponification treatment. That is, a film that was already densified and the distance between the layers was reduced to such an extent that the film thickness did not change even when filtration pressure was applied was obtained.

この結果から、ケン化前に圧縮することで、層間距離が小さい膜が得られることが判明し、圧縮方法の検討を行った。しかし上記のようなろ過圧力による圧縮では膜厚において2〜10%程度の圧縮率であり、粒子捕捉性の改善は大きくなかった。ここで圧縮率とは、圧縮前後の膜厚の変化率である。
圧縮率=((圧縮前の膜厚−圧縮後の膜厚)/圧縮前の膜厚)×100
From this result, it was found that a film having a small interlayer distance can be obtained by compression before saponification, and the compression method was examined. However, the compression by the filtration pressure as described above has a compressibility of about 2 to 10% in the film thickness, and the improvement of the particle trapping property was not great. Here, the compression rate is the rate of change in film thickness before and after compression.
Compression rate = ((film thickness before compression−film thickness after compression) / film thickness before compression) × 100

一方、ケン化前に機械的に圧縮する方法では、膜厚において10〜40%の圧縮が可能であり、ケン化後も圧縮率は保持していた。層間空孔率は、膜の断面の電子顕微鏡写真から測定される。すなわち、断面写真より高分子素材の占める面積をSp、膜断面積Sとすると、層間空孔率は(S−Sp)/Sで与えられる。圧縮処理前の膜では、層間空孔率は0.75付近にあり、粒子捕捉性は該空孔率が0.6以下になると急速に増加し、0.4以下になると、透水速度の減少も起きる。したがって、実用的な観点より、層間空孔率0.5以下0.25以上が一般的に効果の高い圧縮処理である。 On the other hand, in the method of mechanically compressing before saponification, the film thickness can be compressed by 10 to 40%, and the compression rate was maintained after saponification. Interlayer porosity is measured from an electron micrograph of the cross section of the membrane. That is, when the area occupied by the polymer material is S p and the film cross-sectional area S is taken from the cross-sectional photograph, the interlayer porosity is given by (S−S p ) / S. In the membrane before the compression treatment, the interlaminar porosity is in the vicinity of 0.75, and the particle trapping property increases rapidly when the porosity becomes 0.6 or less, and when the porosity becomes 0.4 or less, the water permeability decreases. Also happens. Therefore, from a practical viewpoint, an interlayer porosity of 0.5 or less and 0.25 or more is generally a highly effective compression treatment.

実際に平板油圧プレス機を用いて膜厚において10〜40%に圧縮した場合、膜の粒子捕捉性能が向上した膜が得られることが分かった。またこの圧縮処理透水速度に大きな変化は見られなかった。すなわち、垂直方向には膜は圧縮され、緻密化が進んでいるものの、水平方向の孔構造が保持され、透水速度に大きな影響は与えていなかった。しかし粒子捕捉性能の向上にはばらつきがあった。 It was found that when the film was actually compressed to 10 to 40% in the film thickness using a flat plate hydraulic press, a film with improved film particle capturing performance was obtained. Moreover, the big change was not seen by this compression processing water transmission rate. In other words, although the membrane was compressed and densified in the vertical direction, the horizontal pore structure was maintained, and the water transmission rate was not greatly affected. However, there was variation in the improvement of particle trapping performance.

ケン化後に圧縮した膜の場合は、粒子捕捉性能、透水速度共に大きな変化はなく、圧縮していない膜と同じであった。ケン化後に圧縮すると膜が有する不均一さをより増長される方向に変化し、圧縮率を10%以上にすると透水速度の減少も大きくなる。 In the case of the membrane compressed after saponification, the particle trapping performance and the water permeation rate were not significantly changed, and were the same as the membrane not compressed. When compression is performed after saponification, the non-uniformity of the film is changed in a further increasing direction, and when the compression rate is 10% or more, the decrease in the water permeation rate is also increased.

一方、ローラープレス機を用いて10〜20%圧縮した場合、膜の粒子捕捉性能は向上し、透水速度に大きな変化はなかった。また粒子捕捉性能に大きなばらつきは生じなかった。粒子捕捉性能に再現性があり、ローラープレス機での圧縮処理は膜中でほぼ均等に実施されているのに対し、平板プレス機では膜の厚みの不均一さが反映し、不均等に圧縮される。
On the other hand, when 10-20% was compressed using the roller press machine, the particle | grain capture | acquisition performance of the film | membrane improved and there was no big change in the water transmission rate. Further, there was no great variation in the particle trapping performance. The particle trapping performance is reproducible, and the compression process using a roller press machine is performed almost evenly in the film, whereas the flat plate press machine reflects uneven film thickness and compresses unevenly. Is done.

