JP2012071058A - Automatic blood pressure measuring apparatus - Google Patents

Automatic blood pressure measuring apparatus Download PDF

Info

Publication number
JP2012071058A
JP2012071058A JP2010220019A JP2010220019A JP2012071058A JP 2012071058 A JP2012071058 A JP 2012071058A JP 2010220019 A JP2010220019 A JP 2010220019A JP 2010220019 A JP2010220019 A JP 2010220019A JP 2012071058 A JP2012071058 A JP 2012071058A
Authority
JP
Japan
Prior art keywords
value
bag
compression
pulse wave
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010220019A
Other languages
Japanese (ja)
Other versions
JP5584076B2 (en
Inventor
Shigehiro Ishizuka
繁廣 石塚
Hideo Nishibayashi
秀郎 西林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2010220019A priority Critical patent/JP5584076B2/en
Publication of JP2012071058A publication Critical patent/JP2012071058A/en
Application granted granted Critical
Publication of JP5584076B2 publication Critical patent/JP5584076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an automatic blood pressure measuring apparatus capable of obtaining accurate pulse waves by appropriately applying a compression pressure to an artery inside a part to be compressed and obtaining a highly accurate highest blood pressure value on the basis of the pulse waves.SOLUTION: A pressure band 12 includes expansion bags 22, 24 and 26 which are connected in the width direction and provided with independent air chambers for respectively compressing an upper arm 10. By successively calculating an amplitude ratio r23 which is a value in which the amplitude value A2 of pulse wave signals SM2 from the intermediate expansion bag 24 positioned more on the upstream side than the downstream side expansion bag 26 is divided by the amplitude value A3 of pulse wave signals SM3 from the downstream side expansion bag 26 positioned on the downstream side of the artery 16 inside the upper arm 10 among the expansion bags, and determining the highest blood pressure value SBP of a living body on the basis of the amplitude ratio r23, the accurate pulse wave signals SM are obtained by applying the compression pressure to the artery 16 in an equal pressure distribution from the respective expansion bags turned to the state of being independent of each other regarding a pressure fluctuation, and thus the highly accurate highest blood pressure value SBP is obtained.

Description

本発明は、腕、足首のような生体の肢体である被圧迫部位内の動脈から発生する脈波を検出するためにその被圧迫部位に巻き付けられる圧迫帯を備えた自動血圧測定装置に関するものである。   The present invention relates to an automatic blood pressure measurement device having a compression band wound around a compression site in order to detect a pulse wave generated from an artery in the compression site that is a limb of a living body such as an arm or an ankle. is there.

生体の被圧迫部位に巻き付けられる圧迫帯を備え、その圧迫帯の圧迫圧力値を変化させる過程でその圧迫帯内の圧力振動である脈波を逐次抽出し、その脈波の変化に基づいて前記生体の血圧値を決定する自動血圧測定装置が知られている。上記圧迫帯に備えられる膨張袋は、被圧迫部位の径に対して十分に大きい圧迫幅寸法を必要として比較的大きな容量のものであることから、被圧迫部位内の動脈の容量変化に応答して発生する圧力振動である脈波は微弱な信号となる傾向にあるため、測定精度を低下させる一因となっていた。   A compression band wound around the compressed part of the living body, and in the process of changing the compression pressure value of the compression band, pulse waves that are pressure oscillations in the compression band are sequentially extracted, and based on the change of the pulse wave There is known an automatic blood pressure measurement device that determines a blood pressure value of a living body. The inflatable bag provided in the compression band requires a sufficiently large compression width dimension with respect to the diameter of the compressed part and has a relatively large capacity, so that it responds to changes in the volume of the artery in the compressed part. The pulse wave, which is the pressure vibration generated in this way, tends to be a weak signal, which has been a factor in reducing the measurement accuracy.

これに対して、特許文献1に示されるように、動脈の容量変化を明確に検出するために、主膨張袋と比べて少容量の検出用膨張袋をその幅方向の全体が上記主膨張袋の内側の一部と重なるように設けるとともに、検出用膨張袋と主膨張袋との間に遮蔽板を設けた2層構造の圧迫帯が提案されている。これによれば、主膨張袋の一部による加圧が被圧迫部位へ直接に行われつつ主膨張袋の他部による加圧が検出用膨張袋を通して間接的に行われる。   On the other hand, as shown in Patent Document 1, in order to clearly detect a change in the volume of the artery, a detection expansion bag with a small volume compared to the main expansion bag is formed in the main expansion bag as a whole in the width direction. A two-layered compression band has been proposed in which it is provided so as to overlap with a part of the inside of the bag and a shielding plate is provided between the detection expansion bag and the main expansion bag. According to this, pressurization by the other part of the main inflation bag is indirectly performed through the detection inflation bag while pressurization by a part of the main inflation bag is directly performed on the pressed portion.

特開平05−269089号公報Japanese Patent Laid-Open No. 05-269089

しかし、上記特許文献1に示される従来の2層構造の圧迫帯を備える自動血圧測定装置によれば、生体の皮膚側に検出用膨張袋が位置していることにより主膨張袋の圧力が適正に動脈に加えられないので、正確な脈波が得られ難く、その脈波に基づいて決定される最高血圧値の精度が良くないという不都合があった。   However, according to the conventional automatic blood pressure measuring device having the two-layered compression band shown in Patent Document 1, the pressure of the main inflation bag is appropriate because the detection inflation bag is located on the skin side of the living body. Since it is not added to the artery, it is difficult to obtain an accurate pulse wave, and the accuracy of the maximum blood pressure value determined based on the pulse wave is not good.

本発明の目的とするところは、生体の被圧迫部位内の動脈を圧迫したときに得られる脈波に基づいて精度の高い最高血圧値を決定することができる自動血圧測定装置を提供することである。   An object of the present invention is to provide an automatic blood pressure measurement device capable of determining a highly accurate systolic blood pressure value based on a pulse wave obtained when an artery in a compressed part of a living body is compressed. is there.

本発明者は、以上の事情を背景として、独立して生体を圧迫できる3つの気室を有する3連カフを試作し、それら3つの気室から独立に得られるカフ脈波を比較するうち、カフ圧が高いうちは振幅の差が大きく異なっているが、カフ圧が生体の最高血圧値付近になるとカフ脈波相互間の振幅が類似してくることを見出した。本発明はかかる知見に基づいて為されたものである。   The present inventor made a trial production of a triple cuff having three air chambers capable of independently compressing a living body against the background described above, and compared cuff pulse waves obtained independently from these three air chambers. While the cuff pressure was high, the difference in amplitude was greatly different, but when the cuff pressure was close to the maximum blood pressure value of the living body, the amplitude between cuff pulse waves was found to be similar. The present invention has been made based on such findings.

すなわち、請求項1にかかる発明の要旨とするところは、(a) 生体の被圧迫部位に巻き付けられる圧迫帯を備え、その圧迫帯の圧迫圧力値を変化させる過程でその圧迫帯内の圧力振動である脈波を逐次抽出し、その脈波の変化に基づいて前記生体の血圧値を決定する自動血圧測定装置であって、(b) 前記圧迫帯は、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した気室を有する複数の膨張袋を有するものであり、(c) それら複数の膨張袋のうちの前記被圧迫部位内の動脈の下流側に位置する下流側膨張袋からの脈波の振幅値と、その下流側膨張袋よりも上流側に位置する所定の膨張袋からの脈波の振幅値との振幅比を逐次算出し、その振幅比に基づいて前記生体の最高血圧値を決定することにある。   That is, the gist of the invention according to claim 1 is that: (a) a pressure band wound around a compressed portion of a living body is provided, and pressure vibration in the compression band is changed in the process of changing the pressure value of the compression band. Is an automatic blood pressure measuring device that sequentially extracts a pulse wave and determines a blood pressure value of the living body based on a change in the pulse wave, and (b) the compression band is linked in the width direction to A plurality of inflatable bags each having an independent air chamber that compresses each of the compressed sites; and (c) a downstream inflation located downstream of the artery in the compressed site of the plurality of inflatable bags An amplitude ratio between the amplitude value of the pulse wave from the bag and the amplitude value of the pulse wave from a predetermined expansion bag located upstream of the downstream expansion bag is sequentially calculated, and the living body is calculated based on the amplitude ratio. There is to determine the systolic blood pressure value.

また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、(a) 前記振幅比は、前記所定の膨張袋からの脈波の振幅値を前記下流側膨張袋からの脈波の振幅値で除した値であり、(b) 昇圧させた前記圧迫帯の圧迫圧力値を降圧させる過程において、前記逐次算出される振幅比が予め設定された第1振幅比判定値よりも小さくなったときの前記圧迫帯の圧迫圧力値を、前記生体の最高血圧値として決定することにある。   The gist of the invention according to claim 2 is that, in the invention according to claim 1, (a) the amplitude ratio is obtained by calculating an amplitude value of a pulse wave from the predetermined expansion bag from the downstream expansion bag. (B) a first amplitude ratio determination value in which the sequentially calculated amplitude ratio is set in advance in the process of decreasing the compression pressure value of the compressed compression band. The compression pressure value of the compression band when the pressure becomes smaller is determined as the maximum blood pressure value of the living body.

また、請求項3にかかる発明の要旨とするところは、請求項1または2にかかる発明において、前記圧迫帯は、前記被圧迫部位の長手方向に所定間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および前記下流側膨張袋と、前記被圧迫部位の長手方向において連なるように前記上流側膨張袋および下流側膨張袋の間に配置され、それら上流側膨張袋および下流側膨張袋とは独立した気室を有する中間膨張袋とを有するものであることにある。   Further, the gist of the invention according to claim 3 is that, in the invention according to claim 1 or 2, the compression band is formed of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the pressed portion. A pair of upstream inflatable bags and downstream inflatable bags arranged between the upstream inflatable bag and the downstream inflatable bag so as to be continuous in the longitudinal direction of the pressed portion, and the upstream inflatable bag and the downstream side The expansion bag has an intermediate expansion bag having an independent air chamber.

また、請求項4にかかる発明の要旨とするところは、請求項3にかかる発明において、昇圧させた前記圧迫帯の圧迫圧力値を、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋により前記被圧迫部位を同じ圧力で圧迫する状態で降圧させる過程において、前記上流側膨張袋からの脈波の振幅値を前記中間膨張袋からの脈波の振幅値で除した値が予め設定された第2振幅比判定値よりも小さくなり、且つ前記中間膨張袋からの脈波の振幅値を前記下流側膨張袋からの脈波の振幅値で除した値が前記第1振幅比判定値よりも小さくなったときの前記中間膨張袋の圧迫圧力値を、前記生体の最高血圧値として決定することにある。   According to a fourth aspect of the present invention, there is provided the gist of the invention according to the third aspect, wherein the pressure value of the pressure band that has been boosted is set to the upstream expansion bag, the intermediate expansion bag, and the downstream side. A value obtained by dividing the amplitude value of the pulse wave from the upstream inflatable bag by the amplitude value of the pulse wave from the intermediate inflating bag in the process of lowering the pressure to be pressed with the same pressure by the expansion bag is preliminarily obtained. A value obtained by dividing the amplitude value of the pulse wave from the intermediate expansion bag by the amplitude value of the pulse wave from the downstream expansion bag is smaller than the set second amplitude ratio determination value. The compression pressure value of the intermediate expansion bag when the value becomes smaller than the value is determined as the maximum blood pressure value of the living body.

また、請求項5にかかる発明の要旨とするところは、請求項1乃至4のいずれか1つにかかる発明において、(a) 前記複数の膨張袋内の圧力を検出する圧力センサを備え、(b) 前記被圧迫部位に巻き付けられた前記圧迫帯の複数の膨張袋の圧迫圧力値をその被圧迫部位内の動脈を止血するのに十分な値まで昇圧させた後、その圧迫帯の圧迫圧力値を降圧させる過程において、所定量の除速降圧毎に圧迫帯の圧迫圧力値を所定時間保持し、その所定時間内に前記圧迫帯内の圧力振動である脈波を検出することにある。   A gist of the invention according to claim 5 is the invention according to any one of claims 1 to 4, further comprising: (a) a pressure sensor that detects pressures in the plurality of inflatable bags; b) After increasing the compression pressure value of the plurality of inflatable bags of the compression band wound around the compression site to a value sufficient to stop the artery in the compression site, the compression pressure of the compression zone In the process of decreasing the value, the compression pressure value of the compression band is held for a predetermined time every predetermined amount of deceleration pressure reduction, and the pulse wave that is the pressure vibration in the compression band is detected within the predetermined time.

請求項1にかかる発明の自動血圧測定装置によれば、圧迫帯は、幅方向に連ねられて生体の被圧迫部位を各々圧迫する独立した気室を有する複数の膨張袋を有するものであり、それら複数の膨張袋のうちの前記被圧迫部位内の動脈の下流側に位置する下流側膨張袋からの脈波の振幅値と、その下流側膨張袋よりも上流側に位置する所定の膨張袋からの脈波の振幅値との振幅比を逐次算出し、その振幅比に基づいて生体の最高血圧値を決定することから、相互間が圧力変動に関して独立状態とされた複数の膨張袋から生体の被圧迫部位内の動脈に圧迫圧力を均等な圧力分布で加えることで各々の膨張袋から正確な脈波がそれぞれ得られるので、それら脈波間の振幅比に基づいて精度の高い最高血圧値が得られる。   According to the automatic blood pressure measurement device of the invention according to claim 1, the compression band has a plurality of inflatable bags having independent air chambers that are linked in the width direction and respectively compress the compressed portion of the living body, Among the plurality of inflation bags, the amplitude value of the pulse wave from the downstream inflation bag located on the downstream side of the artery in the compressed site, and a predetermined inflation bag located on the upstream side of the downstream inflation bag The amplitude ratio with the amplitude value of the pulse wave from is sequentially calculated, and the systolic blood pressure value of the living body is determined based on the amplitude ratio. Accurate pulse waves can be obtained from each inflatable bag by applying compression pressure to the artery in the compressed region with an even pressure distribution. Therefore, a highly accurate maximum blood pressure value can be obtained based on the amplitude ratio between the pulse waves. can get.

また、請求項2にかかる発明の自動血圧測定装置によれば、前記振幅比は、前記所定の膨張袋からの脈波の振幅値を前記下流側膨張袋からの脈波の振幅値で除した値であり、昇圧させた前記圧迫帯の圧迫圧力値を降圧させる過程において、前記逐次算出される振幅比が予め設定された第1振幅比判定値よりも小さくなったときの圧迫帯の圧迫圧力値を、生体の最高血圧値として決定する。そのため、被圧迫部位内の動脈の血流が所定の膨張袋下は通るが下流側膨張袋下は通らない状態と、被圧迫部位内の動脈の血流が所定の膨張袋下および下流側膨張袋下を共に通る状態とを区別し、被圧迫部位内の動脈の血流が所定の膨張袋下および下流側膨張袋下を共に通る状態になったときの圧迫帯の圧迫圧力値を生体の最高血圧値として決定するので、精度の高い最高血圧値が得られる。   According to the automatic blood pressure measurement device of the invention of claim 2, the amplitude ratio is obtained by dividing the amplitude value of the pulse wave from the predetermined inflation bag by the amplitude value of the pulse wave from the downstream inflation bag. Compression pressure of the compression band when the sequentially calculated amplitude ratio becomes smaller than a preset first amplitude ratio determination value in the process of decreasing the compression pressure value of the compression band that has been increased The value is determined as the maximum blood pressure value of the living body. Therefore, the state where the blood flow of the artery in the compressed region passes under the predetermined inflation bag but does not pass under the downstream inflation bag, and the blood flow of the artery in the compressed region is expanded under the predetermined inflation bag and downstream Distinguishing between the condition that passes under the bag and the blood pressure of the artery in the compressed area when passing through the specified inflation bag and the downstream inflation bag together. Since it is determined as the systolic blood pressure value, a highly accurate systolic blood pressure value is obtained.

