WO2015162909A1 - Vegetable case and refrigerator - Google Patents

Vegetable case and refrigerator Download PDF

Info

Publication number
WO2015162909A1
WO2015162909A1 PCT/JP2015/002159 JP2015002159W WO2015162909A1 WO 2015162909 A1 WO2015162909 A1 WO 2015162909A1 JP 2015002159 W JP2015002159 W JP 2015002159W WO 2015162909 A1 WO2015162909 A1 WO 2015162909A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegetable
regenerated cellulose
vegetable case
refrigerator
cold air
Prior art date
Application number
PCT/JP2015/002159
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 鈴木
淳宏 大島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201590000450.9U priority Critical patent/CN207361005U/en
Priority to DE212015000111.3U priority patent/DE212015000111U1/en
Publication of WO2015162909A1 publication Critical patent/WO2015162909A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/10Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/62Boxes, cartons, cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification

Definitions

  • the present invention relates to a vegetable case and a refrigerator provided with a vegetable case.
  • a home refrigerator is provided with a vegetable room, and various ideas have been made so that vegetables stored in the vegetable room can be stored in good condition.
  • a vegetable container provided with a moisture permeable membrane in order to maintain the humidity in the vegetable room substantially constant (see, for example, Patent Document 1).
  • FIG. 35 shows a moisture-sensitive moisture permeable membrane mounted on the refrigerator described in Patent Document 1.
  • the moisture and moisture permeable membrane 404 is composed of a moisture permeable and moisture permeable membrane base material 405 and a regenerated cellulose layer having moisture permeability that changes the amount of moisture permeation depending on humidity.
  • the moisture-permeable and moisture-permeable membrane 404 described in Patent Document 1 has a structure in which the regenerated cellulose layer 406 having a moisture-permeable effect is held by the base material 405.
  • the concentration of viscose that is a raw material of the regenerated cellulose layer 406 is controlled in order to control the film thickness of the regenerated cellulose layer 406.
  • Adjustment and density adjustment of the base material are necessary, and the manufacturing process of the moisture-permeable and moisture-permeable membrane 404 becomes complicated. For this reason, it has the subject that it is difficult to make a general-purpose product and the manufacturing cost becomes high.
  • the moisture-permeable and moisture-permeable membrane 404 described in Patent Document 1 has a structure in which a film of the regenerated cellulose layer 406 is formed in such a structure that a thin film is stretched between fibers constituting the substrate 405. It has become. For this reason, not only is it difficult to make the film thickness of the regenerated cellulose layer 406 uniform, but there is also a problem that a portion where the thin film of the regenerated cellulose layer 406 is not stretched occurs and a gap remains. Therefore, in the vegetable room provided with such a conventional moisture-sensitive moisture permeable membrane, when the vegetable room has a high humidity, the humidity is more than necessary due to a gap formed by the thin film of the regenerated cellulose layer 406 not being stretched.
  • the present invention has been made to solve such a conventional problem, and the present invention uses a base material in which an opening is provided in at least a part of a wall surface constituting a vegetable storage part of a vegetable case.
  • a vegetable case in which a regenerated cellulose film formed without being provided in an opening and a refrigerator using the vegetable case are provided.
  • the adjustment of the concentration of the viscose and the adjustment of the substrate material density for controlling the film thickness of the regenerated cellulose membrane there is no need to perform a special treatment, and a regenerated cellulose membrane that is easy to manufacture and has a low manufacturing cost can be formed.
  • the moisture permeation amount of the regenerated cellulose film can be maintained even when the vegetable case is at high or low humidity. It can be controlled stably. Thereby, a vegetable case can be kept at high humidity for a long period of time, and the freshness of vegetables can also be maintained for a long period of time.
  • FIG. 1 is a cross-sectional view of a vegetable case in which a regenerated cellulose membrane according to Embodiment 1 of the present invention is arranged.
  • FIG. 2 is a perspective view of the vegetable case according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of the vegetable case according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the moisture and moisture permeation rate of the regenerated cellulose membrane in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a regenerated cellulose membrane unit in which the regenerated cellulose membrane in Embodiment 1 of the present invention is fixed to a fixed frame.
  • FIG. 1 is a cross-sectional view of a vegetable case in which a regenerated cellulose membrane according to Embodiment 1 of the present invention is arranged.
  • FIG. 2 is a perspective view of the vegetable case according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective
  • FIG. 6 is a cross-sectional view showing a state in which the regenerated cellulose film and the nonwoven fabric in Embodiment 1 of the present invention are laminated and bonded with viscose.
  • FIG. 7 is a cross-sectional view of a refrigerator provided with a vegetable case in which the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is arranged.
  • FIG. 8 is a graph showing the humidity fluctuation in the vegetable case in which the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is arranged.
  • FIG. 9 is a graph showing the humidity fluctuation in the vegetable case when the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is not arranged.
  • FIG. 10 is a graph showing the weight change (initial ratio) of each vegetable stored in the vegetable room for 7 days in Embodiment 2 of the present invention.
  • FIG. 11 is a front view of the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 12 is a front view when the door of the refrigerator in Embodiment 3 of this invention is opened.
  • 13 is a cross-sectional view taken along line 13-13 of FIG. 12, showing the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 12, showing the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the third embodiment of the present invention.
  • FIG. 16 is a schematic front view of the refrigerator for demonstrating the cold air flow of the refrigerator in Embodiment 3 of this invention.
  • FIG. 17 is a perspective view of a part of the refrigerator for explaining the cold air flow in the rear part of the cooling chamber of the refrigerator in the third embodiment of the present invention.
  • FIG. 18 is an enlarged cross-sectional view of a main part of the refrigerator in the third embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a part of the refrigerator for explaining the cold air flow of the refrigerator in the third embodiment of the present invention.
  • FIG. 20 is an enlarged cross-sectional view of a main part of the refrigerator in the third embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional view of a part of the refrigerator for explaining the cold air flow of the refrigerator in the third embodiment of the present invention.
  • FIG. 22 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the third embodiment of the present invention.
  • FIG. 23 is a perspective view of a rear partition block constituting the back wall portion of the vegetable room of the refrigerator in the third embodiment of the present invention.
  • FIG. 24 is an exploded perspective view showing a vegetable room and a vegetable case of the refrigerator in the third embodiment of the present invention.
  • FIG. 25 is a perspective view of a vegetable case provided in the vegetable compartment of the refrigerator in the third embodiment of the present invention.
  • FIG. 26 is an exploded perspective view of the vegetable case in the vegetable compartment of the refrigerator in the third embodiment of the present invention.
  • FIG. 27 is a perspective view of a vegetable case in the vegetable compartment of the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 28 is an exploded perspective view of a partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention.
  • FIG. 29A is a perspective view showing a state in which the partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention is attached to the lower container.
  • FIG. 29B is a perspective view showing a state where the partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention is attached to the lower container.
  • FIG. 30 is a sectional view of a partition plate used in the vegetable case of the refrigerator in the third embodiment of the present invention.
  • FIG. 31 is a front sectional view of a vegetable case provided in a vegetable room of a refrigerator in Embodiment 3 of the present invention.
  • FIG. 32 is a front sectional view showing a state where the upper container in the vegetable room of the refrigerator in the third embodiment of the present invention is supported.
  • FIG. 33 is a partially enlarged view showing a state in which the upper container is placed in the lower container of the vegetable case provided in the vegetable compartment of the refrigerator in the third embodiment of the present invention.
  • FIG. 34 is a control block diagram of the refrigerator in the third embodiment of the present invention.
  • FIG. 35 is a schematic view of a conventional moisture-sensitive moisture permeable membrane.
  • FIG. 1 is a cross-sectional view of a vegetable case in which a regenerated cellulose membrane according to Embodiment 1 of the present invention is arranged.
  • 2 and 3 are perspective views of the vegetable case according to Embodiment 1 of the present invention.
  • the opening part 3 is provided in at least one part in the inner surface of the vegetable case main body 2 which comprises the vegetable storage part of the vegetable case 1, Preferably the side surface which comprises a top
  • the regenerated cellulose film 4 is held so as to cover the opening 3.
  • the vegetable case lid 5 is designed so that the vegetable case body 2 can be covered.
  • the opening 3 is provided in at least a part of the vegetable case lid 5, and the regenerated cellulose membrane 4 is held so as to cover the opening 3 provided in at least a part of the vegetable case lid 5. May be.
  • the opening 3 is provided on at least a part of the side surface of the vegetable case body 2 constituting the vegetable storage part of the vegetable case 1, and the regenerated cellulose membrane 4 is held so as to cover the opening 3. May be.
  • the vegetable case main body 2 which comprises a vegetable storage part is provided with the space where a vegetable etc. can be stored.
  • the main raw material of the regenerated cellulose membrane 4 is regenerated cellulose obtained as follows. That is, a viscose liquid is prepared by dissolving cellulose made of pulp made by pulverizing wood or the like with alkali such as sodium hydroxide and carbon disulfide. The viscose solution is passed through a slit, formed into a thin film like paper, neutralized with an acid such as sulfuric acid, and returned to cellulose to obtain a film-like regenerated cellulose.
  • the regenerated cellulose film is also called cellophane paper.
  • cellulose which is a raw material of the regenerated cellulose film 4 is known as a dietary fiber as another name. Since this dietary fiber is a substance that constitutes the cell wall of plants, it is always included in vegetables and fruits, and is a substance that is ingested together with vegetables and the like, and is also a very safe food. For this reason, since it is safe even if it is ingested directly, it is widely used as a food packaging material such as a food package for industrial use. Furthermore, since the raw pulp is an inexpensive material, the processed regenerated cellulose membrane is also inexpensive, so that it is also used in large quantities for the purpose of individually packaging cheap candy and ramune among foods. Therefore, it is used as a packaging material that is generalized and consumed in large quantities today, and is mass-produced and consumed in large quantities.
  • An inexpensive regenerated cellulose membrane having high safety and high versatility has another property that humidity permeation changes depending on humidity.
  • the mechanism of moisture transmission of the regenerated cellulose will be briefly described.
  • the raw material pulp is a cellulose material.
  • This cellulose is expressed by a carbohydrate (molecular formula (C 6 H 10 O 5 ) n) represented by (Chemical Formula 1) of a crystal structure contained in a natural plant cell wall. And has a parallel chain structure in which the orientations of the reducing ends are all the same in the crystal.
  • This equilibrium chain structure exists as fine fibers and is called microfibril (an aggregate unit of filamentous cellulose molecules).
  • microfibril an aggregate unit of filamentous cellulose molecules.
  • the regenerated cellulose that is the main component of the regenerated cellulose membrane of the present invention is a cellulose regenerated using viscose as a raw material, and is a carbohydrate (polysaccharide) represented by (C 6 H 10 O 5 ) n. .
  • this regenerated cellulose is expressed by a molecular formula, it is expressed as (C 6 H 10 O 5 ) n, which is the same as cellulose.
  • cellulose uses natural materials as they are, regenerated cellulose is obtained by treating cellulose with sodium hydroxide and then adding carbon disulfide to viscose (sodium cellulose xanthate).
  • the regenerated cellulose thus obtained has an antiparallel chain structure, that is, an amorphous structure, in which the crystal structure that is characteristic of cellulose is broken and the orientation of the non-reducing ends of adjacent molecular chains is different.
  • the cellulose molecules Due to the non-crystalline properties of the regenerated cellulose, the cellulose molecules are hydrogen bonded to each other at low humidity, that is, in a dry state, and moisture in the air hardly enters between the cellulose molecules.
  • the humidity is high, that is, when there is a lot of moisture in the air, the cellulose molecules in the regenerated cellulose hydrogen bond with the moisture in the air, so the hydrogen bonds between the cellulose molecules are broken and the spacing between the cellulose molecules is increased. It becomes wider and moisture is likely to enter between molecules.
  • components containing moisture (humidity) in the air can move so that the interval between cellulose molecules passes through from the high humidity side to the low humidity side, and the amount of moisture movement increases. Due to such characteristics, the regenerated cellulose has a characteristic that the amount of humidity that passes through the regenerated cellulose, that is, the moisture permeation amount increases as the humidity increases, that is, the humidity sensitivity.
  • the regenerated cellulose membrane 4 in which regenerated cellulose is processed into a film has a characteristic that the moisture permeability increases as the humidity increases.
  • the feature of the regenerated cellulose membrane in terms of moisture permeability has been conventionally treated as a defect. That is, as described above, when the humidity is high, the interval between the cellulose molecules is widened, but the regenerated cellulose film is stretched even when viewed as a whole of the regenerated cellulose film. If the regenerated cellulose film is used for wallpaper or shoji paper, etc., it is peeled off the wall by extending the regenerated cellulose film if it is high in the humidity, and if it is shoji, wrinkles are formed between the lattices. Will occur. For this reason, conventionally, there are hardly any applications in which the characteristics of moisture permeability of the regenerated cellulose membrane are utilized.
  • FIG. 4 is a graph showing the moisture permeation rate of the regenerated cellulose membrane 4.
  • the moisture permeation performance of the regenerated cellulose membrane 4 will be described with reference to FIG. However, moisture permeation performance is expressed as moisture permeation.
  • the humidity permeation amount is an amount defined as the amount of moisture that passes through the regenerated cellulose membrane 4 per unit area per unit time. For comparison, the humidity permeation amount of general paper having no moisture permeation effect is also shown.
  • the humidity transmission amount is about 10% of the humidity transmission amount of general paper.
  • the humidity transmission amount at high humidity is about 80% of the humidity transmission amount of general paper.
  • the moisture permeability in the high humidity region (relative humidity 95% RH) is reduced to the moisture permeability in the low humidity region (relative humidity 50% RH).
  • a regenerated cellulose membrane 4 that is 4 to 12 times larger than the above can be obtained.
  • FIG. 5 shows a regenerated cellulose membrane unit 8 in which the regenerated cellulose membrane 4 in the present embodiment is fixed to a fixed frame 6.
  • the periphery of the regenerated cellulose film 4 is fixed by a fixed frame 6 in order to facilitate the carrying of the regenerated cellulose film 4 or to improve the mounting operability of the regenerated cellulose film 4 during production.
  • the fixed frame 6 that fixes the regenerated cellulose film 4 has needle-like ribs around the frame, and the regenerated cellulose film 4 is fixed by passing the rib of the fixed frame 6 through the regenerated cellulose film 4. Yes.
  • the regenerated cellulose film 4 As another means for fixing the regenerated cellulose film 4 to the fixed frame 6, there is insert molding.
  • the regenerated cellulose film 4 can be fixed to the fixed frame 6 without gaps at the same time as the molding.
  • the air in the vegetable case 1 always passes through the regenerated cellulose membrane 4, it is desirable from the viewpoint that moisture permeability can be obtained with certainty.
  • the fixed frame 6 to which the regenerated cellulose film 4 is fixed has no gap in the opening 3 formed in the vegetable case lid 5 provided in the vegetable case 1 or the opening 3 provided in the vegetable case main body 2. It can be attached.
  • the vegetable case lid 5 is configured such that a sealed structure is formed by the vegetable case lid 5 and the vegetable case body 2 in order to sufficiently bring out the moisture-sensitive moisture permeability of the regenerated cellulose membrane 4. Is desirable. If it is impossible to form a sealed structure between the vegetable case lid 5 and the vegetable case body 2, the gap between the vegetable case lid 5 and the vegetable case body 2 is made as small as possible.
  • the configuration is desirable from the viewpoint that the performance of the regenerated cellulose film 4 can be utilized.
  • the regenerated cellulose membrane unit 8 which has the regenerated cellulose membrane 4 is attached to at least a part of at least one surface of the inner surface of the vegetable case main body 2 constituting the vegetable storage unit. Even when they are arranged, the same effect can be obtained.
  • at least 1 surface of the inner surface of the vegetable case main body 2 which comprises the vegetable storage part as used in this Embodiment is the top surface of the vegetable case main body 2, the side surface which comprises a wall surface, and at least 1 surface among bottom surfaces. pointing.
  • the vegetable case body 2 is made of a polymer material such as PP, PS, and ABS from the viewpoint that it can be manufactured at low cost. It is also effective to incorporate an antibacterial agent into these polymer materials for the purpose of preserving vegetables and the like more hygienically.
  • the vegetable case main body 2 absorbs heat from the outside, and the temperature inside the vegetable case main body 2 quickly reaches the same temperature as the external temperature, thereby preventing condensation due to a temperature difference.
  • a metallic material having a high heat transfer coefficient such as stainless steel and aluminum.
  • these metal materials have antibacterial performance, they are desirable from the viewpoint that vegetables and the like can be stored more hygienically.
  • the regenerated cellulose membrane 4 of the present embodiment may contain a fungicide.
  • a method for blending the antifungal agent a method in which the antifungal agent is mixed in advance with the viscose when the regenerated cellulose membrane 4 is produced is desirable. According to this method, it is not necessary to use an antifungal binder or the like on the finally formed regenerated cellulose film 4, and the regenerated cellulose film can be formed in a state in which the antifungal agent is contained. It can be avoided that the moisture and moisture permeation performance is impaired by mixing.
  • an antifungal agent for the purpose of selecting a material that does not deteriorate due to the strong alkali of viscose and hardly dissolves in water, inorganic materials such as Ni and zinc mixed with silver, copper, Ni, trace amounts of Co and Cu, etc.
  • inorganic materials such as Ni and zinc mixed with silver, copper, Ni, trace amounts of Co and Cu, etc.
  • organic fungicides such as TBZ, triazine, isoplatiolane, iprodione and siabendazole.
  • TBZ triazine
  • isoplatiolane isoplatiolane
  • iprodione iprodione
  • siabendazole siabendazole
  • the mold preventive agent there is a method of coating a part of the surface of the regenerated cellulose film 4 with a paint blended with a mold preventive component.
  • the coating area of the paint containing the anti-mold component is about 25% or less of the entire surface of the regenerated cellulose film 4, the moisture permeability of the regenerated cellulose film 4 is hardly impaired.
  • the coating area of the paint is desirably about 25% or less of the entire surface of the regenerated cellulose film 4.
  • the antifungal agent since the antifungal agent is coated on a part of the regenerated cellulose film 4, the antifungal agent has a halo effect (an effect that the antifungal effect extends to the periphery of the antifungal component) as an antifungal property.
  • inorganic systems such as Ni and zinc mixed with silver, copper, Ni, trace amounts of Co and Cu, and organic fungicides such as TBZ, triazine, isoprathiolane, iprodione and cyabendazole An agent is used.
  • TBZ that is widely used as a food additive, is inexpensive, and has an antifungal effect over a long period of time.
  • an inorganic antibacterial agent for the purpose of selecting an antifungal agent that has an antifungal effect even if the amount to be coated is extremely small and is not easily affected by the external environment.
  • FIG. 6 is a cross-sectional view in which the regenerated cellulose film 4 and the nonwoven fabric 9 in the present embodiment are laminated and bonded with viscose.
  • the nonwoven fabric 9 having a stronger shear strength than the regenerated cellulose film 4 is laminated on at least one of the front and back surfaces of the regenerated cellulose film 4. Further, the regenerated cellulose film 4 and the nonwoven fabric 9 are bonded by a viscose layer 10 that is an adhesive layer.
  • the viscose layer 10 is made of the same raw material viscose as the regenerated cellulose film 4, and the main component is regenerated cellulose.
  • the viscose layer 10 is formed by coating or dipping viscose on the regenerated cellulose film 4 or the nonwoven fabric 9, and then solidifying the viscose coated or dipped by acid treatment to form the regenerated cellulose film 4 or the nonwoven fabric 9. Regenerated cellulose retained.
  • the coating is to apply viscose on the surface of the regenerated cellulose film 4 or the nonwoven fabric 9, and the dipping is to immerse the viscose in the regenerated cellulose film 4 or the nonwoven fabric 9.
  • dipping for reliable adhesion is preferable.
  • the regenerated cellulose film 4 and the non-woven fabric 9 are coated with or dipped on the regenerated cellulose film 4 or the non-woven fabric 9 and then the regenerated cellulose film 4 is impregnated with the viscose.
  • pressure is applied to the nonwoven fabric 9 from above and below with a mechanical roll press.
  • regenerated cellulose membrane 4 or the nonwoven fabric 9 is impregnated with viscose, as a means for adhering the regenerated cellulose membrane 4 and the nonwoven fabric 9, acid treatment with a sulfuric acid solution is performed in the state of a synthetic polymer.
  • a method in which the viscose is regenerated and the regenerated cellulose film 4 and the nonwoven fabric 9 are bonded is used. This bonding method is desirable from the viewpoint of increasing the bonding strength between the regenerated cellulose film 4 and the nonwoven fabric 9.
  • vegetables to be stored are placed in the vegetable case main body 2, and the vegetable case main body 2 is sealed with the vegetable case lid 5.
  • the humidity inside the vegetable case 1 exceeds 100% due to moisture evaporated from the vegetables or the like stored in the vegetable case body 2.
  • the moisture in excess of 100% causes the inside of the vegetable case 1 to condense, and the condensed water causes the problem of causing water rot of vegetables and the like held in the vegetable case 1.
  • a regenerated cellulose film 4 is disposed on at least a part of the vegetable case lid 5.
  • the regenerated cellulose film 4 is disposed on a part of at least one of the inner surfaces of the vegetable case body 2.
  • the regenerated cellulose membrane 4 has a function of regenerated cellulose.
  • the amount of moisture transmitted is reduced, and the amount of moisture released from the vegetable case body 2 to the outside is reduced.
  • the humidity inside the vegetable case 1 is maintained, it is possible to preserve the vegetables and the like while maintaining the freshness of the vegetables and the like for a long time.
  • the regenerated cellulose membrane 4 works to reduce the humidity inside the vegetable case 1.
  • the moisture permeability is automatically adjusted according to the degree. Thereby, dew condensation can be prevented while the high humidity in the vegetable case 1 is maintained.
  • positioned in the vegetable case 1 is not restricted to 1 sheet
  • the vegetable case 1 of the present embodiment has the opening 3 on at least a part of at least one of the inner surfaces constituting the vegetable storage portion, preferably the top surface and the side surfaces constituting the wall surface, A regenerated cellulose film 4 formed without using a substrate is provided in the opening 3.
  • the regenerated cellulose film 4 of the present embodiment is formed using a substrate, there is no need to perform special treatment such as adjustment of the concentration of viscose and adjustment of the density of the substrate material.
  • the regenerated cellulose film 4 is formed by processing viscose, which is a raw material, by being extruded through a slit provided with a certain gap.
  • the regenerated cellulose membrane 4 formed in this way can be used for humidity control as a moisture permeable and moisture permeable membrane.
  • the regenerated cellulose film 4 of the present embodiment is formed of a regenerated cellulose film having a uniform film thickness and avoiding defects such as perforations, so that the reliability is high, the cost is low, and the humidity is low.
  • the amount of humidity permeation can be controlled stably. Therefore, the inside of the vegetable case 1 can be kept at high humidity for a long period of time, and the freshness of the vegetables and the like can also be maintained for a long period of time.
  • the regenerated cellulose membrane 4 of the present embodiment preferably has a density of 20 to 40 g / m 2 .
  • the regenerated cellulose membrane 4 of this density has a moisture permeability in the high humidity region (humidity 95% RH) of about 4 to 12 times that in the low humidity region (humidity 50% RH). Can be kept at high humidity.
  • a nonwoven fabric 9 having a shearing force stronger than that of the regenerated cellulose film 4 is laminated on at least one of the front and back surfaces of the regenerated cellulose film 4.
  • the regenerated cellulose film 4 and the non-woven fabric 9 are obtained by adhering each other by coating or dipping the regenerated cellulose film 4 or the non-woven fabric 9 with viscose and solidifying the viscose coated or dipped by acid treatment. .
  • the regenerated cellulose membrane 4 and the nonwoven fabric 9 can be bonded and fixed by a simple method such as acid treatment of viscose. Unlike means for bonding by using a binder (adhesive) or the like, a binder (adhesive) is used. It becomes unnecessary. For this reason, the regenerated cellulose film 4 and the nonwoven fabric 9 can be easily integrated without impeding the moisture permeation effect by the binder (adhesive), and the handleability at the time of manufacture can be improved.
  • FIG. 7 is a cross-sectional view of refrigerator 100 having vegetable case 1 in which regenerated cellulose membrane unit 8 according to Embodiment 2 of the present invention is arranged.
  • the heat insulating box body 101 which is the main body of the refrigerator 100 includes an outer box 102 mainly made of steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102 and an inner box 103. And a foamed heat insulating material such as hard foamed urethane filled in the space between them.
  • the heat insulation box 101 is insulated from the surroundings, and is thermally insulated into a plurality of storage rooms by partition walls.
  • a refrigeration room 104 as a first storage room, a switching room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are arranged side by side below the refrigeration room 104. Is provided.
  • a freezing room 107 as a second storage room is arranged at the lower part of the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is arranged at the lowermost part of the heat insulating box 101. Has been.
  • the refrigerated room 104 is set in a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, and is usually set to 1 ° C. to 5 ° C.
  • the vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a temperature slightly higher than the refrigeration room 104, for example, a vegetable temperature range 2 ° C. to 7 ° C.
  • the freezer compartment 107 is set in a freezing temperature zone, and specifically, it is normally set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage. In order to improve the frozen storage state, it may be set at a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C., for example.
  • the vegetable compartment 108 may be provided with a drawer-type door.
  • the vegetable compartment 108 has a vegetable case 1, and the vegetable case 1 is provided with a vegetable case lid 5 provided with a regenerated cellulose membrane unit 8.
  • the regenerated cellulose membrane unit 8 is designed so that it can be attached to the vegetable case lid 5 without a gap.
  • the regenerated cellulose membrane unit 8 may be attached to a part of the vegetable case lid 5.
  • the vegetable case lid 5 and the vegetable case body 2 form a sealed structure in the vegetable case 1.
  • the moisture-permeable and moisture-permeable performance of the regenerated cellulose film 4 is sufficiently drawn out. Therefore, it is desirable that a sealed structure is formed in the vegetable case 1 by the vegetable case lid 5 and the vegetable case body 2. If it is impossible to form a sealed structure between the vegetable case lid 5 and the vegetable case body 2, the gap between the vegetable case lid 5 and the vegetable case body 2 should be as small as possible. However, it is desirable from the viewpoint that the performance of the regenerated cellulose film 4 is utilized more effectively.
  • the vegetable case 1 of the present embodiment has the vegetable case lid 5 provided with the regenerated cellulose membrane 4, but the vegetable case lid 5 is not necessarily formed, and the regenerated cellulose membrane 4 does not have to be formed.
  • the same effect can also be obtained by disposing at least one of the inner surfaces of the vegetable case body 2 of the vegetable case 1.
  • at least one surface refers to at least one of the inner surface of the vegetable case body 2, that is, the top surface, the side surface constituting the wall surface, and the bottom surface.
  • the regenerated cellulose film 4 does not necessarily have to be provided on the entire area of one of these surfaces, and may be provided on a part of these surfaces.
  • the regenerated cellulose membrane unit 8 is disposed at a high temperature position in the vegetable case 1. The reason for this is that if the relative humidity is the same in the air, the higher the temperature, the greater the absolute amount of moisture in the air. Because they gather. By attaching the regenerated cellulose membrane unit 8 to a place with a high temperature in the vegetable case 1, it becomes easy to discharge excess moisture to the outside of the vegetable case 1, and condensation can be efficiently suppressed.
  • the regenerated cellulose membrane unit 8 becomes a temperature higher than the temperature in the vegetable case 1 by arrange
  • the regenerated cellulose membrane unit 8 be installed in a high temperature zone in the vegetable case 1.
  • the position where the temperature in the vegetable case 1 is high will be described.
  • the temperature of the air in the vegetable case 1 of the vegetable compartment 108 is higher at the upper part than at the lower part.
  • the regenerated cellulose membrane unit 8 is formed in the vegetable case lid 5 arrange
  • the position where the regenerated cellulose membrane unit 8 is formed is not limited to the vegetable case lid 5 but may be the top of the vegetable case 1 or the upper part of the side surface constituting the wall surface.
  • the temperature of the switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone.
  • the switching chamber 105 is a storage chamber having an independent door arranged in parallel with the ice making chamber 106.
  • the switching chamber 105 may have a drawer type door.
  • the switching chamber 105 is configured as a storage chamber including a temperature range of refrigeration and freezing.
  • the refrigeration is performed in the refrigeration chamber 104 and the vegetable chamber 108, and the refrigeration is performed in the freezing chamber 107.
  • it may be a storage room specialized for switching only in the intermediate temperature range between refrigeration and freezing.
  • the switching chamber 105 may be a storage chamber fixed in a specific temperature range.
  • ice is made by the automatic ice maker provided in the upper part of the ice making chamber 106 with water sent from the water storage tank in the refrigerator compartment 104, and the produced ice is placed in the lower part of the ice making chamber 106.
  • the top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator 100, and a machine room 101a is formed in the stepped recess.
  • the machine room 101a accommodates the compressor 109 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed in a shape that bites into the upper rear region in the refrigerator compartment 104.
  • the conventional refrigerator is provided with a configuration in which the machine room 101a is provided and the compressor 109 is disposed in the rear area of the upper storage room of the heat insulating box 101 that is difficult to reach and is a dead space.
  • the space in the machine room provided in the lower part of the heat insulating box 101 that is easy for the user to use can be used effectively as the storage room capacity.
  • the storage property and usability of the refrigerator 100 can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow paths in which a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 are arranged in order.
  • a compressor 109 for example, isobutane, which is a hydrocarbon-based refrigerant, is enclosed.
  • the compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
  • those functional parts may be disposed in the machine room 101a.
  • a capillary is used for the decompressor constituting the refrigeration cycle.
  • an electronic expansion valve that is driven by a pulse motor and can freely control the flow rate of the refrigerant may be used.
  • a cooling chamber 110 that generates cold air is provided on the back of the freezing chamber 107, and the cooling chamber 110 is partitioned from the air path. Between the freezing chamber 107 and the cooling chamber 110, there are provided an air passage that conveys cold air to each chamber having heat insulation properties, and a rear partition wall 111 configured to thermally separate each storage chamber. Yes. In addition, a partition plate is provided for isolating the freezing room cold air passage from the cooling room 110.
  • a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 is stored in the refrigerating chamber 104, the switching chamber 105, the ice making chamber by a forced convection method.
  • the cooling fan 113 which ventilates to the vegetable compartment 108 and the freezer compartment 107 is arrange
  • the vegetable room cold air inlet portion 113 a is a portion where the cold air cooled by the cooler 112 flows into the vegetable room 108 by the cooling fan 113.
  • the regenerated cellulose membrane unit 8 is provided at a position where the cold air flowing from the vegetable room cold air inlet 113a is not directly applied as much as possible in order to cool the vegetable room 108. This is to prevent the temperature of the regenerated cellulose film 4 from being lowered due to the cool air flowing into the vegetable room 108 from the vegetable room cold air inlet 113a hitting the regenerated cellulose film 4.
  • the reason why it is necessary to suppress the temperature of the regenerated cellulose film 4 from being lowered is that when the temperature of the regenerated cellulose film 4 becomes low and condensation occurs, the moisture permeability of the regenerated cellulose film 4 is always high. Even when the humidity in the vegetable case 1 is lowered, the moisture permeation amount of the regenerated cellulose membrane 4 is kept high, and the drying of the vegetable case 1 proceeds to prevent this.
  • a radiant heater 114 made of a glass tube is provided for defrosting the frost and ice adhering to and around the cooler 112 during cooling.
  • a drain pan 115 for receiving defrost water generated during defrosting and a drain tube 116 penetrating from the deepest part of the drain pan 115 to the outside of the chamber are provided at the lower portion thereof, and an evaporating dish 117 is disposed outside the chamber on the downstream side. Is provided.
  • the second partition wall 125 separates the freezer compartment 107 and the vegetable compartment 108, and is formed of a heat insulating material made of foamed polystyrene or the like in order to ensure the heat insulation of each storage room.
  • the refrigeration cycle is started and the cooling operation is performed by a signal from the control board according to the set temperature in the refrigerator 100.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed and liquefied to some extent by the condenser, and is further disposed on the side surface and back surface of the heat insulating box body 101 which is the main body of the refrigerator 100 and the front opening of the heat insulating box body 101. It is condensed and liquefied while preventing condensation of the heat insulating box 101 via the refrigerant pipe and the like, and sent to the capillary tube. Thereafter, the refrigerant is decompressed in the capillary tube while exchanging heat with the suction pipe to the compressor 109, and is sent to the cooler 112 as a low-temperature and low-pressure liquid refrigerant.
  • the low-temperature and low-pressure liquid refrigerant is heat-exchanged with the air conveyed through the freezer compartment cold air passage and the like into each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 is evaporated. .
  • cool air for cooling each storage chamber is generated in the cooling chamber 110.
  • the low-temperature cold air is diverted from the cooling fan 113 to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107 using an air passage and a damper.
  • each chamber is cooled to each target temperature zone.
  • the temperature of the vegetable compartment 108 is adjusted to 2 ° C. to 7 ° C. by distribution of cold air by opening and closing dampers in the air passage to which cold air is supplied, and ON / OFF operation of the heater.
  • the vegetable case body 2 disposed in the vegetable compartment 108 is pulled out by pulling the door of the drawer-type vegetable compartment 108 forward.
  • the vegetable case lid 5 is left on the main body side of the refrigerator 100 without being pulled out together with the vegetable case main body 2 by a rib or the like standing in the vegetable compartment 108. For this reason, when the vegetable case 1 is pulled out, there is no vegetable case lid 5 at the top of the vegetable case 1, so that the stored vegetables can be easily put into the vegetable case body 2.
  • the vegetable case lid 5 left on the main body side of the refrigerator 100 causes the vegetable case
  • the vegetable case lid 5 and the vegetable case main body 2 are configured so that the main body 2 can be automatically sealed in a sealed state.
  • the vegetable case main body 2 and the vegetable case lid 5 can be sealed when the door of the vegetable compartment 108 is closed.
  • the moisture in the vegetable case 1 is high due to the action of the regenerated cellulose membrane 4 of the regenerated cellulose membrane unit 8 provided in the vegetable case lid 5
  • the moisture evaporated from the vegetables stored in the vegetable case 1 Is released to the outside of the vegetable case 1.
  • the humidity in the vegetable case 1 is low, the moisture permeability of the regenerated cellulose film 4 is reduced by the action of the regenerated cellulose film 4, and the vegetable case 1 The inside humidity is maintained.
  • FIG. 8 shows the results of measuring the humidity in the vegetable case 1 provided with the regenerated cellulose membrane unit 8.
  • FIG. 9 is a graph showing the humidity fluctuation in the vegetable case 1 when the regenerated cellulose membrane unit 8 in the second embodiment is not arranged.
  • FIG. 10 is a graph showing the weight change of each vegetable stored in the vegetable room 108 for 7 days.
  • the vegetable case 1 in which the regenerated cellulose membrane unit 8 is not arranged corresponds to the behavior of the cold air flowing into the vegetable compartment 108 in order to cool the vegetable compartment 108 by the refrigeration cycle.
  • the humidity decreases, and when cold air does not flow, the humidity increases.
  • the vegetable case 1 in which the regenerated cellulose membrane unit 8 is arranged as shown in FIG. 8 although the vegetable is put on the 0th day, it shows a high humidity of 100% due to the moisture that evaporates from the vegetable. Due to the action of the cellulose membrane 4, the moisture in the vegetable case 1 is discharged out of the vegetable case 1 and the humidity is lowered.
  • the humidity in the vegetable case 1 once decreases, the moisture permeability of the regenerated cellulose membrane 4 changes and the humidity permeation amount decreases, so the humidity in the vegetable case 1 does not decrease to about 90% or less. .
  • saved in the vegetable case 1 are preserve
  • the regenerated cellulose membrane 4 does not maintain 100% humidity in the vegetable case 1 for a long time. For this reason, dew condensation does not occur in the vegetable case 1.
  • vegetables and the like can be stored at a low temperature, so that the freshness of the vegetables and the like can be maintained for a long time.
  • the action of the regenerated cellulose membrane 4 of the regenerated cellulose membrane unit 8 keeps the vegetable case body 2 in a high humidity state that is optimal for the preservation of vegetables and the like without causing condensation in the vegetable case body 2. be able to. Therefore, the freshness of vegetables etc. can be maintained for a long time.
  • the regenerated cellulose film 4 used in the regenerated cellulose film unit 8 of the present embodiment is a regenerated cellulose film 4 formed without using a base material.
  • the regenerated cellulose film 4 of the present embodiment does not require any special treatment such as adjustment of the concentration of viscose and adjustment of the density of the base material, which are necessary when forming using a base material.
  • a regenerated cellulose membrane is used, in which viscose is extruded and processed through a slit provided with a certain gap.
  • the regenerated cellulose membrane 4 of the present embodiment can be used for humidity control in the vegetable case 1 as a moisture permeable and moisture permeable membrane.
  • the regenerated cellulose film 4 of the present embodiment uses a regenerated cellulose film that has a uniform film thickness and avoids defects such as perforations, so that it has high reliability, low cost, and low
  • the amount of moisture transmission at the time of humidity can also be controlled stably.
  • the inside of the vegetable case 1 can be maintained at high humidity for a long period of time, and the freshness of vegetables and the like can also be maintained for a long period of time.
  • FIG. 11 is a front view of refrigerator 300 in the third embodiment of the present invention
  • FIG. 12 is a front view when the door of refrigerator 300 in the third embodiment is opened
  • 13 is a cross-sectional view taken along line 13-13 of FIG. 12 showing the refrigerator 300 according to the third embodiment
  • FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 12 showing the refrigerator 300 according to the third embodiment
  • FIG. 15 is a schematic cross-sectional view for explaining the cold air flow of refrigerator 300 in the third embodiment.
  • FIG. 16 is a schematic front view for explaining the cold air flow of refrigerator 300 in the third embodiment
  • FIG. 17 is a perspective view for explaining the cold air flow in the rear portion of the cooling chamber of refrigerator 300 in the third embodiment.
  • FIG. 18 is an enlarged cross-sectional view of a main part of refrigerator 300 in the third embodiment
  • FIG. 19 is a schematic cross-sectional view for explaining a cold air flow of refrigerator 300 in the third embodiment.
  • FIG. 20 is an enlarged cross-sectional view of a main part of the refrigerator 300 in the third embodiment
  • FIG. 21 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator 300 in the third embodiment.
  • FIG. 22 is an enlarged front view showing the vegetable compartment and the freezer compartment of refrigerator 300 in the third embodiment
  • FIG. 23 is a rear partition plate constituting the rear wall portion of the vegetable compartment of refrigerator 300 in the third embodiment. It is a perspective view of a block.
  • FIG. 20 is an enlarged cross-sectional view of a main part of the refrigerator 300 in the third embodiment
  • FIG. 21 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator 300 in the third embodiment.
  • FIG. 22 is an enlarged front view showing the vegetable compartment and the freezer compartment of refrigerator 300 in
  • FIG. 24 is an exploded perspective view showing a vegetable room and a vegetable case of refrigerator 300 in the third embodiment.
  • FIG. 25 is a perspective view of a vegetable case provided in the vegetable room of refrigerator 300 in the third embodiment.
  • FIG. 26 is an exploded perspective view of the vegetable case of the vegetable compartment of the refrigerator 300 in Embodiment 3
  • FIG. 27 is a perspective view of the vegetable case of the vegetable compartment of the refrigerator 300 in Embodiment 3
  • FIG. It is a disassembled perspective view of the partition plate used for the vegetable case of the refrigerator 300 in the form 3.
  • FIGS. 29A and 29B are perspective views showing a state in which the partition plate used in the vegetable case of refrigerator 300 in Embodiment 3 is attached to the lower container.
  • FIG. 29A and 29B are perspective views showing a state in which the partition plate used in the vegetable case of refrigerator 300 in Embodiment 3 is attached to the lower container.
  • FIG. 30 is a cross-sectional view of the partition plate used in the vegetable case of refrigerator 300 in the third embodiment.
  • FIG. 31 is a front cross-sectional view of a vegetable case provided in the vegetable compartment of refrigerator 300 in the third embodiment
  • FIG. 32 is a front view showing the support structure of the upper container in the vegetable compartment of refrigerator 300 in the third embodiment. It is sectional drawing.
  • FIG. 33 is a partially enlarged view showing a state where the upper container is placed on the lower container of the vegetable case provided in the vegetable compartment of refrigerator 300 in the third embodiment
  • FIG. 34 shows the refrigerator in the third embodiment.
  • 3 is a control block diagram of 300.
  • a refrigerator 300 has a refrigerator main body 301 whose front is opened.
  • the refrigerator main body 301 includes an outer box 302 mainly made of steel plates, an inner box 303 formed of a hard resin such as ABS, and an outer box 302 and an inner box 303. And a foam heat insulating material 304 such as hard foam urethane filled.
  • the refrigerator body 301 is divided into a plurality of storage rooms by partition plates 305 and 306.
  • a refrigerator compartment 307 is disposed at the top of the refrigerator body 301, a vegetable compartment 308 is disposed at the bottom of the refrigerator compartment 307, and a freezer compartment 309 is disposed at the bottom of the refrigerator body 301. It is a type refrigerator. As shown in FIG. 11, the front opening of each storage chamber is closed by a door 310, a door 311, and a door 312 so that it can be opened and closed.
  • a machine room 314 is provided in the upper rear region of the refrigerator main body 301, and houses a compressor 315 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture.
  • a cooling chamber 316 that generates cold air is provided on the back surface of the refrigerator main body 301.
  • the cooling chamber 316 is formed from the back surface of the freezing chamber 309 to the lower back surface of the vegetable chamber 308.
  • a back surface partition 317 having heat insulation properties is provided by foamed polystyrene or the like to partition the heat insulation.
  • a cooler 318 is disposed, and a cooling fan 319 is disposed above the cooler 318.
  • the cooling air cooled by the cooler 318 is forcibly circulated to the refrigerating room 307, the vegetable room 308, and the freezing room 309 by the cooling fan 319, and each room is cooled.
  • a defrost heater 328 for defrosting the frost and ice adhering to the cooler 318 and its periphery is disposed in the lower space of the cooler 318.
  • a drain pan 329 for receiving defrost water generated at the time of defrosting is disposed below the defrost heater 328, and the defrost water is discharged from the deepest portion of the drain pan 329 to the evaporating dish through the drain tube.
  • the cooling chamber 316 that generates cool air is formed between the rear partition 317 and the refrigerator main body 301.
  • the cooling chamber cool air conveyance path 330 is opened downstream of the cooling fan 319, and the cold air generated in the cooling chamber 316 is blown into each chamber via the cooling chamber cold air conveyance path 330.
  • the upper part of the cooling chamber cool air conveyance path 330 is a refrigerated cool air discharge formed at a substantially central portion of the back surface of the refrigeration chamber 307 via a refrigeration chamber damper 331. It communicates with the air passage 332.
  • a refrigerated cold air return air passage 333 from the refrigeration chamber 307 is provided adjacent to the side of the refrigerated cold air discharge air passage 332, and the lower part thereof is a vegetable compartment 308 and a cooling compartment. 316 communicates.
  • the refrigerating chamber 307 is provided with a refrigerating / cooling air inlet 335 of a refrigerating / cooling air discharge air passage 332 at an appropriate location on the back wall, and opens to a refrigerating / cooling air return air passage 333 at a suitable location on the lower wall.
  • a refrigerated cold air return port 336 is provided. Cold air from the cooling chamber 316 is supplied to the refrigerated cold air discharge air passage 332 via the refrigeration chamber damper 331, and is supplied from the refrigerated cold air inlet 335 to the refrigerated chamber 307.
  • the cold air after cooling in the refrigerating room is supplied from the refrigerating cold air return port 336 to the vegetable room 308 through the refrigerating cold air return air passage 333 and circulated to the cooling room 316.
  • the refrigerating room 307 is provided with a partial room at the lower part thereof as described later.
  • the cool air from the cooling chamber 316 is supplied to the partial chamber via a partial chamber damper 331a, a partial chamber cool air discharge air passage 332a, and a partial chamber cool air inlet 336a.
  • a cooling chamber cold air conveyance path 330, a refrigerated cold air discharge air path 332, and a partial chamber cold air discharge air path 332 a Are formed, and a return air passage 338 that connects the refrigerated cold air return air passage 333, the vegetable compartment 308, and the cooling compartment 316 is formed.
  • the refrigerator compartment damper 331 is provided in the discharge air passage 337.
  • a communication passage 339 is formed between the refrigerated cold air discharge air passage 332 and the refrigerated cold air return air passage 333, and a part of the low-temperature cold air flowing through the refrigerated cold air discharge air passage 332 is transferred to the refrigerated cold air return air passage 333. It is comprised so that it may mix.
  • a cold air return duct 340 extending downward is provided on the back surface of the freezing chamber 309 on the side of the cooler 318 of the cooling chamber 316.
  • the upper part of the cool air return duct 340 communicates with the vegetable compartment 308 via the return air passage 338, and the lower part opens near the lower part of the cooling chamber 316.
  • the cold air after cooling the vegetable room 308 is circulated from the lower opening of the cold air return duct 340 to the cooling room 316 via the cold air return duct 340.
  • the freezer compartment 309 has a freezer cold air inlet 342 communicating with the lower part of the rear cooler conveying path 330 on the back of the rear partition 317 at the upper part of the rear wall 341, A refrigerated cold air return port 343 is formed in the lower portion of 316.
  • Cold air from the cooling chamber 316 is supplied from the lower part of the cooling chamber cold air conveyance path 330 through the freezing cold air inlet 342, and the cold air after cooling of the freezing chamber is circulated to the cooling chamber 316 via the freezing cold air return port 343.
  • ⁇ Vegetable room configuration> In the vegetable compartment 308, as shown in FIGS. 16 and 21, it is a part closer to the left or right of the back wall (in this embodiment, the lower part of the right part when viewed from the front), and the refrigerated cold air return air passage 333
  • the vegetable room cold air inlet 344 is provided in the return air passage 338 communicating with the vegetable room.
  • a vegetable cold air return port 346 Above the vegetable room cold air inlet 344, a vegetable cold air return port 346 that opens to the return air passage 338 and connects to the cooling chamber 316 is provided.
  • the rear compartment 317 on the back of the vegetable compartment 308 is used, and the vegetable compartment passage 350 in the vertical direction is provided at the front position of the cool air return air passage 338.
  • the upper part of the vegetable compartment passage part 350 is located near the vegetable cold air return port 346 and the lower part communicates with the vegetable cold air inlet 344.
  • a vegetable room fan 353 made of a propeller fan or the like is disposed at a portion communicating with the vegetable room cold air inlet 344.
  • the vegetable compartment 308 is formed with a first passage 347a on the upper surface of the vegetable compartment 308 so as to be connected to the vegetable compartment passage portion 350 and the vegetable cold air return port 346.
  • a first vegetable cold air inlet 347 is provided.
  • the vegetable compartment cold air inlet 344 is located at the upper part of the rear partition 317 serving as the rear face of the vegetable compartment 308.
  • a second vegetable cold air inlet 351 is provided in a portion (in the present embodiment, the upper left side in the left corner) that is a diagonal position.
  • path 351a which has the 2nd vegetable cold air inlet 351 is also connected to the upper part of the vegetable compartment channel
  • the vegetable case 1 is disposed in the vegetable compartment 308.
  • the vegetable case 1 is fitted into a rail-like support member 356 (see FIG. 24) attached to the inner surface of the door 311, and is taken in and out of the vegetable compartment 308 as the door 311 is opened and closed.
  • the vegetable case 1 includes a lower container 357 and an upper container 358 placed on the upper surface opening of the lower container 357.
  • the lower container 357 has a partition plate 359 that divides the inside into left and right sides, and one side partitioned by the partition plate 359 (in this embodiment, the vegetable room fan 353 on the right side as viewed from the front of the refrigerator 300 is installed. Is arranged as a non-vegetable storage portion 360 for storing PET bottles, packs, and the like, and is formed deeper than the other vegetable storage portion 361.
  • the partition plate 359 is formed with a horizontally long opening 3 in a substantially central portion, and the regenerated cellulose membrane unit 8 is detachably installed in the opening 3.
  • the regenerated cellulose membrane unit 8 is formed by integrally molding the regenerated cellulose membrane 4 on the fixed frame 6.
  • the right end of the regenerated cellulose membrane unit 8 is the opening edge of the partition plate 359.
  • the engagement piece 362-3 at the left end is fitted and installed in the engagement recess 359-4 at the other end opening edge of the partition plate 359.
  • the partition plate 359 is provided with mounting piece portions 359-2a and 359-2b at both ends thereof.
  • hanging pieces 359-3a and 359-3b are integrally formed from the placing pieces 259-2a and 259-2b.
  • the hanging pieces 359-3a and 359-3b are fitted into a recess 357a formed at the upper end of the outer peripheral wall of the lower container 357, and the placing pieces 359-2a and 359-2b are the outer peripheral wall of the lower container 357. It is placed on the upper end and installed in the lower container 357.
  • the upper container 358 is placed on the upper surface opening portion of the vegetable storage part 361 partitioned by the partition plate 359 and covers the vegetable storage part 361.
  • the upper container rail portion 363 formed on the bottom surface of the upper container 358 is placed on the lower container rail portion 364 formed on the upper surface opening left side of the lower container 357 and the upper end of the partition plate 359. Is done.
  • the flange 365 provided in the upper opening of the upper container 358 is arranged so that the upper container 358 is moved back and forth along the guides 366a and 366b provided in the upper side wall and the ceiling surface portion of the vegetable compartment 308 shown in FIGS. It is provided so that it can slide freely.
  • the upper container rail portion 363 of the upper container 358 has a straight portion 367, and a projection 368 is provided in front of the upper container rail portion 363 (in the direction of the arrow in FIG. 33). Is provided.
  • the lower container rail portion 364 of the lower container 357 has a straight portion 369 and a downward inclined portion 370 connected to the straight portion 369.
  • an intersection part 371 connecting the straight line part 369 and the inclined part 370 is provided, and in the front part, a concave part 372 in which the protruding part 368 is accommodated is provided. It has been.
  • the vegetable case 1 is pulled out together with the door 311 together with the upper container 358 and the lower container 357 when the door 311 is pulled out. It can be pushed into the chamber 308 and moved.
  • a space is provided between the vegetable case 1, the partition plate 306 under the vegetable case 1, and the inner peripheral wall surface of the vegetable compartment 308.
  • This space is the vegetable compartment cold air inlet 344. It is an air passage through which cold air flows.
  • the upper opening edge of the upper container 358 of the vegetable case 1 is located in a portion close to the partition plate 306 at the top of the vegetable compartment 308 and located above the vegetable compartment cold air inlet 344.
  • the cold air from the vegetable room cold air inlet 344 is arranged so that it does not directly enter the upper container 358 and the lower container 357 of the vegetable case 1, and is further provided in the partition plate 359. It arrange
  • a lid that closes the upper opening of the upper container 358 may be provided in the upper opening of the upper container 358. With such a configuration, it is possible to more reliably prevent cold air from entering the vegetable case 1.
  • the vegetable case 1 is provided with a partition plate 359 that divides the inside of the lower container 357 into left and right portions, but is not divided into left and right by the partition plate 359, as shown in FIG. , And may be partitioned in the front-rear direction.
  • the vegetable room cold air inlet 344 is provided in the back wall body 341, the cold air flows into the vegetable room 308 from the back of the vegetable case 1 through the vegetable room cold air inlet 344.
  • the regenerated cellulose membrane unit 8 is more difficult to be directly exposed to cold air, so that condensation on the regenerated cellulose membrane 4 can be prevented and the performance of the regenerated cellulose membrane 4 can be utilized more effectively. it can.
  • the refrigerator compartment 307 includes a plurality of storage shelves 373 and a partial chamber 374 that can be cooled to a semi-refrigeration temperature zone.
  • Each of the plurality of storage shelves 373 and the partial chamber 374 is provided with a refrigerated cold air inlet 335 (see FIGS. 15 and 16) and a refrigerated cold air return port 336 (see FIG. 16) at appropriate positions.
  • An operation unit 375 for setting the internal temperature of each room, and making ice making and quick cooling is disposed at an appropriate side wall of the refrigerator compartment 307.
  • the freezer compartment 309 has a freezing cold air inlet 342 that communicates with the lower part of the cooling room cold air conveyance path 330 on the back of the rear partition 317 at the upper part of the rear wall.
  • a freezing cold air return port 343 communicating with the freezing chamber 309 is formed.
  • a freezer damper is also incorporated at an appropriate position in the passage from the cooling room 316 to the freezer room 309.
  • the freezing room 309 is also provided with a freezing room container 376 placed on the frame of the door 312, and an ice making device 377 is incorporated in the upper part of the freezing room container 376 (see, for example, FIG. 14). .
  • FIG. 34 shows a control block diagram in refrigerator 300 of the present embodiment.
  • the refrigerator compartment temperature detector 378, the vegetable compartment temperature detector 379, and the freezer compartment temperature detector 380 are all formed of thermistors and are installed at appropriate locations in the refrigerator compartment 307, the vegetable compartment 308, and the freezer compartment 309, respectively.
  • the control unit 381 that performs overall control of the refrigerator 300 is configured by a macro computer or the like, and is based on outputs from the refrigerating room temperature detection unit 378 and the freezer room temperature detection unit 380 in accordance with control software that is incorporated in advance.
  • the damper 331 and the freezer compartment damper 334 are controlled to open and close.
  • control unit 381 drives the compressor 315 and the cooling fan 319 to perform temperature control so that each chamber has a set temperature. Furthermore, the control unit 381 controls the operation of the vegetable compartment fan 353 incorporated in the vegetable compartment passage portion 350 of the vegetable compartment 308 based on outputs from the refrigerator compartment temperature detection portion 378 and the vegetable compartment temperature detection portion 379. Specifically, when any one of the refrigerator compartment temperature detector 378 and the vegetable compartment temperature detector 379 detects a temperature higher than the set temperature, the vegetable compartment fan 353 is driven.
  • a refrigeration cycle is operated by a signal from the control unit 381, and a cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 315 is condensed and liquefied to some extent by the condenser, and further passes through the refrigerant pipes disposed on the side and back of the refrigerator 300 and the front opening of the refrigerator 300. While preventing condensation in the refrigerator 300, the liquid is condensed and sent to the capillary tube.
  • the refrigerant is reduced in pressure in the capillary tube while exchanging heat with the suction pipe to the compressor 315, and becomes a low-temperature and low-pressure liquid refrigerant and sent to the cooler 318 in the cooling chamber 316.
  • the refrigerant in the cooler 318 is evaporated and vaporized, and cold air for cooling each storage chamber is generated in the cooling chamber 316 having the cooler 318.
  • the low temperature cold air generated in the cooling chamber 316 is sent from the cooling chamber cold air conveyance path 330 to the refrigerator compartment 307 and the freezer compartment 309 by the cooling fan 319.
  • the cool air supplied to the refrigerating room 307 cools the refrigerating room 307 and is then supplied to the vegetable room 308, where each room is cooled to a set temperature.
  • the cold air after cooling each chamber returns to the cooling chamber 316 again, is cooled by the cooler 318, and is circulated to each chamber by the cooling fan 319.
  • the control unit 381 operates and stops the compressor 315 and the cooling fan 319 based on the temperatures detected by the refrigerating room temperature detecting unit 378 and the freezing room temperature detecting unit 380, and supplies the cold air to each room.
  • the room damper 331 and the freezer damper 334 are controlled to open and close. Thereby, each chamber is maintained in a set temperature range.
  • the cold air after cooling from the refrigerated cold air return air passage 333 is supplied from the vegetable room cold air inlet 344 provided in the cold air return air passage 338 and cooled as shown in FIG.
  • the This cold air gently flows into the vegetable compartment 308 from the vegetable compartment cold air inlet 344 through the vegetable compartment passage portion 350 by the air blowing pressure of the cooling fan 319, and the lower container 357 and the upper container 358 of the vegetable case 1, It flows through the space between the inner wall.
  • the vegetables and plastic bottles stored in the vegetable case 1 are indirectly cooled from the outer periphery of the lower container 357 and the upper container 358, and the vegetable cold air return port 346 passes through the refrigerated cold air return air passage 333. It circulates from the cold air return duct 340 to the cooling chamber 316.
  • the vegetable room fan 353 is provided in the vegetable room passage portion 350 of the vegetable room 308.
  • the vegetable compartment fan 353 rotates, most of the return cold air flowing through the return air passage 338 is sucked into the vegetable compartment passage portion 350 from the vegetable cold air inlet 344 and is located in the lower part of the vegetable compartment 308 from the outlet 354 of the vegetable compartment fan 353. It is supplied toward the rear surface of the container 357.
  • the cold air supplied toward the lower container 357 of the vegetable compartment 308 circulates in the space between the lower container 357 and the upper container 358 and the bottom and inner peripheral walls of the vegetable compartment 308 by the air blowing pressure of the cooling fan 319. It flows faster than the flow of, and returns from the vegetable cold air return port 346 to the cooling chamber 316 through the return air passage 338 and circulates. At that time, the cold air other than the cold air returning to the cooling chamber 316 is circulated from the first vegetable cold air suction port 347 and the second vegetable cold air suction port 351 provided in the upper part of the vegetable chamber 308.
  • the lower container 357 is divided into a vegetable storage unit 361 and a non-vegetable storage unit 360 by a partition plate 359. Further, an upper container 358 is placed in the upper opening of the vegetable storage unit 361.
  • the vegetable case 1 has these three storage parts, and foodstuffs are divided and stored in each storage part. For example, fruits such as the upper container 358, vegetables in the vegetable storage unit 361, and drinks such as plastic bottles and packs can be efficiently stored in the non-vegetable storage unit 360.
  • the regenerated cellulose membrane unit 8 is installed on the partition plate 359 arranged in the vegetable storage unit 361. If vegetables etc. are stored in the vegetable storage part 361, it will be in a high humidity state by the water
  • a predetermined humidity or higher for example, a saturation humidity or higher
  • the humidity in the vegetable storage unit 361 decreases, the amount of moisture transmitted through the regenerated cellulose membrane 4 decreases due to the action of the regenerated cellulose constituting the regenerated cellulose membrane 4, and the humidity in the vegetable storage unit 361 decreases. Disappear. As a result, the humidity of the vegetable storage unit 361 can be maintained at 80 to 95% RH.
  • the regenerated cellulose membrane 4 is located between the vegetable storage unit 361 and the non-vegetable storage unit 360 in the vegetable case 1, vegetables and the like are placed on the regenerated cellulose membrane 4. For example, the regenerated cellulose film 4 is not damaged.
  • the partition plate 359 on which the regenerated cellulose membrane 4 is installed is not a box shape like the vegetable case 1 but is a plate-like member and has a small size, so the opening 3 in which the regenerated cellulose membrane unit 8 is installed. It can also be integrally formed with a partition plate 359 having
  • the vegetable case 1 includes the lower container 357 and the upper container 358 slidably mounted back and forth on the upper part of the lower container 357, and the upper container 358.
  • the upper container 358 can be effectively used as a lid member, and the upper part of the vegetable storage unit 361 can be reasonably covered, so that cold air can be prevented from entering the vegetable storage unit 361. .
  • the refrigerator 300 can cool and store vegetables and the like in a good state.
  • the upper container 358 disposed in the vegetable case 1 can be slid lightly, and at the same time, the lower container 357 and the upper container 358 are brought into close contact with each other with no gap therebetween. It is also possible to prevent cold air from entering the inside. This point will also be described below.
  • a protrusion 368 provided on the upper container rail 363 is provided.
  • the straight portion 367 of the upper container rail portion 363 is in contact with the intersection 371 of the lower container rail portion 364.
  • the upper container 358 is supported by these contact points and slides on the lower container rail portion 364 of the lower container 357. With such a configuration, the upper container 358 can be lightly slid even if it becomes heavier due to a large amount of fruits stored therein.
  • the protrusion 368 of the upper container rail portion 363 enters the recess 372 of the lower container rail portion 364, and the upper container rail
  • the straight portion 367 of the portion 363 and the straight portion 369 of the lower container rail portion 364 are brought into contact with each other, and these contact portions are brought into close contact with no gap. Therefore, the cold air flowing around the vegetable case 1 can be prevented from entering the vegetable storage part 361 of the lower container 357 from between the lower container 357 and the upper container 358, and the moisture permeability of the regenerated cellulose membrane 4 can be improved. It can be used efficiently.
  • the vegetable case 1 has the regenerated cellulose membrane 4 having the opening 3 in at least a part of the wall surface constituting the vegetable storage portion and formed without using the base material. This is provided in the opening 3.
  • the regenerated cellulose membrane 4 used for the vegetable case 1 of Embodiment 1 of the present invention preferably has a density of 20 to 40 g / m2.
  • the regenerated cellulose membrane 4 having such a density has a moisture permeability in a high humidity region (humidity 95% RH) of about 4 to 12 times that in a low humidity region (humidity 50% RH).
  • the vegetable case 1 can be kept at high humidity.
  • the nonwoven fabric 9 which has a shear force stronger than the regenerated cellulose film 4 is laminated
  • the regenerated cellulose film 4 and the non-woven fabric 9 are coated or dipped with viscose on the regenerated cellulose film 4 or non-woven fabric 9 and subjected to acid treatment to produce viscose. It is bonded by solidifying.
  • the regenerated cellulose film 4 and the nonwoven fabric 9 can be bonded and fixed by a simple method such as acid treatment of viscose, unlike the method of bonding by using a binder (adhesive) or the like, A binder (adhesive) becomes unnecessary.
  • the regenerated cellulose membrane 4 and the nonwoven fabric 9 can be easily integrated without causing an impediment to the moisture permeation effect by the binder (adhesive), and it is easy to manufacture and the regenerated cellulose membrane 4 has a high moisture permeability. Can be obtained.
  • the refrigerators 100 and 300 according to the second and third embodiments of the present invention include the vegetable case 1 according to the first embodiment of the present invention described above.
  • the refrigerators 100 and 300 according to the second embodiment and the third embodiment of the present invention include the vegetable case 1 having the regenerated cellulose film 4, thereby causing condensation on the vegetables stored in the vegetable case 1. And vegetables can be stored under high humidity conditions.
  • vegetables and the like can be stored at a low temperature, so that the freshness of the vegetables and the like can be maintained for a long time.
  • the regenerated cellulose membrane 4 is arranged at a high temperature portion in the temperature distribution in the vegetable case 1. If the relative humidity of the air in the air is the same, the higher the temperature, the greater the absolute amount of the water. Therefore, excess moisture in the vegetable case 1 gathers at a location where the temperature is high. Considering this property, the regenerated cellulose membrane 4 is arranged at a high temperature location in the vegetable case 1, so that excess moisture in the vegetable case 1 is easily discharged out of the vegetable case 1. Furthermore, the temperature of the regenerated cellulose membrane 4 itself is easily kept higher than the air temperature in the vegetable case 1.
  • the regenerated cellulose film 4 itself is unlikely to be below the dew point temperature, and dew condensation on the regenerated cellulose film 4 can be suppressed.
  • the humidity in the vegetable case 1 becomes low, the regenerated cellulose membrane 4 is not wetted by condensation and the humidity permeation amount is not kept high. Sometimes the amount of moisture transmission is suppressed, and the inside of the vegetable case 1 can be kept in a higher humidity state.
  • the refrigerators 100 and 300 of Embodiment 2 and Embodiment 3 of the present invention have a vegetable case lid 5 that covers the upper surface of the vegetable case 1 so that it can be opened and closed, and at least part of the vegetable case lid 5 is regenerated cellulose.
  • a membrane 4 is provided.
  • the regenerated cellulose membrane provided on the vegetable case lid 5 installed on the top of the vegetable case 1 of the second embodiment of the present invention that is, the top surface of the vegetable case 1. It is suppressed that the temperature of 4 becomes low. Therefore, it is possible to prevent dew condensation from occurring in the regenerated cellulose film 4 and to keep the vegetable case 1 in a higher humidity state.
  • Refrigerator 100 includes a storage compartment (vegetable compartment 108) in which the vegetable case 1 can be stored by being insulated, and a cooler 112 that generates cool air for cooling the storage compartment.
  • a cooling fan 113 that blows air cooled from the cooler 112 to the storage room, a cold air passage that blows cool air cooled from the cooler 112 to the storage room by the cooling fan 113, and cold air from the cold air passage to the storage room.
  • a cold air inlet portion (vegetable room cold air inlet portion 113a) for discharging.
  • the regenerated cellulose membrane 4 is installed in the vegetable case 1 at a position where the cold air discharged from the cold air inlet is not directly applied.
  • the regenerated cellulose membrane 4 when the regenerated cellulose membrane 4 is exposed to cold air outside the vegetable case 1, the pressure of the air outside the vegetable case 1 becomes lower than the pressure of the air inside the vegetable case 1, and the vegetable case 1 is caused by the pressure difference.
  • the inside air can be prevented from passing through the regenerated cellulose membrane 4 and being discharged out of the vegetable case 1. Therefore, with such a configuration, the vegetable case 1 can be kept in a high humidity state for a longer time.
  • the inside of the vegetable case 1 is partitioned by the partition plate 359, and the regenerated cellulose membrane 4 is provided on the partition plate 359. Since the regenerated cellulose membrane 4 is provided on the partition plate 359 installed in the vegetable case 1, the regenerated cellulose membrane 4 makes it difficult for wind of cold air entering the storage chamber from the cold air inlet portion. Only the vicinity of the film 4 can be prevented from becoming high humidity. Therefore, with such a configuration, the moisture permeation amount of the regenerated cellulose membrane 4 can be suppressed, and the humidity of the vegetable case 1 can be kept high for a longer period.
  • the present invention can provide a vegetable case capable of maintaining the humidity in the vegetable case substantially constant and exhibiting a special effect that the vegetables and the like can be cooled and stored in a good state, and a refrigerator using the vegetable case. Therefore, it can be widely used not only for home use but also for commercial refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Laminated Bodies (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Abstract