本発明によれば、再生セルロース多層構造平膜をセルロース誘導体より作製するプロセスにおいてケン化前に膜平面に対して垂直方向に圧縮することで、層内の孔構造特性や透水性能を大きく損なわずに、寸法精度が高く、粒子捕捉性に優れるセルロース多層構造平膜が得られる。
According to the present invention, in the process of preparing a regenerated cellulose multilayer structure flat membrane from a cellulose derivative, the pore structure characteristics and water permeability performance in the layer are not significantly impaired by compressing in a direction perpendicular to the membrane plane before saponification. In addition, a cellulose multilayer flat film having high dimensional accuracy and excellent particle trapping properties can be obtained.

特許文献1および特許文献2によって明らかにされている製法で、セルロース誘導体としてアセテートを採用した場合に、酢酸セルロース多層構造平膜を作製する際、ケン化処理を行う前に膜に垂直方向の圧力を加える。ケン化処理を行う前とは、該平膜を作製する工程において、アセテート溶液を平板上に流延し、水洗後、アルカリ性溶液に浸漬してケン化するが、そのケン化工程を行う前段階を言う。 In the production method disclosed in Patent Document 1 and Patent Document 2, when acetate is used as a cellulose derivative, when a cellulose acetate multilayer multilayer film is produced, the pressure in the direction perpendicular to the film is applied before saponification. Add Before saponification treatment, in the step of producing the flat film, the acetate solution is cast on a flat plate, washed with water, and then immersed in an alkaline solution to saponify, but before the saponification step is performed Say.

膜に垂直方向に圧力を加える方法としては、平板ハンドプレス、平板油圧プレス、ローラープレス、ラバープレス、水圧プレスなど、いずれの方法でもよい。膜平面に垂直方向より均一に圧力が加わるほうが望ましい。 As a method of applying pressure in the vertical direction to the membrane, any method such as a flat plate hand press, a flat plate hydraulic press, a roller press, a rubber press, and a hydraulic press may be used. It is desirable to apply pressure more uniformly than the direction perpendicular to the film plane.

均一に圧力を加えるための工夫としては、平滑度の良い板やフィルムなどで膜を挟んだ後、圧縮するか、あるいは、圧力を加える媒体、たとえば平板油圧プレスであれば油圧シリンダー、またローラープレスであればローラーに、平滑度の高い板やフィルムを取り付け、フィルムを介して圧縮する方法がある。この場合には膜の持つ厚みムラを解消しつつ、加圧力が均等に膜平面に働く効果がある。 As a device for uniformly applying pressure, a film is sandwiched between plates or films with good smoothness and then compressed, or a medium to which pressure is applied, such as a hydraulic cylinder or roller press for a flat plate hydraulic press. If so, there is a method of attaching a plate or film having high smoothness to the roller and compressing it through the film. In this case, there is an effect that the applied pressure acts uniformly on the film plane while eliminating the uneven thickness of the film.

平滑度の高い板やフィルムは、樹脂製、金属製、ガラス製などいずれでもよく、樹脂性が望ましい。金属製とガラス製では圧縮弾性率が大きいため、負荷圧力によるこれらの材料の変形が小さい。そのため、膜の持つ厚みムラが圧縮変形のための応力として負荷応力のムラとなりやすい。 The plate or film having high smoothness may be any of resin, metal, glass, etc., and resinous properties are desirable. Since metal and glass have high compression elastic modulus, deformation of these materials due to load pressure is small. Therefore, the uneven thickness of the film tends to be uneven load stress as stress for compressive deformation.

加える圧力は、膜の圧縮率によって制御する。すなわち圧縮する場合に加える圧力は、圧縮後に得られる膜厚の変化(圧縮率)によって制御する。圧縮率は膜の局所的ムラを反映して変動するが、この変動ムラを圧縮処理によって解消する方向に働くことが望ましい。そのために加圧方法にも工夫が必要である。加圧力や加圧時間も重要で、加圧速度は小さい方が望ましい。 The pressure applied is controlled by the compressibility of the membrane. That is, the pressure applied when compressing is controlled by the change in film thickness (compression rate) obtained after compression. The compression rate varies reflecting the local unevenness of the film, but it is desirable that this variation unevenness works in a direction to be eliminated by the compression process. Therefore, a device is also required for the pressurizing method. The pressing force and pressurizing time are also important, and it is desirable that the pressurizing speed be small.

