JP2012069970A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012069970A
JP2012069970A JP2011240549A JP2011240549A JP2012069970A JP 2012069970 A JP2012069970 A JP 2012069970A JP 2011240549 A JP2011240549 A JP 2011240549A JP 2011240549 A JP2011240549 A JP 2011240549A JP 2012069970 A JP2012069970 A JP 2012069970A
Authority
JP
Japan
Prior art keywords
layer
type
protective layer
film
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011240549A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
浩 一 橘
Shinji Saito
藤 真 司 斎
Shinya Nunoe
上 真 也 布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011240549A priority Critical patent/JP2012069970A/en
Publication of JP2012069970A publication Critical patent/JP2012069970A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having high reliability.SOLUTION: A semiconductor device comprises: an n-type cladding layer 13 provided above a substrate 11; an n-type guide layer 14 provided on the n-type cladding layer 13; an active layer 15 provided on the n-type guide layer 14; a first p-type guide layer 16 provided on the active layer 15; an overflow prevention layer 17 provided on the first p-type guide layer 16; a second p-type guide layer 18 provided on the overflow prevention layer 17; and a p-type cladding layer 19 provided on the second p-type guide layer 18. Each of the layers includes a laser diode composed of a Group III-V nitride-based compound semiconductor, a first protective layer 51 of aluminum-containing nitride provided on the emission surface of the laser diode, and a second protective layer 52 of silicon-containing nitride that is provided on the first protective layer 51 and has a different refractive index from the first protective layer 51. The film thickness of the first protective layer and the second protective layer ranges from 0.25 nm or more to 50 nm or less respectively.

Description

本発明は、半導体素子に関し、特に窒化ガリウム系半導体素子に関する。   The present invention relates to a semiconductor device, and more particularly to a gallium nitride based semiconductor device.

窒化ガリウム(GaN)などの窒化物系III−V族化合物半導体はワイドバンドギャップを有する半導体であり、その特徴を活かし、高輝度の紫外〜青色・緑色発光ダイオードや青紫色レーザダイオードなどが研究・開発されている。また、高周波かつ高出力の窒化物系III−V族化合物半導体による電界効果トランジスタなどが作製されている。   Nitride III-V compound semiconductors such as gallium nitride (GaN) are semiconductors with a wide band gap, and high-intensity ultraviolet to blue / green light-emitting diodes and blue-violet laser diodes have been studied and utilized. Has been developed. In addition, high-frequency and high-power field-effect transistors using nitride-based III-V group compound semiconductors have been produced.

III−V族化合物半導体のデバイス層構造は結晶成長により形成される。一般に、半導体結晶表面は直接大気等にさらされることなく、金属などの電極、AlやSiOなどの保護膜に覆われ、これらの保護膜は素子特性が劣化することを防いでいる。レーザダイオードを例にとって考えると、反射鏡はへき開端面によって形成される。通常、へき開端面は何らかの保護膜を施さなければ、水分や有機物、無機物などによる汚染によって屈折率が変わり、反射率が変動してしまう。反射率が変動してしまえば、レーザダイオードの特性が変化し、デバイス信頼性を劣化させてしまう。GaAs系やInGaAlP系材料を用いたレーザダイオードの知見から、Al膜がへき開端面保護膜としてよく用いられてきた(非特許文献1参照)。 The device layer structure of the III-V compound semiconductor is formed by crystal growth. In general, the surface of a semiconductor crystal is not directly exposed to the atmosphere or the like, but is covered with an electrode such as a metal or a protective film such as Al 2 O 3 or SiO 2 , and these protective films prevent deterioration of element characteristics. . Considering a laser diode as an example, the reflecting mirror is formed by a cleaved end face. Usually, if the cleaved end face is not provided with any protective film, the refractive index changes due to contamination by moisture, organic matter, inorganic matter, etc., and the reflectance changes. If the reflectance fluctuates, the characteristics of the laser diode will change, degrading device reliability. From the knowledge of laser diodes using GaAs-based or InGaAlP-based materials, Al 2 O 3 films have often been used as cleaved end face protective films (see Non-Patent Document 1).

しかしながら、本発明者らが窒化物系III−V族化合物半導体を用いた青紫色レーザダイオードを作製した際に、へき開端面保護膜にAlを用いたところ、高倍速ディスク書き込みに必要な光出力60mW連続発振状態(パルス発振状態では光出力120mW)で、素子寿命が700時間程度であった。この素子の端面の観察を電子顕微鏡で行ったところ、端面が変質していることがわかった。これは青紫色レーザでは、GaAs系による近赤外線レーザやInGaAlP系による赤色レーザと比較して、光の波長が短いため光子のエネルギーが大きく、その結果Al保護膜にダメージを与えているものと考えられる。 However, when the present inventors manufactured a blue-violet laser diode using a nitride-based III-V group compound semiconductor, when Al 2 O 3 was used for the cleaved end face protective film, it was necessary for writing at a high speed disk. The device life was about 700 hours in a continuous oscillation state with an optical output of 60 mW (optical output of 120 mW in the pulse oscillation state). Observation of the end face of this device with an electron microscope revealed that the end face was altered. This is because the blue-violet laser has a shorter photon wavelength than the GaAs near-infrared laser or InGaAlP-based red laser, resulting in higher photon energy, resulting in damage to the Al 2 O 3 protective film. It is considered a thing.

一方、窒化物半導体からなるレーザダイオードの共振器端面に、SiN膜を1nm程度形成し、SiOからなる低反射コート、SiO/TiOからなる高反射コートを施し、光出力1mW、動作温度50℃で寿命を数百時間に改善する手法が考案されている(特許文献1参照)。しかし、この手法では、連続発振状態で光出力60mW(パルス発振状態で光出力120mW)もの高光出力では、寿命が改善されることはなかった。 On the other hand, the cavity end face of the laser diode made of a nitride semiconductor, a SiN film is formed to a thickness of about 1 nm, a low reflection coating, a highly reflective coating of SiO 2 / TiO 2 subjected consisting SiO 2, the light output 1 mW, the operating temperature A technique for improving the lifetime to several hundred hours at 50 ° C. has been devised (see Patent Document 1). However, with this method, the lifetime was not improved at a high light output of 60 mW in the continuous oscillation state (120 mW in the pulse oscillation state).

また、窒化物半導体からなるレーザ素子の共振器端面に、単結晶AlGa1−xN(0≦x≦1)からなる端面膜を形成する技術が知られている(例えば、特許文献2参照)。しかし、素子の端面に単結晶膜を形成する前に、単結晶の製造装置内で昇温するため、製造装置内に残留する酸素が半導体素子の端面と反応し酸化してしまう。この結果、窒化物半導体素子の端面が劣化するため、この端面上に端面膜を形成しても半導体素子の信頼性を高くすることができないという問題がある。
K. Itaya他、「Effect of facet coating on the reliability of InGaAlP visible light laser diodes」、Applied Physics Letters、1988年10月10日、第53巻、第15号、pp.1363−1365. 特開2002−237648号公報 国際公開第03/036771号パンフレット
In addition, a technique is known in which an end face film made of single crystal Al x Ga 1-x N (0 ≦ x ≦ 1) is formed on a resonator end face of a laser element made of a nitride semiconductor (for example, Patent Document 2). reference). However, since the temperature is raised in the single crystal manufacturing apparatus before the single crystal film is formed on the end face of the element, oxygen remaining in the manufacturing apparatus reacts with the end face of the semiconductor element and is oxidized. As a result, the end face of the nitride semiconductor element deteriorates, and there is a problem that the reliability of the semiconductor element cannot be increased even if an end face film is formed on the end face.
K. Itaya et al., “Effect of facet coating on the reliability of InGaAlP visible light laser diodes”, Applied Physics Letters, Oct. 10, 1988, Vol. 1363-1365. JP 2002-237648 A International Publication No. 03/036731 Pamphlet

以上説明したように、従来は、信頼性の高い窒化物系III−V族化合物半導体層を備えた半導体素子を得ることが難しかった。   As described above, conventionally, it has been difficult to obtain a semiconductor element including a highly reliable nitride III-V compound semiconductor layer.

本発明は、上記事情を考慮してなされたものであって、信頼性の高い窒化物系III−V族化合物半導体層を備えた半導体素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor element including a highly reliable nitride III-V compound semiconductor layer.

本発明の第1の態様による半導体素子は、基板と、前記基板上に設けられたn型クラッド層と、前記n型クラッド層上に設けられたn型ガイド層と、前記n型ガイド層上に設けられた活性層と、前記活性層上に設けられた第1のp型ガイド層と、前記第1のp型ガイド層上に設けられたオーバーフロー防止層と、前記オーバーフロー防止層上に設けられた第2のp型ガイド層と、前記第2のp型ガイド層上に設けられたp型クラッド層とを有し、前記層のそれぞれが窒化物系III−V族化合物半導体からなるレーザダイオードと、前記レーザダイオードの出射面上に設けられアルミニウムを含む窒化物の第1の保護層と、前記第1の保護層上に設けられ前記第1の保護層と屈折率の異なる、シリコンを含む窒化物の第2の保護層と、を備え、前記第1の保護層と、前記第2の保護層の膜厚が、それぞれ0.25nm以上50nm以下であることを特徴とする。   A semiconductor device according to a first aspect of the present invention includes a substrate, an n-type cladding layer provided on the substrate, an n-type guide layer provided on the n-type cladding layer, and the n-type guide layer. An active layer provided on the active layer, a first p-type guide layer provided on the active layer, an overflow prevention layer provided on the first p-type guide layer, and provided on the overflow prevention layer A laser having a second p-type guide layer formed and a p-type clad layer provided on the second p-type guide layer, each of which is made of a nitride III-V compound semiconductor A diode, a first protective layer of nitride containing aluminum provided on the emission surface of the laser diode, and silicon having a refractive index different from that of the first protective layer provided on the first protective layer. A second protective layer of nitride comprising Said first protective layer, the thickness of the second protective layer, respectively, characterized in that at 50nm or less than 0.25 nm.

本発明によれば、信頼性の高い窒化物系III−V族化合物半導体層を備えた半導体素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor element provided with the nitride type III-V group compound semiconductor layer with high reliability can be provided.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
本発明の第1実施形態による半導体素子の断面を図1に示す。本実施形態の半導体素子は、以下のように形成される。
(First embodiment)
A cross section of the semiconductor device according to the first embodiment of the present invention is shown in FIG. The semiconductor element of this embodiment is formed as follows.

まず、n型GaN{0001}基板11上に、n型不純物がドープされたn型半導体層(n型GaNバッファ層)12を結晶成長させる。結晶成長には、有機金属気相成長法(Metal Organic Chemical Vapor Deposition, MOCVD)を用いたが、分子線エピタキシー法(Molecular Beam Epitaxy, MBE)を用いても構わない。n型不純物には、Si、Geなどを用いれば良く、本実施形態ではSiを用いた。なお、括弧{}は面を表し、{1−100}面を例にとって説明すると、{1−100}面は(1−100)の面を意味し、(1−100)の面は(10−10)、(−1100)、(−1010)、(01−10)、(0−110)の面と等価であり、これらの面を包括的に定義するために便宜上{1−100}という表記を用いる。ここで、−(バー)はその直後の数字に付随して用いられる記号である。この記号は後述する方向についても同様のことを意味するものである。   First, an n-type semiconductor layer (n-type GaN buffer layer) 12 doped with an n-type impurity is crystal-grown on an n-type GaN {0001} substrate 11. For crystal growth, metal organic chemical vapor deposition (MOCVD) is used, but molecular beam epitaxy (MBE) may be used. Si, Ge, or the like may be used as the n-type impurity, and Si is used in this embodiment. The parentheses {} represent a plane, and the {1-100} plane will be described as an example. The {1-100} plane means the (1-100) plane, and the (1-100) plane (10 −10), (−1100), (−1010), (01-10), and (0-110) are equivalent to planes, and {1-100} for convenience in order to comprehensively define these planes Use notation. Here,-(bar) is a symbol used in association with the immediately following number. This symbol also means the same for the direction described later.

n型GaNバッファ層12上にn型クラッド層13を成長させる。このn型クラッド層13は、アンドープGa0.9Al0.1N層と、n型不純物が1×1018cm−3程度ドープされたGaN層とからなる超格子である。n型クラッド層13としては、これに限定されず、例えばGa0.95Al0.05Nからなるn型不純物がドープされた厚膜(膜厚1.5μm程度)でも構わない。また、アンドープGa0.9Al0.1N層と、n型不純物が1×1018cm−3程度ドープされたGaN層とからなる超格子を用いたが、Ga0.9Al0.1N層とGaN層の両方にn型不純物をドープしても構わない。 An n-type cladding layer 13 is grown on the n-type GaN buffer layer 12. The n-type cladding layer 13 is a superlattice composed of an undoped Ga 0.9 Al 0.1 N layer and a GaN layer doped with n-type impurities at about 1 × 10 18 cm −3 . The n-type cladding layer 13 is not limited to this, and may be a thick film (thickness of about 1.5 μm) doped with an n-type impurity made of Ga 0.95 Al 0.05 N, for example. Moreover, although a superlattice composed of an undoped Ga 0.9 Al 0.1 N layer and a GaN layer doped with n-type impurities of about 1 × 10 18 cm −3 was used, Ga 0.9 Al 0.1 Both the N layer and the GaN layer may be doped with n-type impurities.

n型クラッド層13上に、n型不純物が1×1018cm−3程度ドープされた膜厚0.1μm程度のGaNからなるn型ガイド層14を成長させる。また、n型ガイド層14として膜厚0.1μm程度のIn0.01Ga0.99Nを用いても構わない。 On the n-type cladding layer 13, an n-type guide layer 14 made of GaN having a thickness of about 0.1 μm doped with n-type impurities of about 1 × 10 18 cm −3 is grown. Further, In 0.01 Ga 0.99 N having a film thickness of about 0.1 μm may be used as the n-type guide layer 14.

n型ガイド層14上に活性層15を成長させる。この活性層15は、膜厚3.5nm程度のアンドープのIn0.1Ga0.9N層からなる3層の量子井戸層と、この量子井戸を挟む膜厚7nm程度のアンドープのIn0.01Ga0.99N層からなるバリア層とを交互に積層した多重量子井戸(Multiple Quantum Well, MQW)構造が用いられている。 An active layer 15 is grown on the n-type guide layer 14. This active layer 15 includes three quantum well layers composed of an undoped In 0.1 Ga 0.9 N layer having a thickness of about 3.5 nm, and an undoped In 0. A multiple quantum well (MQW) structure in which barrier layers made of 01 Ga 0.99 N layers are alternately stacked is used.

活性層15上にp型GaNからなる第1ガイド層16を成長させる。この第1ガイド層16は膜厚0.03μmとすれば良い。   A first guide layer 16 made of p-type GaN is grown on the active layer 15. The first guide layer 16 may have a thickness of 0.03 μm.

第1ガイド層16上にオーバーフロー防止層17を成長させる。このオーバーフロー防止層17は、p型不純物元素が5×1018cm−3程度にドープされた膜厚10nm程度のGa0.8Al0.2N層からなり、電子のオーバーフローを防止する層である。p型不純物としては、Mg、Znなどを用いれば良く、この場合Mgを用いた。 Overflow prevention layer 17 is grown on first guide layer 16. The overflow prevention layer 17 is composed of a Ga 0.8 Al 0.2 N layer having a thickness of about 10 nm doped with a p-type impurity element to about 5 × 10 18 cm −3 , and is a layer that prevents an overflow of electrons. is there. As the p-type impurity, Mg, Zn or the like may be used. In this case, Mg is used.

オーバーフロー防止層17上にp型GaNからなる第2ガイド層18を成長させる。この第2ガイド層18は、本実施形態においては、p型不純物元素が5×1018cm−3〜10×1018cm−3程度ドープされた、膜厚0.1μm程度のGaN層としたが、より一般的にはInGa1−x−yAlN(0≦x≦1,0≦y≦1)等のp型の窒化物系III−V族化合物半導体層とすることが可能である。 A second guide layer 18 made of p-type GaN is grown on the overflow prevention layer 17. In the present embodiment, the second guide layer 18 is a GaN layer having a thickness of about 0.1 μm doped with a p-type impurity element of about 5 × 10 18 cm −3 to 10 × 10 18 cm −3 . More generally, however, a p-type nitride-based III-V group compound semiconductor layer such as In x Ga 1-xy Al y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) may be used. Is possible.

第2ガイド層18上にp型クラッド層19を成長させる。このp型クラッド層19は、本実施形態においてはアンドープGa0.9Al0.1N層と、p型不純物がドープされたGaNとからなる超格子である。しかし、これに限定されず、例えばGa0.95Al0.05Nからなるp型不純物がドープされた厚膜(膜厚0.6μm程度)でも構わない。また、アンドープGa0.9Al0.1Nと、p型不純物がドープされたGaNとからなる超格子を用いたが、Ga0.9Al0.1Nと、GaNの両方にp型不純物をドープしてもよい。 A p-type cladding layer 19 is grown on the second guide layer 18. In this embodiment, the p-type cladding layer 19 is a superlattice composed of an undoped Ga 0.9 Al 0.1 N layer and GaN doped with a p-type impurity. However, the present invention is not limited to this, and a thick film (thickness of about 0.6 μm) doped with a p-type impurity made of Ga 0.95 Al 0.05 N, for example, may be used. In addition, although a superlattice composed of undoped Ga 0.9 Al 0.1 N and GaN doped with a p-type impurity is used, p-type impurities are present in both Ga 0.9 Al 0.1 N and GaN. May be doped.

p型クラッド層19上にp型GaNからなるコンタクト層20を成長させる。このコンタクト層20は、本実施形態ではp型不純物がドープされた膜厚0.1μm程度のGaN層であるが、InGa1−x−yAlN(0≦x≦1,0≦y≦1)等のp型不純物がドープされた層でも構わない。 A contact layer 20 made of p-type GaN is grown on the p-type cladding layer 19. In the present embodiment, the contact layer 20 is a GaN layer having a thickness of about 0.1 μm doped with p-type impurities, but In x Ga 1-xy Al y N (0 ≦ x ≦ 1, 0 ≦). A layer doped with a p-type impurity such as y ≦ 1) may be used.

このようにして結晶成長されたウェハーについて、デバイスプロセスを経て、レーザダイオードが作製される。   A laser diode is manufactured through the device process for the wafer thus crystal-grown.

図1に示すように、p型クラッド層19と、p型コンタクト層20との積層構造は中央にp型クラッド層19と、p型コンタクト層20とからなる凸部を有し、この凸部の周辺の平坦部がp型クラッド層19からなるように構成している。すなわち、凸部と平坦部分からなる段差構造(リッジ構造)を形成している。p型クラッド層19とp型GaNコンタクト層20とがなす凸部積層構造は、紙面に垂直方向に延伸しており、共振器となる。   As shown in FIG. 1, the stacked structure of the p-type cladding layer 19 and the p-type contact layer 20 has a convex portion including the p-type cladding layer 19 and the p-type contact layer 20 at the center. The flat portion in the periphery of the p-type cladding layer 19 is configured. That is, a step structure (ridge structure) composed of a convex portion and a flat portion is formed. The convex laminated structure formed by the p-type cladding layer 19 and the p-type GaN contact layer 20 extends in the direction perpendicular to the paper surface, and becomes a resonator.

なお、凸部積層構造は、図1に示すように、断面が垂直側壁を有する矩形に限定されず、メサ型の斜面を有して台形の凸部をなしても構わない。p型コンタクト層20の幅(リッジ幅)は約2μmである。ここで、共振器方向(紙面に垂直方向)を、窒化物系III−V族化合物半導体の<1−100>方向に合わせる。ここで、<1−100>方向とは、[1−100]の方向を意味し、[1−100]の方向は、[10−10]、[−1100]、[−1010]、[01−10]、[0−110]の方向と等価であり、これらの方向を包括的に定義するために便宜上<1−100>という表記を用いる。 In addition, as shown in FIG. 1, a convex laminated structure is not limited to the rectangle which a cross section has a perpendicular | vertical side wall, You may have a mesa-shaped slope and may make a trapezoid convex part. The p-type contact layer 20 has a width (ridge width) of about 2 μm. Here, the resonator direction (perpendicular to the paper surface) is aligned with the <1-100> direction of the nitride III-V compound semiconductor. Here, the <1-100> direction means the direction [1-100], and the [1-100] direction means [10-10], [-1100], [-1010], [01]. −10] and [0-110], and in order to comprehensively define these directions, the notation <1-100> is used for convenience.

凸部の側面および凸部の周辺の平坦部となるp型クラッド層19上には、リッジ(凸部)を挟むように絶縁膜からなる電流ブロック層41が形成され、電流ブロック層41により横モードが制御される。電流ブロック層41の膜厚は設計により任意に選択できるが、0.3μm〜0.6μm程度の値、例えば、0.5μm程度に設定すれば良い。この電流ブロック層41には、AlN膜、Ga0.8Al0.2N膜等の高比抵抗半導体膜を用いても良く、プロトン照射した半導体膜、シリコン酸化膜(SiO膜)、酸化ジルコニウム膜(ZrO膜)等が使用可能である。更に、例えば、SiO膜とZrO膜とによる多層膜でも構わない。即ち、電流ブロック層41としては、活性層15に用いている窒化物系III−V族化合物半導体よりも屈折率が低いものであれば種々の材料が採用可能である。本実施形態のリッジ導波路型レーザ構造だけでなく、絶縁膜の代わりに、n型GaNやn型GaAlNなどn型の半導体層を用いて、pn接合分離して電流ブロック層として機能させた、埋め込み型レーザ構造でも良い。 A current blocking layer 41 made of an insulating film is formed on the p-type cladding layer 19 serving as a flat portion around the side surface of the protruding portion and the periphery of the protruding portion. The mode is controlled. The thickness of the current blocking layer 41 can be arbitrarily selected depending on the design, but may be set to a value of about 0.3 μm to 0.6 μm, for example, about 0.5 μm. The current blocking layer 41 may be a high specific resistance semiconductor film such as an AlN film or a Ga 0.8 Al 0.2 N film. A semiconductor film irradiated with protons, a silicon oxide film (SiO 2 film), an oxidation film, etc. A zirconium film (ZrO 2 film) or the like can be used. Furthermore, for example, a multilayer film made of a SiO 2 film and a ZrO 2 film may be used. That is, as the current blocking layer 41, various materials can be adopted as long as the refractive index is lower than that of the nitride-based III-V compound semiconductor used for the active layer 15. In addition to the ridge waveguide laser structure of the present embodiment, an n-type semiconductor layer such as n-type GaN or n-type GaAlN is used instead of the insulating film, and the pn junction is separated to function as a current blocking layer. An embedded laser structure may be used.

p型GaNコンタクト層20上には、例えば、パラジウム/白金/金(Pd/Pt/Au)の複合膜(積層膜)からなるp側電極32が配置されている。例えば、Pd膜は膜厚0.05μm、Pt膜は膜厚0.05μm、Au膜は膜厚1.0μmである。n型GaN基板11の裏面には、チタン/白金/金(Ti/Pt/Au)の複合膜(積層膜)等からなるn側電極31が設けられている。n側電極31は、例えば、膜厚0.05μmのTi膜、膜厚0.05μmのPt膜及び膜厚1.0μmのAu膜から構成可能である。   On the p-type GaN contact layer 20, a p-side electrode 32 made of, for example, a composite film (laminated film) of palladium / platinum / gold (Pd / Pt / Au) is disposed. For example, the Pd film has a thickness of 0.05 μm, the Pt film has a thickness of 0.05 μm, and the Au film has a thickness of 1.0 μm. On the back surface of the n-type GaN substrate 11, an n-side electrode 31 made of a composite film (laminated film) of titanium / platinum / gold (Ti / Pt / Au) or the like is provided. The n-side electrode 31 can be composed of, for example, a Ti film having a thickness of 0.05 μm, a Pt film having a thickness of 0.05 μm, and an Au film having a thickness of 1.0 μm.

共振器はへき開を用いて形成する。すなわち、へき開端面を共振器終端の両側とし、レーザの反射鏡として機能させる。ここでへき開面は窒化物系III−V族化合物半導体の{1−100}面である。共振器長としては例えば600μmにすれば良い。   The resonator is formed using cleavage. That is, the cleaved end faces are on both sides of the resonator end, and function as a laser reflecting mirror. Here, the cleavage plane is the {1-100} plane of the nitride III-V compound semiconductor. For example, the resonator length may be 600 μm.

へき開端面をそのままの状態で放置していると、大気や有機物、無機物によって汚染される。また、たとえ端面の汚染の影響が少ない状態でパッケージに封止できたとしても、レーザダイオードに通電しレーザ光を出し始めたら、そのレーザ光に誘起されて、有機物や無機物などが端面に集まってくる。よって、窒化物系III−V族化合物半導体のへき開端面には何らかの保護膜が必要である。本実施形態では図2に示すように、保護膜50として、窒化物系III−V族化合物半導体の{1−100}面にAlN層51を、次にAlNとは屈折率の異なるSi(窒化シリコン)層52を形成した。ここで、AlNやSiの形成にはECR(Electron Cyclotron Resonance)スパッタ法を用いた。ただし窒化物からなる保護膜の成膜方法として、ECRスパッタ法に限定されることなく、他の成膜方法も選択が可能である。 If the cleaved end face is left as it is, it is contaminated by the atmosphere, organic matter, and inorganic matter. Even if it can be sealed in a package with little influence of contamination on the end face, when the laser diode is energized and begins to emit laser light, it is induced by the laser light and organic and inorganic substances gather on the end face. come. Therefore, some kind of protective film is necessary on the cleavage end face of the nitride III-V compound semiconductor. In the present embodiment, as shown in FIG. 2, as the protective film 50, an AlN layer 51 is formed on the {1-100} plane of a nitride III-V compound semiconductor, and then Si 3 N having a refractive index different from that of AlN. 4 (silicon nitride) layer 52 was formed. Here, ECR (Electron Cyclotron Resonance) sputtering was used to form AlN and Si 3 N 4 . However, the method for forming the protective film made of nitride is not limited to the ECR sputtering method, and other film forming methods can be selected.

へき開端面は、通常、レーザ光の取り出し面(出射面)と、反射面がある。窒化物からなる保護膜の形成は、出射面と反射面のどちらか一つ、もしくはその両方に形成すればよい。好ましくは、出射面に窒化物からなる保護膜を形成するのが良い。   The cleaved end face usually has a laser light extraction face (exit face) and a reflection face. The protective film made of nitride may be formed on one or both of the emission surface and the reflection surface. Preferably, a protective film made of nitride is formed on the emission surface.

本実施形態における青紫色レーザダイオードの発振波長は405nmに設計している。   The oscillation wavelength of the blue-violet laser diode in this embodiment is designed to be 405 nm.

波長405nmにおけるAlNの屈折率nAlNは2.16、Siの屈折率nSi3N4は2.06である。AlNの膜厚を0.25nmで固定し、Siの膜厚を変化させたときの出射面における反射率を計算すると図3に示すようになる。出射面では反射率を例えば10%に設計する。このためには、図3よりAlNの膜厚が0.25nmのとき、Siの膜厚を32nmとすれば良い。反射面にAlNを形成する場合には、反射面では反射率を95%程度にするので、AlNとSiをそれぞれ0.25nm程度ずつ形成し、SiOとZrO、SiOとSiなど屈折率の異なる誘電膜を多層にすれば良い。 Refractive index n AlN of AlN at a wavelength of 405nm is 2.16, the refractive index n Si3 N4 of Si 3 N 4 is 2.06. When the AlN film thickness is fixed at 0.25 nm and the Si 3 N 4 film thickness is changed, the reflectance at the exit surface is calculated as shown in FIG. For example, the reflectance is designed to be 10% on the emission surface. For this purpose, as shown in FIG. 3, when the film thickness of AlN is 0.25 nm, the film thickness of Si 3 N 4 may be 32 nm. When AlN is formed on the reflecting surface, the reflectance is about 95% on the reflecting surface. Therefore, AlN and Si 3 N 4 are formed at a thickness of about 0.25 nm, and SiO 2 and ZrO 2 , SiO 2 and Si are formed. A dielectric film having a different refractive index, such as 3 N 4, may be formed into a multilayer.

本実施形態による半導体素子(レーザダイオード)の、しきい値電流は平均で30mAであった。この時の出射面における反射率は10%であり、AlN層51の膜厚は0.25nm、Si層52の膜厚は32nmであった。 The threshold current of the semiconductor device (laser diode) according to the present embodiment was 30 mA on average. At this time, the reflectance at the exit surface was 10%, the thickness of the AlN layer 51 was 0.25 nm, and the thickness of the Si 3 N 4 layer 52 was 32 nm.

第1比較例として、端面保護膜の材料以外は本実施形態と同じ構成のレーザダイオードを作製した。この第1比較例のレーザダイオードの端面保護膜としては、反射率が10%となるように形成したAlからなっている。この比較例のレーザダイオードでは、しきい値電流の平均は30mAであった。このように初期特性を見る限りは、第1比較例も本実施形態も変化が見られなかった。 As a first comparative example, a laser diode having the same configuration as that of this embodiment except for the material of the end face protective film was manufactured. The end face protective film of the laser diode of the first comparative example is made of Al 2 O 3 formed so that the reflectance is 10%. In the laser diode of this comparative example, the average threshold current was 30 mA. As long as the initial characteristics are observed in this way, neither the first comparative example nor the present embodiment has changed.

そこで、一定の光出力時におけるレーザダイオードの寿命試験を行った。光出力60mW、動作温度60℃、連続発振状態における、動作電流の変化を調べ、動作電流が20%上昇する地点を寿命として定義した。第1比較例のレーザダイオードでは、寿命が平均で700時間であった。しかし、本実施形態のように、端面保護膜50がAlN層51とSi層52からなるレーザダイオードでは、寿命が平均で4000時間以上と大きく改善した。 Therefore, a life test of the laser diode at a constant light output was performed. The change in operating current in an optical output of 60 mW, an operating temperature of 60 ° C., and a continuous oscillation state was examined, and the point where the operating current increased by 20% was defined as the lifetime. The laser diode of the first comparative example had an average lifetime of 700 hours. However, as in this embodiment, in the laser diode in which the end face protective film 50 is composed of the AlN layer 51 and the Si 3 N 4 layer 52, the lifetime is greatly improved to an average of 4000 hours or more.

AlNは単結晶で6.2eVと非常に大きなバンドギャップエネルギー(波長に換算すると200nm)を持つことから、波長405nmのレーザ光では、端面保護膜で光吸収による劣化が起きにくいと考えられる。また、AlNは熱伝導率が非常に高い材料である。半導体素子の端面にAlN保護膜を形成することにより、半導体素子内で発生する熱を効率よく逃がすことができる。一方、窒化物半導体からなる半導体素子において、端面に形成するAlNも窒化物半導体であるから、端面のストイキオメトリー(組成比)が崩れにくい。さらに、ECRスパッタにおける成膜において、AlNの成膜温度から室温に低下させる際に、窒化物系III−V族化合物半導体単結晶からなる半導体素子と、{1−100}面におけるAlN端面保護膜との線膨張係数の違いから、半導体素子の{1−100}面に歪みを生じさせ、端面におけるバンドギャップエネルギーを変化させることにより、端面における光吸収を抑制することも可能となる。   Since AlN is a single crystal and has a very large band gap energy of 6.2 eV (200 nm in terms of wavelength), it is considered that deterioration due to light absorption is unlikely to occur in the end face protective film with a laser beam having a wavelength of 405 nm. AlN is a material having a very high thermal conductivity. By forming the AlN protective film on the end face of the semiconductor element, heat generated in the semiconductor element can be efficiently released. On the other hand, in a semiconductor element made of a nitride semiconductor, since the AlN formed on the end face is also a nitride semiconductor, the stoichiometry (composition ratio) of the end face is not easily broken. Further, in the film formation in ECR sputtering, when the film formation temperature of AlN is lowered from room temperature to room temperature, a semiconductor element made of a nitride-based III-V compound semiconductor single crystal, and an AlN end face protective film on the {1-100} plane From the difference in the linear expansion coefficient, the {1-100} plane of the semiconductor element is distorted, and the band gap energy at the end face is changed, thereby suppressing the light absorption at the end face.

また、端面保護膜AlNの上に、Siを形成したことにより、パッケージ内に存在しレーザ光に誘起され端面に集まってくる有機物や無機物などの汚染物質に対して、AlNよりもSiの方がそれら汚染物質の吸着防止に強く、端面の劣化が飛躍的に抑制される。 Further, by forming Si 3 N 4 on the end face protective film AlN, it is more effective than SiN against contaminants such as organic matter and inorganic matter that are present in the package and are gathered at the end face induced by laser light. 3 N 4 is stronger in preventing the adsorption of these contaminants, and the deterioration of the end face is dramatically suppressed.

さらに、Siは耐酸化性が強い窒化膜の一つであり、パッケージ封止された半導体素子において、パッケージ内に残存するO(酸素)によっても、Si保護膜は変質しない。AlNはある程度酸化しやすい窒化膜であるので、半導体素子端面の保護膜にAlNのみを用いた場合、パッケージ内に残存する酸素によって、AlNOを生成してしまい、レーザダイオードの端面と反応する。その結果、端面における反射率の変動、光の吸収層の形成が起こり、レーザダイオードの信頼性が損なわれるものと考えられる。よって中長期間における半導体素子の信頼性を実現する意味においても、第1保護層としてAlNを用い、第2保護層としてSiを用いた多層構造の端面保護膜50を使用することが好ましい。 Further, Si 3 N 4 is one of nitride films having strong oxidation resistance, and the Si 3 N 4 protective film is not altered by O (oxygen) remaining in the package in the packaged semiconductor element. . Since AlN is a nitride film that easily oxidizes to some extent, when only AlN is used as the protective film on the semiconductor element end face, oxygen remaining in the package generates AlNO x and reacts with the end face of the laser diode. As a result, it is considered that the reflectance of the end face varies and the light absorption layer is formed, and the reliability of the laser diode is impaired. Therefore, also in the meaning of realizing the reliability of the semiconductor element in the medium and long term, it is necessary to use the end face protective film 50 having a multilayer structure using AlN as the first protective layer and Si 3 N 4 as the second protective layer. preferable.

これに対して、第2比較例として、窒化物半導体に接し反射率が10%となるように形成したAlNからなる第1保護層と、SiOからなる第2保護層とを有する端面保護膜を備えたレーザダイオードを形成した。この第2比較例のレーザダイオードは、端面保護膜の材質以外は本実施形態と同じ構成となっている。この第2比較例のレーザダイオードにおいても、しきい値電流の平均は30mA程度であった。しかし、光出力60mW、動作温度60℃、連続発振状態における寿命は900時間程度と、端面保護膜がAlからなる単層膜である第1比較例のレーザダイオードよりは、若干改善が見られた。第1保護層をAlNとしたことにより、半導体素子で発生した熱を効率よく逃がすことができたためと考えられる。しかしながら、第2保護層であるSiOの構成元素である酸素がAlNと反応し、AlNOを生成してしまい、レーザダイオードの端面で反応する。その結果、端面における反射率の変動、光の吸収層の形成が起こり、レーザダイオードの信頼性が損なわれるものと考えられる。 On the other hand, as a second comparative example, an end face protective film having a first protective layer made of AlN formed so as to be in contact with the nitride semiconductor and having a reflectance of 10%, and a second protective layer made of SiO 2 Was formed. The laser diode of the second comparative example has the same configuration as that of this embodiment except for the material of the end face protective film. Also in the laser diode of the second comparative example, the average threshold current was about 30 mA. However, the light output is 60 mW, the operating temperature is 60 ° C., and the lifetime in the continuous oscillation state is about 900 hours, which is a slight improvement over the laser diode of the first comparative example in which the end face protective film is a single layer film made of Al 2 O 3. It was seen. It is considered that heat generated in the semiconductor element could be efficiently released by using AlN as the first protective layer. However, oxygen, which is a constituent element of SiO 2 serving as the second protective layer, reacts with AlN to generate AlNO x and reacts with the end face of the laser diode. As a result, it is considered that the reflectance of the end face varies and the light absorption layer is formed, and the reliability of the laser diode is impaired.

以上説明したように、本実施形態によれば、GaN基板上の窒化物系III−V族化合物半導体からなる半導体素子において、その{1−100}面上に屈折率の異なる複数の窒化物からなる保護膜を形成することにより、{1−100}面の劣化を防ぐことが可能となり、高信頼性の半導体素子を提供することができる。   As described above, according to the present embodiment, in a semiconductor device made of a nitride-based III-V compound semiconductor on a GaN substrate, a plurality of nitrides having different refractive indexes are formed on the {1-100} plane. By forming the protective film, it is possible to prevent the {1-100} plane from being deteriorated, and a highly reliable semiconductor element can be provided.

(変形例)
また、本実施形態の変形例として、本実施形態のレーザダイオードの形成する際に、端面に窒化物からなる保護膜を形成する前に、ECRスパッタ装置内で端面に窒素プラズマ処理を施したレーザダイオードを作製した。この変形例のレーザダイオードは、上記の試験と同一の条件、すなわち光出力60mW、動作温度60℃で連続発振させた条件で寿命が5000時間以上となり、本実施形態の場合よりもさらに大きく改善した。これは、{1−100}面から離脱したNのストイキオメトリーを回復させる機能があるためと考えられる。
(Modification)
Further, as a modification of the present embodiment, when forming the laser diode of the present embodiment, a laser in which an end surface is subjected to nitrogen plasma treatment in an ECR sputtering apparatus before forming a protective film made of nitride on the end surface. A diode was fabricated. The laser diode of this modified example has a lifetime of 5000 hours or more under the same conditions as in the above test, that is, the conditions of continuous oscillation at an optical output of 60 mW and an operating temperature of 60 ° C., which is a much improved improvement over the case of this embodiment. . This is considered to be due to the function of recovering the N stoichiometry separated from the {1-100} plane.

なお、端面を窒素プラズマ処理する際に、400℃を越える温度まで昇温することは好ましくない。なぜなら、窒素プラズマ処理する装置内で保護膜を形成する前に昇温することにより、上記装置内に残留する酸素が端面と反応し酸化してしまう。その結果、窒化物半導体素子の端面が劣化してしまうので、その上に保護膜を形成しても、半導体素子の高信頼性を実現するのが難しくなってしまう。   Note that it is not preferable to raise the temperature to a temperature exceeding 400 ° C. when the end face is subjected to nitrogen plasma treatment. This is because, by raising the temperature before forming the protective film in the nitrogen plasma processing apparatus, oxygen remaining in the apparatus reacts with the end face and is oxidized. As a result, the end face of the nitride semiconductor element is deteriorated, so that even if a protective film is formed thereon, it becomes difficult to achieve high reliability of the semiconductor element.

(第2実施形態)
次に、本発明の第2実施形態による半導体素子を図4に示す。
(Second Embodiment)
Next, FIG. 4 shows a semiconductor device according to the second embodiment of the present invention.

本実施形態の半導体素子は、以下のように作製される。   The semiconductor element of this embodiment is manufactured as follows.

まず、n型GaNからなる{0001}基板111上に、n型不純物がドープされたn型半導体層(n型GaNバッファ層)112を最初に結晶成長する。結晶成長には、有機金属気相成長法(Metal Organic Chemical Vapor Deposition, MOCVD)を用いたが、分子線エピタキシー法(Molecular Beam Epitaxy, MBE)でも構わない。n型不純物には、Si、Geなどを用いれば良く、この場合Siを用いた。   First, an n-type semiconductor layer (n-type GaN buffer layer) 112 doped with an n-type impurity is first grown on a {0001} substrate 111 made of n-type GaN. For the crystal growth, metal organic chemical vapor deposition (MOCVD) was used, but molecular beam epitaxy (MBE) may be used. For the n-type impurity, Si, Ge, or the like may be used. In this case, Si is used.

バッファ層112上にn型ガイド層113を成長させる。このn型ガイド層13は、n型不純物が1×1018cm−3程度ドープされた膜厚0.1μm程度のGaNからなっている。また、n型ガイド層113として膜厚0.1μm程度のIn0.01Ga0.99Nを用いても構わない。なお、バッファ層112とn型ガイド層113との間には、例えばGa0.95Al0.05Nからなる膜厚1μm程度のn型クラッド層を成長しても構わない。 An n-type guide layer 113 is grown on the buffer layer 112. The n-type guide layer 13 is made of GaN having a film thickness of about 0.1 μm doped with n-type impurities of about 1 × 10 18 cm −3 . Further, In 0.01 Ga 0.99 N having a thickness of about 0.1 μm may be used as the n-type guide layer 113. Note that an n-type cladding layer made of, for example, Ga 0.95 Al 0.05 N and having a thickness of about 1 μm may be grown between the buffer layer 112 and the n-type guide layer 113.

n型ガイド層113上に活性層114を成長させる。この活性層は、膜厚3.5nm程度のアンドープのIn0.1Ga0.9N層からなる3層の量子井戸層と、この量子井戸を挟む膜厚7nm程度のアンドープのIn0.01Ga0.99N層からなるバリア層とを交互に積層した多重量子井戸(Multiple Quantum Well, MQW)構造を有している。本実施形態においては多重量子井戸構造の発光波長は405nmとなるように設計したが、量子井戸層やバリア層のIn組成や膜厚を変化させることで、380nmから550nmの間で変化させることが可能である。 An active layer 114 is grown on the n-type guide layer 113. This active layer includes three quantum well layers composed of an undoped In 0.1 Ga 0.9 N layer having a thickness of about 3.5 nm and an undoped In 0.01 having a thickness of about 7 nm sandwiching the quantum well. It has a multiple quantum well (MQW) structure in which barrier layers made of Ga 0.99 N layers are alternately stacked. In the present embodiment, the light emission wavelength of the multiple quantum well structure is designed to be 405 nm, but it can be changed between 380 nm and 550 nm by changing the In composition and film thickness of the quantum well layer and the barrier layer. Is possible.

活性層114上にp型GaNからなる第1ガイド層115を成長させる。この第1ガイド層115は、膜厚0.03μmに形成すれば良い。   A first guide layer 115 made of p-type GaN is grown on the active layer 114. The first guide layer 115 may be formed to a thickness of 0.03 μm.

第1ガイド層115上にオーバーフロー防止層116を成長させる。このオーバーフロー防止層116は、p型不純物元素が5×1018cm−3程度にドープされた膜厚10nm程度のGa0.8Al0.2N層からなっており、電子のオーバーフローを防止する層である。p型不純物としては、Mg、Znなどを用いれば良く、本実施形態ではMgを用いた。 Overflow prevention layer 116 is grown on first guide layer 115. This overflow prevention layer 116 is made of a Ga 0.8 Al 0.2 N layer having a thickness of about 10 nm doped with a p-type impurity element to about 5 × 10 18 cm −3 and prevents overflow of electrons. Is a layer. As the p-type impurity, Mg, Zn or the like may be used, and Mg is used in this embodiment.

オーバーフロー防止層116上にp型GaNからなる第2ガイド層117を成長させた。この第2ガイド層117は、本実施形態ではp型不純物元素が5×1018cm−3〜10×1018cm−3程度ドープされた、膜厚0.1μm程度のGaN層であるが、より一般的にはInGa1−x−yAlN(0≦x≦1,0≦y≦1)等のp型の窒化物系III−V族化合物半導体層とすることが可能である。 A second guide layer 117 made of p-type GaN was grown on the overflow prevention layer 116. In the present embodiment, the second guide layer 117 is a GaN layer having a thickness of about 0.1 μm doped with a p-type impurity element of about 5 × 10 18 cm −3 to 10 × 10 18 cm −3 . More generally, a p-type nitride III-V group compound semiconductor layer such as In x Ga 1-xy Al y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) can be formed. is there.

第2ガイド層117上にp型クラッド層118を成長させる。このp型クラッド層118は、アンドープGa0.9Al0.1N層と、p型不純物がドープされたGaNとからなる超格子であるが、これに限定されず、例えばGa0.95Al0.05Nからなるp型不純物がドープされた厚膜(膜厚0.3μm程度)でも構わない。また、本実施形態では、アンドープGa0.9Al0.1Nとp型不純物がドープされたGaNとからなる超格子を用いたが、Ga0.9Al0.1NとGaNの両方にp型不純物をドープしてもよい。さらには、p型不純物がドープされた膜厚0.3μm程度のGaNを用いても構わない。なお、必要に応じてp型クラッド層118を省略することも可能である。 A p-type cladding layer 118 is grown on the second guide layer 117. The p-type cladding layer 118 is a superlattice composed of an undoped Ga 0.9 Al 0.1 N layer and GaN doped with a p-type impurity, but is not limited to this. For example, Ga 0.95 Al A thick film (thickness of about 0.3 μm) doped with 0.05 N p-type impurities may be used. In the present embodiment, a superlattice made of undoped Ga 0.9 Al 0.1 N and GaN doped with p-type impurities is used, but both Ga 0.9 Al 0.1 N and GaN are used. A p-type impurity may be doped. Furthermore, GaN having a thickness of about 0.3 μm doped with p-type impurities may be used. Note that the p-type cladding layer 118 may be omitted as necessary.

p型クラッド層118上にp型GaNからなるコンタクト層119を成長させる。このコンタクト層119は、p型不純物がドープされた膜厚0.1μm程度のGaN層であるが、InGa1−x−yAlN(0≦x≦1,0≦y≦1)等のp型不純物がドープされた層でも構わない。 A contact layer 119 made of p-type GaN is grown on the p-type cladding layer 118. The contact layer 119 is a GaN layer having a thickness of about 0.1 μm doped with a p-type impurity, but In x Ga 1-xy Al y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1). A layer doped with a p-type impurity such as may be used.

このようにして結晶成長されたウェハーについて、デバイスプロセスを経て、発光ダイオードが作製される。   A light-emitting diode is manufactured through the device process for the wafer thus crystal-grown.

図4に示すように、p型GaNコンタクト層119上には、例えば、パラジウム/白金/金(Pd/Pt/Au)の複合膜からなるp側電極132が配置されている。例えば、Pd膜は膜厚0.05μm、Pt膜は膜厚0.05μm、Au膜は膜厚1.0μmである。   As shown in FIG. 4, on the p-type GaN contact layer 119, for example, a p-side electrode 132 made of a composite film of palladium / platinum / gold (Pd / Pt / Au) is disposed. For example, the Pd film has a thickness of 0.05 μm, the Pt film has a thickness of 0.05 μm, and the Au film has a thickness of 1.0 μm.

また、n型GaN基板111の裏面には、チタン/白金/金(Ti/Pt/Au)の複合膜等からなるn側電極131が形成されている。n側電極は、例えば、膜厚0.05μmのTi膜、膜厚0.05μmのPt膜及び膜厚1.0μmのAu膜から構成可能である。   An n-side electrode 131 made of a titanium / platinum / gold (Ti / Pt / Au) composite film or the like is formed on the back surface of the n-type GaN substrate 111. The n-side electrode can be composed of, for example, a Ti film having a thickness of 0.05 μm, a Pt film having a thickness of 0.05 μm, and an Au film having a thickness of 1.0 μm.

へき開もしくはダイシングにより、半導体素子の{1−100}端面や{11−20}端面を形成し、素子分離する。端面をそのままの状態で放置していると、大気や有機物、無機物によって汚染される。また、たとえ端面の汚染の影響が少ない状態でパッケージに封止できたとしても、発光ダイオードに通電しレーザ光を出し始めたら、その光に誘起されて、有機物や無機物などが端面に集まってくる。よって、窒化物系III−V族化合物半導体の端面には何らかの保護膜が必要である。   By cleaving or dicing, {1-100} end faces and {11-20} end faces of the semiconductor elements are formed, and the elements are separated. If the end face is left as it is, it is contaminated by the atmosphere, organic matter, and inorganic matter. Even if the package can be sealed with little influence of contamination on the end face, if light is applied to the light emitting diode and laser light starts to be emitted, the light is induced to collect organic or inorganic substances on the end face. . Therefore, some kind of protective film is necessary on the end face of the nitride III-V compound semiconductor.

そこで、第1実施形態と同様に、窒化物系III−V族化合物半導体の{1−100}面にAlNからなる第1保護層を、次に、AlNとは屈折率の異なるSiからなる第2保護層を形成した。ここで、AlNやSiの形成にはECR(Electron Cyclotron Resonance)スパッタ法を用いた。ただし窒化物からなる保護膜の成膜方法として、ECRスパッタ法に限定されることなく、他の成膜方法も選択が可能である。 Therefore, similarly to the first embodiment, the first protective layer made of AlN is formed on the {1-100} plane of the nitride-based III-V compound semiconductor, and then Si 3 N 4 having a refractive index different from that of AlN. The 2nd protective layer which consists of was formed. Here, ECR (Electron Cyclotron Resonance) sputtering was used to form AlN and Si 3 N 4 . However, the method for forming the protective film made of nitride is not limited to the ECR sputtering method, and other film forming methods can be selected.

端面に形成する保護膜の膜厚に関しては、例えば図3に示すように、所望の反射率に応じて種々の膜厚の選択が可能である。たとえば、AlNの膜厚が0.25nm、Siの膜厚が50nmとすることで、反射率を極小まで低下させ、光取り出し効率を向上させることができる。また、AlNの膜厚が0.25nm、Siの膜厚が0.25nm形成した後にさらにSiOとZrO、SiOとSiなど屈折率の異なる誘電膜を多層にすることにより、端面の反射率を90%以上まで向上させ光を端面からは出させないようにし、電極が形成された表面もしくは裏面から光を取り出しても良い。 Regarding the film thickness of the protective film formed on the end face, various film thicknesses can be selected according to the desired reflectance as shown in FIG. 3, for example. For example, when the film thickness of AlN is 0.25 nm and the film thickness of Si 3 N 4 is 50 nm, the reflectance can be reduced to the minimum and the light extraction efficiency can be improved. Further, after forming a film thickness of AlN of 0.25 nm and a film thickness of Si 3 N 4 of 0.25 nm, a dielectric film having different refractive indexes, such as SiO 2 and ZrO 2 , SiO 2 and Si 3 N 4, etc. is made into a multilayer. Thus, the reflectance of the end face may be improved to 90% or more so that light is not emitted from the end face, and the light may be extracted from the front surface or the back surface on which the electrode is formed.

本実施形態のように、AlNからなる第1保護層と、Siからなる第2保護層を備えた保護膜を有する発光ダイオードにおいては寿命が3000時間以上であった。ここで、寿命は動作電流350mAで一定とし、光出力が初期値の90%に低下するまでの時間と定義した。 As in the present embodiment, the lifetime of the light emitting diode having the protective film including the first protective layer made of AlN and the second protective layer made of Si 3 N 4 was 3000 hours or longer. Here, the lifetime was constant at an operating current of 350 mA, and was defined as the time until the light output decreased to 90% of the initial value.

比較例として、端面保護膜がAlである以外は、本実施形態と同じ構成の発光ダイオードを作製した。この比較例の発光ダイオードの寿命が1500時間程度であった。 As a comparative example, a light emitting diode having the same configuration as that of the present embodiment was manufactured except that the end face protective film was Al 2 O 3 . The life of the light emitting diode of this comparative example was about 1500 hours.

これは、第1実施形態と同じように、第1保護層をAlNとし第2保護層をSiとすることで、半導体素子内部で発生する熱を効率よくサブマウントに逃がすとともに、保護膜自身が酸化されることや有機物・無機物などに汚染されることに対する耐性が強いためと考えられる。 As in the first embodiment, the first protective layer is made of AlN and the second protective layer is made of Si 3 N 4 , so that heat generated inside the semiconductor element can be efficiently released to the submount and protected. This is probably because the film itself is highly resistant to oxidation and contamination with organic and inorganic substances.

以上説明したように、本実施形態も第1実施形態と同様に、信頼性の高い半導体素子を得ることができる。   As described above, this embodiment can also provide a highly reliable semiconductor element as in the first embodiment.

なお、上記で{1−100}端面に窒化物からなる保護膜を形成したが、同様な保護膜を素子分離で現れた{11−20}端面にも形成してもよい。   Although a protective film made of nitride is formed on the {1-100} end face in the above, a similar protective film may be formed on the {11-20} end face that appears in element isolation.

また、上記第1および第2実施形態においては、GaN基板を用いたが、サファイア基板等の絶縁材料からなる基板、SiC基板等の他の半導体材料からなる基板等を用いてもよい。なお、サファイア基板等の絶縁材料からなる基板を用いる場合は、当該基板上に形成するn型半導体層をn型コンタクト層として用いることができる。   In the first and second embodiments, the GaN substrate is used. However, a substrate made of an insulating material such as a sapphire substrate, a substrate made of another semiconductor material such as an SiC substrate, or the like may be used. Note that when a substrate made of an insulating material such as a sapphire substrate is used, an n-type semiconductor layer formed over the substrate can be used as the n-type contact layer.

なお、上記第1および第2実施形態においては、第1保護層にAlNを、第2保護層にSiを用いたが、第1保護層には第2保護層よりも熱伝導率の高い材料を用い、第2保護層には耐酸化性の材料を用いることが好ましい。例えば、第1保護層にAlNを用いた場合は、第2保護層にSiの代わりにSiAl1−x(0≦x≦1、0≦y≦1)を用いてもよい。また、第1保護層にAlNの代わりにSiAl1−x(0≦x≦1、0≦y≦1)を用いてもよい。 In the first and second embodiments, AlN is used for the first protective layer and Si 3 N 4 is used for the second protective layer. However, the first protective layer has a thermal conductivity higher than that of the second protective layer. It is preferable to use a material having high resistance and use an oxidation-resistant material for the second protective layer. For example, when AlN is used for the first protective layer, Si x Al 1-x N y (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is used for the second protective layer instead of Si 3 N 4. Also good. Further, instead of AlN, Si x Al 1-x N y (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) may be used for the first protective layer.

本発明は、上記実施例に限定されるものではなく、レーザダイオードや発光ダイオード以外にも光検出器などの光デバイス、電界効果トランジスタやヘテロ接合トランジスタなどの電子デバイスにも適用が可能である。   The present invention is not limited to the above embodiments, and can be applied to optical devices such as photodetectors, and electronic devices such as field effect transistors and heterojunction transistors in addition to laser diodes and light emitting diodes.

本発明の第1実施形態による半導体素子(レーザダイオード)の断面構造を示す模式図。The schematic diagram which shows the cross-section of the semiconductor element (laser diode) by 1st Embodiment of this invention. 本発明の第1実施形態による半導体素子(レーザダイオード)の端部を示す斜視図。The perspective view which shows the edge part of the semiconductor element (laser diode) by 1st Embodiment of this invention. 第1実施形態における青紫色レーザダイオードの出射端面における反射率の、AlNを0.25nmの膜厚で形成し、その上に形成するSiの膜厚依存性を示す図。The reflectance of an emission end surface of the blue-violet laser diode of the first embodiment, AlN was formed to a thickness of 0.25 nm, it shows the film thickness dependence the Si 3 N 4 formed thereon. 本発明の第2実施形態による半導体素子(発光ダイオード)の断面構造を示す模式図。The schematic diagram which shows the cross-section of the semiconductor element (light emitting diode) by 2nd Embodiment of this invention.

11 n型GaNからなる{0001}基板
12 n型GaN層
13 n型クラッド層
14 n型GaNからなるガイド層
15 活性層
16 p型第1ガイド層
17 オーバーフロー防止層
18 p型GaNからなる第2ガイド層
19 p型クラッド層
20 p型GaNからなるコンタクト層
31 n側電極
32 p側電極
41 絶縁膜(電流ブロック層)
50 端面保護膜
51 第1保護層
52 第2保護層
111…n型GaN{0001}基板
112…n型GaN層
113…n型GaNガイド層
114…活性層
115…p型第1ガイド層
116…オーバーフロー防止層
117…p型GaN第2ガイド層
118…p型クラッド層
119…p型GaNコンタクト層
131…n側電極
132…p側電極
11 {0001} substrate made of n-type GaN 12 n-type GaN layer 13 n-type cladding layer 14 guide layer 15 made of n-type GaN active layer 16 p-type first guide layer 17 overflow prevention layer 18 second made of p-type GaN Guide layer 19 P-type cladding layer 20 Contact layer 31 made of p-type GaN n-side electrode 32 p-side electrode 41 Insulating film (current blocking layer)
50 End face protective film 51 First protective layer 52 Second protective layer 111 ... n-type GaN {0001} substrate 112 ... n-type GaN layer 113 ... n-type GaN guide layer 114 ... active layer 115 ... p-type first guide layer 116 ... Overflow prevention layer 117 ... p-type GaN second guide layer 118 ... p-type cladding layer 119 ... p-type GaN contact layer 131 ... n-side electrode 132 ... p-side electrode

Claims (6)

基板と、前記基板上に設けられたn型クラッド層と、前記n型クラッド層上に設けられたn型ガイド層と、前記n型ガイド層上に設けられた活性層と、前記活性層上に設けられた第1のp型ガイド層と、前記第1のp型ガイド層上に設けられたオーバーフロー防止層と、前記オーバーフロー防止層上に設けられた第2のp型ガイド層と、前記第2のp型ガイド層上に設けられたp型クラッド層とを有し、前記層のそれぞれが窒化物系III−V族化合物半導体からなるレーザダイオードと、
前記レーザダイオードの出射面上に設けられアルミニウムを含む窒化物の第1の保護層と、
前記第1の保護層上に設けられ前記第1の保護層と屈折率の異なる、シリコンを含む窒化物の第2の保護層と、
を備え、前記第1の保護層と、前記第2の保護層の膜厚が、それぞれ0.25nm以上50nm以下であることを特徴とする半導体素子。
A substrate, an n-type cladding layer provided on the substrate, an n-type guide layer provided on the n-type cladding layer, an active layer provided on the n-type guide layer, and the active layer A first p-type guide layer provided on the first p-type guide layer, an overflow prevention layer provided on the first p-type guide layer, a second p-type guide layer provided on the overflow prevention layer, A p-type cladding layer provided on the second p-type guide layer, and each of the layers is made of a nitride III-V compound semiconductor;
A first protective layer of nitride comprising aluminum provided on the emission surface of the laser diode;
A second protective layer made of nitride containing silicon and provided on the first protective layer and having a refractive index different from that of the first protective layer;
And a film thickness of each of the first protective layer and the second protective layer is 0.25 nm to 50 nm.
前記第1の保護層は、前記第2の保護層よりも熱伝導率が高く、前記第2の保護層は前記第1の保護層よりも耐酸化性が高い材料であることを特徴とする請求項1記載の半導体素子。   The first protective layer has a higher thermal conductivity than the second protective layer, and the second protective layer is a material having higher oxidation resistance than the first protective layer. The semiconductor device according to claim 1. 前記第1の保護層は窒化アルミニウム、窒化シリコンアルミニウムのいずれかであることを特徴とする請求項1または2記載の半導体素子。   3. The semiconductor device according to claim 1, wherein the first protective layer is made of aluminum nitride or silicon aluminum nitride. 前記第2の保護層は、前記第1の保護層が窒化アルミニウムである場合には窒化シリコンまたは窒化シリコンアルミニウムであり、前記第1の保護層が窒化シリコンアルミニウムである場合には窒化シリコンであることを特徴とする請求項3記載の半導体素子。   The second protective layer is silicon nitride or silicon aluminum nitride when the first protective layer is aluminum nitride, and silicon nitride when the first protective layer is silicon aluminum nitride. The semiconductor device according to claim 3. 前記第1の保護層が設けられる面は{1−100}面であることを特徴とする請求項1乃至4のいずれかに記載の半導体素子。   5. The semiconductor element according to claim 1, wherein a surface on which the first protective layer is provided is a {1-100} surface. 前記基板はGaN基板であることを特徴とする請求項1乃至5のいずれかに記載の半導体素子。   The semiconductor element according to claim 1, wherein the substrate is a GaN substrate.
JP2011240549A 2011-11-01 2011-11-01 Semiconductor device Pending JP2012069970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240549A JP2012069970A (en) 2011-11-01 2011-11-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240549A JP2012069970A (en) 2011-11-01 2011-11-01 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005204436A Division JP5285835B2 (en) 2005-07-13 2005-07-13 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012069970A true JP2012069970A (en) 2012-04-05

Family

ID=46166775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240549A Pending JP2012069970A (en) 2011-11-01 2011-11-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2012069970A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250380A (en) * 1989-03-23 1990-10-08 Nec Corp Semiconductor light emitting diode
JPH03142892A (en) * 1989-10-27 1991-06-18 Sharp Corp Semiconductor laser element
JP2000077336A (en) * 1998-08-28 2000-03-14 Sony Corp Substrate for semiconductor growth, manufacture thereof, and semiconductor device
JP2001357973A (en) * 2000-06-15 2001-12-26 Sony Corp Display device
JP2002026442A (en) * 2000-07-07 2002-01-25 Sony Corp Semiconductor laser
JP2002134268A (en) * 2000-10-27 2002-05-10 Tdk Corp Organic el element and organic el display panel using organic el element
JP2002198563A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Semiconductor element
JP2002237648A (en) * 2001-02-13 2002-08-23 Fuji Photo Film Co Ltd Semiconductor laser element
JP2003204122A (en) * 2001-12-28 2003-07-18 Nichia Chem Ind Ltd Nitride semiconductor element
JP2004247563A (en) * 2003-02-14 2004-09-02 Sony Corp Semiconductor device
JP2004311964A (en) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd Nitride semiconductor element and its manufacturing method
JP2004312050A (en) * 2004-08-05 2004-11-04 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor light-emitting element
JP2005079406A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor laser
JP2005101536A (en) * 2003-08-28 2005-04-14 Nichia Chem Ind Ltd Nitride semiconductor laser element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250380A (en) * 1989-03-23 1990-10-08 Nec Corp Semiconductor light emitting diode
JPH03142892A (en) * 1989-10-27 1991-06-18 Sharp Corp Semiconductor laser element
JP2000077336A (en) * 1998-08-28 2000-03-14 Sony Corp Substrate for semiconductor growth, manufacture thereof, and semiconductor device
JP2001357973A (en) * 2000-06-15 2001-12-26 Sony Corp Display device
JP2002026442A (en) * 2000-07-07 2002-01-25 Sony Corp Semiconductor laser
JP2002134268A (en) * 2000-10-27 2002-05-10 Tdk Corp Organic el element and organic el display panel using organic el element
JP2002198563A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Semiconductor element
JP2002237648A (en) * 2001-02-13 2002-08-23 Fuji Photo Film Co Ltd Semiconductor laser element
JP2003204122A (en) * 2001-12-28 2003-07-18 Nichia Chem Ind Ltd Nitride semiconductor element
JP2004247563A (en) * 2003-02-14 2004-09-02 Sony Corp Semiconductor device
JP2004311964A (en) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd Nitride semiconductor element and its manufacturing method
JP2005101536A (en) * 2003-08-28 2005-04-14 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2005079406A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor laser
JP2004312050A (en) * 2004-08-05 2004-11-04 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
JP5285835B2 (en) Semiconductor device and manufacturing method thereof
US6515308B1 (en) Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US6249534B1 (en) Nitride semiconductor laser device
TWI336547B (en)
JP5963004B2 (en) Nitride semiconductor light emitting device
JP6152848B2 (en) Semiconductor light emitting device
JP2007066981A (en) Semiconductor device
KR100621117B1 (en) Semiconductor laser and method for manufacturing the same
US7609737B2 (en) Nitride semiconductor laser element
JP2008300547A (en) Nitride semiconductor laser element and its manufacturing method
KR101834572B1 (en) Nitride semiconductor laser element and method for manufacturing the same
JP5098135B2 (en) Semiconductor laser element
WO2012067047A1 (en) Semiconductor laser element and method for manufacturing same
JP2007214221A (en) Nitride semiconductor laser device
CN107851969B (en) Nitride semiconductor laser element
JP2009059933A (en) Semiconductor light-emitting element
JP3224020B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US20160352077A1 (en) Semiconductor laser device
JP2007324582A (en) Integrated semiconductor light-emitting device, and manufacturing method thereof
JP3502527B2 (en) Nitride semiconductor laser device
JP4960777B2 (en) Edge-emitting semiconductor laser chip
JP2011205148A (en) Semiconductor device
JP5010096B2 (en) Nitride semiconductor laser device and LD device using the same
JP2003101141A (en) Multilayer film reflecting layer and gallium nitride based light emitting element using the same
JP2007324578A (en) Integrated semiconductor light-emitting device, and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805