JP2010131486A - Method for removing moisture in air - Google Patents

Method for removing moisture in air Download PDF

Info

Publication number
JP2010131486A
JP2010131486A JP2008308133A JP2008308133A JP2010131486A JP 2010131486 A JP2010131486 A JP 2010131486A JP 2008308133 A JP2008308133 A JP 2008308133A JP 2008308133 A JP2008308133 A JP 2008308133A JP 2010131486 A JP2010131486 A JP 2010131486A
Authority
JP
Japan
Prior art keywords
membrane
moisture
gas
diffusion
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308133A
Other languages
Japanese (ja)
Other versions
JP5782669B2 (en
Inventor
Seiichi Manabe
真鍋征一
Koichiro Yasuda
安田光一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUROSAKI KK
Original Assignee
KUROSAKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUROSAKI KK filed Critical KUROSAKI KK
Priority to JP2008308133A priority Critical patent/JP5782669B2/en
Publication of JP2010131486A publication Critical patent/JP2010131486A/en
Application granted granted Critical
Publication of JP5782669B2 publication Critical patent/JP5782669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of removing moisture from wet air for removing moisture in air without using heat energy, recovering the latent heat energy possessed by the moisture in air as latent heat energy and satisfying a demand for increasing a moisture removing speed by the minimized energy from the outside. <P>SOLUTION: By rotating a cylindrical rotary body, on which a flat hydrophilic porous membrane 3 is mounted, by utilizing the flowing force of wet air when moisture is removed from the wet air in a case that the absolute humidity of the wet air is higher than that of the atmosphere, three kinds of mechanisms of pore diffusion, surface diffusion and dissolving diffusion through the membrane are utilized to move the moisture of the wet air into the atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は気体中に含まれる水分を膜を利用して除去する方法に関する。より詳しくは絶対湿度が大気(温度T)の絶対湿度より高い湿った気体(温度T)より多孔性平膜を用いて水分を除去する方法に関する。 The present invention relates to a method for removing moisture contained in a gas by using a film. More specifically, the present invention relates to a method of removing moisture from a moist gas (temperature T 1 ) whose absolute humidity is higher than the absolute humidity of the atmosphere (temperature T 2 ) using a porous flat membrane.

産業界では乾燥工程はエネルギーを消費する工程の一つであり省エネ対策としてその改良が常に検討されている。家庭においては洗濯後の乾燥あるいは室内の除湿には実質的には気体中の水分除去を目的とした技術が利用されている。気体中からの水分除去の方法として冷却器を用いて空気の温度下げ、その空気の露点以下にすることにより、水蒸気を液体の水として除去する。除去後再び加熱することにより気体中の水分のみを除去することは可能である。この冷却器を用いる方法は(イ)水蒸気が持つ蒸発潜熱は冷却時に加えられるべきエネルギーとなり、エネルギー効率の悪い方法といえる。(ロ)外部との間で空間的には閉鎖系となり、開放部をもうけると除湿効率は低下するという問題点がある。     In the industry, the drying process is one of the processes that consume energy, and its improvement is constantly being studied as an energy saving measure. In the home, a technique for removing moisture in the gas is used for drying after washing or dehumidification in the room. As a method of removing moisture from the gas, water is removed as liquid water by lowering the temperature of the air using a cooler and setting the temperature below the dew point of the air. It is possible to remove only moisture in the gas by heating again after removal. In the method using this cooler, (a) the latent heat of vaporization of water vapor becomes energy to be added during cooling, and it can be said that the method is inferior in energy efficiency. (B) There is a problem in that it becomes a closed system spatially with the outside, and dehumidifying efficiency decreases if an open part is provided.

実験室規模での水分除去方法としては乾燥剤を利用する方法がある。活性炭を用いて適度な湿度を確保したり、吸湿剤(シリカゲル,塩化カルシウムなど)により空気中の湿度を0%近くまで低下させる方法としては利用できる。この方法は閉鎖系で小規模の水分除去法として簡便である。     As a method for removing moisture on a laboratory scale, there is a method using a desiccant. It can be used as a method of securing an appropriate humidity using activated carbon, or reducing the humidity in the air to near 0% with a hygroscopic agent (silica gel, calcium chloride, etc.). This method is convenient as a small-scale water removal method in a closed system.

高分子膜を利用した湿った気体より水分を除去する方法が提案されている(特許文献1)。この方法で用いられる膜は電子顕微鏡ではその孔の存在が確認できず、いわゆる溶解・拡散機構で水分子は膜中を移動する。そのため水分の膜除去速度は小さく工業的規模での適用に際しては多大の膜面積と圧力差を必要とする。この方法は気体中のすべての成分分子について開放系であり、むしろ積極的に気体中の成分を系外へ移動させるために湿った気体の持つエネルギーを系外へ損失する。開放系で水分を除去すると水分と同時にエネルギーも系外へ流出するのが一般的である。     A method of removing moisture from a moist gas using a polymer film has been proposed (Patent Document 1). The presence of pores in the membrane used in this method cannot be confirmed with an electron microscope, and water molecules move through the membrane by a so-called dissolution / diffusion mechanism. For this reason, the film removal rate of moisture is small, and a large membrane area and pressure difference are required for application on an industrial scale. This method is an open system for all component molecules in the gas, but rather loses the energy of the moist gas out of the system in order to actively move the components in the gas out of the system. Generally, when moisture is removed in an open system, energy flows out of the system at the same time as moisture.