圧縮率が5〜50%の場合に、膜の粒子対数除去率が向上する。望ましくは10〜20%の場合に、膜の粒子対数除去率が向上すると共に、透水速度の大きな低下は伴わない。圧縮率が大きすぎる場合は、透水速度が大きく減少する。圧縮率が10〜20%の場合に、層間空孔率は60%以下が達成され、多層構造の各層での孔構造が非円形孔(Up孔)であれば、圧縮率が10〜20%で層間空孔率は50%以下となる。
When the compression rate is 5 to 50%, the particle log removal rate of the film is improved. Desirably, in the case of 10 to 20%, the particle log removal rate of the membrane is improved, and the water permeation rate is not greatly reduced. When the compression rate is too large, the water transmission rate is greatly reduced. When the compression ratio is 10 to 20%, the interlayer porosity is 60% or less. If the hole structure in each layer of the multilayer structure is a non-circular hole (Up hole), the compression ratio is 10 to 20%. Thus, the interlayer porosity is 50% or less.

酢酸基のセルロースの水酸基への平均置換度2.50の酢酸セルロース(平均重合度210)を重量濃度(流延用原液中での重量濃度)9.24%、アセトン54.17重量%、メタノール6.21重量%、塩化カルシウム2水和物1.92重量%、RO水0.95重量%、シクロヘキサノール27.50重量%で溶解後、濾過脱泡を行った。その溶液をすり板ガラス上に0.5mmの厚さで流延し、20℃の環境で40分間放置しミクロ相分離を発生させ多孔質多層構造平膜を作製した。その後、水に浸漬してミクロ相分離の進行を止め、すり板ガラスから膜を剥離し、膜中に残存する不純物を除去するため水に浸漬した。 Cellulose acetate having an average substitution degree of 2.50 cellulose acetate (average polymerization degree 210) by weight concentration (weight concentration in casting stock solution) 9.24%, acetone 54.17% by weight, methanol After dissolving in 6.21% by weight, calcium chloride dihydrate 1.92% by weight, RO water 0.95% by weight, cyclohexanol 27.50% by weight, filtration and defoaming were performed. The solution was cast on a ground glass with a thickness of 0.5 mm and left in an environment of 20 ° C. for 40 minutes to cause microphase separation to produce a porous multilayer flat film. Thereafter, the film was immersed in water to stop the progress of microphase separation, the film was peeled from the ground glass, and immersed in water to remove impurities remaining in the film.

膜を水から取り出し、47mm直径の円形に切り抜き、厚さ100μmのポリエチレンフィルムに挟んで、平板ハンドプレス機にて25℃で圧縮した。圧縮力は15kNで、圧縮時間は30秒間である。 The membrane was removed from the water, cut into a 47 mm diameter circle, sandwiched between 100 μm thick polyethylene films and compressed at 25 ° C. with a flat plate hand press. The compression force is 15 kN and the compression time is 30 seconds.

圧縮後、20℃の0.1規定苛性ソーダ水溶液中に4時間浸漬しケン化反応を起こし再生セルロース膜とした。その結果、圧縮率30%、膜厚55μm、平均孔径約30nm、空孔率80%の再生セルロース膜が得られた。 After compression, it was immersed in an aqueous 0.1 N sodium hydroxide solution at 20 ° C. for 4 hours to cause a saponification reaction to obtain a regenerated cellulose membrane. As a result, a regenerated cellulose membrane having a compression rate of 30%, a film thickness of 55 μm, an average pore diameter of about 30 nm, and a porosity of 80% was obtained.

該膜の粒子対数除去率を、20nm水酸化鉄コロイド粒子の水溶液(濃度1200ppm)を用いて評価した。その結果、圧縮していない膜の粒子対数除去率は0であったが、圧縮された膜の粒子対数除去率は1.05であった。圧縮された膜の粒子対数除去率は1.05から次第に減少した。 The particle log removal rate of the film was evaluated using an aqueous solution of 20 nm iron hydroxide colloidal particles (concentration 1200 ppm). As a result, the particle log removal rate of the uncompressed film was 0, but the particle log removal rate of the compressed film was 1.05. The particle log removal rate of the compressed membrane gradually decreased from 1.05.