Provided are: a vegetable case having an opening (3) in at least a portion of a wall surface configuring a vegetable storing section, a regenerated cellulose membrane (4) formed without using a backing being provided in the opening (3); and a refrigerator using same.

Description

野菜ケースおよび冷蔵庫Vegetable case and refrigerator
 本発明は、野菜ケースおよび野菜ケースを備えた冷蔵庫に関する。 The present invention relates to a vegetable case and a refrigerator provided with a vegetable case.
 一般に、家庭用冷蔵庫には野菜室が設けられており、野菜室に収納された野菜等を良好な状態で保存できるように種々の工夫がなされている。その一つに、野菜室内の湿度を略一定に維持させるために、野菜容器に透湿膜が設けられたものがある(例えば、特許文献1参照)。 Generally, a home refrigerator is provided with a vegetable room, and various ideas have been made so that vegetables stored in the vegetable room can be stored in good condition. One of them is a vegetable container provided with a moisture permeable membrane in order to maintain the humidity in the vegetable room substantially constant (see, for example, Patent Document 1).
 図35は、特許文献1に記載されている冷蔵庫に搭載された感湿透湿膜を示している。感湿透湿膜404は、感湿透湿膜の基材405、および、湿度により透過湿度量が変化する透湿性能を有する再生セルロース層で構成されている。 FIG. 35 shows a moisture-sensitive moisture permeable membrane mounted on the refrigerator described in Patent Document 1. The moisture and moisture permeable membrane 404 is composed of a moisture permeable and moisture permeable membrane base material 405 and a regenerated cellulose layer having moisture permeability that changes the amount of moisture permeation depending on humidity.
 しかしながら、特許文献1に記載されている感湿透湿膜404においては、透湿効果のある再生セルロース層406は、基材405に保持されている構造になっている。このように、基材405を用いて感湿透湿膜404が形成されている構造においては、再生セルロース層406の膜厚を制御するために、再生セルロース層406の原材料となるビスコースの濃度調整および基材材料の密度調整などが必要となり、感湿透湿膜404の製造工程が複雑になる。このため、汎用品化が難しく、製造コストが高くなるといった課題を有している。 However, the moisture-permeable and moisture-permeable membrane 404 described in Patent Document 1 has a structure in which the regenerated cellulose layer 406 having a moisture-permeable effect is held by the base material 405. As described above, in the structure in which the moisture permeable and moisture permeable membrane 404 is formed using the base material 405, the concentration of viscose that is a raw material of the regenerated cellulose layer 406 is controlled in order to control the film thickness of the regenerated cellulose layer 406. Adjustment and density adjustment of the base material are necessary, and the manufacturing process of the moisture-permeable and moisture-permeable membrane 404 becomes complicated. For this reason, it has the subject that it is difficult to make a general-purpose product and the manufacturing cost becomes high.
 さらに、特許文献1に記載されている感湿透湿膜404は、基材405を構成する繊維と繊維の間に、薄く膜が張られるような構造で再生セルロース層406の膜が作られる構造となっている。このため、再生セルロース層406の膜厚を均一にすることが難しいばかりでなく、再生セルロース層406の薄い膜が張られない箇所が発生し、隙間が残ってしまうといった問題も抱えている。そのため、このような従来の感湿透湿膜が設けられた野菜室において、野菜室内が高湿度時には、再生セルロース層406の薄い膜が張られないことから生じた隙間から、必要以上に湿度が野菜室外に排出されてしまう。さらに、野菜室内が低湿度時には、野菜室内に保持しておきたい湿気が野菜室外に排出されてしまう。その結果、野菜室内の湿度を高く保つことができず、野菜等を長期間、新鮮な状態で保存することが難しいといった課題を有している。 Further, the moisture-permeable and moisture-permeable membrane 404 described in Patent Document 1 has a structure in which a film of the regenerated cellulose layer 406 is formed in such a structure that a thin film is stretched between fibers constituting the substrate 405. It has become. For this reason, not only is it difficult to make the film thickness of the regenerated cellulose layer 406 uniform, but there is also a problem that a portion where the thin film of the regenerated cellulose layer 406 is not stretched occurs and a gap remains. Therefore, in the vegetable room provided with such a conventional moisture-sensitive moisture permeable membrane, when the vegetable room has a high humidity, the humidity is more than necessary due to a gap formed by the thin film of the regenerated cellulose layer 406 not being stretched. It is discharged outside the vegetable room. Furthermore, when the vegetable compartment is low in humidity, moisture that is desired to be kept in the vegetable compartment is discharged outside the vegetable compartment. As a result, the humidity in the vegetable room cannot be kept high, and there is a problem that it is difficult to store vegetables and the like in a fresh state for a long time.
特開2014-800号公報JP 2014-800 A
 本発明は、このような従来の課題を解決するためになされたものであり、本発明は、野菜ケースの野菜収納部を構成する壁面の少なくとも一部に開口部が設けられ、基材を用いずに形成された再生セルロース膜が開口部に設けられた野菜ケースおよびこれを用いた冷蔵庫を提供する。 The present invention has been made to solve such a conventional problem, and the present invention uses a base material in which an opening is provided in at least a part of a wall surface constituting a vegetable storage part of a vegetable case. A vegetable case in which a regenerated cellulose film formed without being provided in an opening and a refrigerator using the vegetable case are provided.
 本発明によれば、基材を用いて感湿透湿膜が形成される場合と異なり、再生セルロース膜の膜厚を制御するためのビスコースの濃度の調整および基材材料密度の調整などの特別な処置を施す必要がなく、製造が容易で、製造コストを抑えた再生セルロース膜が形成されることができる。 According to the present invention, unlike the case where the moisture-permeable and moisture-permeable membrane is formed using the substrate, the adjustment of the concentration of the viscose and the adjustment of the substrate material density for controlling the film thickness of the regenerated cellulose membrane There is no need to perform a special treatment, and a regenerated cellulose membrane that is easy to manufacture and has a low manufacturing cost can be formed.
 また、膜厚が均一で、穴があくなどの不具合のない再生セルロース膜が形成されることができるため、野菜ケース内が高湿度時および低湿度時においても、再生セルロース膜の湿度透過量が安定して制御されることができる。これにより、長期間、野菜ケースを高湿度に保つことができ、野菜の鮮度も長期間、保つことができる。 In addition, since a regenerated cellulose film having a uniform film thickness and free of defects such as perforations can be formed, the moisture permeation amount of the regenerated cellulose film can be maintained even when the vegetable case is at high or low humidity. It can be controlled stably. Thereby, a vegetable case can be kept at high humidity for a long period of time, and the freshness of vegetables can also be maintained for a long period of time.
図1は、本発明の実施の形態1における再生セルロース膜が配置された野菜ケースの断面図である。FIG. 1 is a cross-sectional view of a vegetable case in which a regenerated cellulose membrane according to Embodiment 1 of the present invention is arranged. 図2は、本発明の実施の形態1における野菜ケースの斜視図である。FIG. 2 is a perspective view of the vegetable case according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における野菜ケース斜視図である。FIG. 3 is a perspective view of the vegetable case according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1における再生セルロース膜の感湿透湿量を示したグラフである。FIG. 4 is a graph showing the moisture and moisture permeation rate of the regenerated cellulose membrane in Embodiment 1 of the present invention. 図5は、本発明の実施の形態1における再生セルロース膜が固定枠に固定された再生セルロース膜ユニットを示す図である。FIG. 5 is a diagram showing a regenerated cellulose membrane unit in which the regenerated cellulose membrane in Embodiment 1 of the present invention is fixed to a fixed frame. 図6は、本発明の実施の形態1における再生セルロース膜と不織布とを積層させてビスコースで接着させた状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the regenerated cellulose film and the nonwoven fabric in Embodiment 1 of the present invention are laminated and bonded with viscose. 図7は、本発明の実施の形態2における再生セルロース膜ユニットが配置された野菜ケースを備えた冷蔵庫の断面図である。FIG. 7 is a cross-sectional view of a refrigerator provided with a vegetable case in which the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is arranged. 図8は、本発明の実施の形態2における再生セルロース膜ユニットが配置された野菜ケース内の湿度変動を示すグラフである。FIG. 8 is a graph showing the humidity fluctuation in the vegetable case in which the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is arranged. 図9は、本発明の実施の形態2における再生セルロース膜ユニットが配置されていない場合の野菜ケース内の湿度変動を示すグラフである。FIG. 9 is a graph showing the humidity fluctuation in the vegetable case when the regenerated cellulose membrane unit according to Embodiment 2 of the present invention is not arranged. 図10は、本発明の実施の形態2における野菜室に7日間保存された各野菜の重量変化(初期比)を示すグラフである。FIG. 10 is a graph showing the weight change (initial ratio) of each vegetable stored in the vegetable room for 7 days in Embodiment 2 of the present invention. 図11は、本発明の実施の形態3における冷蔵庫の正面図である。FIG. 11 is a front view of the refrigerator according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態3における冷蔵庫の扉が開かれたときの正面図である。FIG. 12: is a front view when the door of the refrigerator in Embodiment 3 of this invention is opened. 図13は、本発明の実施の形態3における冷蔵庫を示す図12の13-13線における断面図である。13 is a cross-sectional view taken along line 13-13 of FIG. 12, showing the refrigerator according to Embodiment 3 of the present invention. 図14は、本発明の実施の形態3における冷蔵庫を示す図12の14-14線における断面図である。FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 12, showing the refrigerator according to Embodiment 3 of the present invention. 図15は、本発明の実施の形態3における冷蔵庫の冷気流れを説明するための概略断面図である。FIG. 15 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the third embodiment of the present invention. 図16は、本発明の実施の形態3における冷蔵庫の冷気流れを説明するための冷蔵庫の概略正面図である。FIG. 16: is a schematic front view of the refrigerator for demonstrating the cold air flow of the refrigerator in Embodiment 3 of this invention. 図17は、本発明の実施の形態3における冷蔵庫の冷却室背面部分の冷気流れを説明するための冷蔵庫の一部の斜視図である。FIG. 17 is a perspective view of a part of the refrigerator for explaining the cold air flow in the rear part of the cooling chamber of the refrigerator in the third embodiment of the present invention. 図18は、本発明の実施の形態3における冷蔵庫の要部拡大断面図である。FIG. 18 is an enlarged cross-sectional view of a main part of the refrigerator in the third embodiment of the present invention. 図19は、本発明の実施の形態3における冷蔵庫の冷気流れを説明するための冷蔵庫の一部の概略断面図である。FIG. 19 is a schematic cross-sectional view of a part of the refrigerator for explaining the cold air flow of the refrigerator in the third embodiment of the present invention. 図20は、本発明の実施の形態3における冷蔵庫の要部拡大断面図である。FIG. 20 is an enlarged cross-sectional view of a main part of the refrigerator in the third embodiment of the present invention. 図21は、本発明の実施の形態3における冷蔵庫の冷気流れを説明するための冷蔵庫の一部の概略断面図である。FIG. 21 is a schematic cross-sectional view of a part of the refrigerator for explaining the cold air flow of the refrigerator in the third embodiment of the present invention. 図22は、本発明の実施の形態3における冷蔵庫の野菜室および冷凍室を示す拡大正面図である。FIG. 22 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the third embodiment of the present invention. 図23は、本発明の実施の形態3における冷蔵庫の野菜室の背面壁部分を構成する奥面仕切板ブロックの斜視図である。FIG. 23 is a perspective view of a rear partition block constituting the back wall portion of the vegetable room of the refrigerator in the third embodiment of the present invention. 図24は、本発明の実施の形態3における冷蔵庫の野菜室および野菜ケースを示す分解斜視図である。FIG. 24 is an exploded perspective view showing a vegetable room and a vegetable case of the refrigerator in the third embodiment of the present invention. 図25は、本発明の実施の形態3における冷蔵庫の野菜室に設けられた野菜ケースの斜視図である。FIG. 25 is a perspective view of a vegetable case provided in the vegetable compartment of the refrigerator in the third embodiment of the present invention. 図26は、本発明の実施の形態3における冷蔵庫の野菜室の野菜ケースの分解斜視図である。FIG. 26 is an exploded perspective view of the vegetable case in the vegetable compartment of the refrigerator in the third embodiment of the present invention. 図27は、本発明の実施の形態3における冷蔵庫の野菜室の野菜ケースの斜視図である。FIG. 27 is a perspective view of a vegetable case in the vegetable compartment of the refrigerator according to Embodiment 3 of the present invention. 図28は、本発明の実施の形態3における冷蔵庫の野菜ケースに用いられている仕切板の分解斜視図である。FIG. 28 is an exploded perspective view of a partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention. 図29Aは、本発明の実施の形態3における冷蔵庫の野菜ケースに用いられている仕切板の下段容器への取り付け状態を示す斜視図である。FIG. 29A is a perspective view showing a state in which the partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention is attached to the lower container. 図29Bは、本発明の実施の形態3における冷蔵庫の野菜ケースに用いられている仕切板の下段容器への取り付け状態を示す斜視図である。FIG. 29B is a perspective view showing a state where the partition plate used in the vegetable case of the refrigerator in Embodiment 3 of the present invention is attached to the lower container. 図30は、本発明の実施の形態3における冷蔵庫の野菜ケースに用いられている仕切板の断面図である。FIG. 30 is a sectional view of a partition plate used in the vegetable case of the refrigerator in the third embodiment of the present invention. 図31は、本発明の実施の形態3における冷蔵庫の野菜室に設けられた野菜ケースの正面断面図である。FIG. 31 is a front sectional view of a vegetable case provided in a vegetable room of a refrigerator in Embodiment 3 of the present invention. 図32は、本発明の実施の形態3における冷蔵庫の野菜室における上段容器が支持されている状態を示す正面断面図である。FIG. 32 is a front sectional view showing a state where the upper container in the vegetable room of the refrigerator in the third embodiment of the present invention is supported. 図33は、本発明の実施の形態3における冷蔵庫の野菜室に設けられた野菜ケースの下段容器に、上段容器が載置された状態を示す部分拡大図である。FIG. 33 is a partially enlarged view showing a state in which the upper container is placed in the lower container of the vegetable case provided in the vegetable compartment of the refrigerator in the third embodiment of the present invention. 図34は、本発明の実施の形態3における冷蔵庫の制御ブロック図である。FIG. 34 is a control block diagram of the refrigerator in the third embodiment of the present invention. 図35は、従来の感湿透湿膜の概略図である。FIG. 35 is a schematic view of a conventional moisture-sensitive moisture permeable membrane.
 以下、本発明の実態の形態について、図面を参照しながら説明する。従来例または先に説明した実態の形態と同一構成については、同一符号を付して、その詳細説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same components as those in the conventional example or the actual form described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 (実施の形態1)
 図1は、本発明の実施の形態1における再生セルロース膜が配置された野菜ケースの断面図である。図2および図3は、本発明の実施の形態1における野菜ケースの斜視図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vegetable case in which a regenerated cellulose membrane according to Embodiment 1 of the present invention is arranged. 2 and 3 are perspective views of the vegetable case according to Embodiment 1 of the present invention.
 図1において、野菜ケース1の野菜収納部を構成する野菜ケース本体2の内面、好ましくは天面および壁面を構成する側面、の少なくとも1面における少なくとも一部に、開口部3が設けられていて、開口部3を覆うように再生セルロース膜4が保持されている。 In FIG. 1, the opening part 3 is provided in at least one part in the inner surface of the vegetable case main body 2 which comprises the vegetable storage part of the vegetable case 1, Preferably the side surface which comprises a top | upper surface and a wall surface. The regenerated cellulose film 4 is held so as to cover the opening 3.
 また、図2および図3において、野菜ケース蓋5は、野菜ケース本体2をフタすることができるように設計されている。図2に示すように、野菜ケース蓋5の少なくとも一部に開口部3が設けられ、野菜ケース蓋5の少なくとも一部に設けられた開口部3を覆うように再生セルロース膜4が保持されていてもよい。図3のように、野菜ケース1の野菜収納部を構成する野菜ケース本体2の側面の少なくとも一部に開口部3が設けられ、開口部3を覆うようにして再生セルロース膜4が保持されていてもよい。また、野菜収納部を構成する野菜ケース本体2には、野菜等が収納されることができる空間が設けられている。 2 and 3, the vegetable case lid 5 is designed so that the vegetable case body 2 can be covered. As shown in FIG. 2, the opening 3 is provided in at least a part of the vegetable case lid 5, and the regenerated cellulose membrane 4 is held so as to cover the opening 3 provided in at least a part of the vegetable case lid 5. May be. As shown in FIG. 3, the opening 3 is provided on at least a part of the side surface of the vegetable case body 2 constituting the vegetable storage part of the vegetable case 1, and the regenerated cellulose membrane 4 is held so as to cover the opening 3. May be. Moreover, the vegetable case main body 2 which comprises a vegetable storage part is provided with the space where a vegetable etc. can be stored.
 次に、再生セルロース膜4の役割について説明する。 Next, the role of the regenerated cellulose membrane 4 will be described.
 再生セルロース膜4の主原料は、以下のようにして得られる再生セルロースである。すなわち、木材などが粉砕されて作られるパルプを原料としたセルロースを、水酸化ナトリウムなどのアルカリおよび二硫化炭素で溶かしてビスコース液を作る。そのビスコース液をスリットに通して紙のように薄いフィルム状に成型し、硫酸などの酸で中和させてセルロースに戻すことで、フィルム状の再生セルロースが得られる。なお、再生セルロース膜は、セロファン紙とも呼ばれる。 The main raw material of the regenerated cellulose membrane 4 is regenerated cellulose obtained as follows. That is, a viscose liquid is prepared by dissolving cellulose made of pulp made by pulverizing wood or the like with alkali such as sodium hydroxide and carbon disulfide. The viscose solution is passed through a slit, formed into a thin film like paper, neutralized with an acid such as sulfuric acid, and returned to cellulose to obtain a film-like regenerated cellulose. The regenerated cellulose film is also called cellophane paper.
 また、再生セルロース膜4の原料であるセルロースは、別の呼び名として食物繊維の名で知られている。この食物繊維は、植物の細胞壁を構成している物質であるため、野菜および果物には必ず含まれ、日常から野菜等とともに摂取されている物質であり、安全性の大変高い食材でもある。このため、直接摂取されても安全であることから、産業上の用途として、食品のパッケージなど食品包装材料として広く使用されている。さらに、原料パルプが安価な材料であるため、加工された再生セルロース膜も安価であるため、食品の中でも安価なキャンディおよびラムネなどを個別包装する用途としても大量に使われている。そのため、汎用化され、今日では大量に消費される包装材料として使用されており、大量製造され、大量消費されている。 Further, cellulose which is a raw material of the regenerated cellulose film 4 is known as a dietary fiber as another name. Since this dietary fiber is a substance that constitutes the cell wall of plants, it is always included in vegetables and fruits, and is a substance that is ingested together with vegetables and the like, and is also a very safe food. For this reason, since it is safe even if it is ingested directly, it is widely used as a food packaging material such as a food package for industrial use. Furthermore, since the raw pulp is an inexpensive material, the processed regenerated cellulose membrane is also inexpensive, so that it is also used in large quantities for the purpose of individually packaging cheap candy and ramune among foods. Therefore, it is used as a packaging material that is generalized and consumed in large quantities today, and is mass-produced and consumed in large quantities.
 この安全性が高く、汎用性が高い安価な再生セルロース膜は、別の大きな特徴として、湿度に応じて湿度透過量が変化するという性質がある。以下に、再生セルロースの持つ湿度透過のメカニズムについて簡単に説明する。 An inexpensive regenerated cellulose membrane having high safety and high versatility has another property that humidity permeation changes depending on humidity. Hereinafter, the mechanism of moisture transmission of the regenerated cellulose will be briefly described.
 原料のパルプはセルロース材料であると上述したが、このセルロースは、天然の植物細胞壁に含まれる結晶構造の(化1)で示される炭水化物(分子式 (C10)n で表される多糖類)であり、還元末端の向きが結晶中で全て同じである平行鎖構造を有している。この平衡鎖構造は、微細な繊維として存在し、ミクロフィブリル(糸状のセルロース分子の集合単位)と呼ばれている。ミクロフィブリル状態のセルロースは、セルロース分子間で水素結合が生じ、長い高分子が整然と集合した場合には、強固な水素結合の集合体(結晶領域)となる。よって、分子間に水分が入り込めない(入り込みにくい)状態となり、このため、湿度にかかわらず同じ結晶構造が維持されるため、高湿度であるか低湿度であるかに関わらず、湿気は通過されにくい。 As described above, the raw material pulp is a cellulose material. This cellulose is expressed by a carbohydrate (molecular formula (C 6 H 10 O 5 ) n) represented by (Chemical Formula 1) of a crystal structure contained in a natural plant cell wall. And has a parallel chain structure in which the orientations of the reducing ends are all the same in the crystal. This equilibrium chain structure exists as fine fibers and is called microfibril (an aggregate unit of filamentous cellulose molecules). In the case of cellulose in a microfibril state, when hydrogen bonds are generated between cellulose molecules and long polymers are assembled in an orderly manner, the cellulose becomes a strong hydrogen bond aggregate (crystal region). Therefore, moisture cannot enter between molecules (it is difficult to enter), and the same crystal structure is maintained regardless of humidity, so moisture passes regardless of whether the humidity is high or low. It is hard to be done.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 しかしながら、本発明の再生セルロース膜の主成分である再生セルロースは、ビスコースを原料として再生化させたセルロースであり、(C10)n で表される炭水化物(多糖類)である。この再生セルロースは、分子式で表現すると、セルロースと同じ(C10)nとして表現される。しかし、セルロースは、天然素材をそのまま活用しているのに対して、再生セルロースは、セルロースを水酸化ナトリウムで処理後、二硫化炭素が添加されることによって得られたビスコース(セルロースキサントゲン酸ナトリウム)を酸処理し、再びセルロース状態へと復活させたセルロース、つまり再生セルロースである。このようにして得られた再生セルロースは、セルロースの特徴である結晶構造が崩れ、隣り合う分子鎖の非還元末端の向きが異なる逆平行鎖構造、すなわち、非結晶構造を有している。 However, the regenerated cellulose that is the main component of the regenerated cellulose membrane of the present invention is a cellulose regenerated using viscose as a raw material, and is a carbohydrate (polysaccharide) represented by (C 6 H 10 O 5 ) n. . When this regenerated cellulose is expressed by a molecular formula, it is expressed as (C 6 H 10 O 5 ) n, which is the same as cellulose. However, while cellulose uses natural materials as they are, regenerated cellulose is obtained by treating cellulose with sodium hydroxide and then adding carbon disulfide to viscose (sodium cellulose xanthate). ) Is acid-treated, and is regenerated to a cellulose state, that is, regenerated cellulose. The regenerated cellulose thus obtained has an antiparallel chain structure, that is, an amorphous structure, in which the crystal structure that is characteristic of cellulose is broken and the orientation of the non-reducing ends of adjacent molecular chains is different.
 この再生セルロースの非結晶性の特性により、低湿度のとき、すなわち、乾燥状態では、セルロース分子同士が水素結合し、セルロース分子間に空気中の水分が入り込みにくい状態となっている。一方、高湿度のとき、すなわち、空気中の水分が多い場合は、再生セルロースのセルロース分子が空気中の水分と水素結合するため、セルロース分子同士の水素結合が切断され、セルロース分子間の間隔が広くなり、分子間に水分が入り込みやすい状態になる。その結果、空気中の水分(湿気)を含む成分が、セルロース分子間の間隔を、高湿度側から低湿度側へとすり抜けるように移動でき、湿気の移動量が多くなる。このような特性により、再生セルロースは、湿度が高くなるにしたがって、再生セルロースを通過する湿度の量、つまり、透湿量が多くなるという性質、すなわち、湿度感受性という特徴を有している。 Due to the non-crystalline properties of the regenerated cellulose, the cellulose molecules are hydrogen bonded to each other at low humidity, that is, in a dry state, and moisture in the air hardly enters between the cellulose molecules. On the other hand, when the humidity is high, that is, when there is a lot of moisture in the air, the cellulose molecules in the regenerated cellulose hydrogen bond with the moisture in the air, so the hydrogen bonds between the cellulose molecules are broken and the spacing between the cellulose molecules is increased. It becomes wider and moisture is likely to enter between molecules. As a result, components containing moisture (humidity) in the air can move so that the interval between cellulose molecules passes through from the high humidity side to the low humidity side, and the amount of moisture movement increases. Due to such characteristics, the regenerated cellulose has a characteristic that the amount of humidity that passes through the regenerated cellulose, that is, the moisture permeation amount increases as the humidity increases, that is, the humidity sensitivity.
 以上のような再生セルロースの特性により、再生セルロースがフィルム状に加工された再生セルロース膜4は、湿度が高くなるにしたがって透湿量が多くなるという特性を有している。 Due to the properties of regenerated cellulose as described above, the regenerated cellulose membrane 4 in which regenerated cellulose is processed into a film has a characteristic that the moisture permeability increases as the humidity increases.
 しかしながら、再生セルロース膜の透湿性能という特徴は、従来は欠点として取り扱われている。すなわち、上述したように、湿度が高い状態では、セルロース分子の間隔が広がるが、再生セルロース膜全体でみた場合でも、再生セルロース膜が伸びてしまう。仮に、再生セルロース膜が壁紙および障子紙などに使われた場合、湿度が高い状態では、壁紙であれば再生セルロース膜が伸びることによって壁から剥がれ、障子であれば格子と格子の間でシワが発生してしまう。このため、従来は、再生セルロース膜の透湿性能という特徴が生かされた用途はほとんどみられない。 However, the feature of the regenerated cellulose membrane in terms of moisture permeability has been conventionally treated as a defect. That is, as described above, when the humidity is high, the interval between the cellulose molecules is widened, but the regenerated cellulose film is stretched even when viewed as a whole of the regenerated cellulose film. If the regenerated cellulose film is used for wallpaper or shoji paper, etc., it is peeled off the wall by extending the regenerated cellulose film if it is high in the humidity, and if it is shoji, wrinkles are formed between the lattices. Will occur. For this reason, conventionally, there are hardly any applications in which the characteristics of moisture permeability of the regenerated cellulose membrane are utilized.
 図4は、再生セルロース膜4の感湿透湿量を示したグラフである。図4を参照しながら、再生セルロース膜4の透湿性能について説明する。ただし、透湿性能は湿度透過量として表されている。湿度透過量とは、単位時間当たりに単位面積当たりの再生セルロース膜4を通過する水分量として規定した量である。また、比較のため、透湿効果のない一般紙の湿度透過量も表されている。 FIG. 4 is a graph showing the moisture permeation rate of the regenerated cellulose membrane 4. The moisture permeation performance of the regenerated cellulose membrane 4 will be described with reference to FIG. However, moisture permeation performance is expressed as moisture permeation. The humidity permeation amount is an amount defined as the amount of moisture that passes through the regenerated cellulose membrane 4 per unit area per unit time. For comparison, the humidity permeation amount of general paper having no moisture permeation effect is also shown.
 図4から分かるように、透湿性能のない一般紙は、相対湿度が上昇するにしたがって湿度透過量も上昇するが、両者の上昇は同じ割合にて上昇している。すなわち、相対湿度が2倍になれば、湿度透過量も2倍となる。しかしながら、再生セルロース膜4の湿度透過量は、相対湿度が高くなるにしたがって湿度透過量も上昇していくが、低湿度時の湿度透過量は、一般紙と比較すると非常に低く抑えられている。一方、高湿度状態にある場合は、一般紙より透湿性能は若干劣るものの、高い湿度透過量が得られている。たとえば、再生セルロース膜4の密度が30g/mである場合、相対湿度が約50%RHの低湿度時は、湿度透過量は、一般紙の湿度透過量の約10%程度であるが、高湿度時の湿度透過量は、一般紙の湿度透過量の約80%である。この挙動は、本実施の形態の冒頭で説明した再生セルロースのセルロース分子構造が非結晶構造であることに起因しており、低湿度の状態では非結晶構造にセルロース分子間に空気中の水分が入りこめず、高湿度の状態ではセルロース分子間に空気中の水分が入ることで分子間が膨張し、水分が透過されやすくなるためである。 As can be seen from FIG. 4, in the general paper having no moisture permeability, the amount of moisture permeation increases as the relative humidity increases, but the increase in both increases at the same rate. In other words, if the relative humidity is doubled, the humidity transmission amount is also doubled. However, the humidity permeation amount of the regenerated cellulose membrane 4 increases as the relative humidity increases, but the humidity permeation amount at low humidity is kept very low compared to ordinary paper. . On the other hand, when it is in a high humidity state, the moisture permeation performance is slightly inferior to that of ordinary paper, but a high amount of moisture permeation is obtained. For example, when the density of the regenerated cellulose film 4 is 30 g / m 2 , when the relative humidity is about 50% RH, the humidity transmission amount is about 10% of the humidity transmission amount of general paper. The humidity transmission amount at high humidity is about 80% of the humidity transmission amount of general paper. This behavior is attributed to the fact that the cellulose molecular structure of the regenerated cellulose described at the beginning of the present embodiment is an amorphous structure. In a low humidity state, moisture in the air is present between the cellulose molecules in the amorphous structure. This is because when the moisture in the air enters between the cellulose molecules in a high humidity state, the intermolecular molecules expand and the water is easily transmitted.
 さらに、再生セルロース膜4の密度を20~50g/mとすることで、高湿度領域(相対湿度95%RH)における透湿能力が、低湿度領域(相対湿度50%RH)の透湿能力の4~12倍となる再生セルロース膜4を得ることができる。 Furthermore, by setting the density of the regenerated cellulose film 4 to 20 to 50 g / m 2 , the moisture permeability in the high humidity region (relative humidity 95% RH) is reduced to the moisture permeability in the low humidity region (relative humidity 50% RH). Thus, a regenerated cellulose membrane 4 that is 4 to 12 times larger than the above can be obtained.
 図5は、本実施の形態における再生セルロース膜4を固定枠6に固定させた再生セルロース膜ユニット8を示している。再生セルロース膜4を持ち運びしやすくしたり、製造の際に再生セルロース膜4の取り付け操作性を向上させたりするため、再生セルロース膜4の周囲は、固定枠6により固定されている。再生セルロース膜4を固定する固定枠6は、枠の周りに針状のリブが立てられており、再生セルロース膜4に固定枠6のリブを貫通させることにより、再生セルロース膜4を固定している。 FIG. 5 shows a regenerated cellulose membrane unit 8 in which the regenerated cellulose membrane 4 in the present embodiment is fixed to a fixed frame 6. The periphery of the regenerated cellulose film 4 is fixed by a fixed frame 6 in order to facilitate the carrying of the regenerated cellulose film 4 or to improve the mounting operability of the regenerated cellulose film 4 during production. The fixed frame 6 that fixes the regenerated cellulose film 4 has needle-like ribs around the frame, and the regenerated cellulose film 4 is fixed by passing the rib of the fixed frame 6 through the regenerated cellulose film 4. Yes.
 また、再生セルロース膜4を固定枠6に固定させる他の手段として、インサート成型がある。インサート成型は、再生セルロース膜4を固定枠6に、成型と同時に隙間なく固定させることができる。インサート成型の場合は、野菜ケース1の中の空気が再生セルロース膜4を必ず通過することになるので、確実に透湿性能を得ることができるという点から望ましい。 As another means for fixing the regenerated cellulose film 4 to the fixed frame 6, there is insert molding. In the insert molding, the regenerated cellulose film 4 can be fixed to the fixed frame 6 without gaps at the same time as the molding. In the case of insert molding, since the air in the vegetable case 1 always passes through the regenerated cellulose membrane 4, it is desirable from the viewpoint that moisture permeability can be obtained with certainty.
 さらに、再生セルロース膜4が固定された固定枠6は、野菜ケース1に設けられた野菜ケース蓋5に形成された開口部3、または、野菜ケース本体2に設けられた開口部3に隙間なく取り付けられることが可能な構成になっている。また、再生セルロース膜4の感湿透湿性能を十分にひき出すために、野菜ケース蓋5と野菜ケース本体2とにより密閉構造が形成されるように、野菜ケース蓋5が構成されていることが望ましい。もし、野菜ケース蓋5と野菜ケース本体2とにより、密閉構造が形成されることが不可能な場合であれば、野菜ケース蓋5および野菜ケース本体2の間の隙間は、可能な限り少なくする構成とすることが、再生セルロース膜4の性能を生かすことができる点から望ましい。 Furthermore, the fixed frame 6 to which the regenerated cellulose film 4 is fixed has no gap in the opening 3 formed in the vegetable case lid 5 provided in the vegetable case 1 or the opening 3 provided in the vegetable case main body 2. It can be attached. In addition, the vegetable case lid 5 is configured such that a sealed structure is formed by the vegetable case lid 5 and the vegetable case body 2 in order to sufficiently bring out the moisture-sensitive moisture permeability of the regenerated cellulose membrane 4. Is desirable. If it is impossible to form a sealed structure between the vegetable case lid 5 and the vegetable case body 2, the gap between the vegetable case lid 5 and the vegetable case body 2 is made as small as possible. The configuration is desirable from the viewpoint that the performance of the regenerated cellulose film 4 can be utilized.
 また、野菜ケース本体2に再生セルロース膜4を固定させる場合、再生セルロース膜4を有する再生セルロース膜ユニット8を、野菜収納部を構成する野菜ケース本体2の内面の少なくとも1面における少なくとも一部に配置させた場合でも、同様の効果を得ることができる。なお、本実施の形態でいう野菜収納部を構成する野菜ケース本体2の内面の少なくとも1面とは、野菜ケース本体2の天面、壁面を構成する側面、および、底面のうち少なくとも1面を指している。 Moreover, when fixing the regenerated cellulose membrane 4 to the vegetable case main body 2, the regenerated cellulose membrane unit 8 which has the regenerated cellulose membrane 4 is attached to at least a part of at least one surface of the inner surface of the vegetable case main body 2 constituting the vegetable storage unit. Even when they are arranged, the same effect can be obtained. In addition, at least 1 surface of the inner surface of the vegetable case main body 2 which comprises the vegetable storage part as used in this Embodiment is the top surface of the vegetable case main body 2, the side surface which comprises a wall surface, and at least 1 surface among bottom surfaces. pointing.
 また、野菜ケース本体2は、安価に製造することができるという観点から、PPおよびPSおよびABSなどの高分子材料から構成されることが望ましい。また、野菜等をより衛生的に保存させる目的から、これらの高分子材料に抗菌剤を練りこむことも有効である。 Moreover, it is desirable that the vegetable case body 2 is made of a polymer material such as PP, PS, and ABS from the viewpoint that it can be manufactured at low cost. It is also effective to incorporate an antibacterial agent into these polymer materials for the purpose of preserving vegetables and the like more hygienically.
 一方、野菜ケース本体2には、野菜ケース本体2が外部からの熱を吸収し、野菜ケース本体2の内部の温度を外部の温度と同じ温度に早く到達させることにより、温度差による結露を防止する目的で、ステンレスおよびアルミなどの熱伝達率の高い金属性の材料が使用されることが望ましい。また、これらの金属材料は、抗菌性能を有しているため、野菜等をより衛生的に保存することができるといった点からも望ましい。 On the other hand, the vegetable case main body 2 absorbs heat from the outside, and the temperature inside the vegetable case main body 2 quickly reaches the same temperature as the external temperature, thereby preventing condensation due to a temperature difference. For this purpose, it is desirable to use a metallic material having a high heat transfer coefficient such as stainless steel and aluminum. Moreover, since these metal materials have antibacterial performance, they are desirable from the viewpoint that vegetables and the like can be stored more hygienically.
 さらに、本実施の形態の再生セルロース膜4は、防カビ剤が配合されていてもよい。 Furthermore, the regenerated cellulose membrane 4 of the present embodiment may contain a fungicide.
 防カビ剤の配合方法としては、再生セルロース膜4を製造する際のビスコースに、あらかじめ防カビ剤を混合させておく方法が望ましい。この方法によれば、最終的に形成された再生セルロース膜4に防カビ剤のバインダーなどを使用する必要がなく、防カビ剤が含まれた状態で再生セルロース膜を形成することができ、バインダーの混合によって感湿透湿性能が損なわれることを避けることができる。 As a method for blending the antifungal agent, a method in which the antifungal agent is mixed in advance with the viscose when the regenerated cellulose membrane 4 is produced is desirable. According to this method, it is not necessary to use an antifungal binder or the like on the finally formed regenerated cellulose film 4, and the regenerated cellulose film can be formed in a state in which the antifungal agent is contained. It can be avoided that the moisture and moisture permeation performance is impaired by mixing.
 防カビ剤としては、ビスコースの強アルカリによっても変質せず、水に溶けにくい材料を選定する目的から、銀、銅、Ni、微量のCoおよびCuなどを混合させたNiおよび亜鉛などの無機系、ならびに、TBZ、トリアジン、イソプラチオラン、イプロジオンおよびサイアベンダゾールなどの有機系防カビ剤がある。その中でも、食品添加物として広く使用されて、安価であり、長期間にわたり防カビ効果をもつTBZが使用されることが望ましい。 As an antifungal agent, for the purpose of selecting a material that does not deteriorate due to the strong alkali of viscose and hardly dissolves in water, inorganic materials such as Ni and zinc mixed with silver, copper, Ni, trace amounts of Co and Cu, etc. There are systems and organic fungicides such as TBZ, triazine, isoplatiolane, iprodione and siabendazole. Among them, it is desirable to use TBZ that is widely used as a food additive, is inexpensive, and has an antifungal effect over a long period of time.
 また、他の防カビ剤の配合方法として、防カビ成分が配合された塗料を、再生セルロース膜4の表面の一部にコーティングさせる方法もある。防カビ成分が配合された塗料のコーティング面積が再生セルロース膜4の表面全体の約25%以下であると、再生セルロース膜4の透湿性能がほとんど損なわれないので、防カビ成分が配合された塗料のコーティング面積は、再生セルロース膜4の表面全体の約25%以下であることが望ましい。 In addition, as another method of blending the mold preventive agent, there is a method of coating a part of the surface of the regenerated cellulose film 4 with a paint blended with a mold preventive component. When the coating area of the paint containing the anti-mold component is about 25% or less of the entire surface of the regenerated cellulose film 4, the moisture permeability of the regenerated cellulose film 4 is hardly impaired. The coating area of the paint is desirably about 25% or less of the entire surface of the regenerated cellulose film 4.
 また、防カビ剤としては、防カビ剤を再生セルロース膜4の一部にコーティングさせるため、防カビ性能としてハロー効果(防カビ成分の周囲まで防カビ効果が及ぶ効果のこと)を有する防カビ剤を選定する目的から、銀、銅、Ni、微量のCoおよびCuなどを混合させたNiおよび亜鉛などの無機系、ならびに、TBZ、トリアジン、イソプラチオラン、イプロジオンおよびサイアベンダゾールなどの有機系防カビ剤が用いられる。その中でも、食品添加物として広く使用されて、安価であり、長期間にわたり防カビ効果をもつTBZが用いられることが望ましい。また、コーティングさせる量が極微量でも防カビ効果があり、さらに、外部環境の影響を受けにくい防カビ剤を選定する目的から、無機系の抗菌剤を選定することが望ましい。その中でも、Ni、ならびに、微量のCoおよびCuなどを混合させたNiを選定することが望ましい。 In addition, as the antifungal agent, since the antifungal agent is coated on a part of the regenerated cellulose film 4, the antifungal agent has a halo effect (an effect that the antifungal effect extends to the periphery of the antifungal component) as an antifungal property. In order to select the agent, inorganic systems such as Ni and zinc mixed with silver, copper, Ni, trace amounts of Co and Cu, and organic fungicides such as TBZ, triazine, isoprathiolane, iprodione and cyabendazole An agent is used. Among them, it is desirable to use TBZ that is widely used as a food additive, is inexpensive, and has an antifungal effect over a long period of time. In addition, it is desirable to select an inorganic antibacterial agent for the purpose of selecting an antifungal agent that has an antifungal effect even if the amount to be coated is extremely small and is not easily affected by the external environment. Among these, it is desirable to select Ni and Ni mixed with a small amount of Co and Cu.
 図6は、本実施の形態における再生セルロース膜4と不織布9とを積層させてビスコースで接着させた断面図である。 FIG. 6 is a cross-sectional view in which the regenerated cellulose film 4 and the nonwoven fabric 9 in the present embodiment are laminated and bonded with viscose.
 本実地の形態において、再生セルロース膜4より強いせん断強度を有する不織布9は、再生セルロース膜4の表面および裏面の少なくとも1面に積層されている。また、再生セルロース膜4と不織布9とは、接着層であるビスコース層10により接着されている。ビスコース層10は、再生セルロース膜4と同じ原料のビスコースから作られ、主成分は再生セルロースである。 In the present embodiment, the nonwoven fabric 9 having a stronger shear strength than the regenerated cellulose film 4 is laminated on at least one of the front and back surfaces of the regenerated cellulose film 4. Further, the regenerated cellulose film 4 and the nonwoven fabric 9 are bonded by a viscose layer 10 that is an adhesive layer. The viscose layer 10 is made of the same raw material viscose as the regenerated cellulose film 4, and the main component is regenerated cellulose.
 また、ビスコース層10は、再生セルロース膜4または不織布9に、ビスコースをコーティングまたはディッピングし、その後、酸処理によりコーティングまたはディッピングされたビスコースを固化させて、再生セルロース膜4または不織布9に保持させた、再生セルロースである。コーティングとは、ビスコースを再生セルロース膜4または不織布9の表面に塗ることであり、ディッピングとは、再生セルロース膜4または不織布9にビスコースを浸すことである。本実施の形態においては、再生セルロース膜4と不織布9との接着方法としては、確実に接着させるディッピングが好ましい。 The viscose layer 10 is formed by coating or dipping viscose on the regenerated cellulose film 4 or the nonwoven fabric 9, and then solidifying the viscose coated or dipped by acid treatment to form the regenerated cellulose film 4 or the nonwoven fabric 9. Regenerated cellulose retained. The coating is to apply viscose on the surface of the regenerated cellulose film 4 or the nonwoven fabric 9, and the dipping is to immerse the viscose in the regenerated cellulose film 4 or the nonwoven fabric 9. In the present embodiment, as a method for adhering the regenerated cellulose film 4 and the nonwoven fabric 9, dipping for reliable adhesion is preferable.
 さらに、好ましくは、再生セルロース膜4と不織布9とを確実に接着させる目的で、ビスコースを再生セルロース膜4または不織布9にコーティングまたはディッピングした後、ビスコースが含浸した状態で、再生セルロース膜4または不織布9に機械ロール加圧機にて上下から圧力を加える。 Further, preferably, the regenerated cellulose film 4 and the non-woven fabric 9 are coated with or dipped on the regenerated cellulose film 4 or the non-woven fabric 9 and then the regenerated cellulose film 4 is impregnated with the viscose. Alternatively, pressure is applied to the nonwoven fabric 9 from above and below with a mechanical roll press.
 さらに、好ましくは、再生セルロース膜4または不織布9にビスコースを含浸させたのち、再生セルロース膜4と不織布9とを接着させる手段として、硫酸溶液にて酸処理し、合成高分子の状態にてビスコースを再生処理させ、再生セルロース膜4と不織布9とを接着させる方法が用いられる。この接着方法は、再生セルロース膜4と不織布9との間の接着強度を上げる点から望ましい。 Further, preferably, after the regenerated cellulose membrane 4 or the nonwoven fabric 9 is impregnated with viscose, as a means for adhering the regenerated cellulose membrane 4 and the nonwoven fabric 9, acid treatment with a sulfuric acid solution is performed in the state of a synthetic polymer. A method in which the viscose is regenerated and the regenerated cellulose film 4 and the nonwoven fabric 9 are bonded is used. This bonding method is desirable from the viewpoint of increasing the bonding strength between the regenerated cellulose film 4 and the nonwoven fabric 9.
 以上のように構成された本実施の形態の再生セルロース膜4、および、再生セルロース膜4が配置された野菜ケース1について、以下にその動作を説明する。 The operation of the regenerated cellulose membrane 4 of the present embodiment configured as described above and the vegetable case 1 in which the regenerated cellulose membrane 4 is arranged will be described below.
 まず、野菜ケース本体2に保存したい野菜等が置かれ、野菜ケース蓋5により野菜ケース本体2が密閉される。ここで、再生セルロース膜4が野菜ケース蓋5などに設置されていない場合は、野菜ケース本体2に保存された野菜等から蒸散する水分により、野菜ケース1の内部の湿度は100%を超える。湿度100%を超えた分の水分により、野菜ケース1の内部が結露し、その結露水によって、野菜ケース1内に保されている野菜等の水腐れが生じるという問題が発生する。 First, vegetables to be stored are placed in the vegetable case main body 2, and the vegetable case main body 2 is sealed with the vegetable case lid 5. Here, when the regenerated cellulose membrane 4 is not installed on the vegetable case lid 5 or the like, the humidity inside the vegetable case 1 exceeds 100% due to moisture evaporated from the vegetables or the like stored in the vegetable case body 2. The moisture in excess of 100% causes the inside of the vegetable case 1 to condense, and the condensed water causes the problem of causing water rot of vegetables and the like held in the vegetable case 1.
 一方、本実施の形態の野菜ケース1には、再生セルロース膜4が、野菜ケース蓋5の少なくとも一部に配置されている。或いは、再生セルロース膜4は、野菜ケース本体2の内面の少なくとも1面における一部に配置されている。このような構成により、野菜ケース1内に保存された野菜等から蒸発する水分は、再生セルロース膜4を通過して野菜ケース1の外部へと排出されるので、野菜ケース1内部の湿度は100%を超えることがない。このため、野菜ケース1の野菜ケース本体2に保存された野菜等は、水腐れを生ずることもなく、高湿度な状態で保存されることができ、長期間、鮮度を保った状態のまま保存されることが可能となる。 On the other hand, in the vegetable case 1 of the present embodiment, a regenerated cellulose film 4 is disposed on at least a part of the vegetable case lid 5. Alternatively, the regenerated cellulose film 4 is disposed on a part of at least one of the inner surfaces of the vegetable case body 2. With such a configuration, moisture evaporating from the vegetables or the like stored in the vegetable case 1 passes through the regenerated cellulose membrane 4 and is discharged to the outside of the vegetable case 1, so that the humidity inside the vegetable case 1 is 100 % Is not exceeded. For this reason, the vegetables etc. preserve | saved in the vegetable case main body 2 of the vegetable case 1 can be preserve | saved in a high-humidity state, without producing water rot, and preserve | saved in the state which maintained freshness for a long period of time. Can be done.
 また、本実施の形態において、野菜ケース本体2に保存される野菜等の量が少なく、野菜等から蒸散する水分が少ないときは、再生セルロース膜4の再生セルロースの働きにより、再生セルロース膜4の湿度透過量が減少して、野菜ケース本体2から外部へ放出される湿気の量が減少する。この結果、野菜ケース1の内部の湿度は保たれたままの状態になるので、長期間、野菜等の鮮度が保たれた状態で野菜等を保存させることが可能となる。 In the present embodiment, when the amount of vegetables stored in the vegetable case main body 2 is small and the amount of water evaporated from the vegetables etc. is small, the regenerated cellulose membrane 4 has a function of regenerated cellulose. The amount of moisture transmitted is reduced, and the amount of moisture released from the vegetable case body 2 to the outside is reduced. As a result, since the humidity inside the vegetable case 1 is maintained, it is possible to preserve the vegetables and the like while maintaining the freshness of the vegetables and the like for a long time.
 以上説明したように、野菜ケース本体2に保存される野菜等から発生する水分により、野菜ケース1内部で湿度変動が生じた場合でも、再生セルロース膜4の働きにより、野菜ケース1内部の湿度の度合いにしたがって、自動的に透湿量が調整される。これにより、野菜ケース1内の高湿度が維持されたまま、結露を防止することができる。 As described above, even when humidity fluctuation occurs inside the vegetable case 1 due to moisture generated from the vegetables stored in the vegetable case body 2, the regenerated cellulose membrane 4 works to reduce the humidity inside the vegetable case 1. The moisture permeability is automatically adjusted according to the degree. Thereby, dew condensation can be prevented while the high humidity in the vegetable case 1 is maintained.
 なお、野菜ケース1内に配置される再生セルロース膜4は、1枚に限られず、複数枚、配置されていてもよい。複数枚配置させることにより、安価に簡単に透湿性能を制御することも可能となる。 In addition, the regenerated cellulose membrane 4 arrange | positioned in the vegetable case 1 is not restricted to 1 sheet | seat, A plurality may be arrange | positioned. By arranging a plurality of sheets, it is possible to easily control the moisture permeability at a low cost.
 以上説明したように、本実施の形態の野菜ケース1は、野菜収納部を構成する内面、好ましくは天面および壁面を構成する側面の少なくとも1面における少なくとも一部に開口部3を有し、基材を用いずに形成された再生セルロース膜4が開口部3に設けられている。本実施の形態の再生セルロース膜4は、基材を用いて形成される場合と異なり、ビスコースの濃度の調整および基材材料密度の調整など、特別な処置を施す必要がなく、再生セルロースの原材料であるビスコースが、一定の隙間が設けられたスリットから押し出されて加工されることにより再生セルロース膜4が形成される。このように形成された再生セルロース膜4は、感湿透湿膜として湿度制御に用いられることができる。また、本実施の形態の再生セルロース膜4は、膜厚が均一で、穴があくなどの不具合が回避された再生セルロース膜で形成されているので、信頼性が高く、低コストで、低湿度時の湿度透過量も安定して制御することができる。したがって、長期間、野菜ケース1内部を高湿度に保つことができ、野菜等の鮮度も長期間保つことができる。 As described above, the vegetable case 1 of the present embodiment has the opening 3 on at least a part of at least one of the inner surfaces constituting the vegetable storage portion, preferably the top surface and the side surfaces constituting the wall surface, A regenerated cellulose film 4 formed without using a substrate is provided in the opening 3. Unlike the case where the regenerated cellulose film 4 of the present embodiment is formed using a substrate, there is no need to perform special treatment such as adjustment of the concentration of viscose and adjustment of the density of the substrate material. The regenerated cellulose film 4 is formed by processing viscose, which is a raw material, by being extruded through a slit provided with a certain gap. The regenerated cellulose membrane 4 formed in this way can be used for humidity control as a moisture permeable and moisture permeable membrane. In addition, the regenerated cellulose film 4 of the present embodiment is formed of a regenerated cellulose film having a uniform film thickness and avoiding defects such as perforations, so that the reliability is high, the cost is low, and the humidity is low. The amount of humidity permeation can be controlled stably. Therefore, the inside of the vegetable case 1 can be kept at high humidity for a long period of time, and the freshness of the vegetables and the like can also be maintained for a long period of time.
 また、本実施の形態の再生セルロース膜4は、好ましくは、密度が20~40g/mが望ましい。この密度の再生セルロース膜4は、高湿度領域(湿度95%RH)における透湿能力が、低湿度領域(湿度50%RH)における透湿能力の約4~12倍となり、より野菜ケース1内が高い湿度に保たれることができる。 The regenerated cellulose membrane 4 of the present embodiment preferably has a density of 20 to 40 g / m 2 . The regenerated cellulose membrane 4 of this density has a moisture permeability in the high humidity region (humidity 95% RH) of about 4 to 12 times that in the low humidity region (humidity 50% RH). Can be kept at high humidity.
 また、本実施の形態において、再生セルロース膜4の表面および裏面の少なくとも1面には、再生セルロース膜4よりも強いせん断力を有する不織布9が積層されている。このような構成により、野菜ケース1内に投入された野菜等が再生セルロース膜4に当たった場合でも、再生セルロース膜4が簡単に破れることがなく、再生セルロース膜4の信頼性を高めることができる。 In this embodiment, a nonwoven fabric 9 having a shearing force stronger than that of the regenerated cellulose film 4 is laminated on at least one of the front and back surfaces of the regenerated cellulose film 4. With such a configuration, even when a vegetable or the like put in the vegetable case 1 hits the regenerated cellulose film 4, the regenerated cellulose film 4 is not easily broken, and the reliability of the regenerated cellulose film 4 can be improved. it can.
 また、再生セルロース膜4および不織布9は、再生セルロース膜4または不織布9にビスコースをコーティングまたはディッピングし、酸処理によりコーティングまたはディッピングされたビスコースを固化させることにより、互いを接着させたものでる。ビスコースを酸処理するといった簡単な方法で、再生セルロース膜4と不織布9とを接着固定させることができ、バインダー(接着剤)などの使用により接着させる手段とは異なり、バインダー(接着剤)が不要となる。このため、バインダー(接着剤)による透湿効果の阻害を生じることなく、再生セルロース膜4と不織布9とを簡単に一体化させることができ、製造時などにおける取り扱い性を高めることができる。 The regenerated cellulose film 4 and the non-woven fabric 9 are obtained by adhering each other by coating or dipping the regenerated cellulose film 4 or the non-woven fabric 9 with viscose and solidifying the viscose coated or dipped by acid treatment. . The regenerated cellulose membrane 4 and the nonwoven fabric 9 can be bonded and fixed by a simple method such as acid treatment of viscose. Unlike means for bonding by using a binder (adhesive) or the like, a binder (adhesive) is used. It becomes unnecessary. For this reason, the regenerated cellulose film 4 and the nonwoven fabric 9 can be easily integrated without impeding the moisture permeation effect by the binder (adhesive), and the handleability at the time of manufacture can be improved.
 (実施の形態2)
 図7は、本発明の実施の形態2における再生セルロース膜ユニット8が配置された野菜ケース1を有する冷蔵庫100の断面図である。
(Embodiment 2)
FIG. 7 is a cross-sectional view of refrigerator 100 having vegetable case 1 in which regenerated cellulose membrane unit 8 according to Embodiment 2 of the present invention is arranged.
 図7において、冷蔵庫100の本体である断熱箱体101は、主に鋼板が用いられた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とを有する。断熱箱体101は、周囲と断熱され、仕切り壁によって複数の貯蔵室に断熱区画されている。断熱箱体101の最上部には、第一の貯蔵室としての冷蔵室104、冷蔵室104の下部に第四の貯蔵室としての切替室105および第五の貯蔵室としての製氷室106が横並びに設けられている。切替室105および製氷室106の下部には、第二の貯蔵室としての冷凍室107が配置されており、断熱箱体101の最下部には、第三の貯蔵室としての野菜室108が配置されている。 In FIG. 7, the heat insulating box body 101 which is the main body of the refrigerator 100 includes an outer box 102 mainly made of steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102 and an inner box 103. And a foamed heat insulating material such as hard foamed urethane filled in the space between them. The heat insulation box 101 is insulated from the surroundings, and is thermally insulated into a plurality of storage rooms by partition walls. In the uppermost part of the heat insulating box 101, a refrigeration room 104 as a first storage room, a switching room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are arranged side by side below the refrigeration room 104. Is provided. A freezing room 107 as a second storage room is arranged at the lower part of the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is arranged at the lowermost part of the heat insulating box 101. Has been.
 冷蔵室104は、冷蔵保存用として凍らない温度である冷蔵温度帯に設定されており、通常1℃~5℃に設定されている。野菜室108は、冷蔵室104と同等の冷蔵温度帯もしくは冷蔵室104より若干高い温度に設定されており、例えば野菜温度帯2℃~7℃に設定されている。冷凍室107は、冷凍温度帯に設定されており、具体的には、冷凍保存のために通常-22℃~-15℃で設定されている。冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。野菜室108は、引き出し式の扉が設けられていてもよい。 The refrigerated room 104 is set in a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, and is usually set to 1 ° C. to 5 ° C. The vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a temperature slightly higher than the refrigeration room 104, for example, a vegetable temperature range 2 ° C. to 7 ° C. The freezer compartment 107 is set in a freezing temperature zone, and specifically, it is normally set at −22 ° C. to −15 ° C. for frozen storage. In order to improve the frozen storage state, it may be set at a low temperature such as −30 ° C. or −25 ° C., for example. The vegetable compartment 108 may be provided with a drawer-type door.
 野菜室108は、野菜ケース1を有し、野菜ケース1には、再生セルロース膜ユニット8が設けられた野菜ケース蓋5が設置されている。 The vegetable compartment 108 has a vegetable case 1, and the vegetable case 1 is provided with a vegetable case lid 5 provided with a regenerated cellulose membrane unit 8.
 さらに、本実施の形態では、再生セルロース膜ユニット8は、野菜ケース蓋5に隙間なく取り付けられることが可能に設計されている。再生セルロース膜ユニット8は、野菜ケース蓋5の一部に取り付けられていてもよい。また、野菜ケース蓋5と、野菜ケース本体2とにより、野菜ケース1において密閉構造が形成されている。このような構成により、再生セルロース膜4の感湿透湿性能が十分に引き出される。よって、野菜ケース蓋5と野菜ケース本体2とにより、野菜ケース1において密閉構造が形成されることが望ましい。もし、野菜ケース蓋5と野菜ケース本体2とにより、密閉構造が形成されることが不可能な場合は、野菜ケース蓋5と野菜ケース本体2との間の隙間は、可能な限り少なくすることが、再生セルロース膜4の性能がより有効に生かされる点から望ましい。 Furthermore, in this embodiment, the regenerated cellulose membrane unit 8 is designed so that it can be attached to the vegetable case lid 5 without a gap. The regenerated cellulose membrane unit 8 may be attached to a part of the vegetable case lid 5. The vegetable case lid 5 and the vegetable case body 2 form a sealed structure in the vegetable case 1. With such a configuration, the moisture-permeable and moisture-permeable performance of the regenerated cellulose film 4 is sufficiently drawn out. Therefore, it is desirable that a sealed structure is formed in the vegetable case 1 by the vegetable case lid 5 and the vegetable case body 2. If it is impossible to form a sealed structure between the vegetable case lid 5 and the vegetable case body 2, the gap between the vegetable case lid 5 and the vegetable case body 2 should be as small as possible. However, it is desirable from the viewpoint that the performance of the regenerated cellulose film 4 is utilized more effectively.
 なお、本実施の形態の野菜ケース1は、再生セルロース膜4が設けられた野菜ケース蓋5を有しているが、必ずしも野菜ケース蓋5が形成されている必要はなく、再生セルロース膜4が、野菜ケース1の野菜ケース本体2の内面の少なくとも1面に配置されることでも、同様の効果を得ることができる。ここでいう少なくとも1面とは、野菜ケース本体2内面、すなわち、天面、壁面を構成する側面、および、底面のうち、少なくとも1面を指している。また、再生セルロース膜4は、必ずしもこれらの面の1面全域に設けられている必要はなく、これらの面の一部に設けられていてもよい。 Note that the vegetable case 1 of the present embodiment has the vegetable case lid 5 provided with the regenerated cellulose membrane 4, but the vegetable case lid 5 is not necessarily formed, and the regenerated cellulose membrane 4 does not have to be formed. The same effect can also be obtained by disposing at least one of the inner surfaces of the vegetable case body 2 of the vegetable case 1. Here, at least one surface refers to at least one of the inner surface of the vegetable case body 2, that is, the top surface, the side surface constituting the wall surface, and the bottom surface. Further, the regenerated cellulose film 4 does not necessarily have to be provided on the entire area of one of these surfaces, and may be provided on a part of these surfaces.
 また、再生セルロース膜ユニット8は、野菜ケース1内において温度が高い位置に配置されていることが望ましい。その理由は、空気中の水分は、相対湿度が同じであれば、温度が高い方が空気中の水分の絶対量が多くなるので、野菜ケース1内の余分な湿気は、温度が高いところに集まるからである。再生セルロース膜ユニット8を野菜ケース1内の温度の高いところに取り付けることにより、余分な湿気を野菜ケース1外へ排出させやすくなり、結露を効率よく抑えることができる。 In addition, it is desirable that the regenerated cellulose membrane unit 8 is disposed at a high temperature position in the vegetable case 1. The reason for this is that if the relative humidity is the same in the air, the higher the temperature, the greater the absolute amount of moisture in the air. Because they gather. By attaching the regenerated cellulose membrane unit 8 to a place with a high temperature in the vegetable case 1, it becomes easy to discharge excess moisture to the outside of the vegetable case 1, and condensation can be efficiently suppressed.
 さらに、再生セルロース膜ユニット8が野菜ケース1内の温度が高い位置に配置されることにより、再生セルロース膜ユニット8が野菜ケース1内の温度よりも高い温度になるため、再生セルロース膜4自体への結露を抑制することができる。もし仮に、再生セルロース膜4が野菜ケース内で低い温度の位置に設置され、再生セルロース膜4自体に結露が生じた場合、再生セルロース膜4が結露によりぬれた状態になり、上述した再生セルロースの透湿性能の働きにより、セルロース分子間の間隔が広い状態のまま保持される。この場合、野菜ケース1内の湿度が下がったとしても、透過量が高いままの状態になるので、野菜ケース1内に閉じ込めておきたい湿気まで排出されてしまうという問題が生じてしまう。このような再生セルロース膜4への結露を回避する意味でも、再生セルロース膜ユニット8は、野菜ケース1内における高い温度帯に設置されることが望ましい。 Furthermore, since the regenerated cellulose membrane unit 8 becomes a temperature higher than the temperature in the vegetable case 1 by arrange | positioning the regenerated cellulose membrane unit 8 in the position where the temperature in the vegetable case 1 is high, to the regenerated cellulose membrane 4 itself. Condensation can be suppressed. If the regenerated cellulose membrane 4 is placed at a low temperature in the vegetable case and condensation occurs in the regenerated cellulose membrane 4 itself, the regenerated cellulose membrane 4 becomes wet due to condensation, and the above-mentioned regenerated cellulose membrane Due to the function of moisture permeability, the distance between cellulose molecules is kept wide. In this case, even if the humidity in the vegetable case 1 is lowered, the permeation amount remains high, so that a problem arises that the moisture that is desired to be confined in the vegetable case 1 is discharged. In order to avoid such condensation on the regenerated cellulose membrane 4, it is desirable that the regenerated cellulose membrane unit 8 be installed in a high temperature zone in the vegetable case 1.
 ここで、野菜ケース1内における温度が高い位置について説明する。一般に、空気は温度が高い方が軽いという性質を持つことから、野菜室108の野菜ケース1内の空気は、上部の方が下部よりも温度が高くなる。このため、本実施の形態では、野菜室108の野菜ケース1の上部に配置された野菜ケース蓋5に、再生セルロース膜ユニット8が形成されている。なお、再生セルロース膜ユニット8が形成される位置は、野菜ケース蓋5に限られず、野菜ケース1の天面および壁面を構成する側面の上部などでもよい。 Here, the position where the temperature in the vegetable case 1 is high will be described. In general, since air has a property of being lighter at a higher temperature, the temperature of the air in the vegetable case 1 of the vegetable compartment 108 is higher at the upper part than at the lower part. For this reason, in this Embodiment, the regenerated cellulose membrane unit 8 is formed in the vegetable case lid 5 arrange | positioned at the upper part of the vegetable case 1 of the vegetable compartment 108. FIG. In addition, the position where the regenerated cellulose membrane unit 8 is formed is not limited to the vegetable case lid 5 but may be the top of the vegetable case 1 or the upper part of the side surface constituting the wall surface.
 切替室105の温度は、冷蔵温度帯、野菜温度帯および冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切り換えることができる。切替室105は、製氷室106に並設された独立扉を有する貯蔵室である。切替室105は、引き出し式の扉を有していてもよい。 The temperature of the switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone. The switching chamber 105 is a storage chamber having an independent door arranged in parallel with the ice making chamber 106. The switching chamber 105 may have a drawer type door.
 なお、本実施の形態では、切替室105は、冷蔵および冷凍の温度帯までを含めた貯蔵室として構成されているが、冷蔵は、冷蔵室104および野菜室108、冷凍は、冷凍室107に委ねて、冷蔵および冷凍の中間の温度帯のみの切り換えに特化させた貯蔵室としてもよい。また、切替室105は、特定の温度帯に固定された貯蔵室としてもよい。 In the present embodiment, the switching chamber 105 is configured as a storage chamber including a temperature range of refrigeration and freezing. However, the refrigeration is performed in the refrigeration chamber 104 and the vegetable chamber 108, and the refrigeration is performed in the freezing chamber 107. In other words, it may be a storage room specialized for switching only in the intermediate temperature range between refrigeration and freezing. The switching chamber 105 may be a storage chamber fixed in a specific temperature range.
 製氷室106においては、冷蔵室104内の貯水タンクから送られた水で、製氷室106内上部に設けられた自動製氷機により氷が作られ、作られた氷は、製氷室106内下部に配置された貯氷容器に貯蔵される。 In the ice making chamber 106, ice is made by the automatic ice maker provided in the upper part of the ice making chamber 106 with water sent from the water storage tank in the refrigerator compartment 104, and the produced ice is placed in the lower part of the ice making chamber 106. Stored in an ice storage container.
 断熱箱体101の天面部は、冷蔵庫100の背面方向に向かって階段状に凹みが設けられた形状であり、この階段状の凹部に機械室101aが形成されている。機械室101aには、圧縮機109および水分除去を行うドライヤ等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109が配設されている機械室101aは、冷蔵室104内の上部の後方領域に食い込んだ形で形成されている。 The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator 100, and a machine room 101a is formed in the stepped recess. The machine room 101a accommodates the compressor 109 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed in a shape that bites into the upper rear region in the refrigerator compartment 104.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体101の上部の貯蔵室後方領域に、機械室101aが設けられて圧縮機109が配置される構成とすることにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の下部に設けられていた機械室のスペースを、貯蔵室容量として有効に利用することができる。これにより、冷蔵庫100の収納性および使い勝手を大きく改善することができる。 Thus, the conventional refrigerator is provided with a configuration in which the machine room 101a is provided and the compressor 109 is disposed in the rear area of the upper storage room of the heat insulating box 101 that is difficult to reach and is a dead space. Thus, the space in the machine room provided in the lower part of the heat insulating box 101 that is easy for the user to use can be used effectively as the storage room capacity. Thereby, the storage property and usability of the refrigerator 100 can be greatly improved.
 次に、冷凍サイクルについて説明する。 Next, the refrigeration cycle will be described.
 冷凍サイクルは、圧縮機109と、凝縮器と、減圧器であるキャピラリーと、冷却器112とが順に配置された一連の冷媒流路から形成されている。冷媒としては、炭化水素系冷媒である、例えばイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow paths in which a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 are arranged in order. As the refrigerant, for example, isobutane, which is a hydrocarbon-based refrigerant, is enclosed.
 圧縮機109は、ピストンがシリンダ内を往復運動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体101に、三方弁および切替弁が用いられる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。 The compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle in which a three-way valve and a switching valve are used for the heat insulating box 101, those functional parts may be disposed in the machine room 101a.
 また、本実施の形態では、冷凍サイクルを構成する減圧器にキャピラリーが用いられているが、パルスモーターで駆動し、冷媒の流量を自由に制御できる電子膨張弁が用いられていてもよい。 In this embodiment, a capillary is used for the decompressor constituting the refrigeration cycle. However, an electronic expansion valve that is driven by a pulse motor and can freely control the flow rate of the refrigerant may be used.
 なお、以下に述べる事項は、従来一般的であった、断熱箱体101の下部の貯蔵室後方領域に設けられた機械室に圧縮機109が配置されているタイプの冷蔵庫に適用させてもよい。 Note that the items described below may be applied to a refrigerator of a type in which the compressor 109 is disposed in a machine room provided in a rear region of the storage chamber below the heat insulating box 101, which is generally used in the past. .
 冷凍室107の背面には、冷気を生成する冷却室110が設けられ、冷却室110は、風路と区画されている。冷凍室107と冷却室110との間には、断熱性を有する各室に冷気を搬送する風路と、各貯蔵室と断熱区画するために構成された奥面仕切り壁111とが設けられている。また、冷凍室冷気風路と冷却室110とを隔離するための仕切り板も設けられている。冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には、強制対流方式により、冷却器112で冷却された冷気を冷蔵室104、切替室105、製氷室106、野菜室108および冷凍室107に送風する冷却ファン113が配置されている。また、野菜室冷気入口部113aは、冷却器112により冷却された冷気が冷却ファン113により野菜室108へ流入する部分である。 A cooling chamber 110 that generates cold air is provided on the back of the freezing chamber 107, and the cooling chamber 110 is partitioned from the air path. Between the freezing chamber 107 and the cooling chamber 110, there are provided an air passage that conveys cold air to each chamber having heat insulation properties, and a rear partition wall 111 configured to thermally separate each storage chamber. Yes. In addition, a partition plate is provided for isolating the freezing room cold air passage from the cooling room 110. In the cooling chamber 110, a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 is stored in the refrigerating chamber 104, the switching chamber 105, the ice making chamber by a forced convection method. 106, the cooling fan 113 which ventilates to the vegetable compartment 108 and the freezer compartment 107 is arrange | positioned. The vegetable room cold air inlet portion 113 a is a portion where the cold air cooled by the cooler 112 flows into the vegetable room 108 by the cooling fan 113.
 ここで、再生セルロース膜ユニット8は、野菜室108を冷却するために野菜室冷気入口部113aから流入される冷気が、可能な限り直接当たらない位置に設けられることが望ましい。これは、野菜室冷気入口部113aから野菜室108へ流入される冷気が再生セルロース膜4へ当たることにより、再生セルロース膜4の温度が低くなることを抑制するためである。再生セルロース膜4の温度が低くなるのを抑制させることが必要な理由は、再生セルロース膜4の温度が低温になり結露してしまった場合、再生セルロース膜4の透湿量が常に高い状態となり、野菜ケース1内の湿度が低下した場合でも、再生セルロース膜4の湿度透過量が高いままの状態に保持されて野菜ケース1の乾燥が進んでしまうため、これを防止するためである。 Here, it is desirable that the regenerated cellulose membrane unit 8 is provided at a position where the cold air flowing from the vegetable room cold air inlet 113a is not directly applied as much as possible in order to cool the vegetable room 108. This is to prevent the temperature of the regenerated cellulose film 4 from being lowered due to the cool air flowing into the vegetable room 108 from the vegetable room cold air inlet 113a hitting the regenerated cellulose film 4. The reason why it is necessary to suppress the temperature of the regenerated cellulose film 4 from being lowered is that when the temperature of the regenerated cellulose film 4 becomes low and condensation occurs, the moisture permeability of the regenerated cellulose film 4 is always high. Even when the humidity in the vegetable case 1 is lowered, the moisture permeation amount of the regenerated cellulose membrane 4 is kept high, and the drying of the vegetable case 1 proceeds to prevent this.
 また、冷却器112の下部空間には、冷却時に冷却器112およびその周辺に付着する霜および氷を除霜するためのガラス管製のラジアントヒータ114が設けられている。さらに、その下部には、除霜時に生じる除霜水を受けるためのドレンパン115およびドレンパン115の最深部から庫外に貫通したドレンチューブ116が設けられ、その下流側の庫外に蒸発皿117が設けられている。 Further, in the lower space of the cooler 112, a radiant heater 114 made of a glass tube is provided for defrosting the frost and ice adhering to and around the cooler 112 during cooling. Further, a drain pan 115 for receiving defrost water generated during defrosting and a drain tube 116 penetrating from the deepest part of the drain pan 115 to the outside of the chamber are provided at the lower portion thereof, and an evaporating dish 117 is disposed outside the chamber on the downstream side. Is provided.
 第二の仕切壁125は、冷凍室107と野菜室108とを隔離しており、これらの各貯蔵室の断熱性を確保するため、発泡スチロールなどで構成された断熱材で形成されている。 The second partition wall 125 separates the freezer compartment 107 and the vegetable compartment 108, and is formed of a heat insulating material made of foamed polystyrene or the like in order to ensure the heat insulation of each storage room.
 以上のように構成された本実施の形態の冷蔵庫100、野菜ケース1および再生セルロース膜ユニット8について、以下にその動作を説明する。 The operation of the refrigerator 100, the vegetable case 1 and the regenerated cellulose membrane unit 8 of the present embodiment configured as described above will be described below.
 まず、冷蔵庫100の冷凍サイクルの動作について説明する。 First, the operation of the refrigeration cycle of the refrigerator 100 will be described.
 冷蔵庫100内の設定された温度に応じて制御基板からの信号により、冷凍サイクルが開始され冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器で、ある程度凝縮液化され、さらに冷蔵庫100の本体である断熱箱体101の側面、背面および断熱箱体101の前面間口に配設された冷媒配管などを経由し、断熱箱体101の結露を防止しながら凝縮液化され、キャピラリーチューブに送られる。その後、冷媒は、キャピラリーチューブでは、圧縮機109への吸入管と熱交換しながら減圧されて、低温低圧の液冷媒となって冷却器112に送られる。 The refrigeration cycle is started and the cooling operation is performed by a signal from the control board according to the set temperature in the refrigerator 100. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed and liquefied to some extent by the condenser, and is further disposed on the side surface and back surface of the heat insulating box body 101 which is the main body of the refrigerator 100 and the front opening of the heat insulating box body 101. It is condensed and liquefied while preventing condensation of the heat insulating box 101 via the refrigerant pipe and the like, and sent to the capillary tube. Thereafter, the refrigerant is decompressed in the capillary tube while exchanging heat with the suction pipe to the compressor 109, and is sent to the cooler 112 as a low-temperature and low-pressure liquid refrigerant.
 ここで、低温低圧の液冷媒は、冷却ファン113の動作により、冷凍室冷気風路などを通って各貯蔵室内に搬送される空気と熱交換され、冷却器112内の冷媒は蒸発気化される。このとき、冷却室110内で、各貯蔵室を冷却するための冷気が生成される。低温の冷気は、冷却ファン113から冷蔵室104、切替室105、製氷室106、野菜室108および冷凍室107に、風路およびダンパなどが用いられて分流される。これにより、各室はそれぞれの目的温度帯に冷却される。特に、野菜室108の温度は、冷気が供給される風路中のダンパの開閉による冷気の配分、および、ヒータのONおよびOFF運転により、2℃から7℃になるように調整されている。 Here, the low-temperature and low-pressure liquid refrigerant is heat-exchanged with the air conveyed through the freezer compartment cold air passage and the like into each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 is evaporated. . At this time, cool air for cooling each storage chamber is generated in the cooling chamber 110. The low-temperature cold air is diverted from the cooling fan 113 to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107 using an air passage and a damper. Thereby, each chamber is cooled to each target temperature zone. In particular, the temperature of the vegetable compartment 108 is adjusted to 2 ° C. to 7 ° C. by distribution of cold air by opening and closing dampers in the air passage to which cold air is supplied, and ON / OFF operation of the heater.
 次に、野菜室108に野菜等が投入され、保存される場合について説明する。 Next, the case where vegetables etc. are thrown into the vegetable compartment 108 and preserve | saved is demonstrated.
 まず、引き出し式の野菜室108の扉が手前へ引かれることによって、野菜室108に配置されている野菜ケース本体2が引き出される。この際、野菜ケース蓋5は、野菜室108に立てられたリブ等により、野菜ケース本体2とともに引き出されることなく、冷蔵庫100の本体側に残される。このため、野菜ケース1が引き出された際、野菜ケース1上部には野菜ケース蓋5がない状態なので、保存される野菜は、簡単に野菜ケース本体2へと投入されることができる。 First, the vegetable case body 2 disposed in the vegetable compartment 108 is pulled out by pulling the door of the drawer-type vegetable compartment 108 forward. At this time, the vegetable case lid 5 is left on the main body side of the refrigerator 100 without being pulled out together with the vegetable case main body 2 by a rib or the like standing in the vegetable compartment 108. For this reason, when the vegetable case 1 is pulled out, there is no vegetable case lid 5 at the top of the vegetable case 1, so that the stored vegetables can be easily put into the vegetable case body 2.
 さらに、野菜室108に配置される野菜ケース本体2に野菜等が投入された後、野菜室108の扉が閉められると、冷蔵庫100の本体側に残されていた野菜ケース蓋5により、野菜ケース本体2が自動的に密閉状態でフタをされることができるように、野菜ケース蓋5および野菜ケース本体2が構成されている。このような構成により、野菜ケース本体2と野菜ケース蓋5とは、野菜室108の扉が閉じられた際に密閉されることができる。これにより、野菜ケース1に保存された野菜等から蒸散した水分は、野菜ケース蓋5に設けられている再生セルロース膜ユニット8の再生セルロース膜4の働きにより、野菜ケース1内の湿度が高い場合には、野菜ケース1の外部へ放出され、一方、野菜ケース1内の湿度が低い場合には、再生セルロース膜4の働きにより、再生セルロース膜4の透湿量が減少して、野菜ケース1内の湿度が保たれた状態となる。 Furthermore, after vegetables etc. are thrown into the vegetable case main body 2 arranged in the vegetable compartment 108, when the door of the vegetable compartment 108 is closed, the vegetable case lid 5 left on the main body side of the refrigerator 100 causes the vegetable case The vegetable case lid 5 and the vegetable case main body 2 are configured so that the main body 2 can be automatically sealed in a sealed state. With such a configuration, the vegetable case main body 2 and the vegetable case lid 5 can be sealed when the door of the vegetable compartment 108 is closed. Thereby, when the moisture in the vegetable case 1 is high due to the action of the regenerated cellulose membrane 4 of the regenerated cellulose membrane unit 8 provided in the vegetable case lid 5, the moisture evaporated from the vegetables stored in the vegetable case 1 Is released to the outside of the vegetable case 1. On the other hand, when the humidity in the vegetable case 1 is low, the moisture permeability of the regenerated cellulose film 4 is reduced by the action of the regenerated cellulose film 4, and the vegetable case 1 The inside humidity is maintained.
 図8は、再生セルロース膜ユニット8が設けられた野菜ケース1内の湿度を測定した結果である。図9は、実施の形態2における再生セルロース膜ユニット8が配置されていない場合の野菜ケース1内の湿度変動を示すグラフである。図10は、野菜室108に7日間保存された各野菜の重量変化を示すグラフである。 FIG. 8 shows the results of measuring the humidity in the vegetable case 1 provided with the regenerated cellulose membrane unit 8. FIG. 9 is a graph showing the humidity fluctuation in the vegetable case 1 when the regenerated cellulose membrane unit 8 in the second embodiment is not arranged. FIG. 10 is a graph showing the weight change of each vegetable stored in the vegetable room 108 for 7 days.
 図8および図9を比較してみると、再生セルロース膜ユニット8が配置されていない野菜ケース1は、冷凍サイクルにより野菜室108を冷却するために野菜室108へ流入される冷気の挙動に応じて、冷気が流入されるときは湿度が下がり、冷気が流入されないときは湿度が上がっている。一方、図8に示すように再生セルロース膜ユニット8が配置された野菜ケース1内は、0日目に野菜を投入した当初は、野菜から蒸散する水分により100%と高い湿度を示すものの、再生セルロース膜4の働きにより、野菜ケース1内の湿気が野菜ケース1外へ排出されて湿度が下がる。しかしながら、野菜ケース1内の湿度は一旦下がるものの、再生セルロース膜4の透湿性能が変化し、湿度透過量が少なくなるので、野菜ケース1内の湿度は約90%以下に低下することはない。このため、野菜ケース1に保存された野菜等は、高い湿度に保たれた野菜ケース1内に保存され、水分が失われることなく長期間保存されることができる。一方、野菜ケース1内の湿度が高くなった場合は、再生セルロース膜4の働きにより、野菜ケース1内において100%の湿度が長時間維持されることはない。このため、野菜ケース1内に結露が生じることもない。 Comparing FIG. 8 and FIG. 9, the vegetable case 1 in which the regenerated cellulose membrane unit 8 is not arranged corresponds to the behavior of the cold air flowing into the vegetable compartment 108 in order to cool the vegetable compartment 108 by the refrigeration cycle. Thus, when cold air flows in, the humidity decreases, and when cold air does not flow, the humidity increases. On the other hand, in the vegetable case 1 in which the regenerated cellulose membrane unit 8 is arranged as shown in FIG. 8, although the vegetable is put on the 0th day, it shows a high humidity of 100% due to the moisture that evaporates from the vegetable. Due to the action of the cellulose membrane 4, the moisture in the vegetable case 1 is discharged out of the vegetable case 1 and the humidity is lowered. However, although the humidity in the vegetable case 1 once decreases, the moisture permeability of the regenerated cellulose membrane 4 changes and the humidity permeation amount decreases, so the humidity in the vegetable case 1 does not decrease to about 90% or less. . For this reason, the vegetables etc. preserve | saved in the vegetable case 1 are preserve | saved in the vegetable case 1 kept at high humidity, and can be preserve | saved for a long time, without losing a water | moisture content. On the other hand, when the humidity in the vegetable case 1 becomes high, the regenerated cellulose membrane 4 does not maintain 100% humidity in the vegetable case 1 for a long time. For this reason, dew condensation does not occur in the vegetable case 1.
 このように、冷蔵庫100の冷凍サイクルシステムを利用することにより、野菜等を低温保存させることもできるため、野菜等の鮮度を長期間保持することができる。 Thus, by using the refrigeration cycle system of the refrigerator 100, vegetables and the like can be stored at a low temperature, so that the freshness of the vegetables and the like can be maintained for a long time.
 以上のように、再生セルロース膜ユニット8の再生セルロース膜4の働きにより、野菜ケース本体2は結露することなく、野菜ケース1内は、野菜等の保鮮に最適な高湿度の状態が保たれることができる。よって、野菜等の鮮度が長期間保たれることができる。 As described above, the action of the regenerated cellulose membrane 4 of the regenerated cellulose membrane unit 8 keeps the vegetable case body 2 in a high humidity state that is optimal for the preservation of vegetables and the like without causing condensation in the vegetable case body 2. be able to. Therefore, the freshness of vegetables etc. can be maintained for a long time.
 また、本実施の形態の再生セルロース膜ユニット8に用いられる再生セルロース膜4は、基材を用いずに形成された再生セルロース膜4である。本実施の形態の再生セルロース膜4には、基材を用いて形成する場合に必要なビスコースの濃度の調整および基材材料密度の調整など特別な処置を施す必要もなく、再生セルロースの原材料であるビスコースが一定の隙間が設けられたスリットから押し出されて加工される再生セルロース膜が用いられている。本実施の形態の再生セルロース膜4は、感湿透湿膜として野菜ケース1内の湿度制御に用いられることができる。すなわち、本実施の形態の再生セルロース膜4には、膜厚が均一で、穴があくなどの不具合が回避された再生セルロース膜が用いられているので、信頼性が高く、低コストで、低湿度時の湿度透過量も安定して制御することができる。これにより、長期間、野菜ケース1内を高湿度に保つことができ、野菜等の鮮度も長期間保つことができる。 The regenerated cellulose film 4 used in the regenerated cellulose film unit 8 of the present embodiment is a regenerated cellulose film 4 formed without using a base material. The regenerated cellulose film 4 of the present embodiment does not require any special treatment such as adjustment of the concentration of viscose and adjustment of the density of the base material, which are necessary when forming using a base material. A regenerated cellulose membrane is used, in which viscose is extruded and processed through a slit provided with a certain gap. The regenerated cellulose membrane 4 of the present embodiment can be used for humidity control in the vegetable case 1 as a moisture permeable and moisture permeable membrane. That is, the regenerated cellulose film 4 of the present embodiment uses a regenerated cellulose film that has a uniform film thickness and avoids defects such as perforations, so that it has high reliability, low cost, and low The amount of moisture transmission at the time of humidity can also be controlled stably. Thereby, the inside of the vegetable case 1 can be maintained at high humidity for a long period of time, and the freshness of vegetables and the like can also be maintained for a long period of time.
 (実施の形態3)
 図11は、本発明の実施の形態3における冷蔵庫300の正面図であり、図12は、実施の形態3における冷蔵庫300の扉を開いたときの正面図である。図13は、実施の形態3における冷蔵庫300を示す図12の13-13断面図であり、図14は、実施の形態3における冷蔵庫300を示す図12の14-14断面図である。図15は、実施の形態3における冷蔵庫300の冷気流れを説明するための概略断面図である。図16は、実施の形態3における冷蔵庫300の冷気流れを説明する概略正面図であり、図17は、実施の形態3における冷蔵庫300の冷却室背面部分の冷気流れを説明する斜視図である。図18は、実施の形態3における冷蔵庫300の要部拡大断面図であり、図19は、実施の形態3における冷蔵庫300の冷気流れを説明するための概略断面図である。図20は、実施の形態3における冷蔵庫300の要部拡大断面図であり、図21は、実施の形態3における冷蔵庫300の冷気流れを説明するための概略断面図である。図22は、実施の形態3における冷蔵庫300の野菜室と冷凍室を示す拡大正面図であり、図23は、実施の形態3における冷蔵庫300の野菜室の背面壁部分を構成する奥面仕切板ブロックの斜視図である。図24は、実施の形態3における冷蔵庫300の野菜室および野菜ケースを示す分解斜視図であり、図25は実施の形態3における冷蔵庫300の野菜室に設けられた野菜ケースの斜視図である。図26は、実施の形態3における冷蔵庫300の野菜室の野菜ケースの分解斜視図、図27は、実施の形態3における冷蔵庫300の野菜室の野菜ケースの斜視図、および、図28は、実施の形態3における冷蔵庫300の野菜ケースに用いられた仕切板の分解斜視図である。図29Aおよび図29Bは、実施の形態3における冷蔵庫300の野菜ケースに用いられた仕切板が下段容器に取り付けられた状態を示す斜視図である。図30は、実施の形態3における冷蔵庫300の野菜ケースに用いられた仕切板の断面図である。図31は、実施の形態3における冷蔵庫300の野菜室に設けられた野菜ケースの正面断面図であり、図32は、実施の形態3における冷蔵庫300の野菜室における上段容器の支持構成を示す正面断面図である。図33は、実施の形態3における冷蔵庫300の野菜室に設けられた野菜ケースの下段容器に上段容器が載置された状態を示す部分拡大図であり、図34は、実施の形態3における冷蔵庫300の制御ブロック図である。
(Embodiment 3)
FIG. 11 is a front view of refrigerator 300 in the third embodiment of the present invention, and FIG. 12 is a front view when the door of refrigerator 300 in the third embodiment is opened. 13 is a cross-sectional view taken along line 13-13 of FIG. 12 showing the refrigerator 300 according to the third embodiment, and FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 12 showing the refrigerator 300 according to the third embodiment. FIG. 15 is a schematic cross-sectional view for explaining the cold air flow of refrigerator 300 in the third embodiment. FIG. 16 is a schematic front view for explaining the cold air flow of refrigerator 300 in the third embodiment, and FIG. 17 is a perspective view for explaining the cold air flow in the rear portion of the cooling chamber of refrigerator 300 in the third embodiment. FIG. 18 is an enlarged cross-sectional view of a main part of refrigerator 300 in the third embodiment, and FIG. 19 is a schematic cross-sectional view for explaining a cold air flow of refrigerator 300 in the third embodiment. FIG. 20 is an enlarged cross-sectional view of a main part of the refrigerator 300 in the third embodiment, and FIG. 21 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator 300 in the third embodiment. FIG. 22 is an enlarged front view showing the vegetable compartment and the freezer compartment of refrigerator 300 in the third embodiment, and FIG. 23 is a rear partition plate constituting the rear wall portion of the vegetable compartment of refrigerator 300 in the third embodiment. It is a perspective view of a block. FIG. 24 is an exploded perspective view showing a vegetable room and a vegetable case of refrigerator 300 in the third embodiment. FIG. 25 is a perspective view of a vegetable case provided in the vegetable room of refrigerator 300 in the third embodiment. FIG. 26 is an exploded perspective view of the vegetable case of the vegetable compartment of the refrigerator 300 in Embodiment 3, FIG. 27 is a perspective view of the vegetable case of the vegetable compartment of the refrigerator 300 in Embodiment 3, and FIG. It is a disassembled perspective view of the partition plate used for the vegetable case of the refrigerator 300 in the form 3. FIGS. 29A and 29B are perspective views showing a state in which the partition plate used in the vegetable case of refrigerator 300 in Embodiment 3 is attached to the lower container. FIG. 30 is a cross-sectional view of the partition plate used in the vegetable case of refrigerator 300 in the third embodiment. FIG. 31 is a front cross-sectional view of a vegetable case provided in the vegetable compartment of refrigerator 300 in the third embodiment, and FIG. 32 is a front view showing the support structure of the upper container in the vegetable compartment of refrigerator 300 in the third embodiment. It is sectional drawing. FIG. 33 is a partially enlarged view showing a state where the upper container is placed on the lower container of the vegetable case provided in the vegetable compartment of refrigerator 300 in the third embodiment, and FIG. 34 shows the refrigerator in the third embodiment. 3 is a control block diagram of 300. FIG.
 まず、冷蔵庫300の全体構成について説明する。 First, the overall configuration of the refrigerator 300 will be described.
 <冷蔵庫本体構成>
 図11~図16において、本実施の形態に係る冷蔵庫300は、前方が開口された冷蔵庫本体301を有する。冷蔵庫本体301は、図13などに示すように、主に鋼板が用いられた外箱302と、ABSなどの硬質樹脂で成型された内箱303と、外箱302と内箱303との間に充填された硬質発泡ウレタン等の発泡断熱材304とを有する。図12に示すように、冷蔵庫本体301は、仕切板305,306によって複数の貯蔵室に区分されている。冷蔵庫本体301の最上部には、冷蔵室307が配置され、冷蔵室307の下部には野菜室308が配置され、冷蔵庫本体301の最下部には冷凍室309が配置されており、真ん中野菜室タイプの冷蔵庫となっている。図11に示すように、各貯蔵室の前面開口部は、扉310、扉311および扉312によって開閉可能に閉塞されている。
<Fridge body configuration>
11 to 16, a refrigerator 300 according to the present embodiment has a refrigerator main body 301 whose front is opened. As shown in FIG. 13 and the like, the refrigerator main body 301 includes an outer box 302 mainly made of steel plates, an inner box 303 formed of a hard resin such as ABS, and an outer box 302 and an inner box 303. And a foam heat insulating material 304 such as hard foam urethane filled. As shown in FIG. 12, the refrigerator body 301 is divided into a plurality of storage rooms by partition plates 305 and 306. A refrigerator compartment 307 is disposed at the top of the refrigerator body 301, a vegetable compartment 308 is disposed at the bottom of the refrigerator compartment 307, and a freezer compartment 309 is disposed at the bottom of the refrigerator body 301. It is a type refrigerator. As shown in FIG. 11, the front opening of each storage chamber is closed by a door 310, a door 311, and a door 312 so that it can be opened and closed.
 図13に示すように、冷蔵庫本体301の上部後方領域には、機械室314が設けられており、圧縮機315および水分除去を行うドライヤ等の冷凍サイクルの高圧側構成部品が収容されている。 As shown in FIG. 13, a machine room 314 is provided in the upper rear region of the refrigerator main body 301, and houses a compressor 315 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture.
 また、冷蔵庫本体301の背面には、冷気を生成する冷却室316が設けられている。冷却室316は、冷凍室309の背面から野菜室308の下部背面に渡って形成されている。冷却室316と野菜室308との間は、発泡スチロール等によって断熱性を有する奥面仕切体317が設けられて断熱仕切りされている。 In addition, a cooling chamber 316 that generates cold air is provided on the back surface of the refrigerator main body 301. The cooling chamber 316 is formed from the back surface of the freezing chamber 309 to the lower back surface of the vegetable chamber 308. Between the cooling chamber 316 and the vegetable compartment 308, a back surface partition 317 having heat insulation properties is provided by foamed polystyrene or the like to partition the heat insulation.
 冷却室316内には、冷却器318が配設されており、冷却器318の上部には、冷却ファン319が配置されている。冷却ファン319により、冷却器318により冷却された冷気が、冷蔵室307、野菜室308および冷凍室309に強制循環されて、各室が冷却される。 In the cooling chamber 316, a cooler 318 is disposed, and a cooling fan 319 is disposed above the cooler 318. The cooling air cooled by the cooler 318 is forcibly circulated to the refrigerating room 307, the vegetable room 308, and the freezing room 309 by the cooling fan 319, and each room is cooled.
 また、冷却器318の下部空間には、図15および図18などに示すように、冷却器318およびその周辺に付着する霜および氷を除霜する除霜ヒータ328が配置されている。除霜ヒータ328の下部には、除霜時に生じる除霜水を受けるためのドレンパン329が配置され、除霜水は、ドレンパン329の最深部からドレンチューブを介して蒸発皿に排出される。 Also, in the lower space of the cooler 318, as shown in FIGS. 15 and 18 and the like, a defrost heater 328 for defrosting the frost and ice adhering to the cooler 318 and its periphery is disposed. A drain pan 329 for receiving defrost water generated at the time of defrosting is disposed below the defrost heater 328, and the defrost water is discharged from the deepest portion of the drain pan 329 to the evaporating dish through the drain tube.
 次に、冷気循環構成について説明する。 Next, the cold air circulation configuration will be described.
 <冷気循環通路構成>
 冷気を生成する冷却室316は、図18および図19などに示すように、奥面仕切体317と冷蔵庫本体301との間に形成されている。冷却室冷気搬送路330に、冷却ファン319の下流が開口されており、冷却室316で生成された冷気は、冷却室冷気搬送路330を介して各室に送風される。
<Cooling air circulation path configuration>
As shown in FIGS. 18 and 19, the cooling chamber 316 that generates cool air is formed between the rear partition 317 and the refrigerator main body 301. The cooling chamber cool air conveyance path 330 is opened downstream of the cooling fan 319, and the cold air generated in the cooling chamber 316 is blown into each chamber via the cooling chamber cold air conveyance path 330.
 冷却室冷気搬送路330の上部は、図15、図16および図17、特に図17に示すように、冷蔵室ダンパ331を介して冷蔵室307の背面略中央部に形成されている冷蔵冷気吐出風路332と連通している。冷蔵冷気吐出風路332の側方には、図16および図17に示すように、冷蔵室307からの冷蔵冷気戻り風路333が隣接設置されており、その下部は、野菜室308および冷却室316に連通している。 As shown in FIGS. 15, 16, and 17, in particular, FIG. 17, the upper part of the cooling chamber cool air conveyance path 330 is a refrigerated cool air discharge formed at a substantially central portion of the back surface of the refrigeration chamber 307 via a refrigeration chamber damper 331. It communicates with the air passage 332. As shown in FIGS. 16 and 17, a refrigerated cold air return air passage 333 from the refrigeration chamber 307 is provided adjacent to the side of the refrigerated cold air discharge air passage 332, and the lower part thereof is a vegetable compartment 308 and a cooling compartment. 316 communicates.
 冷蔵室307には、図16に示すように、奥壁上部適所に冷蔵冷気吐出風路332の冷蔵冷気入口335が設けられており、奥壁下部適所には冷蔵冷気戻り風路333へ開口する冷蔵冷気戻り口336が設けられている。冷却室316からの冷気は、冷蔵室ダンパ331を介して冷蔵冷気吐出風路332に供給され、冷蔵冷気入口335から冷蔵室307に供給される。一方、冷蔵室冷却後の冷気は、冷蔵冷気戻り口336から冷蔵冷気戻り風路333を介して野菜室308に供給され、かつ冷却室316へと循環される。また、冷蔵室307には、後述するようにその下部にパーシャル室が設けられている。冷却室316からの冷気は、パーシャル室には、図17に示すように、パーシャル室ダンパ331a、パーシャル室冷気吐出風路332aおよびパーシャル室冷気入口部336aを介して供給される。 As shown in FIG. 16, the refrigerating chamber 307 is provided with a refrigerating / cooling air inlet 335 of a refrigerating / cooling air discharge air passage 332 at an appropriate location on the back wall, and opens to a refrigerating / cooling air return air passage 333 at a suitable location on the lower wall. A refrigerated cold air return port 336 is provided. Cold air from the cooling chamber 316 is supplied to the refrigerated cold air discharge air passage 332 via the refrigeration chamber damper 331, and is supplied from the refrigerated cold air inlet 335 to the refrigerated chamber 307. On the other hand, the cold air after cooling in the refrigerating room is supplied from the refrigerating cold air return port 336 to the vegetable room 308 through the refrigerating cold air return air passage 333 and circulated to the cooling room 316. Further, the refrigerating room 307 is provided with a partial room at the lower part thereof as described later. As shown in FIG. 17, the cool air from the cooling chamber 316 is supplied to the partial chamber via a partial chamber damper 331a, a partial chamber cool air discharge air passage 332a, and a partial chamber cool air inlet 336a.
 本実施の形態では、図17から明らかなように、奥面仕切体317および仕切板306の背面に、冷却室冷気搬送路330と、冷蔵冷気吐出風路332およびパーシャル室冷気吐出風路332aとを連絡する吐出風路337と、冷蔵冷気戻り風路333と野菜室308および冷却室316とを連絡する戻り風路338とが形成されている。冷蔵室ダンパ331は、吐出風路337に設けられている。 In the present embodiment, as is apparent from FIG. 17, a cooling chamber cold air conveyance path 330, a refrigerated cold air discharge air path 332, and a partial chamber cold air discharge air path 332 a Are formed, and a return air passage 338 that connects the refrigerated cold air return air passage 333, the vegetable compartment 308, and the cooling compartment 316 is formed. The refrigerator compartment damper 331 is provided in the discharge air passage 337.
 冷蔵冷気吐出風路332と冷蔵冷気戻り風路333との間には、連通路339が形成されており、冷蔵冷気吐出風路332を流れる低温冷気の一部が、冷蔵冷気戻り風路333に混入するように構成されている。 A communication passage 339 is formed between the refrigerated cold air discharge air passage 332 and the refrigerated cold air return air passage 333, and a part of the low-temperature cold air flowing through the refrigerated cold air discharge air passage 332 is transferred to the refrigerated cold air return air passage 333. It is comprised so that it may mix.
 また、冷凍室309の背面には、図17に示すように、冷却室316の冷却器318の側方において、下向きに延びる冷気戻りダクト340が設けられている。冷気戻りダクト340の上部は、戻り風路338を介して野菜室308に連通するとともに、下部は、冷却室316の下部近傍に開口している。野菜室308冷却後の冷気は、冷気戻りダクト340を介して冷気戻りダクト340の下部開口から冷却室316へと循環される。 Further, as shown in FIG. 17, a cold air return duct 340 extending downward is provided on the back surface of the freezing chamber 309 on the side of the cooler 318 of the cooling chamber 316. The upper part of the cool air return duct 340 communicates with the vegetable compartment 308 via the return air passage 338, and the lower part opens near the lower part of the cooling chamber 316. The cold air after cooling the vegetable room 308 is circulated from the lower opening of the cold air return duct 340 to the cooling room 316 via the cold air return duct 340.
 一方、冷凍室309は、図19に示すように、背面壁体341の上部に、奥面仕切体317背面の冷却室冷気搬送路330下部に連通する冷凍冷気入口342が、下部に、冷却室316の下部に開口する冷凍冷気戻り口343が形成されている。冷却室316からの冷気は、冷却室冷気搬送路330下部から冷凍冷気入口342を介して供給され、冷凍室冷却後の冷気が冷凍冷気戻り口343を介して冷却室316へと循環される。 On the other hand, as shown in FIG. 19, the freezer compartment 309 has a freezer cold air inlet 342 communicating with the lower part of the rear cooler conveying path 330 on the back of the rear partition 317 at the upper part of the rear wall 341, A refrigerated cold air return port 343 is formed in the lower portion of 316. Cold air from the cooling chamber 316 is supplied from the lower part of the cooling chamber cold air conveyance path 330 through the freezing cold air inlet 342, and the cold air after cooling of the freezing chamber is circulated to the cooling chamber 316 via the freezing cold air return port 343.
 次に、野菜室308の構成について説明する。 Next, the configuration of the vegetable room 308 will be described.
 <野菜室構成>
 野菜室308には、図16および図21に示すように、奥壁左右いずれか一方寄り部分(本実施の形態では、正面から見て右側部分の下部)であって、冷蔵冷気戻り風路333と連通する戻り風路338部分に開口された、野菜室冷気入口344が設けられている。野菜室冷気入口344の上方には、戻り風路338に開口して冷却室316へとつながる野菜冷気戻り口346が設けられている。
<Vegetable room configuration>
In the vegetable compartment 308, as shown in FIGS. 16 and 21, it is a part closer to the left or right of the back wall (in this embodiment, the lower part of the right part when viewed from the front), and the refrigerated cold air return air passage 333 The vegetable room cold air inlet 344 is provided in the return air passage 338 communicating with the vegetable room. Above the vegetable room cold air inlet 344, a vegetable cold air return port 346 that opens to the return air passage 338 and connects to the cooling chamber 316 is provided.
 さらに、野菜室308には、特に図21に示すように、野菜室308背面の奥面仕切体317を利用して、冷気の戻り風路338の前面位置に、上下方向に野菜室通路部350が縦設形成されている。野菜室通路部350は、上部が野菜冷気戻り口346近傍に位置し、下部は野菜冷気入口344と連通している。野菜室冷気入口344と連通する部分には、プロペラファン等からなる野菜室ファン353が配置されている。 Furthermore, in the vegetable compartment 308, as shown in FIG. 21 in particular, the rear compartment 317 on the back of the vegetable compartment 308 is used, and the vegetable compartment passage 350 in the vertical direction is provided at the front position of the cool air return air passage 338. Are vertically formed. The upper part of the vegetable compartment passage part 350 is located near the vegetable cold air return port 346 and the lower part communicates with the vegetable cold air inlet 344. A vegetable room fan 353 made of a propeller fan or the like is disposed at a portion communicating with the vegetable room cold air inlet 344.
 また、野菜室308には、野菜室通路部350と野菜冷気戻り口346とにつながるよう、野菜室308上面に、前方に向かって第一の通路347aが形成されていて、その前方部分には第一の野菜冷気吸込み口347が設けられている。 The vegetable compartment 308 is formed with a first passage 347a on the upper surface of the vegetable compartment 308 so as to be connected to the vegetable compartment passage portion 350 and the vegetable cold air return port 346. A first vegetable cold air inlet 347 is provided.
 加えて、本実施の形態の野菜室308には、図22および図23などに示すように、野菜室308の奥の面となる奥面仕切体317の上部であって野菜室冷気入口344の対角位置となる部分(本実施の形態では、左奥側上部)に、第二の野菜冷気吸込み口351が設けられている。第二の野菜冷気吸込み口351を有する第二の通路351aも、図21に示すように、野菜室通路部350の上部と野菜冷気戻り口346とに連通している。 In addition, in the vegetable compartment 308 of the present embodiment, as shown in FIG. 22 and FIG. 23, the vegetable compartment cold air inlet 344 is located at the upper part of the rear partition 317 serving as the rear face of the vegetable compartment 308. A second vegetable cold air inlet 351 is provided in a portion (in the present embodiment, the upper left side in the left corner) that is a diagonal position. The 2nd channel | path 351a which has the 2nd vegetable cold air inlet 351 is also connected to the upper part of the vegetable compartment channel | path part 350 and the vegetable cold air return port 346, as shown in FIG.
 次に、野菜ケース1の構成について説明する。 Next, the configuration of the vegetable case 1 will be described.
 <野菜ケース構成>
 野菜室308には、図20および図24などに示すように、野菜ケース1が配置されている。野菜ケース1は、扉311の内面に取り付けられたレール状の支持部材356(図24参照)に嵌め込まれて、扉311の開閉に伴い野菜室308から出し入れされる。
<Vegetable case configuration>
As shown in FIGS. 20 and 24, the vegetable case 1 is disposed in the vegetable compartment 308. The vegetable case 1 is fitted into a rail-like support member 356 (see FIG. 24) attached to the inner surface of the door 311, and is taken in and out of the vegetable compartment 308 as the door 311 is opened and closed.
 野菜ケース1は、図25に示すように、下段容器357と下段容器357の上面開口に載置された上段容器358とを有する。 As shown in FIG. 25, the vegetable case 1 includes a lower container 357 and an upper container 358 placed on the upper surface opening of the lower container 357.
 下段容器357は、内部を左右に分割する仕切板359を有し、仕切板359で仕切られた一方側(本実施の形態では、冷蔵庫300の正面から見て右側部分の野菜室ファン353が設置されている側)は、ペットボトルおよびパック等が収納される非野菜収納部360として配置されており、他方の野菜収納部361より深く形成されている。 The lower container 357 has a partition plate 359 that divides the inside into left and right sides, and one side partitioned by the partition plate 359 (in this embodiment, the vegetable room fan 353 on the right side as viewed from the front of the refrigerator 300 is installed. Is arranged as a non-vegetable storage portion 360 for storing PET bottles, packs, and the like, and is formed deeper than the other vegetable storage portion 361.
 仕切板359は、図28に示すように、略中央部分に横長の開口部3が形成され、開口部3に再生セルロース膜ユニット8が着脱自在に設置されている。再生セルロース膜ユニット8は、固定枠6に再生セルロース膜4が一体成型されて形成されている。図28に示される状態(再生セルロース膜ユニット8が設けられている仕切板359を下段容器357の外側から見た状態)において、再生セルロース膜ユニット8の右側端部は、仕切板359の開口縁に嵌め込まれ、左側端部の係合片362-3は、仕切板359の他端開口縁の係合凹部359-4に嵌め込まれて設置されている。 As shown in FIG. 28, the partition plate 359 is formed with a horizontally long opening 3 in a substantially central portion, and the regenerated cellulose membrane unit 8 is detachably installed in the opening 3. The regenerated cellulose membrane unit 8 is formed by integrally molding the regenerated cellulose membrane 4 on the fixed frame 6. In the state shown in FIG. 28 (when the partition plate 359 provided with the regenerated cellulose membrane unit 8 is viewed from the outside of the lower container 357), the right end of the regenerated cellulose membrane unit 8 is the opening edge of the partition plate 359. The engagement piece 362-3 at the left end is fitted and installed in the engagement recess 359-4 at the other end opening edge of the partition plate 359.
 また、仕切板359は、その両端に載置片部359-2aおよび359-2bが形成されている。図29Aおよび図29Bに示すように、載置片部259-2aおよび259-2bから、垂下片部359-3aおよび359-3bが一体形成されている。垂下片部359-3aおよび359-3bは、下段容器357の外周壁上端に形成された凹所357aに嵌合され、載置片部359-2aおよび359-2bは、下段容器357の外周壁上端に載置されて、下段容器357内に設置されている。 Also, the partition plate 359 is provided with mounting piece portions 359-2a and 359-2b at both ends thereof. As shown in FIGS. 29A and 29B, hanging pieces 359-3a and 359-3b are integrally formed from the placing pieces 259-2a and 259-2b. The hanging pieces 359-3a and 359-3b are fitted into a recess 357a formed at the upper end of the outer peripheral wall of the lower container 357, and the placing pieces 359-2a and 359-2b are the outer peripheral wall of the lower container 357. It is placed on the upper end and installed in the lower container 357.
 また、上段容器358は、仕切板359で仕切られた野菜収納部361の上面開口部分に載置されて野菜収納部361を覆っている。図31に示すように、上段容器358の底面に形成されている上段容器レール部363は、下段容器357の上面開口左側および仕切板359上端部に形成されている下段容器レール部364に載置される。上段容器358の上部開口に設けられたフランジ365は、図24および図32に示される、野菜室308の上部側壁および天井面部分に設けられたガイド366a,366bに沿って、上段容器358が前後に摺動自在となるように、設けられている。 Further, the upper container 358 is placed on the upper surface opening portion of the vegetable storage part 361 partitioned by the partition plate 359 and covers the vegetable storage part 361. As shown in FIG. 31, the upper container rail portion 363 formed on the bottom surface of the upper container 358 is placed on the lower container rail portion 364 formed on the upper surface opening left side of the lower container 357 and the upper end of the partition plate 359. Is done. The flange 365 provided in the upper opening of the upper container 358 is arranged so that the upper container 358 is moved back and forth along the guides 366a and 366b provided in the upper side wall and the ceiling surface portion of the vegetable compartment 308 shown in FIGS. It is provided so that it can slide freely.
 ここで、上段容器358の上段容器レール部363は、図33に示すように、直線部367を有し、上段容器レール部363の前方(図33の矢印の方向)部分には、突起部368が設けられている。下段容器357の下段容器レール部364は、直線部369および直線部369につながる下向き傾斜の傾斜部370を有する。下段容器357の下段容器レール部364の後方部分には、直線部369と傾斜部370とがつながる交点部371が設けられており、前方部分には、突起部368が収納される凹部372が設けられている。 Here, as shown in FIG. 33, the upper container rail portion 363 of the upper container 358 has a straight portion 367, and a projection 368 is provided in front of the upper container rail portion 363 (in the direction of the arrow in FIG. 33). Is provided. The lower container rail portion 364 of the lower container 357 has a straight portion 369 and a downward inclined portion 370 connected to the straight portion 369. In the rear part of the lower container rail part 364 of the lower container 357, an intersection part 371 connecting the straight line part 369 and the inclined part 370 is provided, and in the front part, a concave part 372 in which the protruding part 368 is accommodated is provided. It has been.
 このような構成により、野菜ケース1は、扉311が引き出されることにより、扉311とともに上段容器358と下段容器357とが一緒に引き出され、かつ、引き出された状態から上段容器358が単独で野菜室308内に押し込まれて移動させることができる。 With such a configuration, the vegetable case 1 is pulled out together with the door 311 together with the upper container 358 and the lower container 357 when the door 311 is pulled out. It can be pushed into the chamber 308 and moved.
 なお、野菜室308には、野菜ケース1と、野菜ケース1の下の仕切板306および野菜室308の内周壁面との間に空間が設けられており、この空間は、野菜室冷気入口344からの冷気が流れる風路となっている。 In the vegetable compartment 308, a space is provided between the vegetable case 1, the partition plate 306 under the vegetable case 1, and the inner peripheral wall surface of the vegetable compartment 308. This space is the vegetable compartment cold air inlet 344. It is an air passage through which cold air flows.
 また、野菜ケース1の上段容器358の上部開口縁は、野菜室308上部の仕切板306と近接した部分に位置するとともに、野菜室冷気入口344より上方部分に位置している。このように、野菜室冷気入口344からの冷気が、野菜ケース1の上段容器358および下段容器357内に直接入り込むことがないように配置されており、さらに、仕切板359に設けられている再生セルロース膜ユニット8に、直接風が当たらないように配置されている。これは、再生セルロース膜4に直接風を当てないことによって、再生セルロース膜4への結露を防止するためである。 Further, the upper opening edge of the upper container 358 of the vegetable case 1 is located in a portion close to the partition plate 306 at the top of the vegetable compartment 308 and located above the vegetable compartment cold air inlet 344. In this way, the cold air from the vegetable room cold air inlet 344 is arranged so that it does not directly enter the upper container 358 and the lower container 357 of the vegetable case 1, and is further provided in the partition plate 359. It arrange | positions so that a wind may not hit directly to the cellulose membrane unit 8. FIG. This is to prevent condensation on the regenerated cellulose film 4 by not directly applying wind to the regenerated cellulose film 4.
 なお、上段容器358の上部開口に、上段容器358の上部開口を閉塞する蓋が設けられていてもよい。このような構成により、冷気が野菜ケース1内に侵入することをより確実に防止することができる。 Note that a lid that closes the upper opening of the upper container 358 may be provided in the upper opening of the upper container 358. With such a configuration, it is possible to more reliably prevent cold air from entering the vegetable case 1.
 さらに、野菜ケース1は、図25に示すように、下段容器357の内部を左右に分割する仕切板359が設けられているが、仕切板359により左右に分割せず、図27に示すように、前後に仕切られるようにしてもよい。この場合、野菜室冷気入口344が背面壁体341に供えられていることから、冷気は、野菜ケース1の背面から、野菜室冷気入口344を通って野菜室308に流入される。このような構成により、再生セルロース膜ユニット8がさらに直接冷気が当りにくくなることから、再生セルロース膜4への結露を防止することができ、再生セルロース膜4の性能をより有効に活用することができる。 Further, as shown in FIG. 25, the vegetable case 1 is provided with a partition plate 359 that divides the inside of the lower container 357 into left and right portions, but is not divided into left and right by the partition plate 359, as shown in FIG. , And may be partitioned in the front-rear direction. In this case, since the vegetable room cold air inlet 344 is provided in the back wall body 341, the cold air flows into the vegetable room 308 from the back of the vegetable case 1 through the vegetable room cold air inlet 344. With such a configuration, the regenerated cellulose membrane unit 8 is more difficult to be directly exposed to cold air, so that condensation on the regenerated cellulose membrane 4 can be prevented and the performance of the regenerated cellulose membrane 4 can be utilized more effectively. it can.
 次に、冷蔵室307の構成について説明する。 Next, the configuration of the refrigerator compartment 307 will be described.
 <冷蔵室構成>
 冷蔵室307は、図13などに示すように、内部に複数の収納棚373および準冷凍温度帯に冷却できるパーシャル室374を有する。複数の収納棚373およびパーシャル室374それぞれには、適所に冷蔵冷気入口335(図15および図16参照)および冷蔵冷気戻り口336(図16参照)が設けられている。そして、冷蔵室307の側壁適所には、各室の庫内温度設定、および、製氷および急速冷却などの設定が行われる操作部375が配置されている。
<Refrigerator configuration>
As shown in FIG. 13 and the like, the refrigerator compartment 307 includes a plurality of storage shelves 373 and a partial chamber 374 that can be cooled to a semi-refrigeration temperature zone. Each of the plurality of storage shelves 373 and the partial chamber 374 is provided with a refrigerated cold air inlet 335 (see FIGS. 15 and 16) and a refrigerated cold air return port 336 (see FIG. 16) at appropriate positions. An operation unit 375 for setting the internal temperature of each room, and making ice making and quick cooling is disposed at an appropriate side wall of the refrigerator compartment 307.
 次に、冷凍室309の構成について説明する。 Next, the configuration of the freezer compartment 309 will be described.
 <冷凍室構成>
 冷凍室309は、図19を用いて述べたように、奥壁上部には、奥面仕切体317背面の冷却室冷気搬送路330下部と連通する冷凍冷気入口342が形成され、奥壁下部には、冷凍室309に連通する冷凍冷気戻り口343が形成されている。また、冷却室316から冷凍室309への通路の適所にも、冷凍室ダンパが組み込まれている。なお、冷凍室309にも、扉312のフレームに載置された冷凍室容器376が設けられており、冷凍室容器376の上部には、製氷装置377が組み込まれている(例えば図14参照)。
<Freezer configuration>
As described with reference to FIG. 19, the freezer compartment 309 has a freezing cold air inlet 342 that communicates with the lower part of the cooling room cold air conveyance path 330 on the back of the rear partition 317 at the upper part of the rear wall. A freezing cold air return port 343 communicating with the freezing chamber 309 is formed. In addition, a freezer damper is also incorporated at an appropriate position in the passage from the cooling room 316 to the freezer room 309. The freezing room 309 is also provided with a freezing room container 376 placed on the frame of the door 312, and an ice making device 377 is incorporated in the upper part of the freezing room container 376 (see, for example, FIG. 14). .
 次に、冷蔵庫300の制御構成について説明する。 Next, the control configuration of the refrigerator 300 will be described.
 <制御構成>
 図34は、本実施の形態の冷蔵庫300における制御ブロック図を示している。冷蔵室温度検知部378、野菜室温度検知部379および冷凍室温度検知部380は、いずれもサーミスタで形成されており、それぞれ冷蔵室307、野菜室308および冷凍室309の適所に設置されている。冷蔵庫300全体を統括制御する制御部381は、マクロコンピュータ等によって構成されており、冷蔵室温度検知部378および冷凍室温度検知部380からの出力に基づき、あらかじめ組み込まれた制御ソフトに従って、冷蔵室ダンパ331および冷凍室ダンパ334を開閉制御する。また、制御部381は、圧縮機315および冷却ファン319を駆動させて、各室が設定温度になるよう温度制御する。さらに、制御部381は、冷蔵室温度検知部378および野菜室温度検知部379からの出力に基づき、野菜室308の野菜室通路部350に組み込まれた野菜室ファン353の運転を制御する。具体的には、冷蔵室温度検知部378および野菜室温度検知部379のいずれか一方が、それぞれの設定温度よりも高い温度を検知すると、野菜室ファン353が駆動される。
<Control configuration>
FIG. 34 shows a control block diagram in refrigerator 300 of the present embodiment. The refrigerator compartment temperature detector 378, the vegetable compartment temperature detector 379, and the freezer compartment temperature detector 380 are all formed of thermistors and are installed at appropriate locations in the refrigerator compartment 307, the vegetable compartment 308, and the freezer compartment 309, respectively. . The control unit 381 that performs overall control of the refrigerator 300 is configured by a macro computer or the like, and is based on outputs from the refrigerating room temperature detection unit 378 and the freezer room temperature detection unit 380 in accordance with control software that is incorporated in advance. The damper 331 and the freezer compartment damper 334 are controlled to open and close. In addition, the control unit 381 drives the compressor 315 and the cooling fan 319 to perform temperature control so that each chamber has a set temperature. Furthermore, the control unit 381 controls the operation of the vegetable compartment fan 353 incorporated in the vegetable compartment passage portion 350 of the vegetable compartment 308 based on outputs from the refrigerator compartment temperature detection portion 378 and the vegetable compartment temperature detection portion 379. Specifically, when any one of the refrigerator compartment temperature detector 378 and the vegetable compartment temperature detector 379 detects a temperature higher than the set temperature, the vegetable compartment fan 353 is driven.
 以上のように構成された冷蔵庫300について、以下その動作および作用を説明する。 About the refrigerator 300 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 まず、冷凍サイクルの動作について説明する。 First, the operation of the refrigeration cycle will be described.
 冷蔵庫300内の設定された温度に応じて、制御部381からの信号により冷凍サイクルが動作し、冷却運転が行われる。圧縮機315の動作により吐出された高温高圧の冷媒は、凝縮器である程度凝縮液化され、さらに冷蔵庫300の側面、背面、および、冷蔵庫300の前面間口に配設された冷媒配管などを経由し、冷蔵庫300の結露を防止しながら凝縮液化され、キャピラリーチューブに送られる。その後、冷媒は、キャピラリーチューブでは、圧縮機315への吸入管と熱交換しながら減圧されて、低温低圧の液冷媒となって冷却室316の冷却器318に送られる。ここで、冷却器318内の冷媒は蒸発気化され、冷却器318を有する冷却室316で、各貯蔵室を冷却するための冷気が生成される。 Depending on the set temperature in the refrigerator 300, a refrigeration cycle is operated by a signal from the control unit 381, and a cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 315 is condensed and liquefied to some extent by the condenser, and further passes through the refrigerant pipes disposed on the side and back of the refrigerator 300 and the front opening of the refrigerator 300. While preventing condensation in the refrigerator 300, the liquid is condensed and sent to the capillary tube. Thereafter, the refrigerant is reduced in pressure in the capillary tube while exchanging heat with the suction pipe to the compressor 315, and becomes a low-temperature and low-pressure liquid refrigerant and sent to the cooler 318 in the cooling chamber 316. Here, the refrigerant in the cooler 318 is evaporated and vaporized, and cold air for cooling each storage chamber is generated in the cooling chamber 316 having the cooler 318.
 次に、冷気循環による冷却動作について説明する。 Next, the cooling operation by the cold air circulation will be described.
 冷却室316内で生成された低温の冷気は、冷却ファン319によって、冷却室冷気搬送路330から冷蔵室307および冷凍室309に送られる。冷蔵室307に供給された冷気は、冷蔵室307を冷却した後、野菜室308に供給され、それぞれの室が設定温度に冷却される。そして、各室を冷却したのちの冷気は、再び冷却室316に戻って冷却器318により冷却され、冷却ファン319により各室に循環される。また、各室への冷気供給は、制御部381が、冷蔵室温度検知部378および冷凍室温度検知部380の検出温度に基づき、圧縮機315ならびに冷却ファン319を、運転および停止させるとともに、冷蔵室ダンパ331および冷凍室ダンパ334を開閉制御する。これにより、それぞれの室が設定温度帯に維持される。 The low temperature cold air generated in the cooling chamber 316 is sent from the cooling chamber cold air conveyance path 330 to the refrigerator compartment 307 and the freezer compartment 309 by the cooling fan 319. The cool air supplied to the refrigerating room 307 cools the refrigerating room 307 and is then supplied to the vegetable room 308, where each room is cooled to a set temperature. The cold air after cooling each chamber returns to the cooling chamber 316 again, is cooled by the cooler 318, and is circulated to each chamber by the cooling fan 319. In addition, the control unit 381 operates and stops the compressor 315 and the cooling fan 319 based on the temperatures detected by the refrigerating room temperature detecting unit 378 and the freezing room temperature detecting unit 380, and supplies the cold air to each room. The room damper 331 and the freezer damper 334 are controlled to open and close. Thereby, each chamber is maintained in a set temperature range.
 次に、野菜室308の冷却動作について説明する。 Next, the cooling operation of the vegetable compartment 308 will be described.
 野菜室308は、冷蔵冷気戻り風路333からの冷蔵室冷却後の冷気が、図21に示すように、冷気の戻り風路338に設けられている野菜室冷気入口344から供給されて冷却される。この冷気は、冷却ファン319の送風圧によって野菜室冷気入口344から野菜室通路部350を介して緩やかに野菜室308に流れ込み、野菜ケース1の下段容器357および上段容器358と、野菜室308の内周壁との間の空間を流れる。そして、野菜ケース1内に収納されている野菜およびペットボトル等を、下段容器357および上段容器358の外周から間接的に冷却し、野菜冷気戻り口346から冷蔵冷気戻り風路333を経由して冷気戻りダクト340から冷却室316へと循環する。 In the vegetable room 308, the cold air after cooling from the refrigerated cold air return air passage 333 is supplied from the vegetable room cold air inlet 344 provided in the cold air return air passage 338 and cooled as shown in FIG. The This cold air gently flows into the vegetable compartment 308 from the vegetable compartment cold air inlet 344 through the vegetable compartment passage portion 350 by the air blowing pressure of the cooling fan 319, and the lower container 357 and the upper container 358 of the vegetable case 1, It flows through the space between the inner wall. Then, the vegetables and plastic bottles stored in the vegetable case 1 are indirectly cooled from the outer periphery of the lower container 357 and the upper container 358, and the vegetable cold air return port 346 passes through the refrigerated cold air return air passage 333. It circulates from the cold air return duct 340 to the cooling chamber 316.
 ここで、本実施の形態で示す冷蔵庫300では、図21で示したように、野菜室308の野菜室通路部350に野菜室ファン353が設けられている。野菜室ファン353が回転すると、戻り風路338を流れる戻り冷気の多くが野菜冷気入口344から野菜室通路部350内へと吸引され、野菜室ファン353の吹出口354より野菜室308内の下段容器357後面に向かって供給される。 Here, in the refrigerator 300 shown in the present embodiment, as shown in FIG. 21, the vegetable room fan 353 is provided in the vegetable room passage portion 350 of the vegetable room 308. When the vegetable compartment fan 353 rotates, most of the return cold air flowing through the return air passage 338 is sucked into the vegetable compartment passage portion 350 from the vegetable cold air inlet 344 and is located in the lower part of the vegetable compartment 308 from the outlet 354 of the vegetable compartment fan 353. It is supplied toward the rear surface of the container 357.
 野菜室308の下段容器357に向かって供給された冷気は、下段容器357および上段容器358と、野菜室308の底面および内周壁との間の空間を、冷却ファン319の送風圧によって循環する際の流れよりも早く流れ、野菜冷気戻り口346から戻り風路338を介して冷却室316へと戻り循環する。その際、冷却室316へと戻り循環する冷気以外の冷気は、野菜室308の上部に設けられた第一の野菜冷気吸込み口347および第二の野菜冷気吸込み口351より、第一の通路347aおよび第二の通路351aに吸引され、これらの通路と連通している野菜室通路部350の上部開口から野菜室ファン353に吸引される。そして、野菜室ファン353の吹出口354から再び野菜室308内の下段容器357に向けて供給され、野菜室308内に拡散し循環する。 The cold air supplied toward the lower container 357 of the vegetable compartment 308 circulates in the space between the lower container 357 and the upper container 358 and the bottom and inner peripheral walls of the vegetable compartment 308 by the air blowing pressure of the cooling fan 319. It flows faster than the flow of, and returns from the vegetable cold air return port 346 to the cooling chamber 316 through the return air passage 338 and circulates. At that time, the cold air other than the cold air returning to the cooling chamber 316 is circulated from the first vegetable cold air suction port 347 and the second vegetable cold air suction port 351 provided in the upper part of the vegetable chamber 308. And it is attracted | sucked by the 2nd channel | path 351a and is attracted | sucked by the vegetable compartment fan 353 from the upper opening of the vegetable compartment channel | path part 350 connected with these channel | paths. And it is again supplied toward the lower container 357 in the vegetable compartment 308 from the blower outlet 354 of the vegetable compartment fan 353, and diffuses and circulates in the vegetable compartment 308.
 次に、野菜ケース1の効用について説明する。 Next, the effect of vegetable case 1 will be described.
 まず、冷蔵庫300の野菜ケース1は、図24および図25に示すように、下段容器357が、仕切板359によって野菜収納部361と非野菜収納部360とに区分けされている。さらに、野菜収納部361の上面開口部に上段容器358が載置されている。野菜ケース1は、これら三つの収納部を有しており、それぞれの収納部に食材が区分けされて収納される。例えば、上段容器358には果物、野菜収納部361には野菜、非野菜収納部360にはペットボトルおよびパック等の飲み物が効率よく収納されることができる。 First, in the vegetable case 1 of the refrigerator 300, as shown in FIGS. 24 and 25, the lower container 357 is divided into a vegetable storage unit 361 and a non-vegetable storage unit 360 by a partition plate 359. Further, an upper container 358 is placed in the upper opening of the vegetable storage unit 361. The vegetable case 1 has these three storage parts, and foodstuffs are divided and stored in each storage part. For example, fruits such as the upper container 358, vegetables in the vegetable storage unit 361, and drinks such as plastic bottles and packs can be efficiently stored in the non-vegetable storage unit 360.
 また、野菜ケース1において、野菜収納部361に配置された仕切板359に、再生セルロース膜ユニット8が設置されている。野菜収納部361に野菜等が収納されると、収納された野菜等から蒸散する水分により高湿状態になる。しかしながら、野菜収納部361内が所定湿度以上、例えば飽和湿度以上になると、湿度成分は、図31の破線矢印で示すように、仕切板359に設けられた再生セルロース膜4を介して非野菜収納部360内へ透過する。その結果、野菜収納部361内の湿度が低下する。 In the vegetable case 1, the regenerated cellulose membrane unit 8 is installed on the partition plate 359 arranged in the vegetable storage unit 361. If vegetables etc. are stored in the vegetable storage part 361, it will be in a high humidity state by the water | moisture content transpired from the stored vegetables etc. However, when the inside of the vegetable storage unit 361 becomes a predetermined humidity or higher, for example, a saturation humidity or higher, the humidity component is stored in the non-vegetables through the regenerated cellulose membrane 4 provided on the partition plate 359 as shown by the broken line arrow in FIG. It penetrates into the part 360. As a result, the humidity in the vegetable storage unit 361 decreases.
 さらに、野菜収納部361内の湿度低下が進むと、再生セルロース膜4を構成している再生セルロースの働きにより、再生セルロース膜4の湿度透過量が少なくなり、野菜収納部361内の湿度は下がらなくなる。この結果、野菜収納部361の湿度は、80~95%RHに保たれることができる。 Further, as the humidity in the vegetable storage unit 361 decreases, the amount of moisture transmitted through the regenerated cellulose membrane 4 decreases due to the action of the regenerated cellulose constituting the regenerated cellulose membrane 4, and the humidity in the vegetable storage unit 361 decreases. Disappear. As a result, the humidity of the vegetable storage unit 361 can be maintained at 80 to 95% RH.
 また、他の効果として、再生セルロース膜4は、野菜ケース1内の野菜収納部361と非野菜収納部360との間に位置しているため、野菜等が再生セルロース膜4の上に置かれるなどして、再生セルロース膜4が損傷されるようなことがない。 As another effect, since the regenerated cellulose membrane 4 is located between the vegetable storage unit 361 and the non-vegetable storage unit 360 in the vegetable case 1, vegetables and the like are placed on the regenerated cellulose membrane 4. For example, the regenerated cellulose film 4 is not damaged.
 さらに、再生セルロース膜4が設置される仕切板359は、野菜ケース1のように箱状ではなく、板状部材であって、大きさも小さいので、再生セルロース膜ユニット8が設置される開口部3を有する仕切板359と一体成型させることもできる。 Further, the partition plate 359 on which the regenerated cellulose membrane 4 is installed is not a box shape like the vegetable case 1 but is a plate-like member and has a small size, so the opening 3 in which the regenerated cellulose membrane unit 8 is installed. It can also be integrally formed with a partition plate 359 having
 また、本実施の形態では、上述したように、野菜ケース1は、下段容器357と、下段容器357の上部に前後に摺動自在に載置された上段容器358とを有し、上段容器358が野菜収納部361の上部を覆う蓋部材として構成されている。このような構成により、上段容器358が蓋部材として有効利用されて、野菜収納部361の上部が合理的に覆われることができるため、野菜収納部361内への冷気侵入を防止することができる。 Further, in the present embodiment, as described above, the vegetable case 1 includes the lower container 357 and the upper container 358 slidably mounted back and forth on the upper part of the lower container 357, and the upper container 358. Is configured as a lid member that covers the top of the vegetable storage unit 361. With such a configuration, the upper container 358 can be effectively used as a lid member, and the upper part of the vegetable storage unit 361 can be reasonably covered, so that cold air can be prevented from entering the vegetable storage unit 361. .
 以上のように、本実施の形態の冷蔵庫300は、野菜等を良好な状態で冷却保存することができるものである。本実施の形態の冷蔵庫300は、さらに、野菜ケース1内に配置された上段容器358の摺動が軽く行えると同時に、下段容器357と上段容器358との間を隙間なく密接させて、下段容器内への冷気の侵入を防止することもできる。この点についても、以下に説明する。 As described above, the refrigerator 300 according to the present embodiment can cool and store vegetables and the like in a good state. In the refrigerator 300 of the present embodiment, the upper container 358 disposed in the vegetable case 1 can be slid lightly, and at the same time, the lower container 357 and the upper container 358 are brought into close contact with each other with no gap therebetween. It is also possible to prevent cold air from entering the inside. This point will also be described below.
 本実施の形態の冷蔵庫300の野菜ケース1の上段容器358は、下段容器357上が前後に摺動される際、図33に示すように、上段容器レール部363に設けられた突起部368が、下段容器レール部364の直線部369に接するとともに、上段容器レール部363の直線部367が、下段容器レール部364の交点部371に接している。上段容器358は、これらの接点で支持されて、下段容器357の下段容器レール部364上を摺動する。このような構成により、上段容器358は、果物等が多く収納されるなどして重くなっても、軽く摺動させることができる。 When the upper container 358 of the vegetable case 1 of the refrigerator 300 according to the present embodiment is slid back and forth on the lower container 357, as shown in FIG. 33, a protrusion 368 provided on the upper container rail 363 is provided. In addition to being in contact with the straight portion 369 of the lower container rail portion 364, the straight portion 367 of the upper container rail portion 363 is in contact with the intersection 371 of the lower container rail portion 364. The upper container 358 is supported by these contact points and slides on the lower container rail portion 364 of the lower container 357. With such a configuration, the upper container 358 can be lightly slid even if it becomes heavier due to a large amount of fruits stored therein.
 また、野菜ケース1は、扉311が閉じられて野菜室308内に収納された状態では、上段容器レール部363の突起部368が、下段容器レール部364の凹部372に入り込んで、上段容器レール部363の直線部367と下段容器レール部364の直線部369とが接触状態となり、これらの接触部分は隙間なく密接される。したがって、野菜ケース1の周囲を流れている冷気が、下段容器357と上段容器358との間から下段容器357の野菜収納部361内に入り込むことを防止でき、再生セルロース膜4の透湿性能を効率よく使うことができる。 In the state where the door 311 is closed and the vegetable case 1 is housed in the vegetable compartment 308, the protrusion 368 of the upper container rail portion 363 enters the recess 372 of the lower container rail portion 364, and the upper container rail The straight portion 367 of the portion 363 and the straight portion 369 of the lower container rail portion 364 are brought into contact with each other, and these contact portions are brought into close contact with no gap. Therefore, the cold air flowing around the vegetable case 1 can be prevented from entering the vegetable storage part 361 of the lower container 357 from between the lower container 357 and the upper container 358, and the moisture permeability of the regenerated cellulose membrane 4 can be improved. It can be used efficiently.
 以上述べたとおり、本発明の実施の形態1の野菜ケース1は、野菜収納部を構成する壁面の少なくとも一部に開口部3を有し、基材を用いずに形成した再生セルロース膜4を開口部3に備えたものである。 As described above, the vegetable case 1 according to the first embodiment of the present invention has the regenerated cellulose membrane 4 having the opening 3 in at least a part of the wall surface constituting the vegetable storage portion and formed without using the base material. This is provided in the opening 3.
 このような構成により、ビスコースの濃度の調整、および、基材材料密度の調整など特別な処置を施す必要もなく、再生セルロースの原材料であるビスコースが一定の隙間が設けられたスリットから押し出されて加工される再生セルロース膜4が、感湿透湿膜として野菜ケース1内の湿度制御に用いられることができる。 With this configuration, there is no need to take special measures such as adjusting the concentration of viscose and adjusting the density of the base material, and viscose, which is a raw material for regenerated cellulose, is extruded from a slit with a certain gap. The regenerated cellulose membrane 4 processed in this way can be used for humidity control in the vegetable case 1 as a moisture-sensitive moisture permeable membrane.
 また、本発明の実施の形態1の野菜ケース1に用いられる再生セルロース膜4は、好ましくは、密度が20~40g/m2である。 The regenerated cellulose membrane 4 used for the vegetable case 1 of Embodiment 1 of the present invention preferably has a density of 20 to 40 g / m2.
 このような密度の再生セルロース膜4は、高湿度領域(湿度95%RH)における透湿能力が、低湿度領域(湿度50%RH)における透湿能力の約4~12倍となるため、さらに野菜ケース1を高い湿度に保つことができる。 The regenerated cellulose membrane 4 having such a density has a moisture permeability in a high humidity region (humidity 95% RH) of about 4 to 12 times that in a low humidity region (humidity 50% RH). The vegetable case 1 can be kept at high humidity.
 また、本発明の実施の形態1の野菜ケース1において、好ましくは、再生セルロース膜4の表面および裏面の少なくとも1面に、再生セルロース膜4よりも強いせん断力を有する不織布9が積層されている。 Moreover, in the vegetable case 1 of Embodiment 1 of this invention, Preferably, the nonwoven fabric 9 which has a shear force stronger than the regenerated cellulose film 4 is laminated | stacked on at least 1 surface of the surface and the back surface of the regenerated cellulose film 4. .
 このような構成により、野菜ケース1内に投入された野菜などの食品が、再生セルロース膜4に当たった場合でも、再生セルロース膜4が簡単に破れることがないため、再生セルロース膜4の信頼性を高めることができる。 With such a configuration, even when food such as vegetables put into the vegetable case 1 hits the regenerated cellulose film 4, the regenerated cellulose film 4 is not easily broken. Can be increased.
 また、本発明の実施の形態1の野菜ケース1において、好ましくは、再生セルロース膜4と不織布9とが、ビスコースを再生セルロース膜4または不織布9にコーティングまたはディッピングさせて、酸処理によりビスコースを固化させることにより、接着されている。 In the vegetable case 1 of Embodiment 1 of the present invention, preferably, the regenerated cellulose film 4 and the non-woven fabric 9 are coated or dipped with viscose on the regenerated cellulose film 4 or non-woven fabric 9 and subjected to acid treatment to produce viscose. It is bonded by solidifying.
 このような構成により、ビスコースを酸処理するといった簡単な方法で、再生セルロース膜4と不織布9とを接着固定させることができ、バインダー(接着剤)などの使用により接着させる方法とは異なり、バインダー(接着剤)が不要となる。このため、バインダー(接着剤)による透湿効果の阻害を生じることなく、再生セルロース膜4と不織布9とを簡単に一体化させることができ、製造しやすく、透湿性能の高い再生セルロース膜4を得ることができる。 With such a configuration, the regenerated cellulose film 4 and the nonwoven fabric 9 can be bonded and fixed by a simple method such as acid treatment of viscose, unlike the method of bonding by using a binder (adhesive) or the like, A binder (adhesive) becomes unnecessary. For this reason, the regenerated cellulose membrane 4 and the nonwoven fabric 9 can be easily integrated without causing an impediment to the moisture permeation effect by the binder (adhesive), and it is easy to manufacture and the regenerated cellulose membrane 4 has a high moisture permeability. Can be obtained.
 本発明の実施の形態2および実施の形態3の冷蔵庫100,300は、上述した本発明の実施の形態1の野菜ケース1を備えている。本発明の実施の形態2および実施の形態3の冷蔵庫100,300は、再生セルロース膜4を有する野菜ケース1を備えていることにより、野菜ケース1に保存された野菜等に結露を発生させることなく、高湿度条件下で野菜等を保存することができる。 The refrigerators 100 and 300 according to the second and third embodiments of the present invention include the vegetable case 1 according to the first embodiment of the present invention described above. The refrigerators 100 and 300 according to the second embodiment and the third embodiment of the present invention include the vegetable case 1 having the regenerated cellulose film 4, thereby causing condensation on the vegetables stored in the vegetable case 1. And vegetables can be stored under high humidity conditions.
 さらに、冷蔵庫100の冷凍サイクルシステムを利用することにより、野菜等を低温保存させることもできるため、野菜等の鮮度を長期間保持することができる。 Furthermore, by using the refrigeration cycle system of the refrigerator 100, vegetables and the like can be stored at a low temperature, so that the freshness of the vegetables and the like can be maintained for a long time.
 また、本発明の実施の形態2および実施の形態3の冷蔵庫100,300は、野菜ケース1内の温度分布における温度の高い部分に、再生セルロース膜4が配置されている。空気中の水分は、相対湿度が同じであれば温度が高い方が水分の絶対量が多くなることから、野菜ケース1内の余分な湿気は、温度が高い箇所に集まる。この性質を考慮し、再生セルロース膜4が野菜ケース1内の高い温度の箇所に配置されることにより、野菜ケース1内の余分な湿気が野菜ケース1外へ排出されやすくなる。さらに、再生セルロース膜4自体の温度が、野菜ケース1内の空気温度よりも高い状態に保たれやすくなる。これにより、再生セルロース膜4自体が露点温度以下になりにくく、再生セルロース膜4への結露を抑制することができる。また、野菜ケース1内の湿度が低くなったときは、再生セルロース膜4が結露により濡れて湿度透過量が高いままに保たれることがなく、野菜ケース1内の湿度に応じて、低湿度時に湿度透過量が抑制され、野菜ケース1内がより高い湿度状態に保たれることができる。 Further, in the refrigerators 100 and 300 according to the second and third embodiments of the present invention, the regenerated cellulose membrane 4 is arranged at a high temperature portion in the temperature distribution in the vegetable case 1. If the relative humidity of the air in the air is the same, the higher the temperature, the greater the absolute amount of the water. Therefore, excess moisture in the vegetable case 1 gathers at a location where the temperature is high. Considering this property, the regenerated cellulose membrane 4 is arranged at a high temperature location in the vegetable case 1, so that excess moisture in the vegetable case 1 is easily discharged out of the vegetable case 1. Furthermore, the temperature of the regenerated cellulose membrane 4 itself is easily kept higher than the air temperature in the vegetable case 1. Thereby, the regenerated cellulose film 4 itself is unlikely to be below the dew point temperature, and dew condensation on the regenerated cellulose film 4 can be suppressed. In addition, when the humidity in the vegetable case 1 becomes low, the regenerated cellulose membrane 4 is not wetted by condensation and the humidity permeation amount is not kept high. Sometimes the amount of moisture transmission is suppressed, and the inside of the vegetable case 1 can be kept in a higher humidity state.
 また、本発明の実施の形態2および実施の形態3の冷蔵庫100,300は、野菜ケース1の上面を開閉可能に覆う野菜ケース蓋5を有し、野菜ケース蓋5の少なくとも一部に再生セルロース膜4が設けられている。一般に、冷気は暖かい空気が上へあがることから、本発明の実施の形態2の野菜ケース1の上部、すなわち野菜ケース1の天面に設置された野菜ケース蓋5に設けられている再生セルロース膜4の温度が低くなることが抑制される。よって、再生セルロース膜4に結露が発生することを防止することができ、野菜ケース1をより高い湿度状態に保つことができる。 Moreover, the refrigerators 100 and 300 of Embodiment 2 and Embodiment 3 of the present invention have a vegetable case lid 5 that covers the upper surface of the vegetable case 1 so that it can be opened and closed, and at least part of the vegetable case lid 5 is regenerated cellulose. A membrane 4 is provided. In general, since the warm air rises upward, the regenerated cellulose membrane provided on the vegetable case lid 5 installed on the top of the vegetable case 1 of the second embodiment of the present invention, that is, the top surface of the vegetable case 1. It is suppressed that the temperature of 4 becomes low. Therefore, it is possible to prevent dew condensation from occurring in the regenerated cellulose film 4 and to keep the vegetable case 1 in a higher humidity state.
 本発明の実施の形態2の冷蔵庫100は、断熱区画され野菜ケース1が収納されることが可能な貯蔵室(野菜室108)と、貯蔵室を冷却する冷気が生成される冷却器112と、冷却器112から貯蔵室へ冷却された空気を送風する冷却ファン113と、冷却器112から冷却された冷気を冷却ファン113により貯蔵室へと送風する冷気通路と、冷気通路から貯蔵室へ冷気が吐出する冷気入口部(野菜室冷気入口部113a)とを有する。再生セルロース膜4は、野菜ケース1内において、冷気入口部から吐出される冷気が直接当たらない位置に設置されている。 Refrigerator 100 according to Embodiment 2 of the present invention includes a storage compartment (vegetable compartment 108) in which the vegetable case 1 can be stored by being insulated, and a cooler 112 that generates cool air for cooling the storage compartment. A cooling fan 113 that blows air cooled from the cooler 112 to the storage room, a cold air passage that blows cool air cooled from the cooler 112 to the storage room by the cooling fan 113, and cold air from the cold air passage to the storage room. And a cold air inlet portion (vegetable room cold air inlet portion 113a) for discharging. The regenerated cellulose membrane 4 is installed in the vegetable case 1 at a position where the cold air discharged from the cold air inlet is not directly applied.
 このような構成により、冷気入口部から貯蔵室へ入る冷気により再生セルロース膜4の温度が低くなるのを抑制することができ、野菜ケース1が低湿度において、再生セルロース膜4が露点温度付近や露点温度以下に下がり、再生セルロース膜4近傍のみ高湿度になることを防止することができる。また、再生セルロース膜4自体に結露が発生してしまい、再生セルロース膜4の透湿量が上がることを防止することができる。さらに、再生セルロース膜4が野菜ケース1の外側で冷気の風が当たることにより、野菜ケース1の外側の空気の圧力が野菜ケース1内側の空気の圧力よりも低くなり、圧力差によって野菜ケース1内の空気が再生セルロース膜4を透過して野菜ケース1外へ排出されることを抑制することができる。よって、このような構成により、より長く野菜ケース1を高い湿度状態に保つことができる。 With such a configuration, it is possible to suppress the temperature of the regenerated cellulose membrane 4 from being lowered by the cold air entering the storage chamber from the cold air inlet, and the vegetable case 1 is at low humidity, and the regenerated cellulose membrane 4 is near the dew point temperature. It is possible to prevent the humidity from decreasing to the dew point temperature or lower and only in the vicinity of the regenerated cellulose film 4. Further, it is possible to prevent dew condensation from occurring in the regenerated cellulose film 4 itself and increase the moisture permeation amount of the regenerated cellulose film 4. Further, when the regenerated cellulose membrane 4 is exposed to cold air outside the vegetable case 1, the pressure of the air outside the vegetable case 1 becomes lower than the pressure of the air inside the vegetable case 1, and the vegetable case 1 is caused by the pressure difference. The inside air can be prevented from passing through the regenerated cellulose membrane 4 and being discharged out of the vegetable case 1. Therefore, with such a configuration, the vegetable case 1 can be kept in a high humidity state for a longer time.
 本発明の実施の形態3の冷蔵庫300は、野菜ケース1の内部が仕切板359で仕切られるとともに、仕切板359に再生セルロース膜4が設けられている。野菜ケース1内に設置された仕切板359に再生セルロース膜4が設けられていることにより、冷気入口部から貯蔵室へ入る冷気の風が、再生セルロース膜4によりあたりにくくなることから、再生セルロース膜4近傍のみ高湿度になることが抑えられる。よって、このような構成により、再生セルロース膜4の湿度透過量を抑えることができ、より長期間、野菜ケース1の湿度を高く保つことができる。 In the refrigerator 300 according to the third embodiment of the present invention, the inside of the vegetable case 1 is partitioned by the partition plate 359, and the regenerated cellulose membrane 4 is provided on the partition plate 359. Since the regenerated cellulose membrane 4 is provided on the partition plate 359 installed in the vegetable case 1, the regenerated cellulose membrane 4 makes it difficult for wind of cold air entering the storage chamber from the cold air inlet portion. Only the vicinity of the film 4 can be prevented from becoming high humidity. Therefore, with such a configuration, the moisture permeation amount of the regenerated cellulose membrane 4 can be suppressed, and the humidity of the vegetable case 1 can be kept high for a longer period.
 以上、本発明の実施の形態を説明したが、上記実施の形態で説明した構成は、本発明を実施する一例として示したものであり、本発明の目的を達成する範囲で種々変更可能なことは言うまでもない。 Although the embodiment of the present invention has been described above, the configuration described in the above embodiment is shown as an example for carrying out the present invention, and can be variously modified within the scope of achieving the object of the present invention. Needless to say.
 本発明は、野菜ケース内の湿度を略一定に維持でき、良好な状態で野菜等を冷却保存することができるという格別の効果を奏する野菜ケースおよびこれを用いた冷蔵庫を提供できる。よって、家庭用はもちろん業務用冷蔵庫にも幅広く利用することができる。 The present invention can provide a vegetable case capable of maintaining the humidity in the vegetable case substantially constant and exhibiting a special effect that the vegetables and the like can be cooled and stored in a good state, and a refrigerator using the vegetable case. Therefore, it can be widely used not only for home use but also for commercial refrigerators.
 1  野菜ケース
 2  野菜ケース本体
 3  開口部
 4  再生セルロース膜
 5  野菜ケース蓋
 6  固定枠
 8  再生セルロース膜ユニット
 9  不織布
 10  ビスコース層
 100  冷蔵庫
 101  断熱箱体
 102  外箱
 103  内箱
 104  冷蔵室
 105  切替室
 106  製氷室
 107  冷凍室
 108  野菜室
 101a  機械室
 109  圧縮機
 110  冷却室
 111  奥面仕切り壁
 112  冷却器
 113  冷却ファン
 113a  野菜室冷気入口部
 114  ラジアントヒータ
 115  ドレンパン
 116  ドレンチューブ
 117  蒸発皿
 125  第二の仕切壁(冷凍室⇔野菜室)
 300  冷蔵庫
 301  冷蔵庫本体
 302  外箱
 303  内箱
 304  発泡断熱材
 305  仕切板
 306  仕切板
 307  冷蔵室
 308  野菜室
 309  冷凍室
 310  扉
 311  扉
 312  扉
 314  機械室
 315  圧縮機
 316  冷却室
 317  奥面仕切体
 318  冷却器
 319  冷却ファン
 328  除霜ヒータ
 329  ドレンパン
 330  冷却室冷気搬送路
 331  冷蔵室ダンパ
 331a  パーシャル室ダンパ
 332  冷蔵冷気吐出風路
 332a  パーシャル室冷気吐出風路
 333  冷蔵冷気戻り風路
 335  冷蔵冷気入口
 336  冷蔵冷気戻り口
 336a  パーシャル室冷気入口部
 337  吐出風路
 338  戻り風路
 339  連通路
 340  冷気戻りダクト
 341  背面壁体
 342  冷凍冷気入口
 343  冷凍冷気戻り口
 344  野菜室冷気入口
 346  野菜冷気戻り口
 347  野菜冷気吸込み口
 347a  第一の通路
 350  野菜室通路部
 351  第二の野菜冷気吸込み口
 351a  第二の通路
 353  野菜室ファン
 354  吹出口
 356  支持部材
 357  下段容器
 357a  凹所
 358  上段容器
 359  仕切板
 359-2a  載置片部
 359-2b  載置片部
 359-3a  垂下片部
 359-3b  垂下片部
 359-4  係合凹部
 360  非野菜収納部
 361  野菜収納部
 362-3  係合片
 363  上段容器レール部
 364  下段容器レール部
 365  フランジ
 366a  ガイド
 366b  ガイド
 367  直線部
 368  突起部
 369  直線部
 370  傾斜部
 371  交点部
 372  凹部
 373  収納棚
 374  パーシャル室
 375  操作部
 376  冷凍室容器
 377  製氷装置
 378  冷蔵室温度検知部
 379  野菜室温度検知部
 380  冷凍室温度検知部
 381  制御部
DESCRIPTION OF SYMBOLS 1 Vegetable case 2 Vegetable case main body 3 Opening part 4 Regenerated cellulose membrane 5 Vegetable case cover 6 Fixed frame 8 Regenerated cellulose membrane unit 9 Nonwoven fabric 10 Viscose layer 100 Refrigerator 101 Heat insulation box 102 Outer box 103 Inner box 104 Refrigeration room 105 Switching room 106 Ice making room 107 Freezing room 108 Vegetable room 101a Machine room 109 Compressor 110 Cooling room 111 Rear partition wall 112 Cooler 113 Cooling fan 113a Vegetable room cold air inlet 114 Radiant heater 115 Drain pan 116 Drain tube 117 Evaporating dish 125 Second Partition wall (freezer compartment and vegetable compartment)
DESCRIPTION OF SYMBOLS 300 Refrigerator 301 Refrigerator main body 302 Outer box 303 Inner box 304 Foam insulation material 305 Partition plate 306 Partition plate 307 Refrigeration room 308 Vegetable room 309 Freezer room 310 Door 311 Door 312 Door 314 Machine room 315 Compressor 316 Cooling room 317 Back partition 318 Cooler 319 Cooling fan 328 Defrost heater 329 Drain pan 330 Cooling chamber cool air conveyance path 331 Refrigeration chamber damper 331a Partial chamber damper 332 Refrigerated cold air discharge air path 332a Partial chamber cold air discharge air path 333 Refrigerated cold air return air path 335 Refrigerated cold air inlet 335 Refrigerated cold air return port 336a Partial chamber cold air inlet portion 337 Discharge air passage 338 Return air passage 339 Communication passage 340 Cold air return duct 341 Rear wall body 342 Refrigeration cold air inlet 343 Refrigeration cold air return port 344 Field Room cold air inlet 346 Vegetable cold air return port 347 Vegetable cold air inlet 347a First passage 350 Vegetable room passage 351 Second vegetable cold air inlet 351a Second passage 353 Vegetable room fan 354 Outlet 356 Support member 357 Lower container 357a Recess 358 Upper container 359 Partition plate 359-2a Placement piece portion 359-2b Placement piece portion 359-3a Suspension piece portion 359-3b Suspension piece portion 359-4 Engaging recess 360 Non-vegetable storage portion 361 Vegetable storage portion 362 -3 engagement piece 363 Upper container rail part 364 Lower container rail part 365 Flange 366a Guide 366b Guide 367 Linear part 368 Projection part 369 Linear part 370 Inclined part 371 Intersection part 372 Concave part 373 Storage shelf 374 Partial room 375 Operation part 376 Freezing room Container 77 ice making device 378 the refrigerating compartment temperature sensing unit 379 vegetable room temperature detector 380 freezer compartment temperature sensing unit 381 control unit

Claims (9)

  1. 野菜収納部を構成する壁面の少なくとも一部に開口部を有し、基材を用いずに形成された再生セルロース膜が前記開口部に設けられた野菜ケース。 A vegetable case having an opening in at least a part of a wall surface constituting the vegetable storage portion, and a regenerated cellulose film formed without using a base material provided in the opening.
  2. 前記再生セルロース膜の密度が20~40g/mである
    請求項1に記載の野菜ケース。
    The vegetable case according to claim 1, wherein the density of the regenerated cellulose membrane is 20 to 40 g / m 2 .
  3. 前記再生セルロース膜の少なくとも1面に、前記再生セルロース膜よりも強いせん断力を有する不織布が積層された
    請求項1または2に記載の野菜ケース。
    The vegetable case according to claim 1 or 2, wherein a nonwoven fabric having a shearing force stronger than that of the regenerated cellulose film is laminated on at least one surface of the regenerated cellulose film.
  4. 前記再生セルロース膜または前記不織布に、ビスコースがコーティングまたはディッピングされて酸処理により前記ビスコースが固化されて、前記再生セルロース膜および前記不織布が互いに接着された
    請求項3に記載の野菜ケース。
    The vegetable case according to claim 3, wherein the regenerated cellulose film or the non-woven fabric is coated or dipped with viscose, the viscose is solidified by acid treatment, and the regenerated cellulose film and the non-woven fabric are bonded to each other.
  5. 請求項1から4のいずれか一項に記載の前記野菜ケースを備えた冷蔵庫。 The refrigerator provided with the said vegetable case as described in any one of Claim 1 to 4.
  6. 前記野菜ケース内において、前記野菜ケース内の温度の高い位置に前記再生セルロース膜が設けられた
    請求項5に記載の冷蔵庫。
    The refrigerator according to claim 5, wherein the regenerated cellulose film is provided at a high temperature position in the vegetable case in the vegetable case.
  7. 前記野菜ケースの上面を開閉可能に覆う蓋を有し、前記蓋に前記再生セルロース膜が設けられた
    請求項5または6に記載の冷蔵庫。
    The refrigerator according to claim 5 or 6, further comprising a lid that covers the top surface of the vegetable case so as to be openable and closable, wherein the regenerated cellulose film is provided on the lid.
  8. 前記野菜ケースが収納されることが可能な貯蔵室と、前記貯蔵室を冷却する冷気が生成される冷却器と、前記冷却器から前記貯蔵室へ冷却された空気を送風する冷却ファンと、前記冷却ファンにより前記冷却器から前記貯蔵室へと冷却された冷気が送風される冷気通路と、前記冷気通路から貯蔵室へ冷気が吐出される冷気入口部を備え、前記再生セルロース膜は、前記野菜ケース内において、前記冷気入口部から吐出される冷気が直接当たらない位置に設けられた
    請求項5から7のいずれか一項に記載の冷蔵庫。
    A storage room in which the vegetable case can be stored; a cooler that generates cool air for cooling the storage room; a cooling fan that blows air cooled from the cooler to the storage room; A cool air passage through which cool air cooled by the cooling fan from the cooler to the storage chamber is blown, and a cold air inlet portion through which the cool air is discharged from the cold air passage to the storage chamber; The refrigerator according to any one of claims 5 to 7, wherein the refrigerator is provided at a position where the cool air discharged from the cool air inlet portion does not directly hit the case.
  9. 前記野菜ケースの内部が仕切板で仕切られるとともに、前記仕切板に前記再生セルロース膜が設けられた
    請求項5から8のいずれか一項に記載の冷蔵庫。
    The refrigerator according to any one of claims 5 to 8, wherein an interior of the vegetable case is partitioned by a partition plate, and the regenerated cellulose film is provided on the partition plate.
PCT/JP2015/002159 2014-04-24 2015-04-21 Vegetable case and refrigerator WO2015162909A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201590000450.9U CN207361005U (en) 2014-04-24 2015-04-21 Vegetable box and freezer
DE212015000111.3U DE212015000111U1 (en) 2014-04-24 2015-04-21 Vegetable container and fridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-089751 2014-04-24
JP2014089751A JP2015209987A (en) 2014-04-24 2014-04-24 Vegetable case and refrigerator

Publications (1)

Publication Number Publication Date
WO2015162909A1 true WO2015162909A1 (en) 2015-10-29

Family

ID=54332086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002159 WO2015162909A1 (en) 2014-04-24 2015-04-21 Vegetable case and refrigerator

Country Status (4)

Country Link
JP (1) JP2015209987A (en)
CN (1) CN207361005U (en)
DE (1) DE212015000111U1 (en)
WO (1) WO2015162909A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509855A (en) * 2014-12-26 2017-04-06 チンダオ ハイアール ジョイント ストック カンパニー リミテッドQingdao Haier Joint Stock Co.,Ltd Moisture permeable device, refrigerator, and method of manufacturing moisture permeable device
DE102022119388A1 (en) 2022-07-06 2024-01-11 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigerator and/or freezer
JP7432824B2 (en) 2020-09-15 2024-02-19 パナソニックIpマネジメント株式会社 refrigerator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250469B2 (en) * 2014-04-24 2017-12-20 レンゴー株式会社 Humidity sensitive gas permeable membrane
CN106766638B (en) * 2016-12-30 2019-07-02 青岛海尔股份有限公司 Article-storage device, the refrigerator with the article-storage device and its control method
JP2020094753A (en) * 2018-12-13 2020-06-18 アクア株式会社 refrigerator
CN109974375A (en) * 2019-03-26 2019-07-05 澳柯玛股份有限公司 A kind of pre- boxing device of binary channels air door for refrigerator
CN111442603B (en) * 2020-04-20 2024-04-12 珠海格力电器股份有限公司 Air-conditioning fresh-keeping device, refrigerator and air-conditioning fresh-keeping method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262827A (en) * 2004-03-22 2005-09-29 Asahi Kasei Fibers Corp Moisture absorbing and releasing material
JP2011062816A (en) * 2009-09-15 2011-03-31 Dynic Corp Moisture absorbing and releasing material
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2014000800A (en) * 2012-06-19 2014-01-09 Panasonic Corp Moisture-sensitive and moisture-permeable film, moisture-sensitive and moisture-permeable device, vegetable case, and refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602281B2 (en) * 1996-12-26 2004-12-15 松下冷機株式会社 refrigerator
JPH1186825A (en) * 1997-09-09 1999-03-30 Miki Tokushu Seishi Kk Separator for secondary battery
JPH11294935A (en) * 1998-04-15 1999-10-29 Toshiba Corp Refrigerator
JP2001174136A (en) * 1999-12-14 2001-06-29 Sharp Corp Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262827A (en) * 2004-03-22 2005-09-29 Asahi Kasei Fibers Corp Moisture absorbing and releasing material
JP2011062816A (en) * 2009-09-15 2011-03-31 Dynic Corp Moisture absorbing and releasing material
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2014000800A (en) * 2012-06-19 2014-01-09 Panasonic Corp Moisture-sensitive and moisture-permeable film, moisture-sensitive and moisture-permeable device, vegetable case, and refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509855A (en) * 2014-12-26 2017-04-06 チンダオ ハイアール ジョイント ストック カンパニー リミテッドQingdao Haier Joint Stock Co.,Ltd Moisture permeable device, refrigerator, and method of manufacturing moisture permeable device
JP7432824B2 (en) 2020-09-15 2024-02-19 パナソニックIpマネジメント株式会社 refrigerator
DE102022119388A1 (en) 2022-07-06 2024-01-11 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigerator and/or freezer

Also Published As

Publication number Publication date
JP2015209987A (en) 2015-11-24
CN207361005U (en) 2018-05-15
DE212015000111U1 (en) 2016-11-28

Similar Documents

Publication Publication Date Title
WO2015162909A1 (en) Vegetable case and refrigerator
JP6209361B2 (en) Moisture and moisture permeable membrane, moisture and moisture permeable device, vegetable case, and refrigerator
CN105806010B (en) A kind of wind cooling refrigerator and its control method including temperature controllable humidity regions
JP2004360948A (en) Refrigerator
US9841224B2 (en) Refrigerator appliances with passive storage compartments
CN104969017B (en) Refrigerator
JP7016002B2 (en) refrigerator
CN108759243A (en) Control oxygen fresh-keeping refrigerator
JP2020197372A (en) refrigerator
JP2017223420A (en) refrigerator
JP2011017472A (en) Refrigerator
JP5011267B2 (en) refrigerator
JP2008215716A (en) Refrigerator
JP2009008326A (en) Refrigerator, and humidifying method of refrigerator
JP4076804B2 (en) refrigerator
CN115038919B (en) Refrigerator with a door
JP2010002110A (en) Refrigerator-freezer
JP2003279232A (en) Humidifier of refrigerator
JP6298982B2 (en) refrigerator
JP2018128249A (en) Vegetable case and refrigerator
CN111174518A (en) Refrigerator with a door
JP6375511B2 (en) refrigerator
JP2008292140A (en) Refrigerator
JP2015014423A (en) Refrigerator
JP2011069598A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212015000111

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782865

Country of ref document: EP

Kind code of ref document: A1