高分子多孔膜を親水性素材で作製し、孔拡散と操作条件を特定することにより湿熱気体が有するネルギーを保持し、水分のみを系外に取り出す方法が提案されている(特許文献1件)。この方法では湿熱空気と乾燥空気の流動量の合計V,膜の平均孔径γa,膜の面積A,膜の空孔率Prとすると|△P|/dは(1)式を満足しなくてはならない。
|△Pl|/d≦3.0×10−5V/(Pr・ra ・A )となる (1)
該方法では膜を流体として通過する成分量の速度が湿熱空気と乾燥空気の合計Vの一定比率以下である必要性を指摘している。その後、該方法で熱回収を実施する際、乾燥空気の流れ速度は湿熱空気の流れ速度の3倍以上が必要であることが明らかにされ、この流れ速度を与えるための新たなエネルギーの投入が必要である(特許文献2)。新たなエネルギー量は該方法で回収されるエネルギーに匹敵するという問題があり、湿熱空気の持つエネルギー回収技術としては不十分であった。
A method has been proposed in which the porous polymer membrane is made of a hydrophilic material, the energy of the wet heat gas is maintained by specifying the pore diffusion and the operating conditions, and only the moisture is taken out of the system (Patent Document 1). ). In this method, assuming that the total amount of flow of wet hot air and dry air is V, the average pore diameter γa of the membrane, the area A of the membrane, and the porosity Pr of the membrane, | ΔP | Must not.
| ΔPl | /d≦3.0×10 −5 V / (Pr · ra 2 · A) (1)
In this method, it is pointed out that the speed of the amount of the component passing through the membrane as a fluid needs to be equal to or less than a certain ratio of the sum V of wet hot air and dry air. Later, when heat recovery was carried out by this method, it was clarified that the flow rate of dry air must be at least three times the flow rate of wet hot air. Necessary (Patent Document 2). There is a problem that the amount of new energy is comparable to the energy recovered by the method, which is insufficient as an energy recovery technique possessed by wet hot air.

特許文献2の問題点を解消する技術として湿熱空気側に比較して乾燥空気側に接する膜面に凹凸の激しい構造体を配することにより省エネ型除湿システムが開発されている(特許文献3)。この技術により気体中の成分分子にとっては開放系で、微生物粒子に対しては閉鎖系が完成する。この技術では(イ)湿熱空気の持つ顕熱エネルギー(温度や運動エネルギーの形での流体としての速度など)は利用されていない(ロ)膜の裏面の構造が複雑なため膜モジュール作製が困難である点の問題点を残す。   As a technique for solving the problem of Patent Document 2, an energy-saving dehumidification system has been developed by arranging a structure with more unevenness on the film surface in contact with the dry air side than on the humid hot air side (Patent Document 3). . This technique completes an open system for constituent molecules in the gas and a closed system for microbial particles. This technology does not use (a) the sensible heat energy of wet hot air (such as the velocity as a fluid in the form of temperature or kinetic energy). (B) It is difficult to produce a membrane module because of the complicated structure on the back side of the membrane. Leave the problem of the point.

室内内部に発熱体を有する蜜開に近い構造体では絶対湿度が経時的に高まり、大気温度の日間変動のために該構造体内部に水滴が生じる。そのため構造体内部では錆が生じたり、あるいは電気的配線の絶縁性不良などのため電気的トラブルを起こす。この対策のために高温の発熱体を設置する方策がとられるがこれは悪循環をもたらし、水分を系外に除去する方策をとらなくてはならない。発熱体によって相対湿度を低下する方式での水分対策は根本的対策ではない。ほぼ密閉された空間部内での水分除去は遠隔地にある無人の施設にとっては重要な課題である。     In a structure having a heating element inside the room and having a heating element, the absolute humidity increases with time, and water droplets are generated inside the structure due to daily fluctuations in the atmospheric temperature. For this reason, rust is generated inside the structure, or electrical troubles occur due to poor insulation of electrical wiring. For this measure, measures are taken to install a high-temperature heating element, but this leads to a vicious cycle, and measures must be taken to remove moisture from the system. Moisture countermeasures using a method in which the relative humidity is lowered by a heating element is not a fundamental countermeasure. Moisture removal in an almost enclosed space is an important issue for unattended facilities in remote locations.

特開 昭54−152679号JP 54-152679 A 特公 平4−13006号Japanese Patent Publication No.4-130006 特公 第3891808号Japanese Patent No.38991808

本発明では従来技術では解消できない下記の課題を同時に解決しようとする。すなわち(1)気体中の水分を熱エネルギーを使うことなく除去、(2)気体中の水分の持つ潜熱エネルギーを顕熱エネルギーとして回収、(3)気体中の成分分子に対しては空間で気体中に分散する微粒子(直径0.08μm以上のレトロウイルスや細菌、マイコプラズマ等)に対しては閉空間(4)水分の除去速度を増加させるために使用する外部からの必要とするエネルギーを極小化、(5)利用する膜として作製の容易な構造体の5種の要求を満足する空気中の水分除去方法を提供する。     The present invention intends to simultaneously solve the following problems that cannot be solved by the prior art. That is, (1) removing moisture in the gas without using thermal energy, (2) collecting latent heat energy of moisture in the gas as sensible heat energy, and (3) gas in space for component molecules in the gas Closed space for fine particles (retroviruses, bacteria, mycoplasma, etc. with a diameter of 0.08μm or more) dispersed inside (4) Minimizing the energy required from outside to increase the water removal rate (5) Provided is a method for removing moisture in the air that satisfies the five requirements of a structure that can be easily produced as a film to be used.