また該膜の透水速度をRO水を用いて評価した。透水速度は、該膜をろ過器にセットし、2気圧の水圧をかけ、RO水のろ過速度を測定する方法で行った。その結果、圧縮していない膜の透水速度は612L/平米・Hrであったが、圧縮した膜の透水速度は673L/平米・Hrであった。
Further, the water permeation rate of the membrane was evaluated using RO water. The water permeation speed was measured by setting the membrane on a filter, applying a water pressure of 2 atm, and measuring the RO water filtration speed. As a result, the water transmission rate of the uncompressed membrane was 612 L / square meter · Hr, but the water permeability of the compressed membrane was 673 L / square meter · Hr.

酢酸基のセルロースの水酸基への平均置換度2.50の酢酸セルロース(平均重合度210)を重量濃度(流延用原液中での重量濃度)9.70%、アセトン61.12重量%、メタノール15.28重量%、塩化カルシウム2水和物6.26重量%、RO水0重量%、シクロヘキサノール7.64重量%で溶解後、濾過脱泡を行った。その溶液をすり板ガラス上に0.5mmの厚さで流延し、20℃の環境で20分間放置しミクロ相分離を発生させ多孔質多層構造平膜を作製した。その後、水に浸漬してミクロ相分離の進行を止め、すり板ガラスから膜を剥離し、膜中に残存する不純物を除去するため水に浸漬した。 Cellulose acetate having an average substitution degree of 2.50 cellulose acetate (average polymerization degree 210) by weight concentration (weight concentration in casting stock solution) 9.70%, acetone 61.12% by weight, methanol After dissolution at 15.28% by weight, calcium chloride dihydrate 6.26% by weight, RO water 0% by weight, cyclohexanol 7.64% by weight, filtration and defoaming were performed. The solution was cast on a ground glass at a thickness of 0.5 mm and left in an environment of 20 ° C. for 20 minutes to generate microphase separation to produce a porous multilayer structure flat membrane. Thereafter, the film was immersed in water to stop the progress of microphase separation, the film was peeled from the ground glass, and immersed in water to remove impurities remaining in the film.

膜を水から取り出し、厚さ100μmのポリプロピレン板に挟んで、ローラープレス機にて25℃で圧縮した。ローラープレス機のローラー間クリアランスを100μmに設定した。 The membrane was taken out of water, sandwiched between 100 μm-thick polypropylene plates and compressed at 25 ° C. with a roller press. The clearance between rollers of the roller press was set to 100 μm.

圧縮後、20℃の0.1規定苛性ソーダ水溶液中に4時間浸漬しケン化反応を起こし再生セルロース膜とした。その結果、圧縮率13%、膜厚33μm、平均孔径約30nm、空孔率75%の再生セルロース膜が得られた。 After compression, it was immersed in an aqueous 0.1 N sodium hydroxide solution at 20 ° C. for 4 hours to cause a saponification reaction to obtain a regenerated cellulose membrane. As a result, a regenerated cellulose membrane having a compression rate of 13%, a film thickness of 33 μm, an average pore diameter of about 30 nm, and a porosity of 75% was obtained.

該膜の粒子対数除去率を、20nm水酸化鉄コロイド粒子の水溶液(濃度1200ppm)を用いて評価した。その結果、圧縮していない膜の粒子対数除去率は0であったが、圧縮された膜の粒子対数除去率は2であった。圧縮された膜の粒子対数除去率はやや低下する傾向にあるものの、ほぼ一定値(1.5)で推移した。 The particle log removal rate of the film was evaluated using an aqueous solution of 20 nm iron hydroxide colloidal particles (concentration 1200 ppm). As a result, the particle log removal rate of the uncompressed film was 0, but the particle log removal rate of the compressed film was 2. Although the particle log removal rate of the compressed film tended to decrease slightly, it remained at a substantially constant value (1.5).