また、請求項3にかかる発明の自動血圧測定装置によれば、前記圧迫帯は、被圧迫部位の長手方向に所定間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および前記下流側膨張袋と、被圧迫部位の長手方向において連なるように上記上流側膨張袋および下流側膨張袋の間に配置され、それら上流側膨張袋および下流側膨張袋とは独立した気室を有する中間膨張袋とを有するものであることから、被圧迫部位の長手方向において連なり相互間が圧力変動に関して独立状態とされた上流側膨張袋、中間膨張袋、および下流側膨張袋から生体の被圧迫部位内の動脈に圧迫圧力が均等な圧力分布で加えられることで正確な脈波が得られるので、それら脈波間の振幅比に基づいて精度の高い最高血圧値が得られる。   According to the automatic blood pressure measurement device of the invention according to claim 3, the compression band includes a pair of upstream inflatable bags made of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the pressed portion, and the A downstream inflation bag is disposed between the upstream inflation bag and the downstream inflation bag so as to be continuous in the longitudinal direction of the compressed portion, and has an air chamber independent of the upstream inflation bag and the downstream inflation bag. Since it has an intermediate inflatable bag, it is compressed in the living body from the upstream inflatable bag, the intermediate inflatable bag, and the downstream inflatable bag that are connected in the longitudinal direction of the compressed portion and are in an independent state with respect to pressure fluctuation. An accurate pulse wave can be obtained by applying a compression pressure to the artery in the site with a uniform pressure distribution, so that a highly accurate maximum blood pressure value can be obtained based on the amplitude ratio between the pulse waves.

また、請求項4にかかる発明の自動血圧測定装置によれば、昇圧させた前記圧迫帯の圧迫圧力値を、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋により被圧迫部位を同じ圧力で圧迫する状態で降圧させる過程において、上記上流側膨張袋からの脈波の振幅値を上記中間膨張袋からの脈波の振幅値で除した値が予め設定された第2振幅比判定値よりも小さくなり、且つ上記中間膨張袋からの脈波の振幅値を上記下流側膨張袋からの脈波の振幅値で除した値が前記第1振幅比判定値よりも小さくなったときの中間膨張袋の圧迫圧力値を、前記生体の最高血圧値として決定する。そのため、被圧迫部位内の動脈の血流が上流側膨張袋下は通るが中間膨張袋下および下流側膨張袋下は通らない状態と、被圧迫部位内の動脈の血流が上流側膨張袋下、中間膨張袋下、および下流側膨張袋下を共に通る状態とを区別し、被圧迫部位内の動脈の血流が上流側膨張袋下、中間膨張袋下、および下流側膨張袋下を共に通る状態になったときに幅方向において均等な圧力分布の中間膨張袋の圧迫圧力値を、生体の最高血圧値として決定するので、精度の高い最高血圧値が得られる。   According to the automatic blood pressure measurement device of the invention according to claim 4, the compressed pressure value of the compressed compression band is compressed by the upstream inflation bag, the intermediate inflation bag, and the downstream inflation bag. In the process of reducing the pressure in a state where the pressure is compressed with the same pressure, a value obtained by dividing the amplitude value of the pulse wave from the upstream inflation bag by the amplitude value of the pulse wave from the intermediate inflation bag is a preset second amplitude ratio. When the value obtained by dividing the amplitude value of the pulse wave from the intermediate expansion bag by the amplitude value of the pulse wave from the downstream expansion bag is smaller than the first amplitude ratio determination value. The compression pressure value of the intermediate expansion bag is determined as the maximum blood pressure value of the living body. Therefore, the blood flow of the artery in the compressed site passes under the upstream inflation bag but does not pass under the intermediate inflation bag and the downstream inflation bag, and the blood flow of the artery in the compressed site is upstream of the inflation bag. The blood flow of the artery in the compressed site is below the upstream inflation bag, below the intermediate inflation bag, and below the downstream inflation bag. Since the compression pressure value of the intermediate inflatable bag having a uniform pressure distribution in the width direction when they pass together is determined as the maximum blood pressure value of the living body, a highly accurate maximum blood pressure value can be obtained.

また、請求項5にかかる発明の自動血圧測定装置によれば、複数の膨張袋内の圧力を検出する圧力センサを備え、被圧迫部位に巻き付けられた圧迫帯の複数の膨張袋の圧迫圧力値をその被圧迫部位内の動脈を止血するのに十分な値まで昇圧させた後、その圧迫帯の圧迫圧力値を降圧させる過程において、所定量の除速降圧毎に圧迫帯の圧迫圧力値を所定時間保持し、その所定時間内に前記圧迫帯内の圧力振動である脈波を検出することから、圧迫圧力値が一定であるときに脈波が検出されるので、正確な脈波を得ることができる。また、上記所定時間内に複数の脈波を検出し、それら複数の脈波の平均値に基づいて最高血圧値が決定される場合には、より精度の高い最高血圧値が得られる。   In addition, according to the automatic blood pressure measurement device of the invention according to claim 5, the pressure sensor is provided with a pressure sensor for detecting the pressure in the plurality of inflatable bags, and the compression pressure values of the plurality of inflatable bags in the compression band wound around the compressed portion. In the process of increasing the pressure to a value sufficient for hemostasis of the artery in the compression site, and reducing the compression pressure value of the compression band, the compression pressure value of the compression band Since a pulse wave that is a pressure oscillation in the compression band is detected for a predetermined time and a pulse wave is detected when the compression pressure value is constant, an accurate pulse wave is obtained. be able to. In addition, when a plurality of pulse waves are detected within the predetermined time and the systolic blood pressure value is determined based on the average value of the plurality of pulse waves, a more accurate systolic blood pressure value is obtained.

生体の被圧迫部位である上腕に巻き付けられた上腕用の圧迫帯を備えた本発明の一例の自動血圧測定装置を示している。1 shows an automatic blood pressure measurement device according to an example of the present invention, which includes an upper arm compression band wound around an upper arm that is a compressed portion of a living body. 図1の圧迫帯の外周面を示す一部を切り欠いた図である。It is the figure which notched a part which shows the outer peripheral surface of the compression belt | band | zone of FIG. 図2の圧迫帯内に備えられた上流側膨張袋、中間膨張袋、および下流側膨張袋を示す平面図である。It is a top view which shows the upstream expansion bag, the intermediate | middle expansion bag, and the downstream expansion bag which were provided in the compression belt | band | zone of FIG. 図3の上流側膨張袋、中間膨張袋、および下流側膨張袋を幅方向に切断して示す断面図である。It is sectional drawing which cut | disconnects and shows the upstream expansion bag of FIG. 3, an intermediate | middle expansion bag, and a downstream expansion bag in the width direction. 図1の電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。It is a functional block diagram for demonstrating the principal part of the control function with which the electronic control apparatus of FIG. 1 was equipped. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が151mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in a process in which the compression pressure values of the plurality of inflation bags are respectively gradually reduced by the cuff pressure control means of FIG. 5, and the compression pressure value is 151 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が135mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of expansion bags generated in the process of gradually decreasing the pressure values of the plurality of expansion bags by the cuff pressure control means of FIG. 5, wherein the compression pressure value is 135 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が127mmHgであるときのものである。FIG. 6 is a view showing pulse wave signals from the plurality of inflation bags generated in the process of gradually decreasing the pressure values of the plurality of inflation bags by the cuff pressure control means of FIG. 5, and the compression pressure value is 127 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が110mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in a process in which the compression pressure values of the plurality of inflation bags are respectively gradually reduced by the cuff pressure control means of FIG. 5, and the compression pressure value is 110 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が86mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in the process of gradually decreasing the pressure values of the plurality of inflation bags by the cuff pressure control means of FIG. 5, wherein the compression pressure value is 86 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が72mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in the process in which the compression pressure values of the plurality of inflation bags are gradually reduced by the cuff pressure control means of FIG. 5, and the compression pressure value is 72 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が58mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in the process of gradually decreasing the pressure values of the plurality of inflation bags by the cuff pressure control means of FIG. 5, wherein the compression pressure value is 58 mmHg. It is a certain time. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において発生する上記複数の膨張袋からの脈波信号を示す図であり、上記圧迫圧力値が36mmHgであるときのものである。FIG. 6 is a diagram showing pulse wave signals from the plurality of inflation bags generated in the process of gradually decreasing the pressure values of the plurality of inflation bags by the cuff pressure control means of FIG. 5, and the compression pressure value is 36 mmHg. It is a certain time. 時間軸と圧迫圧力値軸との二次元座標内に示される複数の膨張袋からの脈波信号の立ち上がり点、およびそれら立ち上がり点間の時間差をそれぞれ示す図である。It is a figure which each shows the rising point of the pulse wave signal from the some expansion bag shown in the two-dimensional coordinate of a time axis and a compression pressure value axis, and the time difference between these rising points. 圧迫帯による圧迫下の動脈における脈波伝播速度と圧迫圧力値との関係を示す図である。It is a figure which shows the relationship between the pulse-wave propagation speed and compression pressure value in the artery under the compression by a compression zone. 下流側膨張袋および中間膨張袋からの脈波信号間の時間差と、圧迫帯の圧迫圧力値との関係を示す図である。It is a figure which shows the relationship between the time difference between the pulse wave signals from a downstream expansion bag and an intermediate expansion bag, and the compression pressure value of a compression zone. 図5の電子制御装置の制御作動の要部を説明するフローチャートの一方である。It is one side of the flowchart explaining the principal part of control action of the electronic controller of FIG. 図5の電子制御装置の制御作動の要部を説明するフローチャートの他方である。It is the other of the flowchart explaining the principal part of the control action of the electronic controller of FIG. 図5の電子制御装置の制御作動の要部を説明するタイムチャートである。It is a time chart explaining the principal part of control action of the electronic controller of FIG. 図5のカフ圧制御手段により複数の膨張袋の圧迫圧力値がそれぞれ徐速降圧させられる過程において抽出された上記複数の膨張袋からの脈波信号の振幅値を結ぶ包絡線(エンベロープ)を示す図である。5 shows an envelope (envelope) connecting the amplitude values of pulse wave signals from the plurality of inflation bags extracted in the process of gradually decreasing the pressure values of the plurality of inflation bags by the cuff pressure control means of FIG. FIG.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、被圧迫部位である生体の肢体たとえば上腕10に巻き付けられた上腕用の圧迫帯12を備えた本発明の一例の自動血圧測定装置14を示している。この自動血圧測定装置14は、上腕10内の動脈16を止血するのに十分な値まで昇圧させた圧迫帯12の圧迫圧を降圧させる過程において、動脈16の容積変化に応答して発生する圧迫帯12内の圧力振動である脈波(後述の図6〜図13参照)を逐次抽出し、その脈波の変化に基づいてその生体の最高血圧値SBPおよび最低血圧値DBPを測定するものである。   FIG. 1 shows an automatic blood pressure measurement device 14 according to an example of the present invention, which includes an upper arm compression band 12 wound around a living body limb, for example, an upper arm 10, which is a pressed part. This automatic blood pressure measurement device 14 is a pressure generated in response to a change in the volume of the artery 16 in the process of decreasing the compression pressure of the compression band 12 that has been increased to a value sufficient to stop the artery 16 in the upper arm 10. A pulse wave (see FIGS. 6 to 13 to be described later) that is pressure oscillation in the band 12 is sequentially extracted, and based on the change of the pulse wave, the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body are measured. is there.

図2は圧迫帯12の外周面を示す一部を切り欠いた図である。図2に示すように、圧迫帯12は、PVC等の合成樹脂により裏面が相互にラミネートされた合成樹脂繊維製の外周側面不織布20aおよび図示しない内周側不織布から成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、たとえば軟質ポリ塩化ビニールシートなどの可撓性シートから構成されて独立して上腕10を圧迫可能な上流側膨張袋22、中間膨張袋24、および下流側膨張袋26とを備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に前記内周側不織布の端部に取り付けられた図示しない起毛パイルが着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。上腕10に装着された状態においては、下流側膨張袋26は上流側膨張袋22および中間膨張袋24よりも上腕10内の動脈16の下流側に位置させられる。また、中間膨張袋24は下流側膨張袋26よりも上流側に位置させられ、上流側膨張袋22は下流側膨張袋26および中間膨張袋24よりも上流側に位置させられる。上流側膨張袋22、中間膨張袋24、および下流側膨張袋26は、幅方向に連ねられて前記上腕10を各々圧迫する独立した気室をそれぞれ有するとともに、管接続用コネクタ32、34、および36を外周面側に備えている。それら管接続用コネクタ32、34、および36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。   FIG. 2 is a partially cutaway view showing the outer peripheral surface of the compression band 12. As shown in FIG. 2, the compression band 12 includes a belt-shaped outer bag 20 made of a synthetic resin fiber outer circumferential side nonwoven fabric 20 a and a inner circumferential side nonwoven fabric (not shown) whose back surfaces are laminated with a synthetic resin such as PVC. An upstream inflatable bag 22, an intermediate inflatable bag 24, which are sequentially accommodated in the width direction within the belt-like outer bag 20 and are made of a flexible sheet such as a soft polyvinyl chloride sheet and can independently press the upper arm 10. A raised pile (not shown) attached to the end of the inner peripheral nonwoven fabric is detachably bonded to a hook and loop fastener 28 attached to the end of the outer peripheral side nonwoven fabric 20a. The upper arm 10 is detachably mounted. When attached to the upper arm 10, the downstream inflation bag 26 is positioned on the downstream side of the artery 16 in the upper arm 10 with respect to the upstream inflation bag 22 and the intermediate inflation bag 24. Further, the intermediate expansion bag 24 is positioned upstream of the downstream expansion bag 26, and the upstream expansion bag 22 is positioned upstream of the downstream expansion bag 26 and the intermediate expansion bag 24. The upstream inflatable bag 22, the intermediate inflatable bag 24, and the downstream inflatable bag 26 have independent air chambers that are connected in the width direction and press the upper arm 10 respectively, and have pipe connecting connectors 32, 34, and 36 is provided on the outer peripheral surface side. The pipe connecting connectors 32, 34, and 36 are exposed to the outer peripheral surface of the compression band 12 through the outer peripheral side nonwoven fabric 20a.

図3は圧迫帯12内に備えられた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26を示す平面図であり、図4はそれらを幅方向すなわち図3の矢印a方向に切断した断面図である。上流側膨張袋22、中流側膨張袋24、および下流側膨張袋26は、それらにより圧迫された動脈16の容積変化に応答して発生する圧力振動である脈波を検出するためのものであり、それぞれ長手状を成している。上流側膨張袋22および下流側膨張袋26は中間膨張袋24の両側に隣接した状態で配置されている。また、中間膨張袋24は上流側膨張袋22および下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。なお、圧迫帯12が前記上腕10に巻き付けられた状態においては、上流側膨張袋22および下流側膨張袋26は上記上腕10の長手方向に所定間隔を隔てて位置させられ、また、中間膨張袋24は上記上腕10の長手方向において連なるように上記上流側膨張袋22および下流側膨張袋26の間に配置させられる。   3 is a plan view showing the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 provided in the compression band 12, and FIG. 4 shows them in the width direction, that is, in the direction of arrow a in FIG. It is sectional drawing cut | disconnected. The upstream expansion bag 22, the middle flow expansion bag 24, and the downstream expansion bag 26 are for detecting a pulse wave that is pressure vibration generated in response to a volume change of the artery 16 compressed by them. , Each has a longitudinal shape. The upstream expansion bag 22 and the downstream expansion bag 26 are arranged adjacent to both sides of the intermediate expansion bag 24. Further, the intermediate expansion bag 24 is disposed at the center in the width direction of the compression band 12 while being sandwiched between the upstream expansion bag 22 and the downstream expansion bag 26. In the state where the compression band 12 is wound around the upper arm 10, the upstream expansion bag 22 and the downstream expansion bag 26 are positioned at a predetermined interval in the longitudinal direction of the upper arm 10, and the intermediate expansion bag 24 is arranged between the upstream expansion bag 22 and the downstream expansion bag 26 so as to be continuous in the longitudinal direction of the upper arm 10.

中間膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、中間膨張袋24の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24fおよび24fがそれぞれ形成されている。そして、上流側膨張袋22および下流側膨張袋26の中間膨張袋24に隣接する側の隣接側端部22aおよび26aが上記一対の折込溝24fおよび24f内に差し入れられて配置されるようになっている。これにより、中間膨張袋24の両端部と上流側膨張袋22の隣接側端部22aおよび下流側膨張袋26の隣接側端部26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26が等圧で上腕10を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。   The intermediate inflatable bag 24 has side edges of a so-called gusset structure on both sides. That is, at both ends in the longitudinal direction of the upper arm 10 of the intermediate inflatable bag 24, a pair of folding grooves 24f and 24f made of a flexible sheet folded in a direction approaching each other so as to become closer to each other are respectively provided. Is formed. The adjacent end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 adjacent to the intermediate expansion bag 24 are inserted into the pair of folding grooves 24f and 24f. ing. Thereby, since both ends of the intermediate expansion bag 24 and the adjacent side end 22a of the upstream side expansion bag 22 and the adjacent side end 26a of the downstream side expansion bag 26 overlap each other, that is, an overlap structure, When the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 press the upper arm 10 with equal pressure, a uniform pressure distribution is obtained even in the vicinity of the boundary.

上流側膨張袋22および下流側膨張袋26も、所謂マチ構造の側縁部を中間膨張袋24とは反対側の端部22bおよび26bに備えている。すなわち、上流側膨張袋22および下流側膨張袋26の中間膨張袋24とは反対側の端部22bおよび26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fおよび26fがそれぞれ形成されている。それら折込溝22fおよび26fを構成するシートは、幅方向に飛び出ないように、上流側膨張袋22および下流側膨張袋26内に配置された貫通穴を備える接続シート38、40を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。これにより、上流側膨張袋22および下流側膨張袋26の端部22bおよび26bにおいても前記上腕10の動脈16に対する圧迫圧が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、中間膨張袋24、および下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるために、中間膨張袋24の両端部24aおよび24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22および下流側膨張袋26の中間膨張袋24とは反対側の端部22bおよび26bが所謂マチ構造の側縁部とされている。   The upstream inflatable bag 22 and the downstream inflatable bag 26 also have side edges of a so-called gusset structure at the end portions 22 b and 26 b opposite to the intermediate inflatable bag 24. That is, the end portions 22b and 26b on the opposite side of the intermediate expansion bag 24 of the upstream expansion bag 22 and the downstream expansion bag 26 are flexibly folded in a direction approaching each other so as to become deeper as they approach each other. Folding grooves 22f and 26f made of a conductive sheet are respectively formed. The sheets constituting the folding grooves 22f and 26f are opposite to each other via connection sheets 38 and 40 having through holes arranged in the upstream expansion bag 22 and the downstream expansion bag 26 so as not to protrude in the width direction. It is connected to the side portion, that is, the portion on the intermediate expansion bag 24 side. As a result, the compression pressure on the artery 16 of the upper arm 10 can be obtained in the end portions 22b and 26b of the upstream expansion bag 22 and the downstream expansion bag 26 in the same manner as the other portions. The compression width is equivalent to the width dimension. The width direction of the compression band 12 is about 12 cm, and since the three upstream expansion bags 22, the intermediate expansion bag 24, and the downstream expansion bag 26 are arranged in the width direction, each is substantially 4 cm. It must be a width dimension of about. In order to generate a sufficient compression function even with such a narrow width dimension, both end portions 24a and 24b of the intermediate expansion bag 24 and adjacent end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 are used. And end portions 22b and 26b of the upstream side expansion bag 22 and the downstream side expansion bag 26 opposite to the intermediate expansion bag 24 are side edges of a so-called gusset structure. Has been.

上流側膨張袋22および下流側膨張袋26の中間膨張袋24側の端部22aおよび26aと、それが差し入れられている一対の折込溝24fおよび24fの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42がそれぞれ介在させられている。この遮蔽部材42は、上流側膨張袋22および下流側膨張袋26、或いは中間膨張袋24と同様の長さ寸法を備えている。本実施例では、図3、図4に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、および、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間に、長手状の遮蔽部材42がそれぞれ介在させられているが、内周側隙間にも介在させられてもよい。内周側隙間に比較して外周側隙間の方が遮蔽効果が大きいので、少なくとも外周側隙間に設けられればよい。   Between the end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 on the intermediate expansion bag 24 side, and the inner wall surfaces of the pair of folding grooves 24f and 24f into which they are inserted, that is, the opposite groove side surfaces In each, a longitudinal shielding member 42 having rigidity anisotropy in which the bending rigidity in the width direction of the compression band 12 is higher than the bending rigidity in the longitudinal direction of the compression band 12 is interposed. The shielding member 42 has the same length as the upstream expansion bag 22 and the downstream expansion bag 26 or the intermediate expansion bag 24. In this embodiment, as shown in FIGS. 3 and 4, the outer peripheral side gap among the gaps between the end 22 a of the upstream inflatable bag 22 and the folding groove 24 f into which it is inserted, and the downstream side Longitudinal shielding members 42 are interposed in the outer peripheral gaps among the gaps between the end portions 26a of the side expansion bags 26 and the folding grooves 24f into which the side expansion bags 26 are inserted. It may be interposed also in the gap. Since the outer circumferential side gap has a larger shielding effect than the inner circumferential side gap, it is sufficient to be provided at least in the outer circumferential side gap.

上記遮蔽部材42は、上腕10の長手方向すなわち圧迫帯12の幅方向に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯12の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。上記遮蔽部材42は、上流側膨張袋22および下流側膨張袋26の中間膨張袋24側の端部22aおよび26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。   The shielding member 42 includes a plurality of resin-made flexible hollow tubes 44 parallel to the longitudinal direction of the upper arm 10, that is, the width direction of the compression band 12, and the circumferential direction of the upper arm 10, that is, the compression band 12. The flexible hollow tubes 44 are connected to each other directly by molding or bonding, or indirectly through another member such as a flexible sheet such as an adhesive tape. Is configured. The shielding member 42 is latched by a plurality of latching sheets 46 provided at a plurality of positions on the outer peripheral side of the end portions 22a and 26a of the upstream inflation bag 22 and the downstream inflation bag 26 on the intermediate inflation bag 24 side. Yes.

図1に戻って、自動血圧測定装置14においては、空気ポンプ50、急速排気弁52、および排気制御弁54が主配管56にそれぞれ接続されている。その主配管56からは、上流側膨張袋22に接続された第1分岐管58、中間膨張袋24に接続された第2分岐管62、および下流側膨張袋26に接続された第3分岐管64がそれぞれ分岐させられている。上記第1分岐管58は、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を直列に備えている。また、上記主配管56は、空気ポンプ50、急速排気弁52、および排気制御弁54と、上記各分岐管との間を直接開閉するための第2開閉弁E2を直列に備えている。また、上記第3分岐管64は、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を直列に備えている。そして、上流側膨張袋22内の圧力値を検出するための第1圧力センサT1が第1分岐管58に接続され、中間膨張袋24内の圧力値を検出するための第2圧力センサT2が第2分岐管62に接続され、下流側膨張袋26内の圧力値を検出するための第3圧力センサT3が第3分岐管64に接続されている。   Returning to FIG. 1, in the automatic blood pressure measurement device 14, an air pump 50, a quick exhaust valve 52, and an exhaust control valve 54 are connected to the main pipe 56. From the main pipe 56, a first branch pipe 58 connected to the upstream expansion bag 22, a second branch pipe 62 connected to the intermediate expansion bag 24, and a third branch pipe connected to the downstream expansion bag 26. 64 is branched. The first branch pipe 58 includes a first on-off valve E1 in series for directly opening and closing between the air pump 50 and the upstream expansion bag 22. The main pipe 56 includes a second open / close valve E2 in series for directly opening and closing the air pump 50, the quick exhaust valve 52, the exhaust control valve 54, and the branch pipes. The third branch pipe 64 includes a third on-off valve E3 in series for directly opening and closing the space between the air pump 50 and the downstream expansion bag 26. A first pressure sensor T1 for detecting the pressure value in the upstream expansion bag 22 is connected to the first branch pipe 58, and a second pressure sensor T2 for detecting the pressure value in the intermediate expansion bag 24 is provided. A third pressure sensor T 3 connected to the second branch pipe 62 and detecting the pressure value in the downstream expansion bag 26 is connected to the third branch pipe 64.

上記第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3から電子制御装置70には、上流側膨張袋22内の圧力値すなわち上流側膨張袋22の圧迫圧力値PC1を示す出力信号、中間膨張袋24内の圧力値すなわち中間膨張袋24の圧迫圧力値PC2を示す出力信号、および下流側膨張袋26内の圧力値すなわち下流側膨張袋26の圧迫圧力値PC3を示す出力信号がそれぞれ供給される。電子制御装置70は、CPU72、RAM74、ROM76、および図示しないI/Oポートなどを含む所謂マイクロコンピュータである。この電子制御装置70は、CPU72がRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、電動式の空気ポンプ50、急速排気弁52、排気制御弁54、第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3をそれぞれ制御することにより、膨張袋22、24、および26にそれぞれ圧迫された上腕10の動脈16の容積変化に応答してそれぞれ発生する膨張袋22、24、および26内の圧力振動である脈波を示す脈波信号SM1、SM2、およびSM3(後述の図6〜図13参照)をそれぞれ採取する。また、電子制御装置70は、それら脈波信号SM1、SM2、およびSM3に基づいて前記生体の最高血圧値SBPおよび最低血圧値DBPを算出し、表示装置78にその演算結果である測定値を表示させる。この電子制御装置70には、上記第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3からの出力信号に加え、血圧測定スタートセンサ80からの出力信号が供給される。上記血圧測定スタートセンサ80は、血圧測定開始の合図となる信号を出力するものであり、例えば図示しない起動操作装置が操作されることで上記信号を出力するようになっている。   From the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3, an output indicating the pressure value in the upstream expansion bag 22, that is, the compression pressure value PC1 of the upstream expansion bag 22, is output to the electronic control unit 70. Output signal indicating the pressure value in the intermediate expansion bag 24, that is, the compression pressure value PC2 of the intermediate expansion bag 24, and output signal indicating the pressure value in the downstream expansion bag 26, that is, the compression pressure value PC3 of the downstream expansion bag 26. Are supplied respectively. The electronic control unit 70 is a so-called microcomputer including a CPU 72, a RAM 74, a ROM 76, an I / O port (not shown), and the like. In the electronic control unit 70, the CPU 72 processes input signals in accordance with a program stored in the ROM 76 in advance using the storage function of the RAM 74, and the electric air pump 50, the quick exhaust valve 52, the exhaust control valve 54, By controlling the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3, respectively, in response to the volume change of the artery 16 of the upper arm 10 pressed against the expansion bags 22, 24, and 26, respectively. Pulse wave signals SM1, SM2, and SM3 (see FIGS. 6 to 13 described later) indicating pulse waves that are pressure vibrations in the generated expansion bags 22, 24, and 26 are collected. In addition, the electronic control unit 70 calculates the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body based on the pulse wave signals SM1, SM2, and SM3, and displays the measurement value that is the calculation result on the display device 78. Let In addition to the output signals from the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3, the electronic control device 70 is supplied with an output signal from the blood pressure measurement start sensor 80. The blood pressure measurement start sensor 80 outputs a signal serving as a cue for the start of blood pressure measurement. For example, the signal is output when an activation operation device (not shown) is operated.

図5は、電子制御装置70に備えられた制御機能の要部を説明するための機能ブロック線図である。図5において、カフ圧制御手段82は、血圧測定開始の合図となる信号が血圧測定スタートセンサ80から供給された場合に、空気ポンプ50、急速排気弁52、排気制御弁54、第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3をそれぞれ制御することにより、膨張袋22、24、および26による上腕10の動脈16への圧迫圧力値PCをその動脈16における最高血圧値SBPよりも充分に高い値に予め設定された昇圧目標圧力値PCM(たとえば180mmHg)まで同時に急速に昇圧する。例えば、中間膨張袋24の圧迫圧力値PC2が上記昇圧目標圧力値PCM以上となるまで各膨張袋を昇圧する。続いて、カフ圧制御手段82は、上記昇圧させた膨張袋22、24、および26の圧迫圧力値PCを例えば2〜3mmHg/secに予め設定された徐速降圧速度でそれぞれ同時に徐速降圧させる。このとき、カフ圧制御手段82は、所定量(たとえば1〜10mmHgの範囲内)の除速降圧毎に膨張袋22、24、および26の圧迫圧力値PCをそれぞれ所定時間保持する。そして、カフ圧制御手段82は、中間膨張袋24の圧迫圧力値PC2が、上記動脈16における最低血圧値DBPよりも充分に低い値に予め設定された測定終了圧力値PCE(たとえば30mmHg)よりも小さくなったときに、急速排気弁52を用いて膨張袋22、24、および26内の圧力をそれぞれ大気圧まで排圧する。   FIG. 5 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 70. In FIG. 5, the cuff pressure control means 82 is supplied with an air pump 50, a quick exhaust valve 52, an exhaust control valve 54, a first on-off valve when a signal serving as a cue to start blood pressure measurement is supplied from the blood pressure measurement start sensor 80. By controlling E1, the second on-off valve E2, and the third on-off valve E3, the compression pressure value PC applied to the artery 16 of the upper arm 10 by the expansion bags 22, 24, and 26 is changed to the maximum blood pressure value SBP in the artery 16. The pressure is rapidly increased simultaneously to a pressure increase target pressure value PCM (for example, 180 mmHg) that is set to a sufficiently higher value. For example, the pressure of each expansion bag is increased until the compression pressure value PC2 of the intermediate expansion bag 24 becomes equal to or higher than the pressure increase target pressure value PCM. Subsequently, the cuff pressure control means 82 gradually lowers the pressure values PC of the inflated bladders 22, 24, and 26, which have been boosted, at the same time at a preset step-down speed of, for example, 2 to 3 mmHg / sec. . At this time, the cuff pressure control means 82 holds the compression pressure value PC of the expansion bags 22, 24, and 26 for a predetermined time for each deceleration reduction of a predetermined amount (for example, within a range of 1 to 10 mmHg). Then, the cuff pressure control means 82 determines that the compression pressure value PC2 of the intermediate inflation bag 24 is lower than the measurement end pressure value PCE (for example, 30 mmHg) set in advance to a value sufficiently lower than the minimum blood pressure value DBP in the artery 16. When the pressure decreases, the quick exhaust valve 52 is used to exhaust the pressure in the expansion bags 22, 24, and 26 to atmospheric pressure.

振幅決定手段84は、カフ圧制御手段82により膨張袋22、24、および26の圧迫圧力値PCがそれぞれ徐速降圧させられる過程において、第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3からの出力信号に基づいて、上記膨張袋22、24、および26内の圧力変動である脈波を示す脈波信号SM1、SM2、およびSM3を逐次採取する。図6〜図13は、上記過程において発生する脈波信号SMを例示する図である。これら図6〜図13に示す脈波信号SM1、SM2、およびSM3は、圧迫帯12の圧迫圧力値PCが151mmHg、135mmHg、127mmHg、110mmHg、86mmHg、72mmHg、58mmHg、および36mmHgであるときに、第1圧力センサT1からの出力信号がローパスフィルタ処理またはバンドパスフィルタ処理されることにより弁別されて得られた上流側膨張袋22からの脈波を示す脈波信号SM1(破線)、第2圧力センサT2からの出力信号がローパスフィルタ処理またはバンドパスフィルタ処理されることにより弁別されて得られた中間膨張袋24からの脈波を示す脈波信号SM2(実線)、および第3圧力センサT3からの出力信号がローパスフィルタ処理またはバンドパスフィルタ処理されることにより弁別されて得られた下流側膨張袋26からの脈波を示す脈波信号SM3(1点鎖線)である。そして、振幅決定手段84は、上記得られた脈波信号SM1、SM2、およびSM3の振幅値A1、A2、およびA3を一拍毎に決定し、それら振幅値A1〜A3を、それら振幅値A1〜A3が決定された脈波信号SMに対応する中間膨張袋24の圧迫圧力値PC2を示すカフ圧信号PK2とともにRAM74の所定の記憶領域に記憶する。   The amplitude determining unit 84 is configured to reduce the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor in the process in which the compression pressure value PC of the expansion bags 22, 24, and 26 is gradually decreased by the cuff pressure control unit 82, respectively. Based on an output signal from the pressure sensor T3, pulse wave signals SM1, SM2, and SM3 indicating pulse waves that are pressure fluctuations in the expansion bags 22, 24, and 26 are sequentially collected. 6 to 13 are diagrams illustrating the pulse wave signal SM generated in the above process. The pulse wave signals SM1, SM2, and SM3 shown in FIG. 6 to FIG. A pulse wave signal SM1 (broken line) indicating a pulse wave from the upstream expansion bag 22 obtained by discriminating the output signal from the first pressure sensor T1 by low-pass filter processing or band-pass filter processing; a second pressure sensor A pulse wave signal SM2 (solid line) indicating a pulse wave from the intermediate expansion bag 24 obtained by discriminating the output signal from T2 by low-pass filtering or band-pass filtering, and from the third pressure sensor T3 The output signal is lowpass filtered or bandpass filtered A pulse wave signal SM3 indicating a pulse wave from the downstream inflation bladder 26 obtained by the discrimination (one-dot chain line) by the. Then, the amplitude determining means 84 determines the amplitude values A1, A2, and A3 of the obtained pulse wave signals SM1, SM2, and SM3 for each beat, and sets the amplitude values A1 to A3 as the amplitude values A1. ~ A3 is stored in a predetermined storage area of the RAM 74 together with the cuff pressure signal PK2 indicating the compression pressure value PC2 of the intermediate expansion bag 24 corresponding to the determined pulse wave signal SM.

血圧値決定手段86は、複数の膨張袋22、24、および26のうち、少なくとも2つからの脈波信号の振幅比に基づいて前記生体の最高血圧値SBPを決定する最高血圧値決定手段88を備えている。この最高血圧値決定手段88では、圧迫圧力値PCが高いうちは各膨張袋相互間の振幅の差が大きく異なっているが圧迫圧力値PCが最高血圧値SBP付近になると各膨張袋相互間の振幅が類似してくることを利用して、最高血圧値SBPが決定される。具体的には、最高血圧値決定手段88は、例えば、カフ圧制御手段82により、昇圧させた膨張袋22、24、および26の圧迫圧力値PCをそれら膨張袋22、24、および26により上腕部10を各々同じ圧力で圧迫する状態でそれぞれ徐速降圧する過程において、中間膨張袋24からの脈波信号SM2の振幅値A2を下流側膨張袋26からの脈波信号SM3の振幅値A3で除した値である第1の振幅比r23(=A2/A3)が第1振幅比判定値C1よりも小さくなり、且つ上流側膨張袋22からの脈波信号SM1の振幅値A1を中間膨張袋24からの脈波信号SM2の振幅値A2で除した値である第2の振幅比r12(=A1/A2)が予め設定された第2振幅比判定値C2よりも小さくなったときにおける中間膨張袋24の圧迫圧力値PC2を、前記生体の最高血圧値SBPとして決定する。   The blood pressure value determining unit 86 determines the systolic blood pressure value SBP of the living body based on the amplitude ratio of the pulse wave signals from at least two of the plurality of inflatable bags 22, 24, and 26. It has. In this systolic blood pressure value determining means 88, while the compression pressure value PC is high, the difference in amplitude between the inflation bags is greatly different, but when the compression pressure value PC is near the systolic blood pressure value SBP, the inflation bags are in contact with each other. The systolic blood pressure value SBP is determined using the similarity in amplitude. Specifically, the systolic blood pressure value determining means 88, for example, uses the cuff pressure control means 82 to increase the compression pressure values PC of the inflatable bags 22, 24, and 26 by using the inflatable bags 22, 24, and 26. In the process of gradually decreasing the pressure while the parts 10 are compressed with the same pressure, the amplitude value A2 of the pulse wave signal SM2 from the intermediate expansion bag 24 is the amplitude value A3 of the pulse wave signal SM3 from the downstream expansion bag 26. The first amplitude ratio r23 (= A2 / A3), which is the divided value, is smaller than the first amplitude ratio determination value C1, and the amplitude value A1 of the pulse wave signal SM1 from the upstream expansion bag 22 is the intermediate expansion bag. 24 when the second amplitude ratio r12 (= A1 / A2), which is a value divided by the amplitude value A2 of the pulse wave signal SM2 from 24, becomes smaller than a preset second amplitude ratio determination value C2. Pressure of bag 24 Value PC2, determined as the systolic blood pressure value SBP of the living body.

本実施例の圧迫帯12の上流側膨張袋22から中間膨張袋24への振動伝達レベルはたとえば約30%である。すなわち上流側膨張袋22で発生した圧力振動の振幅値が1である場合、その圧力振動が中間膨張袋24に伝達されてその中間膨張袋24内で発生する圧力振動の振幅値は約0.3である。また、中間膨張袋24から下流側膨張袋26への振動伝達レベルはたとえば約30%である。すなわち、中間膨張袋24で発生した圧力振動の振幅値が1である場合、その圧力振動が下流側膨張袋26に伝達されてその下流側膨張袋26内で発生する圧力振動の振幅値は0.3であるとともに、上流側膨張袋22で発生した圧力振動の振幅値が1である場合、その圧力振動が中間膨張袋24を介して下流側膨張袋26に伝達されてその下流側膨張袋26内で発生する圧力振動の振幅値は約0.09である。それらを考慮して、上記第1振幅比判定値C1は例えば3.33よりも所定値だけ小さい値に設定される。第2振幅比判定値C2は例えば3.33よりも所定値だけ小さい値に設定される。   The vibration transmission level from the upstream expansion bag 22 to the intermediate expansion bag 24 of the compression band 12 of the present embodiment is, for example, about 30%. That is, when the amplitude value of the pressure vibration generated in the upstream expansion bag 22 is 1, the pressure vibration is transmitted to the intermediate expansion bag 24 and the amplitude value of the pressure vibration generated in the intermediate expansion bag 24 is about 0. 0. 3. The vibration transmission level from the intermediate expansion bag 24 to the downstream expansion bag 26 is, for example, about 30%. That is, when the amplitude value of the pressure vibration generated in the intermediate expansion bag 24 is 1, the pressure vibration is transmitted to the downstream expansion bag 26 and the amplitude value of the pressure vibration generated in the downstream expansion bag 26 is 0. 3 and the amplitude value of the pressure vibration generated in the upstream inflatable bag 22 is 1, the pressure vibration is transmitted to the downstream inflatable bag 26 via the intermediate inflatable bag 24 and the downstream inflatable bag. The amplitude value of the pressure vibration generated in the internal pressure 26 is about 0.09. Taking these into consideration, the first amplitude ratio determination value C1 is set to a value smaller than, for example, 3.33 by a predetermined value. For example, the second amplitude ratio determination value C2 is set to a value smaller than 3.33 by a predetermined value.

また、血圧値決定手段86は、複数の膨張袋22、24、および26のうちの少なくとも2つからの脈波信号間の位相差と、圧迫帯12による圧迫下の動脈16における脈波伝播速度PWV[m/sec]とに基づいて前記生体の最低血圧値DBPを決定する最低血圧値決定手段90を備えている。具体的には、最低血圧値決定手段90は、昇圧させられた膨張袋22、24、および26の圧迫圧力値PCがそれら膨張袋22、24、および26により上腕部10を各々同じ圧力で圧迫する状態でそれぞれ徐速降圧させられる過程において、例えば図14に示されるような時間軸と圧迫圧力値軸との二次元座標内に示される下流側膨張袋26からの脈波信号SM3の立ち上がり点a3と中間膨張袋24からの脈波信号SM2の立ち上がり点a2との第1の時間差t32と、上記二次元座標内に示される中間膨張袋24からの脈波信号SM2の立ち上がり点a2と上流側膨張袋22からの脈波信号SM1の立ち上がり点a1との第2の時間差t21とをそれぞれ逐次算出する。第1の時間差t32および第2の時間差t21は上記位相差に相当する。   In addition, the blood pressure value determining means 86 is configured to detect the phase difference between the pulse wave signals from at least two of the plurality of inflatable bags 22, 24, and 26 and the pulse wave propagation velocity in the artery 16 under compression by the compression band 12. There is provided a minimum blood pressure value determining means 90 for determining a minimum blood pressure value DBP of the living body based on PWV [m / sec]. Specifically, the diastolic blood pressure value determining means 90 compresses the upper arm portion 10 with the same pressure by the compressed pressure values PC of the inflated bags 22, 24, and 26, respectively. In the process in which the pressure is gradually reduced in each state, for example, the rising point of the pulse wave signal SM3 from the downstream expansion bag 26 shown in the two-dimensional coordinates of the time axis and the compression pressure value axis as shown in FIG. The first time difference t32 between a3 and the rising point a2 of the pulse wave signal SM2 from the intermediate expansion bag 24, and the rising point a2 and upstream side of the pulse wave signal SM2 from the intermediate expansion bag 24 shown in the two-dimensional coordinates A second time difference t21 from the rising point a1 of the pulse wave signal SM1 from the expansion bag 22 is sequentially calculated. The first time difference t32 and the second time difference t21 correspond to the phase difference.

本実施例において、上記立ち上がり点a1は、脈波信号SM1の立ち上がり部分の変曲点b1における接線Lt1と、脈波信号SM1の立ち上がり始点c1を通る時間軸に平行な横線Lw1との交点である。また、上記立ち上がり点a2は、脈波信号SM2の立ち上がり部分の変曲点b2における接線Lt2と、脈波信号SM2の立ち上がり始点c2を通る時間軸に平行な横線Lw2との交点である。また、上記立ち上がり点a3は、脈波信号SM3の立ち上がり部分の変曲点b3における接線Lt3と、脈波信号SM3の立ち上がり始点c3を通る時間軸に平行な横線Lw3との交点である。   In the present embodiment, the rising point a1 is an intersection of the tangent line Lt1 at the inflection point b1 of the rising portion of the pulse wave signal SM1 and the horizontal line Lw1 parallel to the time axis passing through the rising start point c1 of the pulse wave signal SM1. . The rising point a2 is the intersection of the tangent line Lt2 at the inflection point b2 at the rising portion of the pulse wave signal SM2 and the horizontal line Lw2 parallel to the time axis passing through the rising start point c2 of the pulse wave signal SM2. The rising point a3 is the intersection of the tangent line Lt3 at the inflection point b3 of the rising portion of the pulse wave signal SM3 and the horizontal line Lw3 parallel to the time axis passing through the rising start point c3 of the pulse wave signal SM3.

また、最低血圧値決定手段90は、昇圧させられた膨張袋22、24、および26の圧迫圧力値PCがそれら膨張袋22、24、および26により上腕部10を各々同じ圧力で圧迫する状態でそれぞれ徐速降圧させられる過程において、圧迫帯12による圧迫下の動脈16における脈波伝播速度PWVを逐次算出し、中間膨張袋24の圧迫圧力値PC2に対する脈波伝播速度PWVの変化率RPWVを逐次算出する。脈波伝播速度PWVは、上記算出された第1の時間差t32を中間膨張袋24と下流側膨張袋26との間の幅方向の距離L32(図4参照)で除して算出される。また、脈波伝播速度PWVの変化率RPWVは、例えば、図15に示されるような圧迫圧力値軸と脈波伝播速度軸との二次元座標内に示される脈波伝播速度PWVと圧迫圧力値PC2との関係を示す曲線の接線の傾きで表される。 In addition, the minimum blood pressure value determining means 90 is in a state where the compression pressure values PC of the boosted inflation bags 22, 24, and 26 press the upper arm 10 with the same pressure by the inflation bags 22, 24, and 26, respectively. In the process of gradually decreasing the pressure, the pulse wave propagation velocity PWV in the artery 16 under compression by the compression band 12 is sequentially calculated, and the rate of change R PWV of the pulse wave propagation velocity PWV with respect to the compression pressure value PC2 of the intermediate inflation bag 24 is calculated. Calculate sequentially. The pulse wave velocity PWV is calculated by dividing the calculated first time difference t32 by the distance L32 (see FIG. 4) in the width direction between the intermediate expansion bag 24 and the downstream expansion bag 26. Further, the change rate R PWV of pulse wave propagation velocity PWV is, for example, pulse-wave propagation velocity PWV and the compression pressure shown in the two-dimensional coordinates of the pressing pressure value axis and pulse wave velocity axis, as shown in FIG. 15 It is represented by the slope of the tangent of the curve indicating the relationship with the value PC2.

そして、最低血圧値決定手段90は、昇圧させられた膨張袋22、24、および26の圧迫圧力値PCがそれら膨張袋22、24、および26により上腕部10を各々同じ圧力で圧迫する状態でそれぞれ徐速降圧させられる過程において、第1の時間差t32が予め設定された時間差判定値tcを通過する即ち時間差判定値tcよりも小さく、第2の時間差t21が上記時間差判定値tcを通過する即ち時間差判定値tcよりも小さく、且つ脈波伝播速度PWVの変化率RPWVが、図15に示すように圧迫圧力値PC2が下限値たとえば零から増加するに伴って変化率RPWVが連続的に増加する領域bにおいて、予め設定された変化率判定値Rcを通過する即ち変化率判定値Rcよりも小さくなるときの圧迫圧力値PC2を、前記生体の最低血圧値DBPとして決定する。なお、時間差判定値tcは、本発明における位相差判定値、第1時間差判定値、および第2時間差判定値に相当する。 The minimum blood pressure value determining means 90 is in a state in which the pressure values PC of the inflated bladders 22, 24, and 26 that have been pressurized press the upper arm 10 with the same pressure by the inflating bags 22, 24, and 26. In the process of gradually decreasing the pressure, the first time difference t32 passes the preset time difference determination value tc, that is, smaller than the time difference determination value tc, and the second time difference t21 passes the time difference determination value tc. time difference determination value less than tc, and the change rate R PWV pulse wave velocity PWV is accompanied by the change rate R PWV as is continuously in compression pressure value PC2, as shown in FIG. 15 is increased from the lower limit value, for example zero In the increasing region b, the compression pressure value PC2 that passes through a preset change rate determination value Rc, that is, smaller than the change rate determination value Rc, It is determined as the lowest blood pressure value DBP. The time difference determination value tc corresponds to the phase difference determination value, the first time difference determination value, and the second time difference determination value in the present invention.

図15は、圧迫帯12による圧迫下の動脈16における脈波伝播速度PWV[m/sec]と圧迫圧力値PC2[mmHg]との関係を示す図である。図15に示すように、脈波伝播速度PWVは、圧迫圧力値PC2が零から増加するに伴って、零から最低血圧値DBP付近までは連続的に緩やかに減少し、最低血圧値DBPを超えた付近で連続的に急激に減少した後、最高血圧値SBPに向けて連続的に緩やかに減少する。すなわち脈波伝播速度PWVは圧迫圧力値PC2が大きくなるほど遅くなる。また、図中に矢印bで示す領域においては、圧迫圧力値PC2が零から増加するに伴って脈波伝播速度PWVの変化率RPWV(曲線の傾き)が連続的に増加する。圧迫圧力値PC2が最低血圧値DBPに一致するときの脈波伝播速度PWV1は被測定者によって様々であるが、圧迫圧力値PC2が最低血圧値DBPに一致するときの脈波伝播速度PWVの変化率RPWVすなわち変化率判定値Rcは、被測定者に拘わらず同様な値となる。変化率判定値Rcは、予め実験的に求められた図15に示すような関係から決定される。 FIG. 15 is a diagram showing the relationship between the pulse wave propagation velocity PWV [m / sec] in the artery 16 under compression by the compression band 12 and the compression pressure value PC2 [mmHg]. As shown in FIG. 15, as the compression pressure value PC2 increases from zero, the pulse wave velocity PWV continuously decreases gradually from zero to near the minimum blood pressure value DBP and exceeds the minimum blood pressure value DBP. Then, it decreases rapidly and continuously in the vicinity, and then gradually decreases gradually toward the maximum blood pressure value SBP. That is, the pulse wave velocity PWV becomes slower as the compression pressure value PC2 becomes larger. Further, in the region indicated by the arrow b in the figure, the rate of change R PWV (curve slope) of the pulse wave velocity PWV continuously increases as the compression pressure value PC2 increases from zero. The pulse wave propagation speed PWV1 when the compression pressure value PC2 matches the diastolic blood pressure value DBP varies depending on the measurement subject, but the change of the pulse wave propagation speed PWV when the compression pressure value PC2 matches the diastolic blood pressure value DBP. The rate R PWV, that is, the change rate determination value Rc is the same value regardless of the person to be measured. The change rate determination value Rc is determined from the relationship shown in FIG.

図16は、下流側膨張袋26および中間膨張袋24からの脈波信号間の時間差すなわち第1の時間差t32と、圧迫圧力値PC2との関係を示す図である。図16に示すように、下流側膨張袋26と中間膨張袋24との間の脈波伝播時間に相当する第1の時間差t32は、圧迫圧力値PC2が最低血圧値DBPとなるときに時間差判定値tcとなる。時間差判定値tcは、予め実験的に求められた図16に示すような関係から決定される。   FIG. 16 is a diagram showing the relationship between the time difference between the pulse wave signals from the downstream expansion bag 26 and the intermediate expansion bag 24, that is, the first time difference t32, and the compression pressure value PC2. As shown in FIG. 16, the first time difference t32 corresponding to the pulse wave propagation time between the downstream expansion bag 26 and the intermediate expansion bag 24 is determined when the compression pressure value PC2 becomes the minimum blood pressure value DBP. The value is tc. The time difference determination value tc is determined from the relationship shown in FIG.

図17、図18および図19は、上記電子制御装置70の制御作動の要部を説明するフローチャートおよびタイムチャートである。図示しない電源スイッチが投入されると、図19の時間t0に示す初期状態とされる。この状態では、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、および急速排気弁52は常開弁であるため開状態(非作動状態)とされ、排気制御弁54は常閉弁であるため閉状態(非作動状態)とされ、また、空気ポンプ50は非作動状態とされている。   17, 18 and 19 are a flowchart and a time chart for explaining the main part of the control operation of the electronic control unit 70. FIG. When a power switch (not shown) is turned on, the initial state shown at time t0 in FIG. In this state, since the first on-off valve E1, the second on-off valve E2, the third on-off valve E3, and the quick exhaust valve 52 are normally open valves, they are in an open state (non-operating state), and the exhaust control valve 54 is in a normal state. Since it is closed, it is in a closed state (non-operating state), and the air pump 50 is in a non-operating state.

次いで、図示しない起動操作装置が操作されて自動血圧測定装置14の測定動作が開始されると、先ず、前記カフ圧制御手段82に対応する図17のステップ(以下、「ステップ」を省略する)S1においては、圧迫帯12の圧迫圧力値が昇圧される。具体的には、図19に示すように、急速排気弁52が閉状態とされるとともに、空気ポンプ50が作動状態とされてその空気ポンプ50から圧送される圧縮空気により主配管56内およびそれに連通された膨張袋22、24、および26内の圧力が急速に高められる。そして、圧迫帯12による上腕10の圧迫が開始される。   Next, when a startup operation device (not shown) is operated and the measurement operation of the automatic blood pressure measurement device 14 is started, first, the steps of FIG. 17 corresponding to the cuff pressure control means 82 (hereinafter, “step” is omitted). In S1, the compression pressure value of the compression band 12 is increased. Specifically, as shown in FIG. 19, while the quick exhaust valve 52 is closed, the air pump 50 is activated and compressed air pumped from the air pump 50 is fed into the main pipe 56 and to it. The pressure in the inflated bladders 22, 24, and 26 communicated is rapidly increased. Then, compression of the upper arm 10 by the compression band 12 is started.

上記S1に次いで、前記カフ圧制御手段82に対応するS2においては、中間膨張袋24の圧迫圧力値PC2を示すカフ圧信号PK2に基づいて、その圧迫圧力値PC2が予め設定された昇圧目標圧力値PCM(たとえば180mmHg)以上であるか否かが判定される。図19の時間t1より前の時点では、上記S2の判定が否定されて図17のS1以下が繰り返し実行される。しかし、図19の時間t1時点では、上記S2の判定が肯定される。   Subsequent to S1, in S2 corresponding to the cuff pressure control means 82, based on the cuff pressure signal PK2 indicating the compression pressure value PC2 of the intermediate inflatable bag 24, the compression pressure value PC2 is set in advance. It is determined whether or not the value is greater than or equal to value PCM (for example, 180 mmHg). At a time point before time t1 in FIG. 19, the determination in S2 is negative, and S1 and subsequent steps in FIG. 17 are repeatedly executed. However, at time t1 in FIG. 19, the determination in S2 is affirmed.

上記のようにS2の判定が肯定されると、前記カフ圧制御手段82に対応するS3において、空気ポンプ50の作動が停止される。そして、昇圧させた膨張袋22、24、および26の圧迫圧力値PC1、PC2、およびPC3が例えば2〜3mmHg/secに予め設定された徐速降圧速度でそれぞれ同時に降圧するように排気制御弁54が作動させられ、徐速排気が開始される。このとき、膨張袋22、24、および26の圧迫圧力値PCの降圧量がたとえば1〜10mmHgの範囲内の所定量となるように排気制御弁54が制御され、その所定量の除速降圧毎に上記圧迫圧力値PCがそれぞれ所定時間保持されるように第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3が作動させられる。上記圧迫圧力値PCを保持する場合には第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3がそれぞれ閉状態とされる。図19の時間t2は上記徐速排気の開始時点であり、また時間t2〜t3の間は上記圧迫圧力値PCがそれぞれ所定時間保持されている時間である。   If the determination in S2 is affirmative as described above, the operation of the air pump 50 is stopped in S3 corresponding to the cuff pressure control means 82. Then, the exhaust control valve 54 is configured so that the compression pressure values PC1, PC2, and PC3 of the boosted expansion bags 22, 24, and 26 are simultaneously reduced at a slow speed reduction rate that is set in advance to, for example, 2 to 3 mmHg / sec. Is activated and slow exhaust is started. At this time, the exhaust control valve 54 is controlled so that the pressure reduction amount of the compression pressure value PC of the expansion bags 22, 24, and 26 becomes a predetermined amount within a range of 1 to 10 mmHg, for example. The first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are operated so that the compression pressure value PC is held for a predetermined time. In order to hold the compression pressure value PC, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are closed. A time t2 in FIG. 19 is a start time of the slow exhaust, and a time t2 to a time t3 is a time during which the compression pressure value PC is held for a predetermined time.

S3に次いで、前記振幅決定手段84に対応するS4では、圧迫圧力値PC1、PC2、およびPC3がそれぞれ所定時間保持される間に、第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3からの出力信号に対して数Hz乃至数十Hzの波長帯の信号を弁別するローパスフィルタ処理またはバンドパスフィルタ処理がそれぞれ為されることにより膨張袋22、24、および26からの脈波を示す脈波信号SM1、SM2、およびSM3が抽出されるとともに、第2圧力センサT2からの出力信号に対してローパスフィルタ処理が為されることによりAC成分が除去された中間膨張袋24の圧迫圧力値PC2を示すカフ圧信号PK2が抽出される。そして、それらが互いに関連付けられて記憶される。図6〜図13は、上記抽出されて記憶される脈波信号SM1、SM2、およびSM3を例示する図である。   After S3, in S4 corresponding to the amplitude determining means 84, the first pressure sensor T1, the second pressure sensor T2, and the third pressure are maintained while the compression pressure values PC1, PC2, and PC3 are held for a predetermined time. Pulse waves from the expansion bags 22, 24, and 26 are obtained by performing low-pass filter processing or band-pass filter processing for discriminating signals in the wavelength band of several Hz to several tens of Hz from the output signal from the sensor T3. Are extracted, and the output signal from the second pressure sensor T2 is subjected to low-pass filter processing to compress the intermediate expansion bag 24 from which the AC component has been removed. A cuff pressure signal PK2 indicating the pressure value PC2 is extracted. They are stored in association with each other. 6 to 13 are diagrams illustrating the pulse wave signals SM1, SM2, and SM3 extracted and stored.

また、上記S4では、上記脈波信号SM1、SM2、およびSM3が得られる度にそれらの振幅値A1〜A3が一拍毎に決定され、それら振幅値A1〜A3と、それら振幅値A1〜A3が決定された脈波信号SMに対応するカフ圧信号PK2とに基づいて、例えば図20に示すような脈波信号の振幅値を結ぶ包絡線(エンベロープ)が作成されて記憶される。なお、図20のエンベロープにおいて、各測定点間の値は例えば曲線補完により求められる。   In S4, each time the pulse wave signals SM1, SM2, and SM3 are obtained, the amplitude values A1 to A3 are determined for each beat, and the amplitude values A1 to A3 and the amplitude values A1 to A3 are determined. Based on the cuff pressure signal PK2 corresponding to the determined pulse wave signal SM, an envelope (envelope) connecting the amplitude values of the pulse wave signal as shown in FIG. 20, for example, is created and stored. In the envelope of FIG. 20, the value between each measurement point is obtained by curve interpolation, for example.

上記S4に次いで、前記カフ圧制御手段82に対応するS5では、上記圧迫圧力値PCがそれぞれ所定時間保持される間に、中間膨張袋24の圧迫圧力値PC2を示すカフ圧信号PK2に基づいて上記圧迫圧力値PCが予め設定された測定終了圧力値PCE(たとえば30mmHg)以下であるか否かが判定される。図19の時間t11より前の時点では、上記S5の判定が否定されて図17のS3以下が繰り返し実行される。しかし、図19の時間t11時点では、上記S5の判定が肯定される。   Following S4, in S5 corresponding to the cuff pressure control means 82, while the compression pressure value PC is held for a predetermined time, based on the cuff pressure signal PK2 indicating the compression pressure value PC2 of the intermediate expansion bag 24. It is determined whether or not the compression pressure value PC is equal to or less than a preset measurement end pressure value PCE (for example, 30 mmHg). At a time point before time t11 in FIG. 19, the determination in S5 is negative, and S3 and subsequent steps in FIG. 17 are repeatedly executed. However, at time t11 in FIG. 19, the determination in S5 is affirmed.

上記のようにS5の判定が肯定されると、前記カフ圧制御手段82に対応するS6において、膨張袋22、24、および26内の圧力がそれぞれ大気圧まで排圧させられるように急速排気弁52が作動させられる。図19の時間t11以降はこの状態を示す。   If the determination in S5 is affirmative as described above, the quick exhaust valve is set so that the pressure in the expansion bags 22, 24, and 26 is discharged to atmospheric pressure in S6 corresponding to the cuff pressure control means 82, respectively. 52 is activated. This state is shown after time t11 in FIG.

上記S6に次いで、前記最高血圧値決定手段88に対応するS7では、最高血圧値決定のために用いられる図20のエンベロープの圧迫圧範囲が、例えば100mmHg程度に予め設定された下限値以上に限定される。   After S6, in S7 corresponding to the systolic blood pressure value determining means 88, the compression pressure range of the envelope of FIG. 20 used for determining the systolic blood pressure value is limited to a lower limit value set in advance, for example, to about 100 mmHg. Is done.

上記S7に次いで、前記最高血圧値決定手段88に対応するS8では、本ルーチンでS8が最初に実行される場合、図20のエンベロープが使用されてS6で限定された圧迫圧範囲内で最も大きい圧迫圧力値PC2をもつ測定点に対応する上流側膨張袋22からの脈波信号SM1の振幅値A1が決定される。また、本ルーチンで実行されるS8が2回目以降である場合、図20のエンベロープが使用されて前回のS8での圧迫圧力値PC2よりも例えば1mmHg小さい所定の圧迫圧力値PC2に対応する上流側膨張袋22からの脈波信号SM1の振幅値A1が決定される。   After S7, in S8 corresponding to the systolic blood pressure value determining means 88, when S8 is executed for the first time in this routine, the envelope of FIG. 20 is used and is the largest in the compression pressure range limited in S6. An amplitude value A1 of the pulse wave signal SM1 from the upstream inflation bag 22 corresponding to the measurement point having the compression pressure value PC2 is determined. Further, when S8 executed in this routine is the second time or later, the upstream side corresponding to a predetermined compression pressure value PC2 that is, for example, 1 mmHg smaller than the compression pressure value PC2 in the previous S8 by using the envelope of FIG. The amplitude value A1 of the pulse wave signal SM1 from the expansion bag 22 is determined.

上記S8に次いで、前記最高血圧値決定手段88に対応するS9では、本ルーチンでS9が最初に実行される場合、図20のエンベロープが使用されてS6で限定された圧迫圧範囲内で最も大きい圧迫圧力値PC2をもつ測定点に対応する中間膨張袋24からの脈波信号SM2の振幅値A2が決定される。また、本ルーチンで実行されるS9が2回目以降である場合、図20のエンベロープが使用されて前回のS9での圧迫圧力値PC2よりも例えば1mmHg小さい所定の圧迫圧力値PC2に対応する中間膨張袋24からの脈波信号SM2の振幅値A2が決定される。   After S8, in S9 corresponding to the systolic blood pressure value determining means 88, when S9 is executed for the first time in this routine, the envelope in FIG. 20 is used and is the largest in the compression pressure range limited in S6. The amplitude value A2 of the pulse wave signal SM2 from the intermediate expansion bag 24 corresponding to the measurement point having the compression pressure value PC2 is determined. Further, when S9 executed in this routine is the second time or later, the intermediate expansion corresponding to a predetermined compression pressure value PC2 that is, for example, 1 mmHg smaller than the compression pressure value PC2 in the previous S9 using the envelope of FIG. An amplitude value A2 of the pulse wave signal SM2 from the bag 24 is determined.

上記S9に次いで、前記最高血圧値決定手段88に対応するS10では、本ルーチンでS10が最初に実行される場合、図20のエンベロープが使用されてS6で限定された圧迫圧範囲内で最も大きい圧迫圧力値PC2をもつ測定点に対応する下流側膨張袋26からの脈波信号SM3の振幅値A3が決定される。また、本ルーチンで実行されるS10が2回目以降である場合、図20のエンベロープが使用されて前回のS10での圧迫圧力値PC2よりも例えば1mmHg小さい所定の圧迫圧力値PC2に対応する下流側膨張袋26からの脈波信号SM3の振幅値A3が決定される。   After S9, in S10 corresponding to the systolic blood pressure value determining means 88, when S10 is executed for the first time in this routine, the envelope in FIG. 20 is used and is the largest in the compression pressure range limited in S6. The amplitude value A3 of the pulse wave signal SM3 from the downstream expansion bag 26 corresponding to the measurement point having the compression pressure value PC2 is determined. Further, when S10 executed in this routine is the second time or later, the downstream side corresponding to a predetermined compression pressure value PC2 that is, for example, 1 mmHg smaller than the compression pressure value PC2 in the previous S10 by using the envelope of FIG. The amplitude value A3 of the pulse wave signal SM3 from the expansion bag 26 is determined.

上記S10に次いで、前記最高血圧値決定手段88に対応するS11では、直前のS8〜S10で決定された振幅値A1〜A3に基づいて、中間膨張袋24からの脈波信号SM2の振幅値A2を下流側膨張袋26からの脈波信号SM3の振幅値A3で除した値である第1の振幅比r23が算出される。また、上流側膨張袋22からの脈波信号SM1の振幅値A1を中間膨張袋24からの脈波信号SM2の振幅値A2で除した値である第2の振幅比r12が算出される。   Following S10, in S11 corresponding to the systolic blood pressure value determining means 88, the amplitude value A2 of the pulse wave signal SM2 from the intermediate inflation bag 24 based on the amplitude values A1 to A3 determined in the immediately preceding S8 to S10. Is divided by the amplitude value A3 of the pulse wave signal SM3 from the downstream expansion bag 26, a first amplitude ratio r23 is calculated. Further, a second amplitude ratio r12 that is a value obtained by dividing the amplitude value A1 of the pulse wave signal SM1 from the upstream expansion bag 22 by the amplitude value A2 of the pulse wave signal SM2 from the intermediate expansion bag 24 is calculated.

上記S11に次いで、前記最高血圧値決定手段88に対応するS12では、直前のS11で算出された第1の振幅比r23が予め設定された第1振幅比判定値C1よりも小さく、且つ直前のS11で算出された第2の振幅比r12が予め設定された第2振幅比判定値C2よりも小さいか、否かが判定される。   Following S11, in S12 corresponding to the systolic blood pressure value determining means 88, the first amplitude ratio r23 calculated in the immediately preceding S11 is smaller than the preset first amplitude ratio determination value C1, and the immediately preceding It is determined whether or not the second amplitude ratio r12 calculated in S11 is smaller than a preset second amplitude ratio determination value C2.

上記S12の判定が否定される場合には、S8以下が繰り返し実行される。そして、上記S12の判定が肯定される場合には、前記最高血圧値決定手段88に対応するS13において、そのときのS9での圧迫圧力値PC2が生体の最高血圧値SBPとして決定される。   If the determination in S12 is negative, S8 and subsequent steps are repeatedly executed. If the determination in S12 is affirmative, in S13 corresponding to the systolic blood pressure value determining means 88, the compression pressure value PC2 in S9 at that time is determined as the maximal blood pressure value SBP of the living body.

上記S13に次いで、前記最低血圧値決定手段90に対応する図18のS14では、最低血圧値決定のために用いられる図20のエンベロープの圧迫圧範囲が、例えば100mmHg程度に予め設定された上限値以下に限定される。   Following S13, in S14 of FIG. 18 corresponding to the diastolic blood pressure determining means 90, the envelope compression pressure range of FIG. 20 used for determining the diastolic blood pressure value is, for example, an upper limit set in advance to about 100 mmHg. It is limited to the following.

上記S14に次いで、前記最低血圧値決定手段90に対応するS15では、本ルーチンでS15が最初に実行される場合、図20のエンベロープのうち、S14で限定された圧迫圧範囲内で一番大きい圧迫圧力値PC2をもつ測定点に対応する上流側膨張袋22からの脈波信号SM1に基づいて、その脈波信号SM1の立ち上がり点a1の時間ta1を決定する。この時間ta1は血圧測定が開始されてからの時間である。また、本ルーチンで実行されるS15が2回目以降である場合には、前回のS15での圧迫圧力値PC2に次いで小さい圧迫圧力値PC2をもつ測定点に対応する上流側膨張袋22からの脈波信号SM1に基づいて、その脈波信号SM1の立ち上がり点a1の時間ta1を決定する。   After S14, in S15 corresponding to the minimum blood pressure value determining means 90, when S15 is first executed in this routine, it is the largest in the compression pressure range limited in S14 in the envelope of FIG. Based on the pulse wave signal SM1 from the upstream expansion bag 22 corresponding to the measurement point having the compression pressure value PC2, the time ta1 of the rising point a1 of the pulse wave signal SM1 is determined. This time ta1 is the time from the start of blood pressure measurement. Further, when S15 executed in this routine is the second time or later, the pulse from the upstream inflating bag 22 corresponding to the measurement point having the compression pressure value PC2 that is the second smallest after the compression pressure value PC2 in the previous S15. Based on the wave signal SM1, the time ta1 of the rising point a1 of the pulse wave signal SM1 is determined.

上記S15に次いで、前記最低血圧値決定手段90に対応するS16では、本ルーチンでS16が最初に実行される場合、図20のエンベロープのうち、上記S13で限定された圧迫圧範囲内で一番大きい圧迫圧力値PC2をもつ測定点における中間膨張袋24からの脈波信号SM2に基づいて、その脈波信号SM2の立ち上がり点a2の時間ta2を決定する。この時間ta2は血圧測定が開始されてからの時間である。また、本ルーチンで実行されるS16が2回目以降である場合には、前回のS16での圧迫圧力値PC2に次いで小さい圧迫圧力値PC2をもつ測定点に対応する中間膨張袋24からの脈波信号SM2に基づいて、その脈波信号SM2の立ち上がり点a2の時間ta2を決定する。   Following S15, in S16 corresponding to the minimum blood pressure value determining means 90, when S16 is first executed in this routine, the envelope of FIG. 20 is the most within the compression pressure range limited in S13. Based on the pulse wave signal SM2 from the intermediate expansion bag 24 at the measurement point having the large compression pressure value PC2, the time ta2 of the rising point a2 of the pulse wave signal SM2 is determined. This time ta2 is the time from the start of blood pressure measurement. In addition, when S16 executed in this routine is the second time or later, the pulse wave from the intermediate expansion bag 24 corresponding to the measurement point having the compression pressure value PC2 that is the second smallest after the compression pressure value PC2 in the previous S16. Based on the signal SM2, a time ta2 of the rising point a2 of the pulse wave signal SM2 is determined.

上記S16に次いで、前記最低血圧値決定手段90に対応するS17では、本ルーチンでS17が最初に実行される場合、図20のエンベロープのうち、上記S13で限定された圧迫圧範囲内で一番大きい圧迫圧力値PC2をもつ測定点における下流膨張袋26からの脈波信号SM3に基づいて、その脈波信号SM3の立ち上がり点a3の時間ta3を決定する。この時間ta3は血圧測定が開始されてからの時間である。また、本ルーチンで実行されるS17が2回目以降である場合には、前回のS17での圧迫圧力値PC2に次いで小さい圧迫圧力値PC2をもつ測定点に対応する下流側膨張袋26からの脈波信号SM3に基づいて、その脈波信号SM3の立ち上がり点a3の時間ta3を決定する。   After S16, in S17 corresponding to the minimum blood pressure value determining means 90, when S17 is first executed in this routine, the envelope of FIG. 20 is the most within the compression pressure range limited in S13. Based on the pulse wave signal SM3 from the downstream inflation bag 26 at the measurement point having the large compression pressure value PC2, the time ta3 of the rising point a3 of the pulse wave signal SM3 is determined. This time ta3 is the time from the start of blood pressure measurement. Further, when S17 executed in this routine is the second time or later, the pulse from the downstream inflatable bag 26 corresponding to the measurement point having the compression pressure value PC2 that is the second smallest after the compression pressure value PC2 in the previous S17. Based on the wave signal SM3, the time ta3 of the rising point a3 of the pulse wave signal SM3 is determined.

上記S17に次いで、前記最低血圧値決定手段90に対応するS18では、直前のS15〜S17で決定された時間ta1〜ta3に基づいて、時間ta2と時間ta1との差から第2の時間差t21(=ta2−ta1)が算出され、また、時間ta3と時間ta2との差から第1の時間差t32(=ta3−ta2)が算出される。また、上記算出された第1の時間差t32を中間膨張袋24と下流側膨張袋26との幅方向の距離で除して脈波伝播速度PWVが算出され、続いて、図15に示されるような圧迫圧力値軸と脈波伝播速度軸との二次元座標内に示される脈波伝播速度PWVと圧迫圧力値PC2との関係を示す曲線の接線の傾きから、中間膨張袋24の圧迫圧力値PC2に対する脈波伝播速度PWVの変化率RPWVが算出される。 Following S17, in S18 corresponding to the diastolic blood pressure value determining means 90, based on the time ta1 to ta3 determined in the immediately preceding S15 to S17, a second time difference t21 (from the difference between the time ta2 and the time ta1). = Ta2-ta1), and the first time difference t32 (= ta3-ta2) is calculated from the difference between the time ta3 and the time ta2. Further, the pulse wave propagation velocity PWV is calculated by dividing the calculated first time difference t32 by the distance in the width direction between the intermediate expansion bag 24 and the downstream expansion bag 26, and as shown in FIG. From the slope of the tangent line of the curve indicating the relationship between the pulse wave velocity PWV and the compression pressure value PC2 shown in the two-dimensional coordinates of the compression pressure value axis and the pulse wave velocity axis, the compression pressure value of the intermediate expansion bag 24 A rate of change R PWV of the pulse wave velocity PWV with respect to PC2 is calculated.

上記S18に次いで、前記最低血圧値決定手段90に対応するS19では、第1の時間差t32が予め設定された時間差判定値tcよりも小さく、第2の時間差t21が上記時間差判定値tcよりも小さく、且つ脈波伝播速度PWVの変化率RPWVが、図15に矢印bで示すように圧迫圧力値PC2が下限値たとえば零から増加するに伴って変化率RPWVが連続的に増加する領域において、予め設定された変化率判定値Rcよりも小さいか、否かが判定される。 Following S18, in S19 corresponding to the diastolic blood pressure value determining means 90, the first time difference t32 is smaller than the preset time difference determination value tc, and the second time difference t21 is smaller than the time difference determination value tc. and pulse-wave propagation velocity PWV rate of change R PWV is, in a region where with by the change rate R PWV continuously increases the compression pressure value PC2, as shown by the arrow b in FIG. 15 is increased from the lower limit value, for example zero It is determined whether or not the change rate determination value Rc is smaller than a preset value.

上記S19の判定が否定される場合には、S15以下が繰り返し実行される。そして、上記S19の判定が肯定される場合には、前記最低血圧値決定手段90に対応するS20において、直前のS16で用いられた脈波信号SM2に対応する中間膨張袋24の圧迫圧力値PC2と、上記直前のS16よりも1つ前に実行されたS16で用いられた脈波信号SM2’に対応する中間膨張袋24の圧迫圧力値PC2’とに基づいて、直線補完により生体の最低血圧値DBPが決定される。   If the determination in S19 is negative, S15 and subsequent steps are repeatedly executed. If the determination in S19 is affirmative, in S20 corresponding to the minimum blood pressure value determining means 90, the compression pressure value PC2 of the intermediate expansion bag 24 corresponding to the pulse wave signal SM2 used in the immediately preceding S16. Based on the compression pressure value PC2 ′ of the intermediate inflation bag 24 corresponding to the pulse wave signal SM2 ′ used in S16 executed immediately before S16 immediately before, the minimum blood pressure of the living body is obtained by linear interpolation. The value DBP is determined.

そして、S21において、表示装置78に生体の最高血圧値SBPおよび最低血圧値DBPが表示されて、本ルーチンが終了させられる。   In S21, the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body are displayed on the display device 78, and this routine is terminated.

本実施例の自動血圧測定装置14によれば、圧迫帯12は、幅方向に連ねられて生体の被圧迫部位である上腕10を各々圧迫する独立した気室を有する複数の膨張袋22、24、および26を有するものであり、それら膨張袋22、24、および26のうちの上腕10内の動脈16の下流側に位置する下流側膨張袋26からの脈波信号SM3の振幅値A3と、その下流側膨張袋26よりも上流側に位置する中間膨張袋(所定の膨張袋)24からの脈波信号SM2の振幅値A2との振幅比である第1の振幅比r23を逐次算出し、その第1の振幅比r23に基づいて生体の最高血圧値SBPを決定することから、相互間が圧力変動に関して独立状態とされた複数の膨張袋22、24、および26から上腕10の動脈16に圧迫圧力を均等な圧力分布で加えることで正確な脈波信号SMが得られるので、それら脈波信号SM間の振幅比に基づいて精度の高い最高血圧値SBPが得られる。   According to the automatic blood pressure measurement device 14 of the present embodiment, the compression band 12 is connected to the width direction and has a plurality of inflatable bags 22 and 24 each having an independent air chamber that compresses the upper arm 10 that is a compressed portion of the living body. , And 26, and the amplitude value A3 of the pulse wave signal SM3 from the downstream inflation bag 26 located downstream of the artery 16 in the upper arm 10 of the inflation bags 22, 24, and 26, and A first amplitude ratio r23, which is an amplitude ratio with the amplitude value A2 of the pulse wave signal SM2 from the intermediate expansion bag (predetermined expansion bag) 24 located upstream of the downstream expansion bag 26, is sequentially calculated, Since the maximum blood pressure value SBP of the living body is determined based on the first amplitude ratio r23, the arteries 16 of the upper arm 10 are transferred from the plurality of inflatable bags 22, 24, and 26 that are independent of each other in terms of pressure fluctuation. Compression pressure is even pressure Since accurate pulse-wave signal SM by adding a cloth is obtained, a high systolic blood pressure SBP accuracy is obtained based on the amplitude ratio between these pulse wave signal SM.

また、本実施例の自動血圧測定装置14によれば、第1の振幅比r23は、中間膨張袋24からの脈波信号SM2の振幅値A2を下流側膨張袋26からの脈波信号SM3の振幅値A3で除した値であり、昇圧させた圧迫帯12の圧迫圧力値PCの除速降圧過程において逐次算出される第1の振幅比r23が予め設定された第1振幅比判定値C1よりも小さくなったときの中間膨張袋24の圧迫圧力値PCを、生体の最高血圧値SBPとして決定する。そのため、上腕10内の動脈16の血流が中間膨張袋24下は通るが下流側膨張袋26下は通らない状態と、中間膨張袋24下および下流側膨張袋26下を共に通る状態とを区別し、上腕10内の動脈16の血流が中間膨張袋24下および下流側膨張袋26下を共に通る状態になったときの中間膨張袋24の圧迫圧力値PC2を生体の最高血圧値SBPとして決定するので、精度の高い最高血圧値SBPが得られる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the first amplitude ratio r23 is obtained by changing the amplitude value A2 of the pulse wave signal SM2 from the intermediate expansion bag 24 to the pulse wave signal SM3 from the downstream expansion bag 26. The first amplitude ratio r23, which is a value divided by the amplitude value A3 and is sequentially calculated in the process of decelerating and decreasing the compression pressure value PC of the pressure band 12 that has been increased, is determined from the preset first amplitude ratio determination value C1. The compression pressure value PC of the intermediate inflatable bag 24 when it becomes smaller is determined as the maximum blood pressure value SBP of the living body. Therefore, a state in which the blood flow of the artery 16 in the upper arm 10 passes under the intermediate inflation bag 24 but does not pass under the downstream inflation bag 26 and a state where the blood flow passes through both the intermediate inflation bag 24 and the downstream inflation bag 26 together. Distinguishing, the compression pressure value PC2 of the intermediate inflation bag 24 when the blood flow of the artery 16 in the upper arm 10 passes both under the intermediate inflation bag 24 and under the downstream inflation bag 26 is the maximum blood pressure value SBP of the living body. Therefore, a highly accurate systolic blood pressure value SBP is obtained.

また、本実施例の自動血圧測定装置14によれば、圧迫帯12は、上腕10の長手方向に所定間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋22および下流側膨張袋26と、上腕10の長手方向において連なるように上記上流側膨張袋22および下流側膨張袋26の間に配置され、それら上流側膨張袋22および下流側膨張袋26とは独立した気室を有する中間膨張袋24とを有するものであることから、上腕10の長手方向において連なり相互間が圧力変動に関して独立状態とされた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26から上腕10内の動脈16に圧迫圧力が均等な圧力分布で加えられることで正確な脈波が得られるので、それら脈波間の振幅比に基づいて精度の高い最高血圧値SBPが得られる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the compression band 12 includes a pair of upstream expansion bags 22 and a downstream expansion that are made of a flexible sheet that is positioned at a predetermined interval in the longitudinal direction of the upper arm 10. An air chamber is disposed between the upstream inflatable bag 22 and the downstream inflatable bag 26 so as to be continuous with the bag 26 in the longitudinal direction of the upper arm 10, and is independent of the upstream inflatable bag 22 and the downstream inflatable bag 26. Since the intermediate expansion bag 24 includes the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 that are continuous in the longitudinal direction of the upper arm 10 and are in an independent state with respect to pressure fluctuation. Since an accurate pulse wave is obtained by applying a compression pressure to the artery 16 in the upper arm 10 with an even pressure distribution, a highly accurate systolic blood pressure value SBP is obtained based on the amplitude ratio between the pulse waves. .

また、本実施例の自動血圧測定装置14によれば、昇圧させた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26の圧迫圧力値PC1、PC2、およびPC3を、それら膨張袋により上腕10を同じ圧力で圧迫する状態で降圧させる過程において、上流側膨張袋22からの脈波の振幅値A1を中間膨張袋24からの脈波の振幅値A2で除した値である第2の振幅比r12が第2振幅比判定値C2よりも小さくなり、且つ中間膨張袋24からの脈波の振幅値A2を下流側膨張袋26からの脈波の振幅値A3で除した値である第1の振幅比r23が第1振幅比判定値C1よりも小さくなったときの中間膨張袋24の圧迫圧力値PC2を、前記生体の最高血圧値SBPとして決定する。そのため、上腕10内の動脈16の血流が上流側膨張袋22下は通るが中間膨張袋24下および下流側膨張袋26下は通らない状態と、上流側膨張袋22下、中間膨張袋24下、および下流側膨張袋26下を共に通る状態とを区別し、上腕10内の動脈16の血流が上流側膨張袋22下、中間膨張袋24下、および下流側膨張袋26下を共に通る状態になったときに幅方向において均等な圧力分布とされている中間膨張袋24の圧迫圧力値PC2を、生体の最高血圧値SBPとして決定するので、精度の高い最高血圧値SBPが得られる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the pressure values PC1, PC2, and PC3 of the upstream inflatable bag 22, the intermediate inflatable bag 24, and the downstream inflatable bag 26 that have been boosted are used as the inflatable bags. In the process of lowering the pressure of the upper arm 10 with the same pressure, the second is a value obtained by dividing the amplitude value A1 of the pulse wave from the upstream expansion bag 22 by the amplitude value A2 of the pulse wave from the intermediate expansion bag 24. Is a value obtained by dividing the amplitude value A2 of the pulse wave from the intermediate expansion bag 24 by the amplitude value A3 of the pulse wave from the downstream expansion bag 26. The compression pressure value PC2 of the intermediate expansion bag 24 when the first amplitude ratio r23 becomes smaller than the first amplitude ratio determination value C1 is determined as the maximum blood pressure value SBP of the living body. Therefore, the blood flow of the artery 16 in the upper arm 10 passes under the upstream inflation bag 22 but does not pass under the intermediate inflation bag 24 and the downstream inflation bag 26, and under the upstream inflation bag 22 and the intermediate inflation bag 24. The blood flow of the artery 16 in the upper arm 10 is divided under the upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 together. Since the compression pressure value PC2 of the intermediate inflatable bag 24, which has a uniform pressure distribution in the width direction when it passes, is determined as the maximum blood pressure value SBP of the living body, a highly accurate maximum blood pressure value SBP is obtained. .

また、本実施例の自動血圧測定装置14によれば、複数の膨張袋22、24、および26内の圧力を検出する圧力センサT1、T2、およびT3を備え、上腕10に巻き付けられた圧迫帯12の膨張袋22、24、および26の圧迫圧力値PCをその上腕10内の動脈16を止血するのに十分な値まで昇圧させた後、各圧迫圧力値PCをそれぞれ同時に降圧させる過程において、たとえば1〜10mmHgの範囲内の所定量の除速降圧毎に上記各圧迫圧力値PCを所定時間保持し、その所定時間内に膨張袋22、24、および26内の圧力振動である脈波を示す脈波信号SM1、SM2、およびSM3を検出することから、各圧迫圧力値PCが一定であるときに各々の脈波信号SM1、SM2、およびSM3が検出されるので、正確な脈波信号SM1、SM2、およびSM3を得ることができる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the pressure band T1, T2, and T3 that detects the pressure in the plurality of inflatable bags 22, 24, and 26, and is wound around the upper arm 10 In the process of boosting the pressure values PC of the twelve inflatable bags 22, 24 and 26 to a value sufficient to stop the artery 16 in the upper arm 10 and then simultaneously lowering the pressure values PC respectively For example, each compression pressure value PC is held for a predetermined time every predetermined amount of deceleration pressure reduction within a range of 1 to 10 mmHg, and a pulse wave which is pressure vibration in the expansion bags 22, 24, and 26 within the predetermined time. Since the detected pulse wave signals SM1, SM2, and SM3 are detected, each pulse wave signal SM1, SM2, and SM3 is detected when each compression pressure value PC is constant. SM1, SM2, and SM3 can be obtained.

以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。   As mentioned above, although one Example of this invention was described in detail with reference to drawings, this invention is not limited to this Example, It can implement in another aspect.

例えば、昇圧目標圧力値PCMおよび測定終了圧力値PCEは必ずしも予め設定されなくてもよい。例えば、自動血圧測定装置14の電源スイッチが投入されてからオペレータにより入力された前回測定の最高血圧値SBPおよび最低血圧値DBPに基づいて、上記入力された最高血圧値SBPに所定値(例えば30mmHg)を足した値に昇圧目標圧力値PCMを設定し、上記入力された最低血圧値DBPに所定値(例えば30mmHg)を引いた値に測定終了圧力値PCEを設定してもよい。または、カフ圧制御手段82による急速昇圧時(図18の時間t1〜t2の間)に例えば中間膨張袋24からの脈波信号SM2を抽出してエンベロープを作成し、そのエンベロープに基づいてよく知られたオシロメトリックアルゴリズムに従って生体の最高血圧値SBPおよび最低血圧値DBPを予測し、昇圧目標圧力値PCMがその予測された最高血圧値SBPに所定値(例えば20mmHg)を足した値となるように設定し、測定終了圧力値PCEが上記予測された最低血圧値DBPに所定値(例えば20mmHg)を引いた値となるように設定してもよい。   For example, the boost target pressure value PCM and the measurement end pressure value PCE are not necessarily set in advance. For example, based on the previously measured systolic blood pressure value SBP and the diastolic blood pressure value DBP input by the operator after the power switch of the automatic blood pressure measuring device 14 is turned on, the input systolic blood pressure value SBP has a predetermined value (for example, 30 mmHg). ) May be set to the pressure increase target pressure value PCM, and the measurement end pressure value PCE may be set to a value obtained by subtracting a predetermined value (for example, 30 mmHg) from the input minimum blood pressure value DBP. Alternatively, during the rapid pressure increase by the cuff pressure control means 82 (between times t1 and t2 in FIG. 18), for example, the pulse wave signal SM2 from the intermediate expansion bag 24 is extracted to create an envelope, and well known based on the envelope. The maximal blood pressure value SBP and the diastolic blood pressure value DBP of the living body are predicted according to the oscillometric algorithm, and the boost target pressure value PCM is a value obtained by adding a predetermined value (for example, 20 mmHg) to the predicted maximal blood pressure value SBP. The measurement end pressure value PCE may be set to a value obtained by subtracting a predetermined value (for example, 20 mmHg) from the predicted minimum blood pressure value DBP.

また、カフ圧制御手段82による徐速降圧過程において膨張袋22、24、および26の圧迫圧力値PCが所定時間保持される間には、振幅決定手段84により上記膨張袋22、24、および26からの脈波信号SM1、SM2、およびSM3が複数拍採取され、それら複数迫分の脈波信号SMの平均値に基づいて最高血圧値SBPおよび最低血圧値DBPが決定されてもよい。この場合には、より精度の高い血圧値が得られる。   Further, during the gradual pressure reduction process by the cuff pressure control means 82, while the compression pressure value PC of the expansion bags 22, 24, and 26 is maintained for a predetermined time, the amplitude determination means 84 causes the expansion bags 22, 24, and 26 to be maintained. A plurality of beat wave signals SM1, SM2, and SM3 may be sampled, and a systolic blood pressure value SBP and a diastolic blood pressure value DBP may be determined based on an average value of the pulse wave signals SM corresponding to the multiple pulses. In this case, a more accurate blood pressure value can be obtained.

また、図16のS4において作成される包絡線(エンベロープ)は各測定点間の値が曲線補完により求められていたが、例えば直線補完やその他の公知の補完方法により補完されてもよい。   Moreover, although the value between each measurement point was calculated | required by curve complementation for the envelope (envelope) created in S4 of FIG. 16, it may be supplemented, for example by linear complementation or other well-known complementing methods.

また、最高血圧値決定手段88は、最高血圧値SBPを決定するに際して、必ずしも第1の振幅比r23および第2の振幅比r12を両方用いる必要はない。少なくとも下流側膨張袋26から得られた振幅を用いればよく、例えば、第1の振幅比r23が予め設定された第1振幅比判定値C1よりも小さくなったときにおける中間膨張袋24の圧迫圧力値PC2を、生体の最高血圧値SBPとして決定してもよい。   In addition, when determining the systolic blood pressure value SBP, the systolic blood pressure value determining unit 88 does not necessarily need to use both the first amplitude ratio r23 and the second amplitude ratio r12. The amplitude obtained from at least the downstream expansion bag 26 may be used. For example, the compression pressure of the intermediate expansion bag 24 when the first amplitude ratio r23 becomes smaller than a preset first amplitude ratio determination value C1. The value PC2 may be determined as the maximum blood pressure value SBP of the living body.

また、最高血圧値決定手段88は、最高血圧値SBPを決定するに際して用いられる振幅比は、必ずしも第1の振幅比r23でなくてもよく、上流側膨張袋22からの脈波信号SM1の振幅値A1を下流側膨張袋26からの脈波信号SM3の振幅値A3で除した値である第3の振幅比r13でもよいし、第1の振幅比r23や第2の振幅比r13の逆数であってもよい。   The amplitude ratio used when determining the systolic blood pressure value SBP does not necessarily have to be the first amplitude ratio r23. The amplitude of the pulse wave signal SM1 from the upstream inflation bag 22 is not necessarily used. The value may be a third amplitude ratio r13 that is a value obtained by dividing the value A1 by the amplitude value A3 of the pulse wave signal SM3 from the downstream expansion bag 26, or the reciprocal of the first amplitude ratio r23 or the second amplitude ratio r13. There may be.

また、最低血圧値決定手段90は、最低血圧値DBPを決定するに際して、必ずしも第1の時間差t32および第2の時間差t21を両方用いる必要はない。少なくとも第1の時間差t32、第2の時間差t21、下流側膨張袋26からの脈波信号SM3の立ち上がり点a3と上流側膨張袋22からの脈波信号SM1の立ち上がり点a1との時間差である第3の時間差t31のうちの1つを用いればよく、例えば、第1の時間差t32が予め設定された時間差判定値tcよりも小さくなったときにおける中間膨張袋24の圧迫圧力値PCを、前記生体の最低血圧値DBPとして決定してもよい。   Further, when determining the minimum blood pressure value DBP, the minimum blood pressure value determining unit 90 does not necessarily need to use both the first time difference t32 and the second time difference t21. At least the first time difference t32, the second time difference t21, and the time difference between the rising point a3 of the pulse wave signal SM3 from the downstream expansion bag 26 and the rising point a1 of the pulse wave signal SM1 from the upstream expansion bag 22. One of the three time differences t31 may be used. For example, the compression pressure value PC of the intermediate expansion bag 24 when the first time difference t32 becomes smaller than a preset time difference determination value tc The minimum blood pressure value DBP may be determined.

また、最低血圧値決定手段90は、最低血圧値DBPを決定するに際して用いられる位相差は、必ずしも下流側膨張袋26からの脈波信号SM3の立ち上がり点a3と下流側膨張袋26からの脈波信号SM3立ち上がり点a2との時間差(第1の時間差t32)でなくてもよい。例えば、変曲点b3と変曲点b2との時間差であってもよいし、或いは立ち上がり点c3と立ち上がり点c2との時間差であってもよい。または、下流側膨張袋26からの脈波信号SM3の他の点と下流側膨張袋26からの脈波信号SM3の他の点との差であってもよい。   Further, the phase difference used when the diastolic blood pressure value determining means 90 determines the diastolic blood pressure value DBP is not necessarily the rising point a3 of the pulse wave signal SM3 from the downstream inflation bag 26 and the pulse wave from the downstream inflation bag 26. It may not be the time difference (first time difference t32) from the signal SM3 rising point a2. For example, it may be a time difference between the inflection point b3 and the inflection point b2, or a time difference between the rising point c3 and the rising point c2. Alternatively, it may be a difference between another point of the pulse wave signal SM3 from the downstream expansion bag 26 and another point of the pulse wave signal SM3 from the downstream expansion bag 26.

また、最低血圧値決定手段90は、最低血圧値DBPを決定するに際して、必ずしも脈波伝播速度PWVの変化率RPWVと、第1の時間差t32および第2の時間差t21との両方を用いる必要はない。脈波伝播速度PWVの変化率RPWVと、第1の時間差t32又は第3の時間差t31とのいずれか1を用いればよい。たとえば、最低血圧値決定手段90は、圧迫帯12の圧迫圧力値PC2を降圧させる過程において、第1の時間差t32が予め設定された時間差判定値tcを通過する即ち時間差判定値tcよりも小さくなる、第2の時間差t21が上記時間差判定値tcを通過する即ち時間差判定値tcよりも小さくなるときの圧迫圧力値PC2を、生体の最低血圧値DBPとして決定するように構成されてもよい。このようにすれば、相互間が圧力変動に関して独立状態とされた複数の膨張袋22、24、および26から上腕10の動脈16に圧迫圧力を均等な圧力分布で加えることで正確な脈波信号SMがそれぞれ得られるので、それら脈波信号SM間の位相差に基づいて精度の高い最低血圧値DBPが得られる。また、たとえば、最低血圧値決定手段90は、圧迫帯12の圧迫圧力値PC2を降圧させる過程において、脈波伝播速度PWVの変化率RPWVが、図15に示すように圧迫圧力値PC2が下限値たとえば零から増加するに伴って変化率RPWVが連続的に増加する領域bにおいて、予め設定された変化率判定値Rcを通過する即ち変化率判定値Rcよりも小さくなるときの圧迫圧力値PC2を、前記生体の最低血圧値DBPとして決定するように構成されてもよい。このようにすれば、脈波伝播速度PWVは圧迫圧力値PC2が大きくなるほど遅くなると共に、圧迫圧力値PC2に対する脈波伝播速度PWVの変化率RPWVは被測定者に拘わらず生体の最低血圧値DBP付近領域において急激に変化することを利用して、最低血圧値DBPが決定されるので、精度の高い最低血圧値DBPが得られる。 Further, when determining the minimum blood pressure value DBP, the minimum blood pressure value determining unit 90 does not necessarily need to use both the rate of change R PWV of the pulse wave velocity PWV and the first time difference t32 and the second time difference t21. Absent. Change rate and R PWV pulse wave velocity PWV, it may be used any one of the first time difference t32 or third time difference t31. For example, the minimum blood pressure value determining unit 90 passes the first time difference t32 through the preset time difference determination value tc in the process of lowering the compression pressure value PC2 of the compression band 12, that is, smaller than the time difference determination value tc. The compression pressure value PC2 when the second time difference t21 passes the time difference determination value tc, that is, becomes smaller than the time difference determination value tc, may be determined as the minimum blood pressure value DBP of the living body. In this way, an accurate pulse wave signal can be obtained by applying compression pressure to the artery 16 of the upper arm 10 from the plurality of inflatable bags 22, 24, and 26 that are in an independent state with respect to pressure fluctuation. Since each SM is obtained, a highly accurate minimum blood pressure value DBP is obtained based on the phase difference between the pulse wave signals SM. Further, for example, the minimum blood pressure value determining means 90, in the process of lowering the compression pressure value PC2 of the compression band 12, the rate of change R PWV of the pulse wave velocity PWV is lower than the compression pressure value PC2 as shown in FIG. In the region b where the change rate R PWV continuously increases as the value increases from zero, for example, the compression pressure value when passing through the preset change rate determination value Rc, that is, smaller than the change rate determination value Rc The PC2 may be configured to determine the diastolic blood pressure DBP of the living body. In this way, the pulse wave velocity PWV becomes slower as the compression pressure value PC2 increases, and the rate of change R PWV of the pulse wave velocity PWV with respect to the compression pressure value PC2 is the lowest blood pressure value of the living body regardless of the subject. Since the diastolic blood pressure value DBP is determined using the fact that it changes rapidly in the region near the DBP, a highly accurate diastolic blood pressure value DBP is obtained.

また、血圧測定時においては、昇圧目標圧力値PCMまで昇圧した後、必ずしも圧迫圧力値PCを予め設定された徐速降圧速度でステップ的に降圧する必要はない。すなわち、圧迫圧力値PCは連続的に降圧させられてもよい。また、血圧値測定付近だけ除速降圧とし、他の区間は急速降圧として測定時間を短くしてもよい。例えば、先ず、昇圧目標圧力値PCMまで昇圧した後の徐速降圧過程において、膨張袋22、24、および26からの脈波信号SM1、SM2、およびSM3を抽出する度に図20に示すエンベロープの一部を作成して図17のS8〜S12を実行し、最高血圧値SBPを決定する。続いて、上記最高血圧値SBPの決定後に圧迫圧力値PCを予測された最低血圧値DBP’よりも予め設定された所定量(たとえば30mmHg)大きい圧力値まで急速に降圧させる。これにより、測定時間を短縮することができる。なお、上記予測された最低血圧値DBP’は、例えば、カフ圧制御手段82による急速昇圧時(図19の時間t1〜t2の間)に中間膨張袋24からの脈波信号SM2を抽出してエンベロープを作成し、そのエンベロープに基づいてよく知られたオシロメトリックアルゴリズムに従って予測される。   Further, at the time of blood pressure measurement, it is not always necessary to step down the compression pressure value PC stepwise at a preset slow speed reduction rate after the pressure is raised to the pressure increase target pressure value PCM. That is, the compression pressure value PC may be continuously reduced. Alternatively, the deceleration pressure reduction may be performed only in the vicinity of the blood pressure value measurement, and the measurement time may be shortened by rapid pressure reduction in the other sections. For example, first, every time the pulse wave signals SM1, SM2, and SM3 from the expansion bags 22, 24, and 26 are extracted in the gradual pressure reduction process after the pressure is increased to the pressure increase target pressure value PCM, the envelope shown in FIG. A part is created and S8 to S12 of FIG. 17 are executed to determine the systolic blood pressure value SBP. Subsequently, after the determination of the maximum blood pressure value SBP, the compression pressure value PC is rapidly lowered to a pressure value that is larger than a predicted minimum blood pressure value DBP ′ by a predetermined amount (for example, 30 mmHg). Thereby, measurement time can be shortened. The predicted diastolic blood pressure value DBP ′ is obtained by, for example, extracting the pulse wave signal SM2 from the intermediate inflation bag 24 during the rapid pressure increase (between times t1 and t2 in FIG. 19) by the cuff pressure control means 82. An envelope is created and predicted according to a well-known oscillometric algorithm based on the envelope.

また、前述の実施例では、圧迫帯12の圧迫圧が降圧させられる過程で血圧値を決定する降圧測定が実施されていたが、これに限らず、圧迫帯12の圧迫圧が昇圧させられる過程で血圧値を決定する昇圧測定が実施されても良い。このような昇圧測定においても前述の最高血圧値決定アルゴリズムおよび最低血圧値決定アルゴリズムを用いることができ、同様の効果を得ることができる。   In the above-described embodiment, the blood pressure value is determined in the process in which the compression pressure in the compression band 12 is decreased. However, the present invention is not limited to this, and the process in which the compression pressure in the compression band 12 is increased. The pressurization measurement for determining the blood pressure value may be performed. In such a pressure increase measurement, the above-described systolic blood pressure value determination algorithm and diastolic blood pressure value determination algorithm can be used, and similar effects can be obtained.

また、圧迫帯12が備える膨張袋は3つに限らず、4つ以上であってもよい。   Moreover, the expansion bag with which the compression belt 12 is provided is not limited to three, and may be four or more.

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。   It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention is implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.

10:上腕(被圧迫部位)
12:圧迫帯
14:自動血圧測定装置
16:動脈
22:上流側膨張袋(膨張袋)
24:中間膨張袋(膨張袋)
26:下流側膨張袋(膨張袋)
A1、A2、A3:振幅値
DBP:最低血圧値(血圧値)
PC1、PC2、PC3:圧迫圧力値
PCM:昇圧目標圧力値(動脈を止血するのに十分な値)
R1:第1振幅比判定値
R2:第2振幅比判定値
SBP:最高血圧値(血圧値)
SM1、SM2、SM3:脈波信号(脈波)
T1:第1圧力センサ
T2:第2圧力センサ
T3:第3圧力センサ
r12:第2の振幅比
r23:第1の振幅比
10: Upper arm (stressed part)
12: compression band 14: automatic blood pressure measurement device 16: artery 22: upstream inflation bag (inflation bag)
24: Intermediate expansion bag (expansion bag)
26: Downstream expansion bag (expansion bag)
A1, A2, A3: Amplitude value DBP: Minimum blood pressure value (blood pressure value)
PC1, PC2, PC3: compression pressure value PCM: pressure increase target pressure value (a value sufficient to stop the artery)
R1: First amplitude ratio determination value R2: Second amplitude ratio determination value SBP: Maximum blood pressure value (blood pressure value)
SM1, SM2, SM3: Pulse wave signal (pulse wave)
T1: First pressure sensor T2: Second pressure sensor T3: Third pressure sensor r12: Second amplitude ratio r23: First amplitude ratio

Claims (5)

生体の被圧迫部位に巻き付けられる圧迫帯を備え、該圧迫帯の圧迫圧力値を変化させる過程で該圧迫帯内の圧力振動である脈波を逐次抽出し、該脈波の変化に基づいて前記生体の血圧値を決定する自動血圧測定装置であって、
前記圧迫帯は、幅方向に連ねられて前記生体の被圧迫部位を各々圧迫する独立した気室を有する複数の膨張袋を有するものであり、
該複数の膨張袋のうちの前記被圧迫部位内の動脈の下流側に位置する下流側膨張袋からの脈波の振幅値と、該下流側膨張袋よりも上流側に位置する所定の膨張袋からの脈波の振幅値との振幅比を逐次算出し、該振幅比に基づいて前記生体の最高血圧値を決定することを特徴とする自動血圧測定装置。
A compression band wound around the compressed portion of the living body, and in the process of changing the compression pressure value of the compression band, pulse waves that are pressure vibrations in the compression band are sequentially extracted, and based on the change of the pulse wave, An automatic blood pressure measuring device for determining a blood pressure value of a living body,
The compression band has a plurality of inflatable bags having independent air chambers that are linked in the width direction and respectively compress the compressed portion of the living body.
Among the plurality of inflation bags, the amplitude value of the pulse wave from the downstream inflation bag located on the downstream side of the artery in the compressed site, and a predetermined inflation bag located on the upstream side of the downstream inflation bag An automatic blood pressure measurement device that sequentially calculates an amplitude ratio with an amplitude value of a pulse wave from the blood pressure and determines a maximum blood pressure value of the living body based on the amplitude ratio.
前記振幅比は、前記所定の膨張袋からの脈波の振幅値を前記下流側膨張袋からの脈波の振幅値で除した値であり、
昇圧させた前記圧迫帯の圧迫圧力値を降圧させる過程において、前記逐次算出される振幅比が予め設定された第1振幅比判定値よりも小さくなったときの該圧迫帯の圧迫圧力値を、前記生体の最高血圧値として決定することを特徴とする請求項1の自動血圧測定装置。
The amplitude ratio is a value obtained by dividing the amplitude value of the pulse wave from the predetermined expansion bag by the amplitude value of the pulse wave from the downstream expansion bag,
In the process of decreasing the compression pressure value of the compressed compression band, the compression pressure value of the compression band when the sequentially calculated amplitude ratio becomes smaller than a preset first amplitude ratio determination value, 2. The automatic blood pressure measuring device according to claim 1, wherein the automatic blood pressure measuring device is determined as a maximum blood pressure value of the living body.
前記圧迫帯は、前記被圧迫部位の長手方向に所定間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および前記下流側膨張袋と、該被圧迫部位の長手方向において連なるように該上流側膨張袋および該下流側膨張袋の間に配置され、該上流側膨張袋および該下流側膨張袋とは独立した気室を有する中間膨張袋とを有するものであることを特徴とする請求項1または2の自動血圧測定装置。   The compression band is continuous with a pair of upstream inflatable bags and a downstream inflatable bag made of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the compressed portion, in the longitudinal direction of the compressed portion. And an intermediate expansion bag having an air chamber that is disposed between the upstream expansion bag and the downstream expansion bag and has an air chamber independent of the upstream expansion bag and the downstream expansion bag. The automatic blood pressure measuring device according to claim 1 or 2. 昇圧させた前記圧迫帯の圧迫圧力値を、前記上流側膨張袋、前記中間膨張袋、および前記下流側膨張袋により前記被圧迫部位を同じ圧力で圧迫する状態で降圧させる過程において、該中間膨張袋からの脈波の振幅値を該下流側膨張袋からの脈波の振幅値で除した振幅比が前記第1振幅比判定値よりも小さくなり、且つ該上流側膨張袋からの脈波の振幅値を該中間膨張袋からの脈波の振幅値で除した振幅比が予め設定された第2振幅比判定値よりも小さくなったときの該中間膨張袋の圧迫圧力値を、前記生体の最高血圧値として決定することを特徴とする請求項3の自動血圧測定装置。   In the process of lowering the pressure value of the pressure band that has been increased in the process of lowering the compressed portion with the same pressure by the upstream inflation bag, the intermediate inflation bag, and the downstream inflation bag, the intermediate inflation The amplitude ratio obtained by dividing the amplitude value of the pulse wave from the bag by the amplitude value of the pulse wave from the downstream expansion bag is smaller than the first amplitude ratio determination value, and the pulse wave from the upstream expansion bag is The compression pressure value of the intermediate expansion bag when the amplitude ratio obtained by dividing the amplitude value by the amplitude value of the pulse wave from the intermediate expansion bag is smaller than a preset second amplitude ratio determination value, 4. The automatic blood pressure measuring device according to claim 3, wherein the automatic blood pressure measuring device is determined as a maximum blood pressure value. 前記複数の膨張袋内の圧力を検出する圧力センサを備え、
前記被圧迫部位に巻き付けられた前記圧迫帯の複数の膨張袋の圧迫圧力値を該被圧迫部位内の動脈を止血するのに十分な値まで昇圧させた後、該圧迫帯の圧迫圧力値を降圧させる過程において、所定量の除速降圧毎に該圧迫帯の圧迫圧力値を所定時間保持し、該所定時間内に該圧迫帯内の圧力振動である脈波を検出すること
を特徴とする請求項1乃至4のいずれか1つの自動血圧測定装置。
A pressure sensor for detecting pressure in the plurality of expansion bags;
After increasing the pressure value of the plurality of inflatable bags of the compression band wound around the compression site to a value sufficient to stop the artery in the compression site, the compression pressure value of the compression band is In the process of depressurization, the compression pressure value of the compression band is held for a predetermined time every predetermined amount of deceleration pressure reduction, and a pulse wave that is pressure vibration in the compression band is detected within the predetermined time. The automatic blood pressure measuring device according to any one of claims 1 to 4.
JP2010220019A 2010-09-29 2010-09-29 Automatic blood pressure measurement device Active JP5584076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220019A JP5584076B2 (en) 2010-09-29 2010-09-29 Automatic blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220019A JP5584076B2 (en) 2010-09-29 2010-09-29 Automatic blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2012071058A true JP2012071058A (en) 2012-04-12
JP5584076B2 JP5584076B2 (en) 2014-09-03

Family

ID=46167529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220019A Active JP5584076B2 (en) 2010-09-29 2010-09-29 Automatic blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP5584076B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103126740A (en) * 2013-03-15 2013-06-05 上海医疗器械(集团)有限公司手术器械厂 Medical hemostatic device and clamping force detection system and calibration and measurement device and method
JP2013236836A (en) * 2012-05-16 2013-11-28 A & D Co Ltd Automatic blood pressure measuring apparatus
CN104101452A (en) * 2013-04-07 2014-10-15 上海理工大学 Medical hemostat clamping force measuring device and measuring method
CN104101455A (en) * 2013-04-07 2014-10-15 上海理工大学 Medical hemostatic clamp closing force measuring device and measuring method
CN107174230A (en) * 2017-06-22 2017-09-19 嘉兴智杰电子有限公司 Intelligent sphygmomanometer and its blood pressure metering method
US9848782B2 (en) 2014-02-13 2017-12-26 Nec Corporation Blood pressure estimation device, blood pressure estimation method, blood pressure measurement device, and recording medium
CN108926330A (en) * 2018-08-10 2018-12-04 沈阳星泽健康科技有限公司 A kind of Intelligent Chinese medicine pulse-taking analysis system based on wrist strap inflatable pressure sensor
WO2023199990A1 (en) * 2022-04-14 2023-10-19 株式会社エー・アンド・デイ Blood pressure measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269089A (en) * 1992-03-20 1993-10-19 A & D Co Ltd Hemomanometer and pressure cuff & bag thereof
JPH06292660A (en) * 1993-01-16 1994-10-21 Nippon Colin Co Ltd Oscillometric type hemopiezometer
JP2001333888A (en) * 2000-05-29 2001-12-04 Nippon Colin Co Ltd Sphygmomanometer
JP2004121806A (en) * 2002-08-05 2004-04-22 Nippon Colin Co Ltd Blood pressure measuring apparatus
JP2009112428A (en) * 2007-11-02 2009-05-28 A & D Co Ltd Cuff for pulse wave detection, automatic blood pressure measuring apparatus equipped with it, vascular compliance measuring apparatus, pulse wave velocity measuring apparatus
JP2010075520A (en) * 2008-09-26 2010-04-08 Omron Healthcare Co Ltd Apparatus for measuring blood pressure information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269089A (en) * 1992-03-20 1993-10-19 A & D Co Ltd Hemomanometer and pressure cuff & bag thereof
JPH06292660A (en) * 1993-01-16 1994-10-21 Nippon Colin Co Ltd Oscillometric type hemopiezometer
JP2001333888A (en) * 2000-05-29 2001-12-04 Nippon Colin Co Ltd Sphygmomanometer
JP2004121806A (en) * 2002-08-05 2004-04-22 Nippon Colin Co Ltd Blood pressure measuring apparatus
JP2009112428A (en) * 2007-11-02 2009-05-28 A & D Co Ltd Cuff for pulse wave detection, automatic blood pressure measuring apparatus equipped with it, vascular compliance measuring apparatus, pulse wave velocity measuring apparatus
JP2010075520A (en) * 2008-09-26 2010-04-08 Omron Healthcare Co Ltd Apparatus for measuring blood pressure information

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236836A (en) * 2012-05-16 2013-11-28 A & D Co Ltd Automatic blood pressure measuring apparatus
CN103126740A (en) * 2013-03-15 2013-06-05 上海医疗器械(集团)有限公司手术器械厂 Medical hemostatic device and clamping force detection system and calibration and measurement device and method
CN104101452A (en) * 2013-04-07 2014-10-15 上海理工大学 Medical hemostat clamping force measuring device and measuring method
CN104101455A (en) * 2013-04-07 2014-10-15 上海理工大学 Medical hemostatic clamp closing force measuring device and measuring method
US9848782B2 (en) 2014-02-13 2017-12-26 Nec Corporation Blood pressure estimation device, blood pressure estimation method, blood pressure measurement device, and recording medium
CN107174230A (en) * 2017-06-22 2017-09-19 嘉兴智杰电子有限公司 Intelligent sphygmomanometer and its blood pressure metering method
CN107174230B (en) * 2017-06-22 2023-10-03 深圳市普瑞拓科技有限公司 Intelligent sphygmomanometer and blood pressure metering method thereof
CN108926330A (en) * 2018-08-10 2018-12-04 沈阳星泽健康科技有限公司 A kind of Intelligent Chinese medicine pulse-taking analysis system based on wrist strap inflatable pressure sensor
WO2023199990A1 (en) * 2022-04-14 2023-10-19 株式会社エー・アンド・デイ Blood pressure measurement device

Also Published As

Publication number Publication date
JP5584076B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP6086647B2 (en) Automatic blood pressure measurement device
JP5584076B2 (en) Automatic blood pressure measurement device
JP5584077B2 (en) Automatic blood pressure measurement device
JP3578724B2 (en) Lower limb upper limb blood pressure index measurement device
TW491697B (en) Blood-pressure measuring apparatus
KR20030051184A (en) Arteriosclerosis diagnosing apparatus
JP5801660B2 (en) Automatic blood pressure measurement device
JP2006334153A (en) Sphygmomanometer
JP2018102743A (en) Pouch-shaped structure and method of manufacturing pouch-shaped structure
JP6027767B2 (en) Automatic blood pressure measurement device.
JP6340152B2 (en) Automatic blood pressure measurement device
JP2003199720A (en) Leg and arm blood pressure index-measuring device
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP6247735B2 (en) Automatic blood pressure measurement device
JP3790212B2 (en) Blood pressure measurement device
JP2009112429A (en) Cuff for pulse wave detection
JP3697239B2 (en) Upper limb artery stenosis evaluation device
JP7397754B2 (en) automatic blood pressure measuring device
WO2023199990A1 (en) Blood pressure measurement device
JP7445518B2 (en) automatic blood pressure measuring device
JP2021177834A (en) Automatic blood pressure measurement device
JPH03123535A (en) Electronic sphygmomanometer
JP4879038B2 (en) Blood pressure measurement device capable of pulse wave detection
JPH06237906A (en) Method and device for winding arm band for measuring blood pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250