気体中の水分を熱エネルギーを使うことなく系外へ除去するには膜を介しての除去が最適である。ただし膜を介しての系外へ水分子の除去の機構として膜濾過を利用すると気体中の他の成分分子(酵素や窒素など)も系外へ流出する。分子の流出は気体の持つ熱エネルギーの損失になるので膜濾過機構による物質輸送への寄与を可能な限り少なくする必要がある。そのためには孔径を大きくするのに限界がある。一方、孔径を小さくすることにより溶解拡散機構が期待できるが水分子の透過の選択性を高め、しかも水分子の膜移動速度を高める機構を設定する必要がある。     In order to remove moisture in the gas outside the system without using thermal energy, it is optimal to remove it through a membrane. However, if membrane filtration is used as a mechanism for removing water molecules through the membrane, other component molecules (such as enzymes and nitrogen) in the gas also flow out of the system. Since the outflow of molecules results in a loss of thermal energy of the gas, it is necessary to minimize the contribution to mass transport by the membrane filtration mechanism. For this purpose, there is a limit to increasing the hole diameter. On the other hand, although a dissolution / diffusion mechanism can be expected by reducing the pore size, it is necessary to set a mechanism for increasing the selectivity of permeation of water molecules and increasing the membrane movement speed of water molecules.

気体中の水分子の持つ潜熱エネルギーとは蒸発熱を意味する。すなわち液体中の水分子が蒸発して気体の水分子へ変化するのに際し、蒸発熱を得て気相の水分子となる。したがって気相の水分子は液相の水分子に比較して蒸発熱の分だけエンタルピーは増加している。この増加分が潜熱エネルギーである。潜熱エネルギーを顕熱エネルギーに変換させるには再び相変化を起こさせる必要がある。     The latent heat energy of water molecules in the gas means the heat of evaporation. That is, when the water molecules in the liquid evaporate and change to gaseous water molecules, the heat of evaporation is obtained to become vapor phase water molecules. Therefore, the enthalpy of the vapor phase water molecule is increased by the amount of heat of vaporization compared to the liquid phase water molecule. This increase is latent heat energy. In order to convert latent heat energy into sensible heat energy, it is necessary to cause a phase change again.

気体中の成分分子に対しては開空間で、気体中に分散する微粒子に対して閉空間にするためには両空間を隔てる膜に特別な孔構造を持たせるか、あるいは物質を移動させるための駆動力に特別な力を与えるしかない。また特別な孔構造としては孔径分布が非常に鋭いかあるいは層状構造で表現される多層構造膜かのいずれかと考えられる。ここで多層構造膜とは膜の縦断面を透過型電子顕微鏡で観察した際、厚さ約0.2μmの薄膜の積層構造が観察される膜である。この薄膜の積層数が20以上である膜を多層構造膜と定義される。     In order to create an open space for the component molecules in the gas and a closed space for the fine particles dispersed in the gas, the membrane that separates the two spaces must have a special pore structure or move the substance. There is no choice but to give special power to the driving force. As a special pore structure, the pore size distribution is considered to be either very sharp or a multilayer structure film expressed by a layered structure. Here, the multilayer structure film is a film in which a laminated structure of a thin film having a thickness of about 0.2 μm is observed when a longitudinal section of the film is observed with a transmission electron microscope. A film having 20 or more laminated thin films is defined as a multilayer structure film.

膜を介して水分子の除去速度を高めるには特許文献3に述べるように膜の裏面側に特別な構造体を持たせる必要性が明らかにされている。膜の構造体としての最適設計の他に膜裏面での水分率を低める手段を採用することも考えられる。本発明では複雑な膜構造体に代替した手段を外系からエネルギーを加えることなく提案する。     In order to increase the removal rate of water molecules through the membrane, it is clarified that a special structure is required on the back side of the membrane as described in Patent Document 3. In addition to the optimum design of the membrane structure, it is conceivable to adopt means for reducing the moisture content on the back side of the membrane. In the present invention, a means for replacing a complicated film structure is proposed without applying energy from an external system.

本発明を適用する対象の中心は物質を乾燥した後に出てくる湿度の高い高温の気体(温度T)、温度が高く絶対湿度の高い空間(例、電源室、動物舎)内の気体、水蒸気が発生している空間内の気体などである。これらの気体を流動させるための装置(送風機など)と直結した形で利用される技術を本発明は提供する。 The center of the object to which the present invention is applied is a high-humidity high-temperature gas (temperature T 1 ) that comes out after drying the substance, a gas in a high-temperature and high-humidity space (eg, power supply room, animal house), For example, gas in a space where water vapor is generated. The present invention provides a technique that is used in a form directly connected to a device (such as a blower) for flowing these gases.