また該膜の透水速度をRO水を用いて評価した。透水速度は、該膜をろ過器にセットし、2気圧の水圧をかけ、RO水のろ過速度を測定する方法で行った。その結果、圧縮していない膜の透水速度は414L/平米・Hrであったが、圧縮した膜の透水速度は390L/平米・Hrであった。膜厚が小さくなったのに透水速度がわずかに小さくなったのは、膜中での水の流れ抵抗がわずかに増加したためと考えられる。この増加は層に沿った流れの抵抗が大幅に増加したためと考えられる。
Further, the water permeation rate of the membrane was evaluated using RO water. The water permeation speed was measured by setting the membrane on a filter, applying a water pressure of 2 atm, and measuring the RO water filtration speed. As a result, the water transmission rate of the uncompressed membrane was 414 L / square meter · Hr, but the water transmission rate of the compressed membrane was 390 L / square meter · Hr. The reason why the water permeation rate slightly decreased even though the film thickness was small is considered to be because the flow resistance of water in the film slightly increased. This increase is thought to be due to a significant increase in flow resistance along the layer.


温和な条件下で分離、精製が求められる産業(例、製薬産業、食品産業)、特にタンパク質などの生理活性を持つ物質の分離、精製に本発明は利用できる。特にバイオテクノロジーを利用した各種産業(例えばバイオ医薬品、食品産業)での製品に対する安全性の要求を満足する技術として本発明はこれらの産業に寄与する。医療用、環境用として、ウイルスや細菌、重金属類などの有害物質、有害性微粒子の除去にも用いられる。コロイド系を取り扱う工業においてコロイド粒子を含めて特定の微粒子を精製、分離する方法として工業的プロセスに組み込むことが出来る。また、膜の微粒子捕捉性能、除去能の高さと、目詰まりが起らない特徴を持ち従来の膜分離技術の適用が不可能と考えられていたリサイクル分野、環境産業へも安全性と省エネ分離技術として利用される。


The present invention can be used in industries that require separation and purification under mild conditions (eg, pharmaceutical industry, food industry), particularly separation and purification of substances having physiological activity such as proteins. In particular, the present invention contributes to these industries as a technology that satisfies safety requirements for products in various industries using biotechnology (for example, biopharmaceuticals and food industries). For medical use and environmental use, it is also used to remove harmful substances such as viruses, bacteria, and heavy metals, and harmful fine particles. It can be incorporated into an industrial process as a method of purifying and separating specific fine particles including colloidal particles in the industry handling colloidal systems. In addition, safety and energy-saving separation for the recycling field and the environmental industry, which were thought to be impossible to apply the conventional membrane separation technology due to the high particle trapping performance and removal ability of the membrane and the features that prevent clogging. Used as technology.


圧縮方法1:機械平板プレス矢印の方向から静荷重が加わる。Compression method 1: A static load is applied from the direction of the mechanical flat plate press arrow. 圧縮方法2:ローラープレス矢印の方向に回転するローラーによって一定の厚さまで膜は圧縮変形される。Compression method 2: Roller press The film is compressed and deformed to a certain thickness by a roller rotating in the direction of the arrow.


1,平板油圧プレス機上部シリンダー
2,ポリエチレンフィルム
3,再生セルロース平膜
4,平板油圧プレス機下部台座
5,ローラープレス機ローラー

1, flat plate hydraulic press machine upper cylinder 2, polyethylene film 3, regenerated cellulose flat membrane 4, flat plate hydraulic press machine lower base 5, roller press machine roller

Claims (2)

セルロース誘導体をケン化して得られる再生セルロース多層構造平膜で、平均孔径が5nm〜500nm、膜厚は20μm〜500μm、100層以上の積層体で1層の厚さが0.05μm〜0.5μmである膜を設計し、該セルロース誘導体をケン化する前に垂直方向に圧縮することによって、層間空孔率を50%以下25%以上とし、粒子の捕捉性を改善する再生セルロース多層構造平膜の製法。 A regenerated cellulose multilayer flat membrane obtained by saponifying a cellulose derivative, having an average pore diameter of 5 nm to 500 nm, a film thickness of 20 μm to 500 μm, and a laminate of 100 layers or more and a thickness of one layer of 0.05 μm to 0.5 μm A regenerated cellulose multilayer flat membrane in which the interlaminar porosity is 50% or less and 25% or more and the particle trapping property is improved by designing the membrane and compressing the cellulose derivative in the vertical direction before saponification The manufacturing method. 圧縮方法として、ローラープレス機を用い、圧縮率が5〜50%である請求項1の製法。
The method according to claim 1, wherein a roller press is used as the compression method and the compression rate is 5 to 50%.
JP2010217672A 2010-09-28 2010-09-28 Method of manufacturing regenerated cellulose multilayer structure flat membrane Pending JP2012071250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217672A JP2012071250A (en) 2010-09-28 2010-09-28 Method of manufacturing regenerated cellulose multilayer structure flat membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217672A JP2012071250A (en) 2010-09-28 2010-09-28 Method of manufacturing regenerated cellulose multilayer structure flat membrane

