JP5516835B2 - Multi-layer multilayer flat membrane - Google Patents

Multi-layer multilayer flat membrane Download PDF

Info

Publication number
JP5516835B2
JP5516835B2 JP2007267390A JP2007267390A JP5516835B2 JP 5516835 B2 JP5516835 B2 JP 5516835B2 JP 2007267390 A JP2007267390 A JP 2007267390A JP 2007267390 A JP2007267390 A JP 2007267390A JP 5516835 B2 JP5516835 B2 JP 5516835B2
Authority
JP
Japan
Prior art keywords
membrane
film
average pore
filtration
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007267390A
Other languages
Japanese (ja)
Other versions
JP2009095701A (en
Inventor
真鍋征一
関千恵子
Original Assignee
真鍋 征一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 真鍋 征一 filed Critical 真鍋 征一
Priority to JP2007267390A priority Critical patent/JP5516835B2/en
Publication of JP2009095701A publication Critical patent/JP2009095701A/en
Application granted granted Critical
Publication of JP5516835B2 publication Critical patent/JP5516835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生理活性物質等を分離精製する際に微粒子除去のために使用する膜に関する。特に、溶液中で時間の経過により会合体を形成しやすいタンパク質や凝集体を形成しやすいコロイド粒子等の精製・分離を効率的に行える膜に関する。 The present invention relates to a membrane used for removing fine particles when separating and purifying a physiologically active substance or the like. In particular, the present invention relates to a membrane that can efficiently purify and separate proteins that tend to form aggregates over time and colloidal particles that easily form aggregates.

従来、微粒子状態で分散した固体状物質(力学的な力に対して流動せずに形状が維持される物質と定義)と液体の分離に使用される方法として中空糸膜や平膜を使用した膜濾過による分離方法が一般的に利用されている。膜濾過法は、固液分離に向いているが、使用する膜の種類、濾過の条件や方法、さらには濾過を行う溶液によっては、目詰まりを起こしやすく、回収される物質の膜透過率、回収率、除去される物質の除去率などに影響を与える。目詰まりは2種の機構によって進行する。すなわち、(1)血栓型目詰まりで、平均孔径より大きな体粒子による(2)梗塞型目詰まりで平均孔径より小さな体粒子あるいは溶解している分子による。Conventionally, hollow fiber membranes and flat membranes have been used as a method for separating solid substances (defined as substances that maintain their shape without flowing due to mechanical force) dispersed in a fine particle state. A separation method by membrane filtration is generally used. The membrane filtration method is suitable for solid-liquid separation, but depending on the type of membrane to be used, the conditions and method of filtration, and the solution to be filtered, clogging is likely to occur, the membrane permeability of the substance to be recovered, This will affect the recovery rate and the removal rate of substances to be removed. Clogging proceeds by two types of mechanisms. That is, (1) in the thrombus type clogging, by molecules which are small solid particles or dissolved than the average pore diameter (2) infarct type clogging by large solid particles than the average pore size.

そのなかにおいて、多段濾過方法は、血漿や血漿分画製剤、バイオ医薬などにおける溶液から有用タンパク質を回収し、さらにウイルスによる汚染の防止方法として有効な手段の一つである。つまり、溶液中からあらかじめ大きな粒子を取り除いたり、会合体を形成してしまっているタンパク質を単分散の状態にすることで次の濾過での目詰まりの原因を少なくし、ウイルス除去性能やタンパク質の透過率を高める効果がある(非特許文献1)。 Among them, the multi-stage filtration method is one of effective means for recovering useful proteins from solutions in plasma, plasma fractionated preparations, biopharmaceuticals and the like and further preventing contamination by viruses. In other words, by removing large particles from the solution in advance or making the proteins that have formed aggregates monodispersed, the cause of clogging in the next filtration is reduced, and virus removal performance and protein There is an effect of increasing the transmittance (Non-Patent Document 1).

