US20010012308A1 - High-power semiconductor laser device having current confinement structure and index-guides structure and oscillating in transverse mode - Google Patents

High-power semiconductor laser device having current confinement structure and index-guides structure and oscillating in transverse mode Download PDF

Info

Publication number
US20010012308A1
US20010012308A1 US09/777,822 US77782201A US2001012308A1 US 20010012308 A1 US20010012308 A1 US 20010012308A1 US 77782201 A US77782201 A US 77782201A US 2001012308 A1 US2001012308 A1 US 2001012308A1
Authority
US
United States
Prior art keywords
layer
gan
current confinement
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/777,822
Other versions
US6452954B2 (en
Inventor
Toshiaki Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Fujifilm Holdings Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to FUJI PHOTO FILM CO., LTD. reassignment FUJI PHOTO FILM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUNAGA, TOSHIAKI
Publication of US20010012308A1 publication Critical patent/US20010012308A1/en
Application granted granted Critical
Publication of US6452954B2 publication Critical patent/US6452954B2/en
Assigned to FUJIFILM CORPORATION reassignment FUJIFILM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.)
Assigned to NICHIA CORPORATION reassignment NICHIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIFILM CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/204Strongly index guided structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2227Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
    • H01S5/2228Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence quantum wells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers

Definitions

  • This semiconductor laser device is formed as follows. First, a GaN substrate is formed by forming a first GaN layer on a sapphire substrate, selectively growing a second GaN layer by using a SiO 2 mask, and removing an excessive portion of the second GaN layer above the top surface of the SiO 2 mask.
  • an index-guided structure is realized by forming a ridge structure having a width of about 2 micrometers.
  • the maximum output power in the fundamental transverse mode is at most about 30 mW.
  • the contact area between the p electrode and the p-type GaN contact layer is small, and therefore the contact resistance and heat generation are great. Therefore, it is difficult to increase the output power.
  • the index-guided structure is realized by the difference in the refractive index between an AlGaN current confinement layer and a cladding layer.
  • the relative composition of aluminum in the AlGaN current confinement layer becomes greater than that in the cladding layer. Therefore, it is difficult to form the AlGaN current confinement layer with a sufficient thickness.
  • Japanese Unexamined Patent Publication, No. 11(1999)-204882 discloses a semiconductor laser device having a ridge-type index-guided structure realized by an AlGaN current confinement layer, and the current confinement layer is realized by a thick superlattice structure.
  • this semiconductor laser device an attempt to decrease the contact resistance between the electrode and the contact layer is made in order to avoid the aforementioned problem of the heat generation due to the contact resistance.
  • the index-guided structure is realized by forming the ridge, the contact area is small, and therefore the contact resistance cannot be sufficiently decreased.
  • the stripe area should be formed corresponding to an undefective region of the GaN layer, and the undefective region has a width of about 2 micrometers, the maximum possible width of the stripe area is about 2 micrometers. Therefore, it is difficult to realize a wide-stripe high-power semiconductor laser device.
  • the object of the present invention is to provide a semiconductor laser device which can oscillate in a fundamental transverse mode even when output power is high, and output a high-quality Gaussian laser beam.
  • a semiconductor laser device comprising a GaN layer of a first conductive type; an active layer; a first upper cladding layer of a second conductive type; a current confinement layer of the first conductive type; a second upper cladding layer of the second conductive type; and a GaN contact layer of the second conductive type.
  • the active layer, the first upper cladding layer, the current confinement layer, the second upper cladding layer, and the GaN contact layer are formed above the GaN layer; a groove is formed through the full thickness of the current confinement layer so as to form an index-guided structure;
  • the active layer is a single or multiple quantum well active layer formed by alternately forming at least one In x1 Ga 1-x1 N well and a plurality of In x2 Ga 1-x2 N barriers, where 0 ⁇ x2 ⁇ x1 ⁇ 0.5;
  • the current confinement layer has a superlattice structure formed with Ga 1-z4 Al z4 N barriers and GaN wells, where 0 ⁇ z4 ⁇ 1;
  • the second upper cladding layer is formed over the current confinement layer so as to cover the groove; and the GaN contact layer is formed on the entire upper surface of the second upper cladding layer.
  • the In x2 Ga 1-x2 N barriers are arranged in both of the outermost layers of the single or multiple quantum well active layer.
  • the semiconductor laser device can oscillate in a fundamental transverse mode, and output a high-quality Gaussian laser beam even when output power is high.
  • the active layer is a single or multiple quantum well active layer formed by alternately forming at least one In x1 Ga 1-x1 N well and a plurality of In x2 Ga 1-x2 N barriers, the probability of occurrence of a crystal defect can be reduced, and the semiconductor laser device according to the present invention can generate a reliable short-wavelength laser beam.
  • the active layer is a multiple quantum well active layer, the characteristics of the semiconductor laser device can be improved. For example, the threshold current can be reduced.
  • the current confinement layer has a superlattice structure formed with Ga 1-z4 Al z4 N barriers and GaN wells, and 0 ⁇ z4 ⁇ 1, it is possible to form the current confinement layer with a thickness equal to or greater than a critical thickness, i.e., the thickness of the current confinement layer can be sufficiently increased so that a desired difference in the equivalent refractive index can be achieved.
  • the second upper cladding layer is formed over the current confinement layer so as to cover the groove, and the contact layer is formed on the entire upper surface of the second upper cladding layer, the contact area between the second upper cladding layer and the contact layer can be increased, and the contact resistance can be reduced. Therefore, the emission efficiency can be increased, and the threshold current can be reduced.
  • the output power is high, it is possible to reduce heat generation in and near the electrode. Thus, it is possible to prevent deterioration of the semiconductor layers and the electrode due to the heat generation.
  • the width of the groove can be adjusted by etching with high accuracy, and therefore a desired stripe width can be realized.
  • the semiconductor laser device according to the present invention can generate a high-quality laser beam.
  • the semiconductor laser device according to the present invention may also have one or any possible combination of the following additional features (i) to (iv).
  • the Ga 1-z4 Al z4 N barriers in the current confinement layer may be doped with a dopant of the first conductive type.
  • the Ga 1-z4 Al z4 N barriers and the GaN wells in the current confinement layer may be doped with a dopant of the first conductive type.
  • the groove may have a width equal to or greater than 1 micrometer, and smaller than 3 micrometers, and the difference between the equivalent refractive index of the portion of the active layer under the groove for light in a propagation mode in the thickness direction and the equivalent refractive index of the other portion of the active layer under the current confinement layer (other than the groove) for the light in the propagation mode in the thickness direction may be in a range of 0.001 to 0.007.
  • the semiconductor laser device according to the present invention can oscillate in the fundamental transverse mode which is controlled with high accuracy.
  • the groove may have a width equal to or greater than 3 micrometers, and the difference between the equivalent refractive index of the portion of the active layer under the groove for light in a propagation mode in the thickness direction and the equivalent refractive index of the other portion of the active layer under the current confinement layer (other than the groove) for the light in the propagation mode in the thickness direction may be in a range of 0.001 to 0.02.
  • the first conductive type is different in carrier polarity from the second conductive type. That is, when the first conductive type is n type, the second conductive type is p type.
  • FIG. 1 is a cross-sectional view of the semiconductor laser device as the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the semiconductor laser device as an embodiment of the present invention.
  • a GaN buffer layer 12 having a thickness of about 20 nm is formed on a (0001) C face of a sapphire substrate 11 at a temperature of 500° C. by organometallic vapor phase epitaxy. Then, a GaN layer 13 having a thickness of about 2 micrometers is formed on the GaN buffer layer 12 at a temperature of 1,050° C. Next, a SiO 2 layer 14 (not shown) is formed on the GaN layer 13 , and a resist 15 is applied to the SiO 2 layer 14 (not shown).
  • stripe areas of the SiO 2 layer 14 are removed by using conventional lithography, where the stripe areas are oriented in the ⁇ 1100> direction and spaced with intervals of about 10 micrometers, and each have a width of about 7 micrometers. Thereafter, the exposed stripe areas of the GaN buffer layer 12 and the GaN layer 13 are removed to the depth of the upper surface of the sapphire substrate 11 by dry etching using a chlorine gas as an etchant and the remaining portions of the SiO 2 layer 14 and the resist 15 as a mask. At this time, the sapphire substrate 11 may also be etched.
  • the SiO 2 layer 14 and the resist 15 are removed, so that stripe grooves are formed between the remaining portions of the GaN buffer layer 12 and the GaN layer 13 .
  • a GaN layer 16 having a thickness of about 20 micrometers is formed by selective growth. Due to growth in the lateral directions, the above stripe grooves between the remaining portions of the GaN buffer layer 12 and the GaN layer 13 are filled with the GaN layer 16 , the remaining portions of the GaN buffer layer 12 and the GaN layer 13 are covered with the GaN layer 16 , and finally the surface of the GaN layer 16 is planarized.
  • an n-type GaN contact layer 17 an n-type Ga 1-z1 Al z1 N/GaN superlattice lower cladding layer 18 , an n-type or i-type (intrinsic) Ga 1-z2 Al z2 N optical waveguide layer 19 , a Si-doped In x2 Ga 1-x2 N/In x1 Ga 1-x1 N multiple quantum well active layer 20 (0.5>x1>x2 ⁇ 0), an p-type Ga 1-z3 Al z3 N carrier block layer 21 , an n-type or i-type Ga 1-z2 Al z2 N optical waveguide layer 22 , a p-type Ga 1-z1 Al z1 N/GaN superlattice first upper cladding layer 23 , and an n-type Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 are formed.
  • a SiO 2 layer 25 (not shown) is formed, and a resist 26 is applied to the SiO 2 layer 25 (not shown). Then, stripe areas of the SiO 2 layer 25 are removed by using conventional lithography, where the stripe areas each have a width of 2 micrometers (as indicated by the reference number 31 ).
  • the exposed stripe areas of the n-type Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 are etched to a mid-thickness of the p-type Ga 1-z1 Al z1 N/GaN superlattice first upper cladding layer 23 by using a chlorine gas as an etchant and the remaining portions of the SiO 2 layer 25 and the resist 26 as a mask so as to form a groove.
  • a p-type Ga 1-z1 Al z1 N/GaN superlattice second upper cladding layer 27 and a p-type GaN contact layer 28 are formed.
  • trimethyl gallium (TMG), trimethyl indium (TMI), trimethyl aluminum (TMA), and ammonia are used as raw materials
  • silane gas is used as an n-type dopant gas
  • cycropentadienyl magnesium (Cp2Mg) is used as a p-type dopant gas.
  • compositions and the thicknesses of the p-type Ga 1-z1 Al z1 N/GaN superlattice first upper cladding layer 23 and the n-type Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 are arranged such that the fundamental transverse mode is achieved.
  • the above groove formed in the n-type Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 is located above a region of the GaN layer 16 which is not likely to contain a defect.
  • the first regions of the GaN layer 16 above the remaining areas of the GaN layer 13 are likely to contain a defect through the thickness of the GaN layer 16
  • the second regions of the GaN layer 16 located approximately midway between the remaining areas of the GaN layer 13 are likely to contain a defect since the second regions are finally filled by the selective growth in the lateral directions. Therefore, it is preferable that the above groove formed in the n-type Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 is not located right above the first and second regions of the GaN layer 16 , as illustrated in FIG. 1.
  • both sides of the above index-guided structure are etched to a mid-thickness of the n-type GaN contact layer 17 by photolithography and dry etching.
  • the lower surface of the sapphire substrate 11 is polished, and the n electrodes 29 and p electrode 30 are formed by conventional lithography and evaporation.
  • end surfaces of the resonant cavity are formed by cleaving the layered materials, and a high-reflection coating (not shown) and a low-reflection coating (not shown) are laid on the end surfaces of the resonant cavity, respectively.
  • the construction of FIG. 1 is formed into a chip.
  • the compositions of the AlGaN layers are arranged such that 1>z4>z1>z2 ⁇ 0 and 0.4>z3>z2.
  • n A the equivalent refractive index of the region including the cross section A-A′ illustrated in FIG. 1
  • n B the equivalent refractive index of the region including the cross section B-B′ illustrated in FIG. 1
  • Ga 1-z4 Al z4 N barriers in the Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 are doped with the n type dopant in the above embodiment, the GaN wells in the Ga 1-z4 Al z4 N/GaN superlattice current confinement layer 24 may also be doped with an n type dopant.
  • Each layer in the construction of the above embodiment may be formed by molecular beam epitaxy using a solid or gas raw material.
  • the conductivity type of the GaN contact layer 17 may be inverted. In this case, the conductivity types of all of the other layers in the above construction should be inverted accordingly.
  • the oscillation wavelength of the semiconductor laser device as the above embodiment can be controlled within the range between 380 and 550 nm.
  • the substrate 11 may be made of one of SiC, ZnO, LiGaO 2 , LiAlO 2 , GaAs, GaP, Ge, and Si.
  • the sapphire substrate 11 and the GaN layer 16 remain as constituents of the semiconductor laser device, and portions of the upper surfaces of the n-type GaN contact layer 17 are exposed in order to enable contact with the n electrodes 29 .
  • the sapphire substrate 11 and the GaN layer 16 may be removed so as to expose the lower surface of the n-type GaN contact layer 17 , and then the other layers above the n-type GaN contact layer 17 may be formed, where the n-type GaN contact layer 17 is used as a substrate.
  • an n electrode can be formed on the lower surface of the n-type GaN contact layer 17 .
  • the stripe groove formed in the current confinement layer may have a width of 3 micrometers or more.
  • the semiconductor laser device according to the present invention can be used with a wavelength conversion element or a fiber laser, where the semiconductor laser device according to the present invention functions as a low-noise wide-stripe semiconductor laser device which excites the wavelength conversion element or the fiber laser.
  • the present invention When the present invention is applied to a wide-stripe semiconductor laser device, it is preferable to use the GaN substrates disclosed in Japanese patent applications, Nos. 2000-4940, 11(1999)-285146, 11(1999)-289069, and 11(1999)-292112, which are assigned to the assignee of the present patent application.
  • the probability of occurrence of a defect through the thickness of the substrate is low, and the probability of occurrence of a defect is low in a wide area of the substrate. Therefore, the reliability of the semiconductor laser device can be further increased by use of the above substrates.
  • the semiconductor laser device according to the present invention can be used as a light source in the fields of high-speed, information processing, image processing, communications, laser measurement, medicine, printing, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

In a semiconductor laser device: an active layer; a first upper cladding layer of a first conductive type; a current confinement layer of a second conductive type; a second upper cladding layer of the first conductive type; and a contact layer of the first conductive type are formed above a GaN layer of the second conductive type. In the semiconductor laser device: a groove is formed through the full thickness of the current confinement layer so as to form an index-guided structure; the active layer is a single or multiple quantum well active layer formed by alternately forming at least one Inx1Ga1-x1N well and a plurality of Inx2Ga1-x2N barriers, where 0≦x2<x1<0.5; the current confinement layer has a superlattice structure formed with Ga1-z4Alz4N barriers and GaN wells, where 0<z4<1; the second upper cladding layer is formed over the current confinement layer so as to cover the groove; and the contact layer is formed on the entire upper surface of the second upper cladding layer.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a semiconductor laser device having an index-guided structure. [0002]
  • 2. Description of the Related Art [0003]
  • S. Nakamura et al. (“InGaN/GaN/AlGaN-Based Laser Diodes Grown on GaN Substrates with a Fundamental Transverse Mode,” Japanese Journal of Applied Physics, vol. 37 (1998) L1020-L1022) disclose a short-wavelength semiconductor laser device which emits laser light in the 410 nm band. [0004]
  • This semiconductor laser device is formed as follows. First, a GaN substrate is formed by forming a first GaN layer on a sapphire substrate, selectively growing a second GaN layer by using a SiO[0005] 2 mask, and removing an excessive portion of the second GaN layer above the top surface of the SiO2 mask. Then, an n-type GaN buffer layer, an n-type InGaN crack preventing layer, an n-type AlGaN/n-type GaN modulation-doped superlattice cladding layer, an n-type GaN optical waveguide layer, an n-type InGaN/InGaN multiple quantum well active layer, a p-type AlGaN carrier block layer, a p-type GaN optical waveguide layer, a p-type AlGaN/GaN modulation-doped superlattice cladding layer, and a p-type GaN contact layer are formed on the above GaN substrate. In addition, an index-guided structure is realized by forming a ridge structure having a width of about 2 micrometers. However, since it is very difficult to control the etching depth, the maximum output power in the fundamental transverse mode is at most about 30 mW. In the above semiconductor laser device, the contact area between the p electrode and the p-type GaN contact layer is small, and therefore the contact resistance and heat generation are great. Therefore, it is difficult to increase the output power.
  • In addition, as disclosed in Japanese Unexamined Patent Publication, No. 9 (1997)-307190, in the conventional GaN-based index-guided semiconductor laser devices, the index-guided structure is realized by the difference in the refractive index between an AlGaN current confinement layer and a cladding layer. However, when a difference between equivalent refractive indexes is increased to a large value in order to obtain a high quality laser beam by current confinement using the AlGaN current confinement layer, the relative composition of aluminum in the AlGaN current confinement layer becomes greater than that in the cladding layer. Therefore, it is difficult to form the AlGaN current confinement layer with a sufficient thickness. [0006]
  • In order to solve the above problem, Japanese Unexamined Patent Publication, No. 11(1999)-204882 discloses a semiconductor laser device having a ridge-type index-guided structure realized by an AlGaN current confinement layer, and the current confinement layer is realized by a thick superlattice structure. In this semiconductor laser device, an attempt to decrease the contact resistance between the electrode and the contact layer is made in order to avoid the aforementioned problem of the heat generation due to the contact resistance. However, since the index-guided structure is realized by forming the ridge, the contact area is small, and therefore the contact resistance cannot be sufficiently decreased. In addition, since the stripe area should be formed corresponding to an undefective region of the GaN layer, and the undefective region has a width of about 2 micrometers, the maximum possible width of the stripe area is about 2 micrometers. Therefore, it is difficult to realize a wide-stripe high-power semiconductor laser device. [0007]
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to provide a semiconductor laser device which can oscillate in a fundamental transverse mode even when output power is high, and output a high-quality Gaussian laser beam. [0008]
  • According to the present invention, there is provided a semiconductor laser device comprising a GaN layer of a first conductive type; an active layer; a first upper cladding layer of a second conductive type; a current confinement layer of the first conductive type; a second upper cladding layer of the second conductive type; and a GaN contact layer of the second conductive type. In the semiconductor laser device, the active layer, the first upper cladding layer, the current confinement layer, the second upper cladding layer, and the GaN contact layer are formed above the GaN layer; a groove is formed through the full thickness of the current confinement layer so as to form an index-guided structure; the active layer is a single or multiple quantum well active layer formed by alternately forming at least one In[0009] x1Ga1-x1N well and a plurality of Inx2Ga1-x2N barriers, where 0≦x2<x1<0.5; the current confinement layer has a superlattice structure formed with Ga1-z4Alz4N barriers and GaN wells, where 0<z4<1; the second upper cladding layer is formed over the current confinement layer so as to cover the groove; and the GaN contact layer is formed on the entire upper surface of the second upper cladding layer. In the active layer, the Inx2Ga1-x2N barriers are arranged in both of the outermost layers of the single or multiple quantum well active layer.
  • Due to the above construction, the semiconductor laser device according to the present invention can oscillate in a fundamental transverse mode, and output a high-quality Gaussian laser beam even when output power is high. [0010]
  • In particular, since the active layer is a single or multiple quantum well active layer formed by alternately forming at least one In[0011] x1Ga1-x1N well and a plurality of Inx2Ga1-x2N barriers, the probability of occurrence of a crystal defect can be reduced, and the semiconductor laser device according to the present invention can generate a reliable short-wavelength laser beam. Further, when the active layer is a multiple quantum well active layer, the characteristics of the semiconductor laser device can be improved. For example, the threshold current can be reduced.
  • When an aluminum-rich GaAlN material is used in a layered structure made of GaN-based materials, the lattice mismatch occurs, and it is difficult to obtain a highly reliable, high-quality semiconductor laser device. However, since, according to the present invention, the current confinement layer has a superlattice structure formed with Ga[0012] 1-z4Alz4N barriers and GaN wells, and 0<z4<1, it is possible to form the current confinement layer with a thickness equal to or greater than a critical thickness, i.e., the thickness of the current confinement layer can be sufficiently increased so that a desired difference in the equivalent refractive index can be achieved.
  • Further, since the second upper cladding layer is formed over the current confinement layer so as to cover the groove, and the contact layer is formed on the entire upper surface of the second upper cladding layer, the contact area between the second upper cladding layer and the contact layer can be increased, and the contact resistance can be reduced. Therefore, the emission efficiency can be increased, and the threshold current can be reduced. In particular, when the output power is high, it is possible to reduce heat generation in and near the electrode. Thus, it is possible to prevent deterioration of the semiconductor layers and the electrode due to the heat generation. [0013]
  • Since the index-guided structure is realized by the internal confinement structure, the width of the groove can be adjusted by etching with high accuracy, and therefore a desired stripe width can be realized. Thus, the semiconductor laser device according to the present invention can generate a high-quality laser beam. [0014]
  • Preferably, the semiconductor laser device according to the present invention may also have one or any possible combination of the following additional features (i) to (iv). [0015]
  • (i) The Ga[0016] 1-z4Alz4N barriers in the current confinement layer may be doped with a dopant of the first conductive type.
  • (ii) The Ga[0017] 1-z4Alz4N barriers and the GaN wells in the current confinement layer may be doped with a dopant of the first conductive type.
  • In either of the cases (i) and (ii), a desired difference between the equivalent refractive index of the portion of the active layer under the groove and the equivalent refractive index of the other portion of the active layer under the current confinement layer other than the groove can be obtained, and therefore a high-quality laser beam can be obtained. [0018]
  • (iii) The groove may have a width equal to or greater than 1 micrometer, and smaller than 3 micrometers, and the difference between the equivalent refractive index of the portion of the active layer under the groove for light in a propagation mode in the thickness direction and the equivalent refractive index of the other portion of the active layer under the current confinement layer (other than the groove) for the light in the propagation mode in the thickness direction may be in a range of 0.001 to 0.007. [0019]
  • In this case, the semiconductor laser device according to the present invention can oscillate in the fundamental transverse mode which is controlled with high accuracy. [0020]
  • (iv) The groove may have a width equal to or greater than 3 micrometers, and the difference between the equivalent refractive index of the portion of the active layer under the groove for light in a propagation mode in the thickness direction and the equivalent refractive index of the other portion of the active layer under the current confinement layer (other than the groove) for the light in the propagation mode in the thickness direction may be in a range of 0.001 to 0.02. [0021]
  • In this case, it is possible to avoid the instability of the transverse modes due to the higher-mode oscillation. [0022]
  • The first conductive type is different in carrier polarity from the second conductive type. That is, when the first conductive type is n type, the second conductive type is p type. [0023]
  • DESCRIPTION OF THE DRAWING
  • FIG. 1 is a cross-sectional view of the semiconductor laser device as the first embodiment of the present invention. [0024]
  • DESCRIPTION OF PREFERRED EMBODIMENT
  • An embodiment of the present invention and its variations are explained in detail below with reference to the drawing. [0025]
  • FIG. 1 is a cross-sectional view of the semiconductor laser device as an embodiment of the present invention. [0026]
  • As illustrated in FIG. 1, a [0027] GaN buffer layer 12 having a thickness of about 20 nm is formed on a (0001) C face of a sapphire substrate 11 at a temperature of 500° C. by organometallic vapor phase epitaxy. Then, a GaN layer 13 having a thickness of about 2 micrometers is formed on the GaN buffer layer 12 at a temperature of 1,050° C. Next, a SiO2 layer 14 (not shown) is formed on the GaN layer 13, and a resist 15 is applied to the SiO2 layer 14 (not shown). Then, stripe areas of the SiO2 layer 14 are removed by using conventional lithography, where the stripe areas are oriented in the <1100> direction and spaced with intervals of about 10 micrometers, and each have a width of about 7 micrometers. Thereafter, the exposed stripe areas of the GaN buffer layer 12 and the GaN layer 13 are removed to the depth of the upper surface of the sapphire substrate 11 by dry etching using a chlorine gas as an etchant and the remaining portions of the SiO2 layer 14 and the resist 15 as a mask. At this time, the sapphire substrate 11 may also be etched. Then, the SiO2 layer 14 and the resist 15 are removed, so that stripe grooves are formed between the remaining portions of the GaN buffer layer 12 and the GaN layer 13. Next, a GaN layer 16 having a thickness of about 20 micrometers is formed by selective growth. Due to growth in the lateral directions, the above stripe grooves between the remaining portions of the GaN buffer layer 12 and the GaN layer 13 are filled with the GaN layer 16, the remaining portions of the GaN buffer layer 12 and the GaN layer 13 are covered with the GaN layer 16, and finally the surface of the GaN layer 16 is planarized.
  • Subsequently, an n-type [0028] GaN contact layer 17, an n-type Ga1-z1Alz1N/GaN superlattice lower cladding layer 18, an n-type or i-type (intrinsic) Ga1-z2Alz2N optical waveguide layer 19, a Si-doped Inx2Ga1-x2N/Inx1Ga1-x1N multiple quantum well active layer 20 (0.5>x1>x2≧0), an p-type Ga1-z3Alz3N carrier block layer 21, an n-type or i-type Ga1-z2Alz2N optical waveguide layer 22, a p-type Ga 1-z1Alz1N/GaN superlattice first upper cladding layer 23, and an n-type Ga1-z4Alz4N/GaN superlattice current confinement layer 24 are formed. Thereafter, a SiO2 layer 25 (not shown) is formed, and a resist 26 is applied to the SiO2 layer 25 (not shown). Then, stripe areas of the SiO2 layer 25 are removed by using conventional lithography, where the stripe areas each have a width of 2 micrometers (as indicated by the reference number 31). Then, the exposed stripe areas of the n-type Ga1-z4Alz4N/GaN superlattice current confinement layer 24 are etched to a mid-thickness of the p-type Ga1-z1Alz1N/GaN superlattice first upper cladding layer 23 by using a chlorine gas as an etchant and the remaining portions of the SiO2 layer 25 and the resist 26 as a mask so as to form a groove. After the remaining portions of the SiO2 layer 25 and the resist 26 are removed, a p-type Ga1-z1Alz1N/GaN superlattice second upper cladding layer 27 and a p-type GaN contact layer 28 are formed. In the formation of the above layers, trimethyl gallium (TMG), trimethyl indium (TMI), trimethyl aluminum (TMA), and ammonia are used as raw materials, silane gas is used as an n-type dopant gas, and cycropentadienyl magnesium (Cp2Mg) is used as a p-type dopant gas.
  • In the above construction, the compositions and the thicknesses of the p-type Ga[0029] 1-z1Alz1N/GaN superlattice first upper cladding layer 23 and the n-type Ga1-z4Alz4N/GaN superlattice current confinement layer 24 are arranged such that the fundamental transverse mode is achieved.
  • It is preferable that the above groove formed in the n-type Ga[0030] 1-z4Alz4N/GaN superlattice current confinement layer 24 is located above a region of the GaN layer 16 which is not likely to contain a defect. The first regions of the GaN layer 16 above the remaining areas of the GaN layer 13 are likely to contain a defect through the thickness of the GaN layer 16, and the second regions of the GaN layer 16 located approximately midway between the remaining areas of the GaN layer 13 are likely to contain a defect since the second regions are finally filled by the selective growth in the lateral directions. Therefore, it is preferable that the above groove formed in the n-type Ga1-z4Alz4N/GaN superlattice current confinement layer 24 is not located right above the first and second regions of the GaN layer 16, as illustrated in FIG. 1.
  • Next, in order to enable contact with [0031] n electrodes 29, both sides of the above index-guided structure are etched to a mid-thickness of the n-type GaN contact layer 17 by photolithography and dry etching. Then, the lower surface of the sapphire substrate 11 is polished, and the n electrodes 29 and p electrode 30 are formed by conventional lithography and evaporation. Thereafter, end surfaces of the resonant cavity are formed by cleaving the layered materials, and a high-reflection coating (not shown) and a low-reflection coating (not shown) are laid on the end surfaces of the resonant cavity, respectively. Then, the construction of FIG. 1 is formed into a chip.
  • In the above construction, the compositions of the AlGaN layers are arranged such that 1>z4>z1>z2≧0 and 0.4>z3>z2. In this case, when the equivalent refractive index of the region including the cross section A-A′ illustrated in FIG. 1 is denoted by n[0032] A, and the equivalent refractive index of the region including the cross section B-B′ illustrated in FIG. 1 is denoted by nB, it is possible to control the difference nB−nA in the equivalent refractive index so that 7×10−3>nB−nA>1×10−3.
  • Although only the Ga[0033] 1-z4Alz4N barriers in the Ga 1-z4Alz4N/GaN superlattice current confinement layer 24 are doped with the n type dopant in the above embodiment, the GaN wells in the Ga1-z4Alz4N/GaN superlattice current confinement layer 24 may also be doped with an n type dopant.
  • Each layer in the construction of the above embodiment may be formed by molecular beam epitaxy using a solid or gas raw material. [0034]
  • The conductivity type of the [0035] GaN contact layer 17 may be inverted. In this case, the conductivity types of all of the other layers in the above construction should be inverted accordingly.
  • The oscillation wavelength of the semiconductor laser device as the above embodiment can be controlled within the range between 380 and 550 nm. [0036]
  • Although the [0037] sapphire substrate 11 is used in the above embodiment, the substrate may be made of one of SiC, ZnO, LiGaO2, LiAlO2, GaAs, GaP, Ge, and Si.
  • In the semiconductor laser device as the above embodiment, the [0038] sapphire substrate 11 and the GaN layer 16 remain as constituents of the semiconductor laser device, and portions of the upper surfaces of the n-type GaN contact layer 17 are exposed in order to enable contact with the n electrodes 29. However, alternatively, the sapphire substrate 11 and the GaN layer 16 may be removed so as to expose the lower surface of the n-type GaN contact layer 17, and then the other layers above the n-type GaN contact layer 17 may be formed, where the n-type GaN contact layer 17 is used as a substrate. In this case, an n electrode can be formed on the lower surface of the n-type GaN contact layer 17.
  • Although the semiconductor laser device as the above embodiment is arranged so as to oscillate in the fundamental transverse mode, the stripe groove formed in the current confinement layer may have a width of 3 micrometers or more. In this case, the semiconductor laser device according to the present invention can be used with a wavelength conversion element or a fiber laser, where the semiconductor laser device according to the present invention functions as a low-noise wide-stripe semiconductor laser device which excites the wavelength conversion element or the fiber laser. [0039]
  • When the present invention is applied to a wide-stripe semiconductor laser device, it is preferable to use the GaN substrates disclosed in Japanese patent applications, Nos. 2000-4940, 11(1999)-285146, 11(1999)-289069, and 11(1999)-292112, which are assigned to the assignee of the present patent application. In each of the GaN substrates disclosed in the above Japanese patent applications, the probability of occurrence of a defect through the thickness of the substrate is low, and the probability of occurrence of a defect is low in a wide area of the substrate. Therefore, the reliability of the semiconductor laser device can be further increased by use of the above substrates. [0040]
  • The semiconductor laser device according to the present invention can be used as a light source in the fields of high-speed, information processing, image processing, communications, laser measurement, medicine, printing, and the like. [0041]

Claims (5)

What is claimed is:
1. A semiconductor laser device comprising:
a GaN layer of a first conductive type;
an active layer;
a first upper cladding layer of a second conductive type;
a current confinement layer of said first conductive type;
a second upper cladding layer of said second conductive type; and
a GaN contact layer of said second conductive type;
wherein said active layer, said first upper cladding layer, said current confinement layer, said second upper cladding layer, and said contact layer are formed above said GaN layer;
a groove is formed through a full thickness of said current confinement layer so as to form an index-guided structure;
said active layer is a single or multiple quantum well active layer formed by alternately forming at least one Inx1Ga1-x1N well and a plurality of Inx2Ga1-x2N barriers, where 0≦x2<x1<0.5;
said current confinement layer has a superlattice structure formed with Ga1-z4Alz4N barriers and GaN wells, where 0<z4<1;
said second upper cladding layer is formed over said current confinement layer so as to cover said groove; and
said GaN contact layer is formed on an entire upper surface of said second upper cladding layer.
2. A semiconductor laser device according to
claim 1
, wherein said Ga1-z4Alz4N barriers in said current confinement layer are doped with a dopant of said first conductive type.
3. A semiconductor laser device according to
claim 1
, wherein said Ga1-z4Alz4N barriers and said GaN wells in said current confinement layer are doped with a dopant of said first conductive type.
4. A semiconductor laser device according to
claim 1
, wherein said groove has a width equal to or greater than 1 micrometer, and smaller than 3 micrometers, and a difference between an equivalent refractive index of a portion of said active layer under said groove for light in a propagation mode in a thickness direction and an equivalent refractive index of another portion of said active layer under said current confinement layer other than said groove for said light is in a range of 0.001 to 0.007.
5. A semiconductor laser device according to
claim 1
, wherein said groove has a width equal to or greater than 3 micrometers, and a difference between an equivalent refractive index of a portion of said active layer under said groove for light in a propagation mode in a thickness direction and an equivalent refractive index of another portion of said active layer under said current confinement layer other than said groove for said light is in a range of 0.001 to 0.02.
US09/777,822 2000-02-08 2001-02-07 High-power semiconductor laser device having current confinement structure and index-guided structure and oscillating in transverse mode Expired - Lifetime US6452954B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-030349 2000-02-08
JP030349/2000 2000-02-08
JP2000030349A JP2001223440A (en) 2000-02-08 2000-02-08 Semiconductor laser device

Publications (2)

Publication Number Publication Date
US20010012308A1 true US20010012308A1 (en) 2001-08-09
US6452954B2 US6452954B2 (en) 2002-09-17

Family

ID=18555374

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/777,822 Expired - Lifetime US6452954B2 (en) 2000-02-08 2001-02-07 High-power semiconductor laser device having current confinement structure and index-guided structure and oscillating in transverse mode

Country Status (2)

Country Link
US (1) US6452954B2 (en)
JP (1) JP2001223440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1492209A2 (en) * 2003-06-27 2004-12-29 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US20190326476A1 (en) * 2016-07-05 2019-10-24 Osram Opto Semiconductors Gmbh Semiconductor Layer Sequence

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299765A (en) * 2001-04-03 2002-10-11 Sony Corp Semiconductor laser element and method of manufacturing the same
US6954477B2 (en) * 2001-04-03 2005-10-11 Sony Corporation Semiconductor laser device and fabrication method thereof
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
GB2395839A (en) * 2002-11-30 2004-06-02 Sharp Kk MBE growth of p-type nitride semiconductor materials
JP4534444B2 (en) * 2003-07-10 2010-09-01 日亜化学工業株式会社 Nitride semiconductor laser and manufacturing method thereof
JP5507792B2 (en) 2004-09-16 2014-05-28 三星電子株式会社 Group III nitride semiconductor optical device
CN110729631B (en) * 2019-09-29 2020-09-04 东莞理工学院 Laser diode based on gallium nitride single crystal substrate and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116188A (en) * 1983-11-28 1985-06-22 Sharp Corp Semiconductor laser element
JP2809691B2 (en) * 1989-04-28 1998-10-15 株式会社東芝 Semiconductor laser
JP3432909B2 (en) * 1994-09-28 2003-08-04 ローム株式会社 Semiconductor laser
JPH08340148A (en) * 1995-06-13 1996-12-24 Fuji Xerox Co Ltd Semiconductor laser and manufacture thereof
JPH09307190A (en) 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JPH10233530A (en) * 1997-02-20 1998-09-02 Toshiba Corp Gallium nitride semiconductor light emitting element
JP3622045B2 (en) 1998-01-20 2005-02-23 日亜化学工業株式会社 Nitride semiconductor laser device and manufacturing method thereof
JP4150449B2 (en) * 1998-09-25 2008-09-17 株式会社東芝 Compound semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1492209A2 (en) * 2003-06-27 2004-12-29 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US20040264533A1 (en) * 2003-06-27 2004-12-30 Hiroaki Matsumura Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
EP1492209A3 (en) * 2003-06-27 2005-08-17 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US7227879B2 (en) 2003-06-27 2007-06-05 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US20070195848A1 (en) * 2003-06-27 2007-08-23 Hiroaki Matsumura Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
CN100379105C (en) * 2003-06-27 2008-04-02 日亚化学工业株式会社 Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US7817692B2 (en) 2003-06-27 2010-10-19 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US20190326476A1 (en) * 2016-07-05 2019-10-24 Osram Opto Semiconductors Gmbh Semiconductor Layer Sequence
US10840411B2 (en) * 2016-07-05 2020-11-17 Osram Oled Gmbh Semiconductor layer sequence

Also Published As

Publication number Publication date
JP2001223440A (en) 2001-08-17
US6452954B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6252894B1 (en) Semiconductor laser using gallium nitride series compound semiconductor
US6535536B2 (en) Semiconductor laser element
KR100763829B1 (en) Semiconductor laser device, and method of manufacturing the same
JP3653169B2 (en) Gallium nitride semiconductor laser device
US8368183B2 (en) Nitride semiconductor device
US6362515B2 (en) GaN substrate including wide low-defect region for use in semiconductor element
US7781796B2 (en) Nitride semiconductor laser element
US20120076165A1 (en) Asymmetrically cladded laser diode
JP2002237648A (en) Semiconductor laser element
US6452954B2 (en) High-power semiconductor laser device having current confinement structure and index-guided structure and oscillating in transverse mode
US6456638B1 (en) High-power short-wavelength semiconductor light emitting device having active layer with increased indium content
JP2002374035A (en) Semiconductor laser device and producing method therefor
US5586136A (en) Semiconductor laser device with a misoriented substrate
JP2002124737A (en) Nitride semiconductor laser element
US7804882B2 (en) Nitride semiconductor laser element
JP3888080B2 (en) Semiconductor laser element
US6546033B2 (en) InGaAsP semiconductor laser device in which near-edge portions are filled with non-absorbent layer, and lower optical waveguide layer includes InGaP intermediate layer
US20050116243A1 (en) Semiconductor laser device and its manufacturing method
JP3933637B2 (en) Gallium nitride semiconductor laser device
JP2001358407A (en) Semiconductor laser device
US6683324B2 (en) Semiconductor laser device in which thicknesses of optical guide region and AlGaN cladding layers satisfy predetermined condition
JP2006339311A (en) Semiconductor laser
JP2004014818A (en) Semiconductor laser device
JP2002057410A (en) Semiconductor laser element
JP4415440B2 (en) Manufacturing method of semiconductor laser

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI PHOTO FILM CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUKUNAGA, TOSHIAKI;REEL/FRAME:011520/0359

Effective date: 20001212

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FUJIFILM CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.);REEL/FRAME:018904/0001

Effective date: 20070130

Owner name: FUJIFILM CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.);REEL/FRAME:018904/0001

Effective date: 20070130

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: NICHIA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM CORPORATION;REEL/FRAME:028094/0493

Effective date: 20120413

FPAY Fee payment

Year of fee payment: 12