Publications (1)

Publication Number Publication Date
JP2012071250A true JP2012071250A (en) 2012-04-12

Family

ID=46167638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217672A Pending JP2012071250A (en) 2010-09-28 2010-09-28 Method of manufacturing regenerated cellulose multilayer structure flat membrane

Country Status (1)

Country Link
JP (1) JP2012071250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162909A1 (en) * 2014-04-24 2015-10-29 パナソニックIpマネジメント株式会社 Vegetable case and refrigerator
JP7401601B2 (en) 2018-05-28 2023-12-19 ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド Efficient methods and compositions for recovering products from organic acid pretreatment of plant materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889628A (en) * 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd Regenerated cellulose porous membrane
JPH0769918A (en) * 1991-08-16 1995-03-14 Nippon Oil & Fats Co Ltd Separation of hemolysate
JP2009274010A (en) * 2008-05-14 2009-11-26 Seiichi Manabe Multi layer membrane where fine particle capturing capability on front face is different from that on rear face, and method for manufacturing the same
JP2010131486A (en) * 2008-12-03 2010-06-17 Seiichi Manabe Method for removing moisture in air
JP2010167339A (en) * 2009-01-21 2010-08-05 Seiichi Manabe Apparatus and method of removing moisture in gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889628A (en) * 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd Regenerated cellulose porous membrane
JPH0769918A (en) * 1991-08-16 1995-03-14 Nippon Oil & Fats Co Ltd Separation of hemolysate
JP2009274010A (en) * 2008-05-14 2009-11-26 Seiichi Manabe Multi layer membrane where fine particle capturing capability on front face is different from that on rear face, and method for manufacturing the same
JP2010131486A (en) * 2008-12-03 2010-06-17 Seiichi Manabe Method for removing moisture in air
JP2010167339A (en) * 2009-01-21 2010-08-05 Seiichi Manabe Apparatus and method of removing moisture in gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162909A1 (en) * 2014-04-24 2015-10-29 パナソニックIpマネジメント株式会社 Vegetable case and refrigerator
JP2015209987A (en) * 2014-04-24 2015-11-24 パナソニックIpマネジメント株式会社 Vegetable case and refrigerator
JP7401601B2 (en) 2018-05-28 2023-12-19 ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド Efficient methods and compositions for recovering products from organic acid pretreatment of plant materials

Similar Documents

Publication Publication Date Title
Yu et al. High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal
Zhang et al. Sub‐10 nm wide cellulose nanofibers for ultrathin nanoporous membranes with high organic permeation
Kaur et al. Plasma-induced graft copolymerization of poly (methacrylic acid) on electrospun poly (vinylidene fluoride) nanofiber membrane
CN102218269B (en) Non-destructive type flat-film inspecting method
NL9401154A (en) Supported microporous filtration membrane and method for its manufacture.
JP2008272636A (en) Multilayer microporous membrane
Vanangamudi et al. Nanofiber composite membrane with intrinsic Janus surface for reversed-protein-fouling ultrafiltration
CN113842792A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
Tang et al. Ultrathin cellulose Voronoi-nanonet membranes enable high-flux and energy-saving water purification
JP2007014854A (en) Filtration filter, manufacturing method of filtration filter, and hemofiltration method
Zeytuncu et al. Photo-crosslinked PVA/PEI electrospun nanofiber membranes: Preparation and preliminary evaluation in virus clearance tests
Kaleekkal et al. Functionalized MWCNTs in improving the performance and biocompatibility of potential hemodialysis membranes
JP2004016930A (en) Microporous membrane and its production method
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
JP2012071250A (en) Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP5339033B2 (en) A multilayer structure film having different fine particle capturing performance on the front and back surfaces and a manufacturing method thereof.
Yao et al. Application of microfibrillated fibers in robust and reusable air filters with long service time in the ambient with high oily aerosols concentration
Zhang et al. Composite nanofibrous microfiltration water filter
EP3241574B1 (en) Method of manufacturing a blood filter
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP5564220B2 (en) Composite structure including three-dimensional structure and filter using the structure
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP4855414B2 (en) Skinless porous membrane and manufacturing method thereof
JP5516835B2 (en) Multi-layer multilayer flat membrane
JP2023110805A (en) Hole diffusion porous cellulose composite film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324