例えば、濾過膜が中空糸膜の場合、特開平2−167232号(特許文献1)公報では、有用タンパク質をウイルスと分離する効率的な濾過方法として、前段の平均孔径の大きなプレフィルターで目詰まりを起こしやすい大きな粒子等を除去し、その液を後段のメインフィルターで濾過することによりメインフィルターの性能が生かされている。さらに、特開2000−005569号(特許文献2)公報では、直列多段濾過に使用する中空糸膜の性能を平均孔径・除去対象物質の除去率・回収対象物質の透過率を指定することにより、よりその効率を向上させている。 For example, when the filtration membrane is a hollow fiber membrane, Japanese Patent Application Laid-Open No. 2-167232 (Patent Document 1) clogs with a prefilter having a large average pore diameter in the previous stage as an efficient filtration method for separating useful proteins from viruses. The performance of the main filter is exploited by removing the large particles that tend to cause water and filtering the liquid through the main filter at the subsequent stage. Furthermore, in JP 2000-005569 A (Patent Document 2), the performance of the hollow fiber membrane used for in-line multistage filtration is designated by specifying the average pore diameter, the removal rate of the substance to be removed, and the transmittance of the substance to be collected. The efficiency is further improved.

濾過膜が平膜の場合は、特開2003−519005号(特許文献3)公報で、クロスフロー濾過により物質を分離し、濾液および濃縮物中の目的物質を取得する装置により、多段濾過を行い、濾過効率と製品収率を向上させている。また、従来の同一モジュール内に複数の平膜を組み込むタイプの多段濾過法は、膜と膜の間に目の粗い素材を挟みこむ、サンドウィッチ型がある。膜間に目の粗い素材を挟み込まなければ多段濾過の効果が現れず、濾過速度の減少と目詰まりするまでの濾過量が減少する。When the filtration membrane is a flat membrane, in Japanese Patent Application Laid-Open No. 2003-519005 (Patent Document 3), substances are separated by cross-flow filtration, and multistage filtration is performed using an apparatus that obtains the target substance in the filtrate and concentrate. , Improving filtration efficiency and product yield. Further, a conventional multi-stage filtration method in which a plurality of flat membranes are incorporated in the same module is a sandwich type in which a coarse material is sandwiched between membranes. If a raw material is not sandwiched between the membranes, the effect of multi-stage filtration does not appear, and the filtration rate is reduced and the amount of filtration until clogging is reduced.

しかしながら、溶液中にタンパク質を含む液を濾過する場合、(1)タンパク質の膜内部での濃度上昇、(2)タンパク質の疎水的・電気的性質による膜への吸着作用や会合体の発生、などが原因となり目詰まりが起こりやすくなるが、特に会合体による膜の目詰まりにおいて、モジュールを組み合わせるタイプの多段濾過では、予め大きなプレフィルターで会合体をなくし、単分散な状態にしたとしても、次の濾過モジュールに行くまでに時間がかかり、よって再びタンパク質が会合体を形成しやすくなる。これにより、膜の平均孔径よりも大きくなった会合体は膜を通過し回収することが出来ないばかりか、目詰まりの積極的な原因ともなってしまう。さらには、後段で使用する膜の平均孔径が小さくなるにしたがってその傾向が大きくなる。 However, when filtering a solution containing protein in the solution, (1) increase in the concentration of protein inside the membrane, (2) adsorption to the membrane due to the hydrophobic and electrical properties of the protein, generation of aggregates, etc. Clogging is likely to occur due to this, but especially in the case of clogging of membranes due to aggregates, in the case of multistage filtration in which modules are combined, even if the aggregates are eliminated with a large prefilter in advance, the next is a monodispersed state. It takes time to go to the filtration module, so that the protein tends to form an aggregate again. As a result, aggregates larger than the average pore diameter of the membrane cannot pass through the membrane and cannot be recovered, but also become an active cause of clogging. Furthermore, the tendency increases as the average pore size of the membrane used in the subsequent stage decreases.

タンパク質の会合体形成の対策として、特開2007−16016号(特許文献4)公報では、タンパク質またはペプチドを含有する水溶液を中空糸を用いたクロスフロー濾過を行っているが、この際、タンパク質などを含む水溶液の性質をpHや塩などにより調製することで会合体の形成を防ぎ目的の低分子量のタンパク質と不要な高分子量のタンパク質の分画を行っているが、pHの調節や塩の添加など液の調整が複雑である。また、これらの調整で会合体の形成を常に防ぐことが可能とはいえない。 As a countermeasure for the formation of protein aggregates, in Japanese Patent Application Laid-Open No. 2007-16016 (Patent Document 4), an aqueous solution containing a protein or peptide is subjected to cross-flow filtration using a hollow fiber. By adjusting the properties of aqueous solutions containing pH, salt, etc., the formation of aggregates is prevented and fractionation of the desired low molecular weight protein and unwanted high molecular weight protein is performed. The liquid adjustment is complicated. Moreover, it cannot be said that these adjustments can always prevent the formation of aggregates.