本発明の最大の特徴は、絶対湿度が高い高温(温度T)の湿った気体より膜を介して反対側に位置する大気中へ水分を除去する際に該気体の流れる力で膜を設置したモジュールを回転させる点にある。図1にそのモジュールの概念図を示す。膜を回転させることにより膜表面に存在する境膜(気体の流れが停止した薄層部分)を薄くし、膜の大気側に接する面からの水の蒸発を容易にする。膜の静止状態での気体と大気の流れ速度を大きくすることと同様の効果が期待される。さらに回転に伴なう遠心力によって膜中で液体となった水は大気中に遠心力で吹き飛ばされる。このように膜を回転させることによって特許文献3のような膜裏面が複雑な構造体である必要がなくなり、本技術で利用される膜として作製容易な構造体で十分である。 The greatest feature of the present invention is that when a moisture is removed from the moist gas having a high absolute humidity (temperature T 1 ) through the film to the atmosphere located on the opposite side, the film is installed by the flow force of the gas. The point is to rotate the module. FIG. 1 shows a conceptual diagram of the module. By rotating the film, the film (thin layer part where the gas flow is stopped) existing on the film surface is thinned, and the evaporation of water from the surface in contact with the atmosphere side of the film is facilitated. The same effect as increasing the flow velocity of gas and atmosphere when the membrane is stationary is expected. Further, the water that has become liquid in the film by the centrifugal force accompanying the rotation is blown off into the atmosphere by the centrifugal force. By rotating the film in this way, there is no need for a complicated structure on the back surface of the film as in Patent Document 3, and a structure that can be easily produced as a film used in the present technology is sufficient.

膜を回転する力は気体の流れる力(風力)である。風力を回転に変えるために気体の流れの中に風車状の羽根を設置する。羽根の形を工夫することにより、回転と気体の流れを膜面へ積極的に近づけることが出来る。この気体の流れを風力として利用することにより水分の除去速度を増加させるために外部から加えられるエネルギー(回転力など)を極小化できる。 The force that rotates the membrane is the force of gas flow (wind power). Wind turbine blades are installed in the gas flow to turn the wind power into rotation. By devising the shape of the blade, the rotation and the flow of gas can be actively brought closer to the film surface. By using this gas flow as wind power, energy (such as rotational force) applied from the outside in order to increase the water removal rate can be minimized.

本発明の第2の特徴は膜として親水性多孔性平膜を用いている点にある。新水性とは溶解度パラメーターの水素結合の成分δが8(cal1/2cm−3/2)以上である物質を意味する。例えばセルロース,ポリビニールアルコールなどである。多孔性とは空孔率が30%以上で膜の両平面に5nm以上の孔の存在が電子顕微鏡で認められる膜である。平膜とは膜厚10μm〜1mmで膜平面が幅1cm以上で長さが1cm以上で構成された膜である。 The second feature of the present invention is that a hydrophilic porous flat membrane is used as the membrane. The term “new aqueous solution” refers to a substance having a solubility parameter hydrogen bond component δ h of 8 (cal 1/2 cm −3/2 ) or more. For example, cellulose and polyvinyl alcohol. The porosity is a film having a porosity of 30% or more, and the presence of pores of 5 nm or more on both sides of the film can be observed with an electron microscope. A flat membrane is a membrane having a thickness of 10 μm to 1 mm, a membrane plane having a width of 1 cm or more and a length of 1 cm or more.

親水性膜は空気中の水分を吸着し吸着熱を発生する。吸着によって空気中の水分濃度は低下し、同時に空気の温度が上昇する。すなわち潜熱を顕熱に変えるのが吸着である。水分の吸着性能は膜の素材と水分子との間の親和力の結果でもある。製膜の容易さと親水性の強さとから再生セルロースが特に望ましい。セルロースの場合相対湿度が60%の気体に対してセルロース1kg当り約300kjの微分吸着熱が発生する。吸着熱による温度上昇の程度は膜と空気との比熱の関係で定まる。   The hydrophilic film absorbs moisture in the air and generates heat of adsorption. Adsorption reduces the water concentration in the air and at the same time increases the temperature of the air. That is, adsorption changes latent heat to sensible heat. The moisture adsorption performance is also a result of the affinity between the membrane material and water molecules. Regenerated cellulose is particularly desirable because of its ease of film formation and hydrophilic strength. In the case of cellulose, a differential adsorption heat of about 300 kj per kg of cellulose is generated for a gas having a relative humidity of 60%. The degree of temperature rise due to heat of adsorption is determined by the specific heat relationship between the membrane and air.

本発明の第3の特徴は、膜を介した水分の移動として孔拡散,表面拡散および溶解拡散の3種の拡散機構を利用した点にある。ここで孔拡散とは孔中での分子の拡散で拡散係数はほぼ分子量の1/2乗に反比例する。孔拡散は孔径が100nm前後でかつ気体の圧力が低いほど起りやすい。表面拡散は膜中の孔壁表面への水分子の吸着層が二次元的液体面を形成し、この液体面での拡散を意味し、孔径が5〜80nmの孔で起りやすい。溶解拡散は多孔膜の素材高分子に水分子が溶解し、この素材高分子実体中での拡散を意味する。これらの拡散により水分子の膜中での拡散速度が早くなる。拡散機構を利用することにより気体中の水分を熱エネルギーを使うことなく除去することができる。     The third feature of the present invention is that three kinds of diffusion mechanisms of pore diffusion, surface diffusion and dissolution diffusion are used as the movement of moisture through the membrane. Here, pore diffusion is the diffusion of molecules in the pores, and the diffusion coefficient is approximately inversely proportional to the 1/2 power of the molecular weight. The pore diffusion is more likely to occur as the pore diameter is around 100 nm and the gas pressure is lower. Surface diffusion means that the adsorption layer of water molecules on the surface of the pore wall in the film forms a two-dimensional liquid surface, which means diffusion on this liquid surface, and is likely to occur in pores having a pore diameter of 5 to 80 nm. Dissolving diffusion means the diffusion of water molecules in the material polymer of the porous membrane and diffusion in the material polymer entity. These diffusions increase the diffusion rate of water molecules in the film. By using the diffusion mechanism, moisture in the gas can be removed without using thermal energy.

拡散機構にもとずく膜中での物質移動は濾過機構に比較して(イ)孔の目詰りがない、(ロ)微粒子除去性能が大(ハ)物質移動に必要なエネルギーを加える必要がない(水分の除去に必要なエネルギーが極小化できる。)等の特徴を持つが、一方では物質移動速度が小さい問題点を持つ。本発明で利用される膜中での水分移動の機構は拡散であるため、その原理上、膜間差圧(△P)は不要である。△Pが大きくなると流体としての物質移動が起るため熱エネルギーの系外への損失が起るので△Pには最適な値がある。     Mass transfer in the membrane based on the diffusion mechanism is as follows: (b) There is no clogging of the pores compared to the filtration mechanism; (b) Large particle removal performance (c) It is necessary to add energy necessary for mass transfer Although there is a feature such as no energy required for water removal (minimum), on the other hand, there is a problem that the mass transfer rate is low. Since the mechanism of moisture movement in the membrane used in the present invention is diffusion, the transmembrane pressure difference (ΔP) is unnecessary in principle. When ΔP increases, mass transfer as a fluid occurs, so that heat energy is lost outside the system, and ΔP has an optimum value.

湿った気体の温度(T)は大気の温度Tより高く両者の差△T=T―Tとすると膜を介して熱拡散が起る。この熱拡散によって水分子も高温側より低温側へ移動する。水分の移動と共に気体中の他の分子(酵素や窒素など)も高温側から低温側へ移動するため気体の熱エネルギーの損失が起る。この流れをおさえるためには△Pを負に保つ方が望ましい。 When the temperature (T 1 ) of the wet gas is higher than the temperature T 2 of the atmosphere and the difference between them is ΔT = T 1 −T 2 , thermal diffusion occurs through the film. Due to this thermal diffusion, water molecules also move from the high temperature side to the low temperature side. As the moisture moves, other molecules in the gas (such as enzymes and nitrogen) move from the high temperature side to the low temperature side, causing a loss of heat energy of the gas. In order to suppress this flow, it is desirable to keep ΔP negative.

水分を大気へ移動させる速度は膜厚dが小さいほど大きい。dが小さすぎると熱拡散の効果が大きくなり気体の熱エネルギーの損失が起る。dとしては5μm以上が好ましいが△T(単位℃)が大きくなるとdも大きくする必要がある。△Tが負になることも考慮して気体の持つ熱エネルギーの損失を防止するためにd(μm単位)は(2)式を満足するのが望ましい。
d≧30+5△T (2)
The rate at which moisture moves to the atmosphere increases as the film thickness d decreases. If d is too small, the effect of thermal diffusion is increased and a loss of thermal energy of the gas occurs. d is preferably 5 μm or more, but when ΔT (unit ° C.) increases, d needs to be increased. In consideration of the fact that ΔT becomes negative, it is desirable that d (μm unit) satisfies the formula (2) in order to prevent loss of heat energy of the gas.
d ≧ 30 + 5ΔT (2)

本発明で利用する膜の構として多層構造膜を採用すると気体と大気との間で分子に対しては開空間を粒子としては閉空間をつくることが可能となる。ここで多層構造膜とは膜の断面を透過型電子顕微鏡で観察した際に幅約0.2μmの筋状物が膜平面に沿って存在することによって確認できる膜である。この筋が20本以上観察される膜を多層構造膜と定義する。多層構造膜では微粒子除去性能が優れる。大気から混入する可能性のある有害な微粒子の例として、細菌、ウイルス、ナノ粒子等である。これらの微粒子の拡散係数は水分子に較べて非常に小さいので本発明技術によって該微粒子は膜を通過できない。さらに膜の平均孔径を300nmにすれば微粒子の膜通過をほぼ完全におさえることが可能である。     When a multilayer structure film is employed as a film structure used in the present invention, it is possible to create an open space for molecules and a closed space for particles between the gas and the atmosphere. Here, the multilayer structure film is a film that can be confirmed by the presence of stripes having a width of about 0.2 μm along the film plane when the cross section of the film is observed with a transmission electron microscope. A film in which 20 or more streaks are observed is defined as a multilayer structure film. The multilayer structure film has excellent particulate removal performance. Examples of harmful fine particles that may be mixed from the atmosphere include bacteria, viruses, and nanoparticles. Since the diffusion coefficient of these fine particles is much smaller than that of water molecules, the fine particles cannot pass through the membrane by the technique of the present invention. Furthermore, if the average pore diameter of the membrane is 300 nm, it is possible to almost completely prevent fine particles from passing through the membrane.

多層構造膜において気体に接する側の膜表面の平均孔径を大気に接する面の平均孔径より小さくすることにより水分子の膜からの脱着が容易で大気から湿った気体へ向けての微粒子の移動が阻止される。また平膜はプリーツ状に折りたたまれた形でモジュール化された方が湿った気体と大気とに接する面積が大きくなり水分子の除去速度が大きくなる。平膜に対して負荷される圧力が小さいので平膜をささえる支持体は必ずしも必要ないが、プリーツ化する際に再生セルロース不織布を折り込むと形態保持が容易となる。     By making the average pore diameter of the membrane surface on the side in contact with the gas smaller than the average pore size on the surface in contact with the atmosphere in the multilayer structure film, water molecules can be easily desorbed from the film, and the movement of fine particles from the atmosphere to the moist gas can be achieved. Be blocked. Further, when the flat membrane is folded into a pleated shape and modularized, the area in contact with the moist gas and the atmosphere increases, and the removal rate of water molecules increases. Since the pressure applied to the flat membrane is small, a support for supporting the flat membrane is not always necessary. However, when the regenerated cellulose nonwoven fabric is folded during pleating, the shape can be easily maintained.

本発明技術によって(1)極小化されたエネルギーを用いて除湿が可能となり乾燥空気のリサイクル化も可能、(2)蒸発潜熱を顕熱としてエネルギー回収可能、(3)除湿工程の小型軽量化が達成され、移動空間(車、飛行機、電車などの空間)用あるいは産業用、民需用の除湿システムが設計できる。(4)炭酸ガス、酸素に対しては充分な換気が自然になされ、微粒子に対しては隔離状態となるため病院あるいは家庭内での風呂場の換気法として利用される。     The technology of the present invention enables (1) dehumidification using minimized energy and recycling of dry air, (2) energy recovery using latent heat of evaporation as sensible heat, and (3) reduction in size and weight of the dehumidification process. Achieved, dehumidification systems can be designed for mobile spaces (spaces such as cars, airplanes, trains, etc.), industrial and civilian. (4) Sufficient ventilation is naturally provided for carbon dioxide and oxygen, and since particulates are isolated, they are used as a ventilation method for a bathroom in a hospital or home.

ミクロ相分離法で得られた酢酸セルロース多孔膜を苛性ソーダによりケン化処理し、再生セルロース平膜(図1,図2中の3)を作製する。これを図1に示したモジュール内に6〜12角(図1,図2には8角)の星状に装着する。平膜を星状に折りたたむ際に再生セルロース不織布と平膜とを重ねると膜の力学的性質が向上する。星状に折りたたまれた平膜の内筒部には中空の回転体5を有し、5の下部側には風力を回転力に変換するスクリュー10を複数個有する。回転体5に12個の浅い溝を有し、この溝内に平膜の支持体を必要な場合にははさむことが可能である。回転体の5の上および下部に回転の中心となる棒11、棒11に直角に接続した棒12によって回転力は星状に折りたたまれた平膜3に伝わり、星状の平膜は中心棒11の周りを回転する。平膜は高分子包埋材Pで埋込み固定されている。     The cellulose acetate porous membrane obtained by the microphase separation method is saponified with caustic soda to produce a regenerated cellulose flat membrane (3 in FIGS. 1 and 2). This is mounted in a star shape of 6 to 12 corners (8 corners in FIGS. 1 and 2) in the module shown in FIG. When the regenerated cellulose non-woven fabric and the flat membrane are overlapped when the flat membrane is folded into a star shape, the mechanical properties of the membrane are improved. The inner cylindrical portion of the flat membrane folded in a star shape has a hollow rotating body 5, and a plurality of screws 10 that convert wind force into rotational force are provided on the lower side of 5. The rotating body 5 has twelve shallow grooves, and a flat membrane support can be sandwiched in the grooves if necessary. The rotating force is transmitted to the flat film 3 folded in a star shape by a bar 11 which is the center of rotation above and below the rotating body 5 and a bar 12 which is connected to the bar 11 at a right angle. Rotate around 11. The flat membrane is embedded and fixed with a polymer embedding material P.

図1の星型の平膜モジュールの周りをナイロン製網または金網2で囲い、外部から異物の衛突を防止する。この網状物は平膜モジュールの外筒を形成し、この外筒はキャップ1で固定されている。外筒のキャップと平膜の埋込み部とはベアリング8、9で接触し、外筒キャップと中心棒とはベアリングとで接触する。入口7よりの湿った高温気体が流入するとこの流入の風力で平膜の星状折りたたみ部は回転する。   The star-shaped flat membrane module in FIG. 1 is surrounded by a nylon net or a metal net 2 to prevent foreign objects from colliding with the outside. The net forms an outer cylinder of a flat membrane module, and the outer cylinder is fixed with a cap 1. The cap of the outer cylinder and the embedded portion of the flat membrane are contacted by bearings 8 and 9, and the outer cylinder cap and the center bar are contacted by the bearing. When the wet high temperature gas from the inlet 7 flows in, the star-shaped folding part of the flat membrane rotates by the inflowing wind force.

平均置換度2.45の酢酸セルロース(平均重合度200)を15wt%でアセトンに溶解させ、この溶液中にメタノール,水,塩化カルシウム,シクロヘキサブルを添加して流延用溶液を作製した。その溶液組成については文献値(上出、真鍋、松井、坂本、梶田、高分子論文集、34巻205頁(1977))を参考にして決定した。得られた多孔性の酢酸セルロース膜を0.1規定の苛性ソーダで再生セルロースへと変化させ、この膜をアセトンを用いた水置換法で乾燥させた。乾燥後の再生セルロース多孔膜の特性は以下に与えられる。
膜厚;400μm,平均孔径;300nm,空孔率;83%
ここで平均孔径は濾過速度法での値である。
Cellulose acetate having an average degree of substitution of 2.45 (average degree of polymerization of 200) was dissolved in acetone at 15 wt%, and methanol, water, calcium chloride, and cyclohexabul were added to this solution to prepare a casting solution. The solution composition was determined with reference to literature values (Kamide, Manabe, Matsui, Sakamoto, Iwata, Kobunshi Shigaku, Vol. 34, p. 205 (1977)). The obtained porous cellulose acetate membrane was changed to regenerated cellulose with 0.1 N caustic soda, and this membrane was dried by a water displacement method using acetone. The characteristics of the regenerated cellulose porous membrane after drying are given below.
Film thickness: 400 μm, average pore diameter: 300 nm, porosity: 83%
Here, the average pore diameter is a value obtained by the filtration rate method.

図1、図2に示したように膜を8角の星型に折り込む。有効膜面積を0.3m/であり、金網の直径は15cm、長さ50cm、8角の星形の外接円の直径を12cmに設定した。大気の温度15℃、相対温度65%,本装置の入口での湿った気体の温度は80℃で、相対湿度80%(水蒸気圧0.38気圧)であった。この湿った空気を0.4気圧(大気圧より0.4気圧が負荷されている)で加圧し、装置内を40リットル/分で流した。出口における湿った空気の温度は80℃で相対湿度は40%となり湿度は半分になった。本装置による水分除去速度は2g/分であった。 As shown in FIGS. 1 and 2, the membrane is folded into an octagonal star. The effective membrane area was 0.3 m 2 /, the diameter of the wire mesh was 15 cm, the length was 50 cm, and the diameter of the octagonal circumscribed circle was set to 12 cm. The temperature of the atmosphere was 15 ° C., the relative temperature was 65%, the temperature of the moist gas at the inlet of the apparatus was 80 ° C., and the relative humidity was 80% (water vapor pressure 0.38 atm). The moist air was pressurized at 0.4 atm (0.4 atm from atmospheric pressure), and the inside of the apparatus was flowed at 40 l / min. The temperature of the humid air at the outlet was 80 ° C., the relative humidity was 40%, and the humidity was halved. The water removal rate by this apparatus was 2 g / min.

乾燥工程を持つすべての産業で利用される。乾燥に必要なエネルギーコストを低下させることが可能となった。その他病院などでの感染源の隔離、動物実験施設、家庭の乾燥機、風呂場にも利用可能であった。     Used in all industries with a drying process. The energy cost required for drying can be reduced. It could also be used for isolation of infection sources in hospitals, animal experiment facilities, home dryers, and bathrooms.

:本発明の除湿部の概略図: Schematic of the dehumidifying part of the present invention :図1でA―A´線での断面図: Cross section taken along line AA 'in FIG.

符号の説明Explanation of symbols

1 :網枠および星状に折りたたまれた平膜等の回転部を支える外筒
2 :金網あるいはナイロン製網
3 :星状に折りたたまれた平膜
4 :中空状の内筒
5 :内筒にきざまれた溝
6 :中心棒と外筒キャップとの間にあるポールベアリング
7 :湿った空気の出入口
8 :外筒キャップと星状に折りたたまれた平膜と内筒との接触部のポールベアリング
9 :外筒キャップ
10 :風力により回転を与える羽根
11 :中心棒
12 :中心棒に直角に配置された棒状支持物
P :平膜と棒状支持物を埋込むための高分子充填剤
1: Outer cylinder supporting a rotating part such as a mesh frame and a flat membrane folded in a star shape 2: A wire mesh or nylon mesh 3: A flat membrane folded in a star shape 4: A hollow inner cylinder 5: An inner cylinder Grooved groove 6: Pole bearing between the center rod and the outer cylinder cap 7: Moist air inlet / outlet 8: Pole bearing at the contact between the outer cylinder cap and the flat membrane folded in a star shape and the inner cylinder 9: outer cylinder cap 10: blades that rotate by wind force 11: center rod 12: rod-shaped support arranged perpendicular to the center rod P: polymer filler for embedding the flat membrane and the rod-shaped support

Claims (3)

絶対湿度が大気中(温度T)の絶対湿度より高い湿った気体(温度T)より膜を介して反対側の絶対湿度がより低い大気中へ水分を除去する際に気体の流れの力を利用して親水性多孔性平膜を装着した円筒状回転体を回転することにより、膜を介して孔拡散,表面拡散および溶解拡散の3種の機構のいずれかまたはすべてを利用して水分を大気中に移動させることを特徴とする水分除去方法。 Force of gas flow in removing moisture through the membrane into the atmosphere with lower absolute humidity on the opposite side than the humid gas (temperature T 1 ) where the absolute humidity is higher than the absolute humidity in the atmosphere (temperature T 2 ) Rotating a cylindrical rotating body fitted with a hydrophilic porous flat membrane using water, water can be obtained using any or all of the three mechanisms of pore diffusion, surface diffusion and dissolution diffusion through the membrane. A method for removing moisture, which comprises moving the water into the atmosphere. 請求項1において、平膜は再生セルロースで構成され、該膜の孔構造は多層構造膜で表現され該膜の平均孔径は300nm以下で5nm以上でかつ膜厚d(μm単位)は温度差△T(℃)(=T―T)との間に下記関係を満足するように選定されたことを特徴とする水分除去方法。
d≧30+5△T
In claim 1, the flat membrane is composed of regenerated cellulose, the pore structure of the membrane is expressed by a multilayer structure membrane, the average pore diameter of the membrane is 300 nm or less and 5 nm or more, and the film thickness d (μm unit) is a temperature difference Δ A moisture removal method selected so as to satisfy the following relationship with T (° C.) (= T 1 −T 2 ):
d ≧ 30 + 5ΔT
請求項1、2において平膜はプリーツ型でモジュール化され湿った気体に接する膜面の平均孔径が大気に接する側の膜面の平均孔径より小さいことを特徴とする水分除去法。
3. A method for removing moisture according to claim 1, wherein the flat membrane is a pleated module, the average pore size of the membrane surface in contact with the moist gas is smaller than the average pore size of the membrane surface on the side in contact with the atmosphere.
JP2008308133A 2008-12-03 2008-12-03 How to remove moisture from the air Expired - Fee Related JP5782669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308133A JP5782669B2 (en) 2008-12-03 2008-12-03 How to remove moisture from the air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308133A JP5782669B2 (en) 2008-12-03 2008-12-03 How to remove moisture from the air

Publications (2)

Publication Number Publication Date
JP2010131486A true JP2010131486A (en) 2010-06-17
JP5782669B2 JP5782669B2 (en) 2015-09-24

Family

ID=42343367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308133A Expired - Fee Related JP5782669B2 (en) 2008-12-03 2008-12-03 How to remove moisture from the air

Country Status (1)

Country Link
JP (1) JP5782669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024679A (en) * 2010-07-22 2012-02-09 Sepa Sigma Inc Method for removing water in gas
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2015074704A (en) * 2013-10-08 2015-04-20 フタムラ化学株式会社 Method for producing heterogeneous cellulose film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413006B2 (en) * 1982-09-28 1992-03-06 Asahi Chemical Ind
JPH04344042A (en) * 1991-05-20 1992-11-30 Daikin Ind Ltd Humidifier and humidifier-equipped air conditioner
JPH1066840A (en) * 1996-08-26 1998-03-10 Fuji Photo Film Co Ltd Precise filter membrane cartridge filter
JP2003088722A (en) * 2001-09-18 2003-03-25 Japan Science & Technology Corp Energy saving type dehumidification system
JP2003114037A (en) * 2001-10-04 2003-04-18 Kunitaka Mizobe Steam movement control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413006B2 (en) * 1982-09-28 1992-03-06 Asahi Chemical Ind
JPH04344042A (en) * 1991-05-20 1992-11-30 Daikin Ind Ltd Humidifier and humidifier-equipped air conditioner
JPH1066840A (en) * 1996-08-26 1998-03-10 Fuji Photo Film Co Ltd Precise filter membrane cartridge filter
JP2003088722A (en) * 2001-09-18 2003-03-25 Japan Science & Technology Corp Energy saving type dehumidification system
JP2003114037A (en) * 2001-10-04 2003-04-18 Kunitaka Mizobe Steam movement control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024679A (en) * 2010-07-22 2012-02-09 Sepa Sigma Inc Method for removing water in gas
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2015074704A (en) * 2013-10-08 2015-04-20 フタムラ化学株式会社 Method for producing heterogeneous cellulose film

Also Published As

Publication number Publication date
JP5782669B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Liu et al. Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances
ES2924560T3 (en) heat and moisture exchanger
TWI786215B (en) Ventilation and air conditioning device, and ventilation and air conditioning method
CA2761826C (en) Water transport membrane featuring desiccant-loaded substrate and polymer coating
Zhang Fabrication of a lithium chloride solution based composite supported liquid membrane and its moisture permeation analysis
TWI757523B (en) Ventilation air conditioner
US20040099140A1 (en) Device for continuously humidifying and dehumidifying additional air from manufacturing processes and ventilating and air condition systems
Bettahalli et al. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification
JPS6099328A (en) Separating apparatus for condensable gas
Bui et al. Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification
Asasian-Kolur et al. Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery
Lim et al. Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes
Gebreyohannes et al. Hollow fibers with encapsulated green amino acid-based ionic liquids for dehydration
Abdollahi et al. Heat and mass transfer modeling of an energy efficient Hybrid Membrane-Based Air Conditioning System for humid climates
JP5782669B2 (en) How to remove moisture from the air
Chua et al. On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants
JP2007203280A (en) Separation membrane and composite membrane having the same, humidification element, dehumidification element, humidifier, dehumidifier, and humidifying system
CN113402767A (en) Polyamide total heat exchange membrane based on interfacial polymerization and preparation method thereof
CA2390682C (en) Enthalpy pump
CN105833736A (en) High-selectivity low-thermal conductivity asymmetric permeable membrane as well as preparation method and application thereof
JP2002001106A (en) Functional element for dehumidification or heat exchange and its manufacturing method
Salafi et al. A flat-plate spiral-channeled membrane heat exchanger for methane dehumidification: Comparison of kraft paper and thin-film composite membrane
WO2019091161A1 (en) Apparatus for producing drinking water from air
US20220134277A1 (en) Solar-driven membrane-based open-cycle adsorption air conditioner
Chang et al. Thin Film Composite Polyamide (TFC-PA) total heat exchange membranes (THEMs) with ultrahigh sensible heat recovery and greatly improved CO2 barrier property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5782669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees