JP2002237648A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JP2002237648A
JP2002237648A JP2001034910A JP2001034910A JP2002237648A JP 2002237648 A JP2002237648 A JP 2002237648A JP 2001034910 A JP2001034910 A JP 2001034910A JP 2001034910 A JP2001034910 A JP 2001034910A JP 2002237648 A JP2002237648 A JP 2002237648A
Authority
JP
Japan
Prior art keywords
layer
gan
semiconductor laser
laser device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001034910A
Other languages
Japanese (ja)
Inventor
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001034910A priority Critical patent/JP2002237648A/en
Publication of JP2002237648A publication Critical patent/JP2002237648A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Gaussian-type laser light of high quality and high reliability in a range starting from low output to high output, in a semiconductor laser element composed of InGaAlN-based material. SOLUTION: In a resonator end surface, an N-GaN contact layer 9, an N- Ga1-z1Alz1N/GaN superlattice clad layer 10, an N-Ga1-z2Alz2N optical waveguide layer 11, an Inx2Ga1-x2N (Si-dope)/Inx1Ga1-x1N multi-quantum well active layer 12, a P-Ga1-z3Alz3 carrier blocking layer 13, a P-Ga1-z2Alz2N optical waveguide layer 14, an P-Ga1-z1Alz1N/GaN superlattice clad layer 15, and a P-GaN contact layer 16, are formed on a GaN layer 8. An SiN film is formed almost 1 nm in thickness on the resonator end surface. After that, a high reflectivity coating which consists of a dielectrics multiplayer film composed of SiO2/TiO2 is carried out, and low reflectivity coating, which uses SiO2 is performed. Since the SiN film is formed, in contact with the resonator end surface, the number of non- luminescent recombination centers can be reduced, and reliability of with time passage can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、InGaAlN系
の材料からなる半導体レーザ素子に関するものである。
The present invention relates to a semiconductor laser device made of an InGaAlN-based material.

【0002】[0002]

【従来の技術】微小スポットを有する400nm帯の半導
体レーザ素子は、高密度化が進む光ディスクメモリ、あ
るいは短波長領域に感度を有する感光材料を用いた印刷
などの分野では、信頼性の高いガウス型の高品質ビーム
を有し基本横モード発振することが期待されている。例
えば、1998年発行のJpn.J.Appl.phys.Lett.,Vol.37,pp.
L1020、中村氏らによる、InGaN/GaN/AlGaN-Based Laser
Diodes Grown on GaN Substrates with a Fundamental
Transverse Modeにおいて、410nm帯の短波長半導体レ
ーザが紹介されている。この半導体レーザ素子は、サフ
ァイア基板上にGaNを形成した後、SiO2をマスクとして
GaN層を選択成長し、GaN厚膜を剥がしてできたGaN基
板上に、n−GaNバッファ層、n−InGaNクラック防止
層、n-AlGaN/GaN変調ドープ超格子クラッド層、n−GaN
光導波層、n-InGaN/InGaN多重量子井戸活性層、p-AlGaN
キャリアブロック層、p-GaN光導波層、p-AlGaN/GaN変調
ドープ超格子クラッド層およびp−GaNコンタクト層を
積層したものであり、端面コートとして、SiO2とTiO2
交互に積層した構成を用いている。
2. Description of the Related Art A semiconductor laser device in the 400 nm band having a minute spot is a highly reliable Gaussian type semiconductor in fields such as an optical disk memory where recording density is increasing and a photosensitive material sensitive to a short wavelength region is used. It is expected to have a high quality beam and to oscillate in a fundamental transverse mode. For example, Jpn.J.Appl.phys.Lett., Vol.37, pp.
L1020, InGaN / GaN / AlGaN-Based Laser by Nakamura et al.
Diodes Grown on GaN Substrates with a Fundamental
In Transverse Mode, a short-wavelength semiconductor laser in the 410 nm band is introduced. In this semiconductor laser device, after GaN is formed on a sapphire substrate, a GaN layer is selectively grown using SiO 2 as a mask, and an n-GaN buffer layer, an n-InGaN Anti-crack layer, n-AlGaN / GaN modulation-doped superlattice cladding layer, n-GaN
Optical waveguide layer, n-InGaN / InGaN multiple quantum well active layer, p-AlGaN
Carrier blocking layer, p-GaN optical waveguide layer is obtained by laminating a p-AlGaN / GaN modulation-doped superlattice cladding layer and p-GaN contact layer, a facet coating, formed by laminating a SiO 2 and TiO 2 are alternately Is used.

【0003】[0003]

【発明が解決しようとする課題】上記半導体レーザ素子
において、素子抵抗を低減するために変調ドープ超格子
クラッド層を用いているが十分ではないので、駆動時の
ジュール熱の発熱による信頼性の劣化が確認されてい
る。また、光出力は30mW程度の基本横モード発振し
か得られていない。このため上記のような半導体レーザ
素子では、端面劣化の原因である、端面の非発光再結合
中心を除去することが必要とされている。
In the above-mentioned semiconductor laser device, a modulation-doped superlattice cladding layer is used to reduce the device resistance, but this is not sufficient. Has been confirmed. Further, the light output is only about 30 mW in the fundamental transverse mode oscillation. Therefore, in the above-described semiconductor laser device, it is necessary to remove the non-radiative recombination center on the end face, which is the cause of the end face deterioration.

【0004】本発明は上記事情に鑑みて、低出力から高
出力まで信頼性が高く、かつ高品質なガウス型のビーム
を発する半導体レーザ素子を提供することを目的とする
ものである。
In view of the above circumstances, it is an object of the present invention to provide a semiconductor laser device which emits a high quality Gaussian beam with high reliability from low output to high output.

【0005】[0005]

【課題を解決するための手段】本発明の半導体レーザ素
子は、少なくとも第一導電型コンタクト層、第一導電型
クラッド層、活性層、第二導電型クラッド層および第二
導電型コンタクト層をこの順に積層されてなる共振器の
前記活性層より上に電流注入窓が形成されており、該共
振器がInGaAlN系の材料から構成されている半導
体レーザ素子において、共振器の共振器面に接して、窒
化物からなる誘電体膜が形成されていることを特徴とす
るものである。
According to the semiconductor laser device of the present invention, at least a first conductive type contact layer, a first conductive type clad layer, an active layer, a second conductive type clad layer and a second conductive type contact layer are formed. A current injection window is formed above the active layer of the resonators stacked in order, and in a semiconductor laser device made of an InGaAlN-based material, the resonator is in contact with the resonator surface of the resonator. And a dielectric film made of nitride is formed.

【0006】誘電体膜は、窒化シリコン、窒化アルミニ
ウムあるいは窒化ガリウムからなることが望ましい。
The dielectric film is preferably made of silicon nitride, aluminum nitride or gallium nitride.

【0007】誘電体膜は、1nm以上の厚さを有するこ
とが望ましい。
It is desirable that the dielectric film has a thickness of 1 nm or more.

【0008】上記「InGaAlN系」とは、InGa
N、GaN、InGaAlNおよびAlGaNの組成を
含む。
The above-mentioned “InGaAlN-based” refers to InGaAlN.
Includes compositions of N, GaN, InGaAlN and AlGaN.

【0009】上記の第一導電型と第二導電型とは、互い
に逆極性を示すものであり、例えば、第一導電型がn型
導電性であれば、第二導電型はp型導電性を示す。
The first conductivity type and the second conductivity type have opposite polarities. For example, if the first conductivity type is n-type conductivity, the second conductivity type is p-type conductivity. Is shown.

【0010】[0010]

【発明の効果】本発明の半導体レーザ素子によれば、共
振器端面に接して窒化物からなる誘電体膜が形成されて
いることにより、この誘電体膜の組成と共振器を構成す
る組成とが同じ窒化物であるため、共振器端面で切れた
結合が窒素でつながるので、バンドギャップ内に非発光
再結合に寄与する準位ができにくくなる。よって、非発
光再結合を低減でき、端面での非発光再結合性電流によ
る発熱によって端面が劣化するのを防止できるので、低
出力から高出力まで高信頼性で、かつ高品質なガウス型
のビームを得ることができる。
According to the semiconductor laser device of the present invention, since the dielectric film made of nitride is formed in contact with the end face of the resonator, the composition of the dielectric film and the composition of the resonator are reduced. Are the same nitride, the bonds cut at the cavity facets are connected by nitrogen, so that a level contributing to non-radiative recombination is hardly formed in the band gap. Therefore, non-radiative recombination can be reduced and the end face can be prevented from deteriorating due to heat generated by non-radiative recombination current at the end face. Beam can be obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】本発明の一実施の形態による半導体レーザ
素子について説明する。その半導体レーザ素子の断面図
を図1に示す。
A description will be given of a semiconductor laser device according to an embodiment of the present invention. FIG. 1 shows a cross-sectional view of the semiconductor laser device.

【0013】図1に示すように、成長用原料として、ト
リメチルガリウム(TMG)と、トリメチルインジュウム
(TMI)と、トリメチルアルミニウム(TMA)とアンモニ
アとを原料とし、n型ドーパントガスとして、シランガ
スを用い、p型ドーパントとしてシクロペンタジエニル
マグネシウム(Cp2Mg)を用いる。有機金属気相成長法
により(0001)面サファイア基板1上に、温度500
℃でGaNバッファ層2を20nm程度の膜厚で形成す
る。続いて、温度を1050℃にしてGaN層3を2μm程
度成長させる。その後SiO2膜4(図示せず)を形成し、
レジスト5(図示せず)を塗布後、通常のリソグラフィ
ーを用いて
As shown in FIG. 1, trimethylgallium (TMG), trimethylindium (TMI), trimethylaluminum (TMA) and ammonia are used as growth materials, and silane gas is used as an n-type dopant gas. Cyclopentadienyl magnesium (Cp 2 Mg) is used as a p-type dopant. A temperature of 500 on a (0001) plane sapphire substrate 1 by metal organic chemical vapor deposition.
At 20 ° C., a GaN buffer layer 2 is formed with a thickness of about 20 nm. Subsequently, the temperature is set to 1050 ° C., and the GaN layer 3 is grown to about 2 μm. After that, an SiO 2 film 4 (not shown) is formed,
After applying a resist 5 (not shown), use normal lithography

【数1】 方向に5μmのSiO2膜4を除去したストライプ領域を10
μm程度の周期でラインアンドスペースのパターンを形
成する。レジスト5とSiO2膜4をマスクとして、塩素系
のガスを用いてGaNバッファ層2およびGaN層3を
ドライエッチングによりサファイア基板1上面まで除去
する。このとき、サファイア基板1をエッチングしても
よい。レジスト5とSiO2膜4を除去後、GaN層6を10
μm程度選択成長させる。この時横方向の成長により最
終的にストライプが合体し表面が平坦化する。この後、
SiO2膜7を形成し、通常のリソグラフィーによりGaN
層3が存在する上部を覆うように、幅7μm程度の領域
のSiO2膜7を残して、ストライプ状に除去する。引き続
きGaN層8を成長し、横方向の成長により最終的にス
トライプが合体し表面を平坦化させる。
(Equation 1) The stripe region where the 5 μm SiO 2 film 4 was removed in the direction
A line and space pattern is formed at a period of about μm. Using the resist 5 and the SiO 2 film 4 as a mask, the GaN buffer layer 2 and the GaN layer 3 are removed to the upper surface of the sapphire substrate 1 by dry etching using a chlorine-based gas. At this time, the sapphire substrate 1 may be etched. After removing the resist 5 and the SiO 2 film 4, the GaN layer 6 is
Selectively grow by about μm. At this time, the stripes finally merge due to the lateral growth, and the surface is flattened. After this,
An SiO 2 film 7 is formed, and GaN is formed by ordinary lithography.
The SiO 2 film 7 having a width of about 7 μm is removed so as to cover the upper portion where the layer 3 is present, and is striped. Subsequently, the GaN layer 8 is grown, and finally the stripes are united by the lateral growth to flatten the surface.

【0014】引き続き、n−GaNコンタクト層9、n
−Ga1-z1Alz1N(2.5nm)/GaN(2.5nm)超格子クラ
ッド層10、n−Ga1-z2Alz2N光導波層11、Inx2
1-x 2N(Si-ドープ)/Inx1Ga1-x1N多重量子井戸
活性層(0.5>x1>x2≧0)12、p-Ga1-z3Alz3Nキ
ャリアブロッキング層13、p−Ga1-z2Alz2N光導波
層14、p−Ga1-z1Alz1N(2.5nm)/GaN(2.5nm)超
格子クラッド層15およびp−GaNコンタクト層16を成
長する。引き続き、SiO2膜とレジストを形成し、通常の
リソグラフィーにより1〜3μmの幅よりなるストライ
プ領域外のレジストとSiO2膜を除去する。RIE(反応性
イオンエッチング装置)で選択エッチングによりp型超
格子クラッド層15の途中までエッチングを行い、リッジ
ストライプを形成する。このエッチングのクラッド層残
し厚は、基本横モード発振が達成できる厚みとする。そ
の後、レジストとSiO2膜を除去し、再度SiO2とレジスト
を形成し、ストライプ領域とストライプの両端より20μ
m外側の領域との領域以外のSiO2とレジストを除去し、
RIEでn-GaNコンタクト層9が露出するまでエッチン
グを行う。SiO2とレジストを剥離した後、絶縁膜17を形
成する。通常のリソグラフィー技術を用い、リッジ上の
絶縁膜17を除去することによりp−GaNコンタクト層
16を露出させて電流注入窓を形成する。p−GaNコン
タクト層16の表面に接するようにストライプ状にNi/Au
よりなるp電極19を形成し、また、n-GaNコンタク
ト層9に接するようにTi/Auよりなるn電極18を形成す
る。その後、基板を研磨し、試料をへき開して形成した
共振器面に、それぞれ、30eV程度のエネルギーでA
rイオンを照射して端面の酸化物や不純物を取り除いた
後、窒化シリコンをECRスパッタ法により1nm程度形
成し、一方の端面にSiO2/TiO2の誘電体多層膜からなる
高反射率コートを行い、他方の端面にSiO2からなる低反
射コートを行う。その後、チップ化して半導体レーザ素
子を形成する。
Subsequently, the n-GaN contact layer 9, n
-Ga 1-z1 Al z1 N ( 2.5nm) / GaN (2.5nm) superlattice cladding layer 10, n-Ga 1-z2 Al z2 N optical waveguide layer 11, an In x2 G
a 1-x 2 N (Si- doped) / In x1 Ga 1-x1 N multiple quantum well active layer (0.5>x1> x2 ≧ 0 ) 12, p-Ga 1-z3 Al z3 N carrier blocking layer 13, p growing -Ga 1-z2 Al z2 N optical guide layer 14, p-Ga 1-z1 Al z1 N (2.5nm) / GaN (2.5nm) superlattice cladding layer 15 and p-GaN contact layer 16. Subsequently, an SiO 2 film and a resist are formed, and the resist and the SiO 2 film outside the stripe region having a width of 1 to 3 μm are removed by ordinary lithography. The ridge (reactive ion etching device) is selectively etched to a part of the p-type superlattice cladding layer 15 to form a ridge stripe. The remaining thickness of the cladding layer in this etching is a thickness that can achieve the fundamental transverse mode oscillation. After that, the resist and the SiO 2 film are removed, and the SiO 2 and the resist are formed again.
remove the SiO 2 and the resist except for the area outside the area m,
Etching is performed by RIE until the n-GaN contact layer 9 is exposed. After removing the SiO 2 and the resist, an insulating film 17 is formed. The p-GaN contact layer is removed by removing the insulating film 17 on the ridge using a normal lithography technique.
16 is exposed to form a current injection window. Ni / Au in stripes so as to be in contact with the surface of p-GaN contact layer 16
A p electrode 19 made of Ti / Au is formed so as to be in contact with the n-GaN contact layer 9. After that, the substrate is polished and the sample is cleaved to form a cavity surface with energy of about 30 eV.
After irradiating r ions to remove oxides and impurities on the end face, silicon nitride is formed to a thickness of about 1 nm by ECR sputtering, and a high reflectivity coat made of a dielectric multilayer film of SiO 2 / TiO 2 is formed on one end face. Then, a low reflection coating made of SiO 2 is applied to the other end face. Then, the semiconductor laser device is formed by chipping.

【0015】AlGaNの組成は、1>z1>z2≧0および0.4>
z3>z2とする。
The composition of AlGaN is such that 1>z1> z2 ≧ 0 and 0.4>
Let z3> z2.

【0016】各層の成長法として、固体あるいはガスを
原料とする分子線エピタキシャル成長法であってもよ
い。
As a method for growing each layer, a molecular beam epitaxial growth method using a solid or gas as a raw material may be used.

【0017】上記構造はn型層を最初に成長している
が、p型層から成長してもよく、各層の導電性を反転す
るだけでよい。
Although the above structure grows the n-type layer first, it may grow from the p-type layer and only needs to reverse the conductivity of each layer.

【0018】本実施の形態では、リッジ構造の屈折率導
波型レーザについて述べたが、内部に電流狭窄構造を有
するレーザやリッジ構造を埋込み屈折率導波型機構を作
りつけた半導体レーザであってもよい。
In this embodiment, a ridge-structured index-guided laser has been described. However, a laser having a current confinement structure therein or a semiconductor laser having a ridge structure embedded therein to form a refractive-index-guided mechanism. You may.

【0019】レーザ端面に接して形成する膜としては、
窒化アルミニウムあるいは窒化ガリウムであってもよ
い。
As a film formed in contact with the laser end face,
Aluminum nitride or gallium nitride may be used.

【0020】上記半導体レーザ素子の発振波長λは、活
性層の組成より、380<λ<550(nm)が可能である。
The oscillation wavelength λ of the semiconductor laser device can be 380 <λ <550 (nm) depending on the composition of the active layer.

【0021】上記実施の形態では、サファイア基板上へ
各層を成長して形成したが、SiC基板、ZnO、LiGaO2、Li
AlO2、GaAs、GaP、GeあるいはSiを用いてもよい。
In the above embodiment, each layer is formed by growing on a sapphire substrate. However, a SiC substrate, ZnO, LiGaO 2 , Li
AlO 2 , GaAs, GaP, Ge or Si may be used.

【0022】また、ベースとなるサファイア基板および
導電性不純物が添加されていないGaN層等を除去して
できた導電性GaN基板上に上記各層を成長してもよ
い。
Further, each of the above layers may be grown on a conductive GaN substrate formed by removing a sapphire substrate serving as a base and a GaN layer to which conductive impurities are not added.

【0023】上記では、基本横モード発振する半導体レ
ーザの形成について述べたが、ストライプ幅を3μm以
上として、波長変換素子やファイバーレーザの励起用な
どに用いることができる低雑音の幅広ストライプ半導体
レーザとしてもよい。
In the above description, the formation of a semiconductor laser that oscillates in a fundamental transverse mode has been described. However, the stripe width is set to 3 μm or more, and a wide stripe semiconductor laser with low noise that can be used for exciting a wavelength conversion element or a fiber laser is used. Is also good.

【0024】次に、本実施の形態による半導体レーザ素
子の経時信頼性について説明する。図2にそのグラフを
示す。図中(a)が比較例の半導体レーザ素子の結果を
示すものであり、(b)が本発明による半導体レーザ素
子の結果である。本発明の半導体レーザ素子は、上記半
導体レーザ素子の構成において、組成比を、z1=0.16、x
2=0.02、x1=0.14、z3=0.15およびz2=0とし、ストライプ
幅を3μmとし、共振器長を500μmとしており、ま
た、p電極19は3μm×500μmとしたものを用いて
いる。比較例の半導体レーザ素子としては、上記半導体
レーザ素子と同様の層構成で、共振器面に窒化シリコン
をスパッタしないで反射膜を成膜した半導体レーザ素子
を用いている。どちらの素子も、反射膜のコート前には
30eV程度のエネルギーを有するArイオンを端面に照
射し、端面の酸化物や不純物を取り除いている。試験
は、環境温度が50℃、光出力が1mWで、APC駆動
させた場合のものである。
Next, the reliability over time of the semiconductor laser device according to the present embodiment will be described. FIG. 2 shows the graph. In the figure, (a) shows the result of the semiconductor laser device of the comparative example, and (b) shows the result of the semiconductor laser device according to the present invention. The semiconductor laser device of the present invention, in the configuration of the semiconductor laser device, the composition ratio, z1 = 0.16, x
2 = 0.02, x1 = 0.14, z3 = 0.15 and z2 = 0, the stripe width is 3 μm, the resonator length is 500 μm, and the p-electrode 19 is 3 μm × 500 μm. As the semiconductor laser device of the comparative example, a semiconductor laser device having the same layer configuration as the above-described semiconductor laser device and having a reflection film formed on the resonator surface without sputtering silicon nitride is used. In both devices, before coating the reflective film, the end face is irradiated with Ar ions having energy of about 30 eV to remove oxides and impurities on the end face. In the test, the ambient temperature was 50 ° C., the light output was 1 mW, and the APC was driven.

【0025】図2(a)に示すように、窒化シリコンを
形成しない比較例の半導体レーザ素子は100時間以内
に劣化しており、本発明の半導体レーザ素子は、図2
(b)に示すように、400時間まで電流増加は見られ
るが駆動は継続している。よって共振器端面に接して窒
化シリコンを形成することにより経時信頼性が高いこと
がわかる。
As shown in FIG. 2A, the semiconductor laser device of the comparative example in which no silicon nitride is formed has deteriorated within 100 hours, and the semiconductor laser device of the present invention has
As shown in (b), although the current is increased up to 400 hours, the driving is continued. Therefore, it can be seen that the reliability over time is high by forming silicon nitride in contact with the end face of the resonator.

【0026】本発明の半導体レーザ素子は、高品質なビ
ームを発し、経時信頼性が高いため、高速な情報・画像
処理及び通信、計測、医療、印刷の分野での光源として
応用可能である。
The semiconductor laser device of the present invention emits a high-quality beam and has high reliability over time, so that it can be applied as a light source in the fields of high-speed information / image processing and communication, measurement, medicine, and printing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による半導体レーザ素子
を示す断面図
FIG. 1 is a sectional view showing a semiconductor laser device according to an embodiment of the present invention;

【図2】本発明の一実施の形態による半導体レーザ素子
と、共振器端面にSiN膜を設けないで反射膜を成膜し
た半導体レーザ素子の経時信頼性を示すグラフ
FIG. 2 is a graph showing the reliability over time of a semiconductor laser device according to an embodiment of the present invention and a semiconductor laser device having a reflective film formed without providing a SiN film on a cavity end face;

【符号の説明】[Explanation of symbols]

1 (0001)面サファイア基板 2 GaNバッファ層 3 GaN層 6 GaN層 7 SiO2膜 8 GaN層 9 n−GaNコンタクト層 10 n−Ga1-z1Alz1N/GaN超格子クラッド層 11 n−Ga1-z2Alz2N光導波層 12 Inx2Ga1-x2N(Si-ドープ)/Inx1Ga1-x1
N多重量子井戸活性層 13 p−Ga1-z3Alz3Nキャリアブロッキング層 14 p−Ga1-z2Alz2N光導波層 15 p−Ga1-z1Alz1N/GaN超格子クラッド層 16 p−GaNコンタクト層 17 絶縁膜 18 n電極 19 p電極
1 (0001) plane sapphire substrate 2 GaN buffer layer 3 GaN layer 6 GaN layer 7 SiO 2 film 8 GaN layer 9 n-GaN contact layer 10 n-Ga 1-z1 Al z1 N / GaN superlattice cladding layer 11 n-Ga 1-z2 Al z2 N optical waveguide layer 12 In x2 Ga 1-x2 N (Si-doped) / In x1 Ga 1-x1
N multiple quantum well active layer 13 p-Ga 1 -z 3 Al z3 N carrier blocking layer 14 p-Ga 1 -z 2 Al z2 N optical waveguide layer 15 p-Ga 1 -z 1 Al z1 N / GaN superlattice cladding layer 16 p -GaN contact layer 17 Insulating film 18 N electrode 19 P electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも第一導電型コンタクト層、
第一導電型クラッド層、活性層、第二導電型クラッド層
および第二導電型コンタクト層をこの順に積層されてな
る共振器の前記活性層より上に電流注入窓が形成されて
おり、該共振器がInGaAlN系の材料から構成され
ている半導体レーザ素子において、 前記共振器の共振器面に接して、窒化物からなる誘電体
膜が形成されていることを特徴とする半導体レーザ素
子。
At least a first conductivity type contact layer,
A current injection window is formed above the active layer of the resonator in which the first conductive type clad layer, the active layer, the second conductive type clad layer, and the second conductive type contact layer are stacked in this order, A semiconductor laser device in which a device is formed of an InGaAlN-based material, wherein a dielectric film made of nitride is formed in contact with a resonator surface of the resonator.
【請求項2】 前記誘電体膜が、窒化シリコン、窒化ア
ルミニウムあるいは窒化ガリウムからなることを特徴と
する請求項1記載の半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein said dielectric film is made of silicon nitride, aluminum nitride or gallium nitride.
【請求項3】 前記誘電体膜が、1nm以上の厚さを有
することを特徴とする請求項1または2記載の半導体レ
ーザ素子。
3. The semiconductor laser device according to claim 1, wherein said dielectric film has a thickness of 1 nm or more.
JP2001034910A 2001-02-13 2001-02-13 Semiconductor laser element Withdrawn JP2002237648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034910A JP2002237648A (en) 2001-02-13 2001-02-13 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034910A JP2002237648A (en) 2001-02-13 2001-02-13 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JP2002237648A true JP2002237648A (en) 2002-08-23

Family

ID=18898426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034910A Withdrawn JP2002237648A (en) 2001-02-13 2001-02-13 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JP2002237648A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327678A (en) * 2003-04-24 2004-11-18 Sony Corp Multiwavelength semiconductor laser and its manufacturing method
JP2006091802A (en) * 2004-09-21 2006-04-06 Semiconductor Res Found Device and method for terahertz electromagnetic wave generation
JP2007109737A (en) * 2005-10-11 2007-04-26 Toshiba Corp Nitride semiconductor laser equipment and its manufacturing method
WO2008015882A1 (en) * 2006-07-31 2008-02-07 Panasonic Corporation Semiconductor laser and method for manufacturing same
CN100452464C (en) * 2005-12-16 2009-01-14 夏普株式会社 Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
US7750363B2 (en) 2005-10-07 2010-07-06 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device having an end face coating film and method of manufacturing the same
US7773648B2 (en) 2005-07-13 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US7792169B2 (en) 2006-03-08 2010-09-07 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
US7852893B2 (en) 2007-02-26 2010-12-14 Kabushiki Kaisha Toshiba Semiconductor laser device
US7968898B2 (en) 2006-03-06 2011-06-28 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor transistor device
JP2012039164A (en) * 2006-03-06 2012-02-23 Sharp Corp Nitride semiconductor luminous element, and method for manufacturing nitride semiconductor luminous element
JP2012069970A (en) * 2011-11-01 2012-04-05 Toshiba Corp Semiconductor device
US8319235B2 (en) 2006-04-24 2012-11-27 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and method of manufacturing nitride semiconductor light-emitting device
US8368095B2 (en) 2005-12-16 2013-02-05 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
US9508545B2 (en) 2015-02-09 2016-11-29 Applied Materials, Inc. Selectively lateral growth of silicon oxide thin film
JP2017083441A (en) * 2015-10-26 2017-05-18 エーザイ・アール・アンド・ディー・マネジメント株式会社 Electronic noise removal method using singular value analysis method and singular value analysis program

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327678A (en) * 2003-04-24 2004-11-18 Sony Corp Multiwavelength semiconductor laser and its manufacturing method
JP2006091802A (en) * 2004-09-21 2006-04-06 Semiconductor Res Found Device and method for terahertz electromagnetic wave generation
US7773648B2 (en) 2005-07-13 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US7750363B2 (en) 2005-10-07 2010-07-06 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device having an end face coating film and method of manufacturing the same
JP2007109737A (en) * 2005-10-11 2007-04-26 Toshiba Corp Nitride semiconductor laser equipment and its manufacturing method
US7602829B2 (en) 2005-10-11 2009-10-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of manufacturing same
US8735192B2 (en) 2005-12-16 2014-05-27 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
US8541796B2 (en) 2005-12-16 2013-09-24 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
CN100452464C (en) * 2005-12-16 2009-01-14 夏普株式会社 Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
US8368095B2 (en) 2005-12-16 2013-02-05 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
JP2012039164A (en) * 2006-03-06 2012-02-23 Sharp Corp Nitride semiconductor luminous element, and method for manufacturing nitride semiconductor luminous element
US7968898B2 (en) 2006-03-06 2011-06-28 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor transistor device
US8067255B2 (en) 2006-03-06 2011-11-29 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor transistor device
US8367441B2 (en) 2006-03-06 2013-02-05 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor transistor device
JP2014003314A (en) * 2006-03-06 2014-01-09 Sharp Corp Nitride semiconductor light-emitting element
US9660413B2 (en) 2006-03-08 2017-05-23 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
US7792169B2 (en) 2006-03-08 2010-09-07 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
US9190806B2 (en) 2006-03-08 2015-11-17 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
US8319235B2 (en) 2006-04-24 2012-11-27 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and method of manufacturing nitride semiconductor light-emitting device
US7738525B2 (en) 2006-07-31 2010-06-15 Panasonic Corporation Semiconductor laser and method for fabricating the same
JP2008034749A (en) * 2006-07-31 2008-02-14 Matsushita Electric Ind Co Ltd Semiconductor laser, and its manufacturing method
WO2008015882A1 (en) * 2006-07-31 2008-02-07 Panasonic Corporation Semiconductor laser and method for manufacturing same
US7852893B2 (en) 2007-02-26 2010-12-14 Kabushiki Kaisha Toshiba Semiconductor laser device
JP2012069970A (en) * 2011-11-01 2012-04-05 Toshiba Corp Semiconductor device
US9508545B2 (en) 2015-02-09 2016-11-29 Applied Materials, Inc. Selectively lateral growth of silicon oxide thin film
US9741558B2 (en) 2015-02-09 2017-08-22 Applied Materials, Inc. Selectively lateral growth of silicon oxide thin film
US10002757B2 (en) 2015-02-09 2018-06-19 Applied Materials, Inc. Selectively lateral growth of silicon oxide thin film
JP2017083441A (en) * 2015-10-26 2017-05-18 エーザイ・アール・アンド・ディー・マネジメント株式会社 Electronic noise removal method using singular value analysis method and singular value analysis program

Similar Documents

Publication Publication Date Title
JP3770014B2 (en) Nitride semiconductor device
WO1998039827A1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JP2002374043A (en) Gallium nitride compound semiconductor device
JPH11214788A (en) Gallium nitride type semiconductor laser element
WO2003036771A1 (en) Nitride semiconductor laser element, and production method therefor
JP2002237648A (en) Semiconductor laser element
JP2007235107A (en) Semiconductor light-emitting device
JPH10261838A (en) Gallium nitride semiconductor light-emitting element and semiconductor laser beam source device
JP2002374035A (en) Semiconductor laser device and producing method therefor
JPH09266352A (en) Semiconductor light emitting element
JP3880683B2 (en) Method for manufacturing gallium nitride based semiconductor light emitting device
JP3888080B2 (en) Semiconductor laser element
US20010012308A1 (en) High-power semiconductor laser device having current confinement structure and index-guides structure and oscillating in transverse mode
JP4365898B2 (en) Gallium nitride semiconductor laser device and semiconductor laser light source device
JPH11340573A (en) Gallium nitride based semiconductor laser element
JP2002204036A (en) Nitride semiconductor laser element and its manufacturing method
JP3933637B2 (en) Gallium nitride semiconductor laser device
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JP3656454B2 (en) Nitride semiconductor laser device
JP2000299530A (en) Semiconductor light-emitting device
JP4045792B2 (en) Nitride semiconductor laser device
JP2004179532A (en) Semiconductor light emitting element and semiconductor device
JPH09199787A (en) Nitride semiconductor laser device
JP2000332290A (en) Nitride semiconductor element and its manufacture
JP2001358407A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513