本発明中での多孔性膜とは、フィールドエミッション型走査型電子顕微鏡によって膜中に孔の存在が認められる膜で平均孔径5nm以上、空孔率30%以上の膜を意味する。 The porous film in the present invention means a film in which the presence of pores is recognized in the film by a field emission type scanning electron microscope and having an average pore diameter of 5 nm or more and a porosity of 30% or more.

クロスフロー濾過とは、膜表面に沿って溶液を流しながら濾過する方式であり、平行濾過あるいはタンジェンシャル濾過ともいわれる。デッドエンド濾過とは溶液を閉鎖された1次側空間に圧入する方式である。 Cross-flow filtration is a method of filtering while flowing a solution along the membrane surface, and is also called parallel filtration or tangential filtration. Dead end filtration is a method in which a solution is press-fitted into a closed primary space.

Figure 0005516835
こでろ過速度は1平方メートル当たりの純水のろ過速度でml/分の単位で測定され、膜厚はμm単位、粘度はセンチポイズ、膜間差圧はmmHgtanni,空孔率は無次元単位である。この際の平均孔径の単位はnmとなる。
空孔率は字式により与えられる。
空孔率 = (1 − 膜の密度/素材高分子の密度)
膜の密度は(膜の重量/膜の面積*膜厚)で算出される。素材高分子の密度は空孔率0%時の膜の密度で、これはすでに文献で与えられている。
多層構造膜とは、膜の断面方向から電子顕微鏡で観察すると10〜1000nmの厚さの層が認められ、膜ほ表面からの観察では網目状または粒子間のすきまが孔として、また粒子相互は(有)着した様子が観察される膜である。
このように網目状または粒子間の隙間が孔として観察される膜を非円形孔(文献上Up孔となづけられている)を待つ膜と定義される。Up孔を持つ膜の一般的な製法はミクロ相分離法での製膜であり非特許文献2および3に与えられる。表裏面共にUp孔にするには流延用の高分子濃度を低くすれば良い。高分子濃度を5重量%程度に低くして溶媒蒸発法で製膜すると裏面に比較して蒸発面(表面)での平均孔径の小さな膜が得られる。高分子の例としてミクロ相分離法が適用できる高分子(例えば、セルロース誘導体やポリアクリロニトリルなど)が知られている。
Figure 0005516835
Here, the filtration rate is measured in units of ml / min with the filtration rate of pure water per square meter, the film thickness is in μm, the viscosity is in centipoise, the transmembrane pressure difference is mmHgtanni, and the porosity is a dimensionless unit. . The unit of the average pore diameter at this time is nm.
The porosity is given by the character formula.
Porosity = (1-membrane density / material polymer density)
The density of the film is calculated by (film weight / film area * film thickness). The density of the material polymer is the density of the membrane when the porosity is 0%, which has already been given in the literature.
A multilayer structure film is a layer having a thickness of 10 to 1000 nm when observed with an electron microscope from the cross-sectional direction of the film. (Yes) It is a film that can be seen wearing.
A film in which a network or a gap between particles is observed as a hole is defined as a film waiting for a non-circular hole (referred to as an Up hole in the literature). A general method for producing a membrane having an Up hole is a membrane produced by a microphase separation method, which is given in Non-Patent Documents 2 and 3. In order to make both the front and back surfaces Up holes, the polymer concentration for casting may be lowered. When the polymer concentration is lowered to about 5% by weight and the film is formed by the solvent evaporation method, a film having a smaller average pore diameter on the evaporation surface (front surface) than the back surface can be obtained. As examples of the polymer, polymers (for example, cellulose derivatives, polyacrylonitrile, etc.) to which a microphase separation method can be applied are known.

真鍋征一著『血液製剤のウイルス除去法』族医薬品の開発、20巻、85頁〜103頁、1992Manabe Seiichi, “Virus Removal Method for Blood Products” Development of Family Medicines, 20, 85-103, 1992 真鍋征一著「ウイルス分離]高分子の物性(3)表面・海面と膜・輸送、高分子学会編、共立出版、493頁〜520頁、1995年Manabe Seiichi, “Virus Isolation” Physical Properties of Polymers (3) Surface / Sea Surface and Membrane / Transport, edited by the Society of Polymer Science, Kyoritsu Shuppan, 493-520, 1995 高分子論文集、34件(No3)、pp205〜216(1977)。Polymer Journals, 34 (No 3), pp 205-216 (1977). 特開平−167232号JP-A-167232 特開2000−005569号JP 2000-005569 A 特開2003−519005号JP 2003-519005 A 特開2007−16016号JP 2007-16016

本発明では、濾過による膜分離で粒子による目詰まりが起こりにくく、膜の平均孔径以下の大きさのタンパク質を高透過率で得る為の多段積多層膜を提供することを目的とする。特に会合が起こりやすい物質(例、グロブリン)を高効率で微粒子を除去しつつ高い回収率で精製することができる濾過用の膜を提供する。 An object of the present invention is to provide a multistage multilayer film for obtaining a protein having a size equal to or less than the average pore diameter of the membrane with high permeability, which is less likely to cause clogging due to membrane separation by filtration. The present invention provides a membrane for filtration capable of purifying a substance (eg, globulin) that is particularly likely to be associated with high efficiency while removing fine particles with high efficiency.

本発明者らは、上記従来技術の課題を解決するために鋭意研究を重ねた結果、多層構造を持つ多孔性の平膜複数枚を、前段の膜の平均孔径が後段の膜の平均孔径以上となるように直接重ね合わせた多段多積層膜を用いることで、単独濾過以上のタンパク質透過率を実現でき、これらにより時間的、コスト的な問題を解消できることを見出した。また、積層する平膜を検討した結果、膜の平均孔径が5nm以上2μm以下、空孔率が65%以上90%以下、膜厚が20μm以上1mm以下の平膜による多段積多層膜であり、さらに積層する平膜が吸着機構による孔の目詰まりを防止するために親水性高分子である再生セルロース製の上記多段積多層膜であることによって、本発明を完成するに至った。たとえば、平膜を多数積み重ねる際、空孔率が低く、また円筒状孔(例えば、ニュークレオポア膜)を重ねた場合には、濾過速度は圧力勾配から算出される値より1/2以下になる。 As a result of intensive studies in order to solve the above-described problems of the prior art, the present inventors have determined that a plurality of porous flat membranes having a multilayer structure have an average pore size of the former membrane greater than or equal to the average pore size of the latter membrane. It was found that a protein permeability higher than that of single filtration can be realized by using a multi-stage multi-laminate film directly superposed so that time and cost problems can be solved. Further, as a result of examining the flat film to be laminated, it is a multi-layer multilayer film with a flat film having an average pore diameter of 5 nm to 2 μm, a porosity of 65% to 90%, and a film thickness of 20 μm to 1 mm, Furthermore, the present invention has been completed by the fact that the flat film to be laminated is the above-mentioned multi-stage multilayer film made of regenerated cellulose which is a hydrophilic polymer in order to prevent clogging of holes due to the adsorption mechanism. For example, when a large number of flat membranes are stacked, the porosity is low, and when a cylindrical hole (for example, a nucleopore membrane) is stacked, the filtration rate is ½ or less than the value calculated from the pressure gradient. Become.

即ち本発明の多段積多層膜は、(1)膜の上に直接膜がくるように多孔性平膜を積層するため、積層する平膜の間には特別なスリットや空間を設ける必要がなく、(2)濾過効率を高めるために前段の平均孔径が後に続く後段の平均孔径よりも大きくなるように積層するという点である。これにより、タンパク質を含む液の特別な液調製をすることなく、さらには使用するモジュールは1つでよく、膜間の空間を維持するための支持体や緩衝材の必要もない、多段濾過を行える多段積多層膜である。 That is, in the multi-layer multilayer film of the present invention, (1) since a porous flat film is laminated so that the film is directly on the film, there is no need to provide a special slit or space between the laminated flat films. (2) In order to increase the filtration efficiency, lamination is performed such that the average pore diameter in the previous stage is larger than the average pore diameter in the subsequent stage. This makes it possible to perform multistage filtration without the need for special liquid preparation of protein-containing liquids, and furthermore, only one module is used, and there is no need for a support or buffer material to maintain the space between the membranes. It is a multistage multilayer film that can be used.

多孔性膜の製法として湿式または乾式法での製膜方法が採用できる。この方法では製膜過程でミクロ相分離が通常発生する。ミクロ相分離を膜厚方向に逐次発生させることで多層構造膜を作製できる。多層構造膜では微粒子の除去性が優れ、かつタンパク透過性も与えられる。 As a method for producing a porous membrane, a wet or dry membrane production method can be employed. In this method, microphase separation usually occurs during film formation. A multilayer structure film can be produced by sequentially generating microphase separation in the film thickness direction. The multilayer structure film has excellent particle removability and protein permeability.

多段に積層する多孔性平膜は濾過の効果を得るため、膜厚は薄いほうが濾過速度などに有効だがピンホールや扱いやすさ、機械的強度の面から30μm以上1mm以下であることが必要である。さらに、タンパク質の高透過率を実現するために空孔率65%以上90%以下であることが必要である。多孔性平膜の膜平面内で定義される平均孔径において、膜表面と膜裏面との平均孔径比が、1対3以上にすることにより多段に積層する効果は高まる。 Porous flat membranes stacked in multiple stages have the effect of filtration. A thinner film is more effective in terms of filtration speed, but it must be 30 μm to 1 mm in terms of pinholes, ease of handling, and mechanical strength. is there. Furthermore, it is necessary that the porosity is 65% or more and 90% or less in order to realize high protein permeability. In the average pore diameter defined within the membrane plane of the porous flat membrane, when the average pore size ratio between the membrane surface and the membrane back surface is 1: 3 or more, the effect of stacking in multiple stages is enhanced.

多段に積層する平膜は、2枚以上複数枚を重ねるが、その枚数と組み合わせは積層する平膜の性能や濾過の目標、条件、溶液の種類などにより総合的に判断すればよい。多段に積層する平膜においては、隣接する膜においては、前段の膜裏面に対して後段の膜表面が直接重なるように重ねることが重要である。 Two or more flat membranes stacked in multiple stages are stacked, and the number and combination thereof may be comprehensively determined according to the performance of the flat membranes to be stacked, the filtration target, conditions, the type of solution, and the like. In flat films stacked in multiple stages, it is important that adjacent films are stacked so that the film surface of the subsequent stage directly overlaps the back surface of the film of the previous stage.

本発明は、多層構造をもつ多孔性膜を多段に積層した平膜であることで、有用タンパク質が透過するのに必要な空間と、会合体が再生しないための短時間の濾過とを確保することができ高透過率を達成できる。膜同士が密着するため、前段の膜から次段の膜へのタンパク質を含む溶液の通過時間がほとんど同時であり、タンパク質が再び会合体を形成するのを防ぐことができる。このため、微粒子除去性能を持つ層の部分を透過する溶液中ではほとんど単分散な状態のタンパク質を含む溶液となり、会合体による目詰まりが起こりにくくなる。よって、目詰まりによる圧力上昇を抑えられ、タンパク質の高透過率を実現できる。 The present invention is a flat membrane in which a porous membrane having a multi-layer structure is laminated in multiple stages, thereby ensuring a space necessary for permeating useful proteins and a short time filtration for preventing the aggregate from regenerating. High transmittance can be achieved. Since the membranes are in close contact with each other, the passage time of the solution containing the protein from the previous membrane to the next membrane is almost the same, and the protein can be prevented from forming an aggregate again. For this reason, in the solution which permeate | transmits the part of a layer with fine particle removal performance, it will become a solution containing the protein of a substantially monodispersed state, and clogging by an aggregate will not occur easily. Therefore, an increase in pressure due to clogging can be suppressed, and high protein permeability can be realized.

本発明で使用する平膜は親水性素材であり、湿式または乾式のミクロ相分離法で作製される。例えば、銅安法再生セルロース平膜は親水性素材として最適であるが膜厚を100μm以上に、また、平均孔径を100nm以上にするのが難しい。製法は特公昭62−044018号に与えられている。再生セルロース製の平膜の製法として多孔性アセテート膜を0.1規定の水酸化ナトリウム水溶液でケン化処理することによって得られる。この方法では、蒸発面の膜面(表面)での平均孔径が小さく、裏面の平均孔径は表面のそれの3倍以上となる。この方法により0.01μm〜数μmの平均孔径を持つ多孔性多層性膜が得られ、膜厚は20μm〜数mmまで可能である。このようにして得られた多孔性再生セルロース平膜を濾過器の支持体の上に複数枚、原液側から濾液側に向かって膜の平均孔径がだんだんに小さくなるように積層し、隣接する膜については裏面と表面とが密着するように重ねる。 The flat membrane used in the present invention is a hydrophilic material and is produced by a wet or dry microphase separation method. For example, a copper-anhydrous regenerated cellulose flat membrane is optimal as a hydrophilic material, but it is difficult to have a film thickness of 100 μm or more and an average pore diameter of 100 nm or more. The manufacturing method is given in Japanese Examined Patent Publication No. 62-044018. As a method for producing a regenerated cellulose flat membrane, a porous acetate membrane is obtained by saponification with a 0.1 N aqueous sodium hydroxide solution. In this method, the average pore diameter at the film surface (front surface) of the evaporation surface is small, and the average pore diameter at the back surface is at least three times that of the front surface. By this method, a porous multilayer film having an average pore diameter of 0.01 μm to several μm is obtained, and the film thickness can be from 20 μm to several mm. A plurality of porous regenerated cellulose flat membranes obtained in this manner are laminated on a filter support so that the average pore diameter of the membrane gradually decreases from the stock solution side to the filtrate side, and adjacent membranes are formed. As for, pile up so that the back side and the front side are in close contact.

分離・精製を行う方法は、濾過でも拡散でもよく、濾過では、デッドエンド方式やクロスフロー方式などが利用できる。拡散では、定常孔拡散方式であることが望ましい。定常孔拡散法は、特開2005−349268号公報に与えられている。 The separation / purification method may be filtration or diffusion. For filtration, a dead end method, a cross flow method, or the like can be used. In diffusion, it is desirable to use a steady hole diffusion method. The steady hole diffusion method is given in JP-A-2005-349268.

ミクロ相分離法によってアセテート膜を作製し、これを0.1規定水酸化ナトリウム水溶液に12時間浸漬し、得られた平膜をアセトンにより脱水乾燥した。このようにして得られた平均孔径100nm、空孔率85%、膜厚100μm、膜表面平均孔径50nm、膜裏面平均孔径450nmと平均孔径20nm、空孔率85%、膜厚100μm、膜表面の平均孔径15nm、膜裏面平均孔径80nmの再生セルロース多孔性膜を47mm径(有効膜面積12.5cm)の濾過器(アドバンテック東洋(株)製)内に、平均孔径20nmの平膜の裏面上に直接平均孔径100nmの平膜の表面を重ねてセットした。濾過に共するタンパク質溶液として、1.0wt%ウシγグロブリン溶液を使用し、該フィルターを用いて、デッドエンド方式で定速濾過を行った。濾過条件は、濾過速度0.09ml/minで定速濾過し、濾過圧が1kgf/cmを超えた時点を終了とした。結果、濾過時間120分、濾過回収液量3.72ml、ウシγグロブリンの膜透過率は97.4%であった。An acetate membrane was prepared by a microphase separation method, immersed in a 0.1 N aqueous sodium hydroxide solution for 12 hours, and the resulting flat membrane was dehydrated and dried with acetone. Thus obtained average pore diameter of 100 nm, porosity of 85%, film thickness of 100 μm, membrane surface average pore diameter of 50 nm, membrane back surface average pore diameter of 450 nm and average pore diameter of 20 nm, porosity of 85%, film thickness of 100 μm, membrane surface A regenerated cellulose porous membrane having an average pore size of 15 nm and a membrane back surface average pore size of 80 nm in a 47 mm diameter (effective membrane area 12.5 cm 2 ) filter (manufactured by Advantech Toyo Co., Ltd.) The surface of a flat membrane having an average pore diameter of 100 nm was directly set on the top. A 1.0 wt% bovine γ globulin solution was used as a protein solution for filtration, and constant-rate filtration was performed by the dead end method using the filter. The filtration conditions were constant-rate filtration at a filtration rate of 0.09 ml / min, and the time when the filtration pressure exceeded 1 kgf / cm 2 was terminated. As a result, the filtration time was 120 minutes, the amount of filtrate collected was 3.72 ml, and the membrane permeability of bovine γ globulin was 97.4%.

実施例1と同様にセットした濾過器を平膜が地面と垂直になるよう置き、実施例1と同様のタンパク質溶液及び濾過条件下で定速濾過を行った。結果、濾過時間300分(圧力は1kgf/cmにまで達していなかった)、濾過回収液量22.53ml、ウシγグロブリンの膜透過率は97.3%であった。 A filter set in the same manner as in Example 1 was placed so that the flat membrane was perpendicular to the ground, and constant speed filtration was performed under the same protein solution and filtration conditions as in Example 1. As a result, the filtration time was 300 minutes (the pressure did not reach 1 kgf / cm 2 ), the filtrate collected liquid volume was 22.53 ml, and the membrane permeability of bovine γ globulin was 97.3%.

(比較例1)平均孔径100nmの平膜で濾過して1.0wt%ウシγグロブリン溶液を作製し、その45分後に平均孔径20nmの平膜で実施例1と同様の条件下で定速濾過を行った。結果、濾過時間100分、濾過回収液量4.31ml、ウシγグロブリンの膜透過率は1.5%であった。 (Comparative Example 1) Filtration through a flat membrane having an average pore diameter of 100 nm to prepare a 1.0 wt% bovine gamma globulin solution, and 45 minutes later, constant rate filtration with a flat membrane having an average pore diameter of 20 nm under the same conditions as in Example 1 Went. As a result, the filtration time was 100 minutes, the filtrate recovered liquid amount was 4.31 ml, and the membrane permeability of bovine γ globulin was 1.5%.

本発明は、タンパク質などの生理活性を持つ物質の分離、精製に利用できる。また、コロイド系を取り扱う工業においてコロイド粒子を含めて特定の微粒子を精製、分離する多層構造を持つ多段積多層膜として工業的プロセスに組み込むことができる。特に単位膜面積当たりの処理液量が大きいので、バイオ医薬品製造工程のみでなく、バイオリアクターと連結させて機能性食品の製造工程にも利用できる。 The present invention can be used for separation and purification of substances having physiological activity such as proteins. Moreover, in the industry which deals with a colloidal system, it can be integrated in an industrial process as a multistage multilayer film having a multilayer structure for purifying and separating specific fine particles including colloidal particles. In particular, since the amount of treatment liquid per unit membrane area is large, it can be used not only for biopharmaceutical production processes but also for production processes of functional foods connected to bioreactors.

Claims (3)

タンパク質を含む水溶液からタンパク質をろ過液として精製回収するろ過する膜において平均孔径が10nm以上1μm以下、空孔率が65%以上90%以下で膜厚が30μm以上で1mm以下の多層構造を持つ親水性多孔性平膜で、表裏面共に非円形状の孔で構成され膜表面と膜裏面との平均孔径比が1対3以上の膜の2枚以上を前段の膜の平均孔径が後段の膜の平均孔径以上となるように膜裏面に直接隣接する膜の膜表面を直接重ね合わせた多段積多層膜。A hydrophilic membrane having a multilayer structure in which an average pore size is 10 nm or more and 1 μm or less, a porosity is 65% or more and 90% or less, a film thickness is 30 μm or more and 1 mm or less in a filtration membrane that purifies and collects protein as a filtrate from an aqueous solution containing protein Porous porous membranes, which are composed of non-circular pores on both front and back surfaces, and the average pore size ratio of the membrane surface to the membrane back surface is 2 or more. A multi-layered multilayer film in which the film surfaces of films directly adjacent to the film back surface are directly overlapped so as to be equal to or larger than the average pore diameter. 請求項1において積層する平膜のすべてがミクロ相分離法で製膜された再生セルロース製平膜であることを特徴とする多段積多層膜。      The multi-layer multilayer film according to claim 1, wherein all of the flat films laminated are regenerated cellulose flat films formed by a microphase separation method. 請求項1あるいは2において隣接する2枚の平膜の平均孔径のが2以上で、8以下であり且つ隣接する膜については裏面と表面とが密着するように積層したことを特徴とする多段積多層膜。3. The multistage structure according to claim 1, wherein the ratio of the average pore diameter of two adjacent flat membranes is 2 or more and 8 or less, and the adjacent membranes are laminated so that the back surface and the surface are in close contact with each other. Stacked multilayer film.
JP2007267390A 2007-10-15 2007-10-15 Multi-layer multilayer flat membrane Expired - Fee Related JP5516835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267390A JP5516835B2 (en) 2007-10-15 2007-10-15 Multi-layer multilayer flat membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267390A JP5516835B2 (en) 2007-10-15 2007-10-15 Multi-layer multilayer flat membrane

Publications (2)

Publication Number Publication Date
JP2009095701A JP2009095701A (en) 2009-05-07
JP5516835B2 true JP5516835B2 (en) 2014-06-11

Family

ID=40699219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267390A Expired - Fee Related JP5516835B2 (en) 2007-10-15 2007-10-15 Multi-layer multilayer flat membrane

Country Status (1)

Country Link
JP (1) JP5516835B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000604A (en) * 2010-06-21 2012-01-05 Sepa Sigma Inc Rust prevention and rust prevention method for water supply pipe using pore dispersion apparatus
JP2012025704A (en) * 2010-07-26 2012-02-09 Sepa Sigma Inc Porous multilayered regenerated cellulose flat film for cosmetic sheet
JP7184687B2 (en) * 2019-03-22 2022-12-06 旭化成株式会社 Pore diffusion membrane separation module using non-woven fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889628A (en) * 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd Regenerated cellulose porous membrane
JP4779220B2 (en) * 2001-03-21 2011-09-28 東レ株式会社 Liquid filtration method, pigment dispersed color paste, transparent protective film forming material, alignment film material for liquid crystal display device, and resist for photolithography
JP3570713B2 (en) * 2001-11-06 2004-09-29 東洋濾紙株式会社 Multilayer filter for beer filtration
JP4803341B2 (en) * 2004-08-20 2011-10-26 征一 真鍋 Flat membrane pore diffusion separator
WO2007102427A1 (en) * 2006-03-02 2007-09-13 Sei-Ichi Manabe Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method

Also Published As

Publication number Publication date
JP2009095701A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US11612861B2 (en) Crossflow filtration unit for continuous diafiltration
CN101269298B (en) Membrane filtration method and device for polarization of concentration biomacromolecule with concentration
JP6522001B2 (en) Hollow fiber filtration membrane
Shibutani et al. Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives
JPH01148305A (en) High molecular porous hollow yarn and process for removing virus utilizing the same
CN105358238A (en) Multiple channel membranes
CN115487695A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
Schwartz et al. Introduction to tangential flow filtration for laboratory and process development applications
JP5516835B2 (en) Multi-layer multilayer flat membrane
KR101757859B1 (en) Dual-layer hollow fiber membrane containing nanoparticles and manufacturing method thereof
WO2009141965A1 (en) Filtration method
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
JP4076978B2 (en) Plasmid DNA purification
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JP2017087097A (en) Flow fractionation type pore diffusion membrane separation module for concentration
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP4803341B2 (en) Flat membrane pore diffusion separator
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP5397722B2 (en) A method for removing and concentrating a membrane separator of fine particles having a size of 15 nm or less.
JP2011131173A (en) Flat membrane set for filtration separation, module, and method for preserving the same
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JPH05329339A (en) Filtering apparatus
JP2009095702A (en) Membrane separation method based on pore diffusion and filtration
JP2009136744A (en) Hole diffusion-filtering module mounted with multistaged multilayered structure membrane
Sundaramoorthy et al. Studies on the minimisation of NOM fouling of MF/UF membranes with the help of a submerged “single” capillary membrane apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5516835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees