JP2012069816A - Wiring board using aluminum composite material - Google Patents

Wiring board using aluminum composite material Download PDF

Info

Publication number
JP2012069816A
JP2012069816A JP2010214401A JP2010214401A JP2012069816A JP 2012069816 A JP2012069816 A JP 2012069816A JP 2010214401 A JP2010214401 A JP 2010214401A JP 2010214401 A JP2010214401 A JP 2010214401A JP 2012069816 A JP2012069816 A JP 2012069816A
Authority
JP
Japan
Prior art keywords
composite material
copper foil
aluminum
insulating layer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010214401A
Other languages
Japanese (ja)
Inventor
Makoto Hosoda
誠 細田
Akira Kanamaru
明 金丸
Nobuyuki Suzuki
信幸 鈴木
Masakazu Aizawa
正和 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIN CORP Ltd
AIN KK
AM TECHNOLOGY KK
Original Assignee
AIN CORP Ltd
AIN KK
AM TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIN CORP Ltd, AIN KK, AM TECHNOLOGY KK filed Critical AIN CORP Ltd
Priority to JP2010214401A priority Critical patent/JP2012069816A/en
Publication of JP2012069816A publication Critical patent/JP2012069816A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a material having superior properties, such as an appropriate thermal expansion coefficient, fast thermal conduction, and light specific gravity, as a substitute material for ceramics or metals such as aluminum and copper to achieve efficient release of heat in a smaller area, which has become important in securing usage safety and product life in using LEDs and power semiconductors.SOLUTION: A composite material based wiring board is proposed which substitutes a composite material 6 composed of carbon or silicon carbide, boron nitride, etc. and aluminum for a conventional metal consisting mainly of aluminum, thereby providing a suitable thermal expansion coefficient and further optimizing thermal transfer.

Description

この発明は、配線基板のベース材料に関するものである。   The present invention relates to a base material for a wiring board.

プリント配線基板の種類のうち、アルミニウム等のベース金属に絶縁層を介して銅箔を貼り付けた、メタルベース配線基板が熱移動の遅いこと、および熱膨張率の大きいことにより様々な制約がある。   Among the types of printed wiring boards, there are various restrictions due to the fact that the metal base wiring board has a slow heat transfer and a high coefficient of thermal expansion. .

メタルベース配線板は、主としてアルミニウムをベース材料として、絶縁層を介して、配線としての銅箔を貼り付ける構造からなっている。(図−1)
アルミニウムは、その熱伝導度は200W/m・K程度であり、金属の中では熱移動の速い方ではなく、銅は、その熱伝導度は390W/m・Kと、熱移動は速いけれども、比重が大きく、LEDなどを照明として応用した場合、特に大きな面積を必要とする街灯などの照明器具として使用する場合、重量が重くなるという弊害がある。
The metal base wiring board has a structure in which aluminum is mainly used as a base material and a copper foil as wiring is pasted through an insulating layer. (Figure 1)
Aluminum has a thermal conductivity of about 200 W / m · K, which is not the fastest heat transfer among metals. Copper has a thermal conductivity of 390 W / m · K, which is fast, When the specific gravity is large and an LED or the like is applied as lighting, particularly when used as a lighting device such as a streetlight that requires a large area, there is a problem that the weight increases.

さらに、アルミニウムや銅は熱膨張率が大きく、LEDやパワー半導体の熱膨張率とは大きな差異が生じてしまう。このため、配線基板上の温度変化により、剥離、曲がり、反り等が起こり、良好に熱を移動させるには難点がある。 Furthermore, aluminum and copper have a large coefficient of thermal expansion, which causes a large difference from the coefficient of thermal expansion of LEDs and power semiconductors. For this reason, peeling, bending, warping, and the like occur due to temperature changes on the wiring board, and there is a difficulty in transferring heat well.

又、図−1のような構造では、絶縁層の熱伝導度が、1〜8W/m・Kと低く、厚さが40〜80μmであることを考慮しても、絶縁層の伝熱抵抗が支配的となってしまう。   Further, in the structure as shown in FIG. 1, the heat transfer resistance of the insulating layer is considered even if the insulating layer has a low thermal conductivity of 1 to 8 W / m · K and a thickness of 40 to 80 μm. Becomes dominant.

前記課題に鑑み、本発明では、ベース基板をアルミニウムや銅と替えて、カーボン・アルミニウム複合材を採用することとした。 In view of the above problems, in the present invention, a carbon / aluminum composite material is adopted by replacing the base substrate with aluminum or copper.

カーボン・アルミニウム複合材は、黒鉛化した粒状の集合物の空隙にアルミニウムを圧入させて、黒鉛の体積比率が70〜95%で、残りの99%以上がアルミニウム又はアルミニウム合金よりなる複合材である。この複合材は、熱拡散率が2.0〜5.0cm/secと金属の0.8〜1.1cm/sceと比して格段に大きく、熱移動の速いことが知られている。 The carbon / aluminum composite material is a composite material in which aluminum is pressed into the voids of the graphitized granular aggregate, the graphite volume ratio is 70 to 95%, and the remaining 99% or more is made of aluminum or an aluminum alloy. . It is known that this composite material has a thermal diffusivity of 2.0 to 5.0 cm 2 / sec, which is much larger than that of metal, 0.8 to 1.1 cm 2 / sce, and quick heat transfer. .

又、この複合材の熱膨張率は6〜7ppm/℃であり、LEDの6.8ppm/℃や、その他の各種半導体の3〜8ppm/℃と適合している。これに対してアルミニウムの24ppm/℃や、銅の17ppm/℃では熱膨張率が大きく、低出力のものしか使用できないことは自明である。 Further, the thermal expansion coefficient of this composite material is 6 to 7 ppm / ° C., which is compatible with 6.8 ppm / ° C. of LED and 3 to 8 ppm / ° C. of other various semiconductors. On the other hand, it is obvious that at 24 ppm / ° C. for aluminum and 17 ppm / ° C. for copper, the coefficient of thermal expansion is large, and only low output can be used.

そこで、本発明は上記複合材をメタル配線基板のベース材料として、より熱移動の速い、かつ、適合性に優れた熱膨張率を有する配線基板を開発した。(図−2) Accordingly, the present invention has developed a wiring board having a thermal expansion coefficient that is faster in heat transfer and excellent in compatibility, using the composite material as a base material for a metal wiring board. (Figure 2)

複合材を利用することにより、伝熱抵抗の大きい絶縁層も、支配的な伝熱抵抗とはならなくなった。 By using the composite material, the insulating layer having a large heat transfer resistance does not become the dominant heat transfer resistance.

さらに、より速い伝熱構造を形成するために、回路を形成すると同時に、熱を集めるためにも銅箔を利用し、熱を集めた銅箔から、直接複合材に熱を伝える構造を、ハンダを流し込み、銅箔を一体化する方法(図−3)も完成させた。この時、熱膨張率が適合しているので、温度変化によるハンダ割れという問題も無くなった。 Furthermore, in order to form a faster heat transfer structure, a copper foil is also used to collect heat at the same time as the circuit is formed, and a structure that transfers heat directly from the collected copper foil to the composite material And the method of integrating the copper foil (FIG. 3) was also completed. At this time, since the coefficient of thermal expansion was suitable, the problem of solder cracking due to temperature change was eliminated.

又、さらに、より速い伝熱構造を形成するために、前記ハンダの替わりにネジを用いて、銅箔と複合材、更には、その先のヒートシンクと一体化する方法(図−4)も完成させた。この場合、ネジ用の穴は、複合材まででも良く、又、貫通させてヒートシンクに届くようにしても良い。 In addition, in order to form a faster heat transfer structure, a method of integrating a copper foil and a composite material and further a heat sink ahead (FIG. 4) using screws instead of the solder is completed. I let you. In this case, the screw hole may be up to the composite material, or may be penetrated to reach the heat sink.

本発明によれば、炭素アルミニウム複合材をベースとするLEDや、半導体の放熱性に優れた配線基板を完成できる。これにより、高出力半導体や、高輝度LEDの長寿命化が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the wiring board excellent in LED and the heat dissipation of a semiconductor based on a carbon aluminum composite material can be completed. This makes it possible to extend the life of high-power semiconductors and high-brightness LEDs.

各図面のベース材料の下にはアルミニウム製ヒートシンクが配置されるが、省略してある。
一般的なメタルベース配線板の断面構造である。図1では、簡略化のために電気配線部分は省略してある。熱移動のために設計された配線部分を描いている。 ベース金属を複合材に変更したもので、複合材部分に伝わった熱は、銅を超える425W/m・Kという熱伝導度でベース材料の下側に接触するヒートシンクに伝えられる。ただ、このままでは、一定の効果は得られたものの、有機系の材料では熱伝導度の大きい性質のものとは言え、絶縁層の1〜8W/m・Kによってもたらされる熱抵抗が熱移動の阻害要因に成ってしまった。 図2から部分的に銅箔と絶縁層を除去してキャビティーを作った構造で、加工はルーター又はドリルないしは、レーザー加工で行う。銅箔と複合材をつなぐために、薄く複合材にメッキをした後、実装時にハンダを流し込み銅箔と複合材を接合する。絶縁層が薄い場合は、銅メッキを表面銅箔と同じ高さになるまで行っても良い。これらの構造により、ハンダでもその熱伝導度は40〜60W/m・Kなので熱の移動が著しく速くなることが確認された。絶縁層が20〜40μmと薄い場合は、銅メッキを銅箔と同じ高さになるまで行うことで、銅の熱伝導度は390W/m・Kと非常に速いので、更に効果があることが確認された。 貫通穴にして、熱伝導度の大きい高いネジで銅箔と複合材に機械的に接触させる方法で、図3よりも経済的に熱移動を速くする構造を実現できた。この場合は、複合材にもめねじを切って、導電性グリスを併用して締め付けるとバラツキが無く、効果的であった。
An aluminum heat sink is disposed under the base material in each drawing, but is omitted.
It is a cross-sectional structure of a general metal base wiring board. In FIG. 1, the electric wiring portion is omitted for simplification. The wiring part designed for heat transfer is drawn. The base metal is changed to a composite material, and the heat transferred to the composite material portion is transferred to the heat sink contacting the lower side of the base material with a thermal conductivity of 425 W / m · K exceeding that of copper. However, although a certain effect is obtained as it is, the heat resistance caused by 1 to 8 W / m · K of the insulating layer is the heat transfer property although the organic material has a high thermal conductivity. It became an obstruction factor. The structure in which the cavity is made by partially removing the copper foil and the insulating layer from FIG. 2 is processed by a router, a drill, or laser processing. In order to connect the copper foil and the composite material, after thinly plating the composite material, solder is poured during bonding to bond the copper foil and the composite material. When the insulating layer is thin, copper plating may be performed until the surface becomes the same height as the surface copper foil. Due to these structures, it was confirmed that the heat transfer is remarkably fast because the thermal conductivity of solder is 40 to 60 W / m · K. When the insulating layer is as thin as 20 to 40 μm, copper plating is performed until it is the same height as the copper foil, so that the thermal conductivity of copper is very fast at 390 W / m · K, which may be more effective. confirmed. By making a through hole and mechanically contacting the copper foil and the composite material with a screw having a high thermal conductivity, a structure that makes the heat transfer more economical than that of FIG. 3 could be realized. In this case, it was effective to cut the female thread on the composite material and tighten the conductive material together with the conductive grease without variation.

1.4.7.13. 銅箔(18〜105μm)
2.5.8.14. 絶縁層(40〜200μm)
3. ベース金属(アルミニウム・銅)
6.9.15. ベース材料複合材
10. ハンダ
11. 銅メッキ
12. 貫通穴
16. ネジ
1.4.7.13. Copper foil (18-105μm)
2.5.8.14. Insulating layer (40-200μm)
3. Base metal (aluminum / copper)
6.9.15. Base material composite 10. Solder 11. Copper plating12. Through hole 16. screw

本発明をより具体的に説明するための実施例を示す。 Examples for explaining the present invention more specifically are shown below.

黒鉛化された粉体を、鉄製の容器に体積率が85%になるように詰め込み、これを700℃に予熱した後、溶湯鍛造法により、JISAC4Bのアルミニウム合金溶湯を、90MPaの圧力にて含浸し、冷却後、比重2.30の複合材を得た。これから、厚さ1.5mmで、20mm平方の板を得た。その後、40μmの5重量%窒化アルミニウム(平均粒径7μm)を配合したポリイミドを接合し、その上に、70μmの銅箔を貼り付けて、10WのLEDチップの配線基板を完成させた。LEDチップを配して、330mAで30Vの電圧をかけて100日間点灯したが、光束は1500lmのまま、変化が無かった。又、LED上部の温度は60℃であった。 The graphitized powder is packed in an iron container so that the volume ratio is 85%, preheated to 700 ° C., and then impregnated with a molten JISAC4B aluminum alloy at a pressure of 90 MPa by a molten metal forging method. After cooling, a composite material having a specific gravity of 2.30 was obtained. From this, a 20 mm square plate having a thickness of 1.5 mm was obtained. Thereafter, a polyimide compounded with 40 μm of 5 wt% aluminum nitride (average particle size: 7 μm) was bonded, and a 70 μm copper foil was adhered thereon to complete a 10 W LED chip wiring board. An LED chip was placed and lighted for 100 days at a voltage of 330 mA and a voltage of 30 V, but the luminous flux remained unchanged at 1500 lm. Moreover, the temperature of LED upper part was 60 degreeC.

実施例1と同様の複合材より、厚さ3.2mmで、80mm×40mmの板材をとり出し、80μmの高熱伝導性フィラー入りのポリイミドを接合し、その上に140μmの銅箔を貼り付けて、出力167Wのパワー半導体基板の回路を形成した後に図−4の方法を用いて、アルミニウム製ヒートシンクの上に配置した。この時、ネジは、ヒートシンクにまで到達させた。
これを複合材の替わりに同じ大きさの銅板を用いた時と比較した温度を表1に示す。
表1

Figure 2012069816
From a composite material similar to that of Example 1, a plate material having a thickness of 3.2 mm and an 80 mm × 40 mm was taken out, 80 μm of polyimide containing a high thermal conductive filler was bonded, and a 140 μm copper foil was pasted thereon. After the circuit of the power semiconductor substrate having an output of 167 W was formed, it was placed on an aluminum heat sink using the method of FIG. At this time, the screw reached the heat sink.
Table 1 shows the temperature at which this was compared with the case of using a copper plate of the same size instead of the composite material.
Table 1
Figure 2012069816

Claims (5)

カーボンとアルミニウムの複合材(以下複合材と言う)に、エポキシ樹脂等の熱硬化性樹脂にアルミナ、窒化ホウ素、窒化アルミニウムなど(以下高熱伝導性フィラーと言う)を分散させた絶縁層(以下絶縁層と言う)を介し銅箔を貼り付け、配線板とする構造。 An insulating layer (hereinafter referred to as insulating material) in which alumina, boron nitride, aluminum nitride (hereinafter referred to as high thermal conductive filler) is dispersed in a thermosetting resin such as epoxy resin in a composite material of carbon and aluminum (hereinafter referred to as composite material). A structure in which a copper foil is attached via a layer) to form a wiring board. 前記複合材ベース配線板に熱を集めるように配した銅箔および絶縁層を部分的に除去し、露出した複合材にニッケルメッキ及び金メッキ、銀メッキ、又は銅メッキを行うことで複合材にハンダ付けができるようにする構造。 Solder is applied to the composite material by partially removing the copper foil and the insulating layer arranged to collect heat on the composite material-based wiring board, and performing nickel plating, gold plating, silver plating, or copper plating on the exposed composite material. A structure that allows attachment. 前記複合材にハンダ付けができるようにした金属面にハンダを流し込み、絶縁層上の銅箔と接続した構造。 A structure in which solder is poured into a metal surface that can be soldered to the composite material and connected to a copper foil on an insulating layer. 請求項2の銅箔および絶縁層を除去した後に、銅メッキを行い、絶縁層上の銅箔と同じ高さになるようにした構造。 A structure in which the copper foil and the insulating layer of claim 2 are removed and then copper plating is performed so that the copper foil and the insulating layer have the same height. 請求項1の複合材ベース配線板に熱を集めるように配した銅箔および絶縁層に穴を開け、熱伝導度の大きいネジで銅箔表面と、複合材をつなぎ合わせる構造。 2. A structure in which a hole is formed in a copper foil and an insulating layer arranged so as to collect heat in the composite base wiring board of claim 1, and the surface of the copper foil and the composite material are joined with a screw having high thermal conductivity.
JP2010214401A 2010-09-24 2010-09-24 Wiring board using aluminum composite material Pending JP2012069816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214401A JP2012069816A (en) 2010-09-24 2010-09-24 Wiring board using aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214401A JP2012069816A (en) 2010-09-24 2010-09-24 Wiring board using aluminum composite material

Publications (1)

Publication Number Publication Date
JP2012069816A true JP2012069816A (en) 2012-04-05

Family

ID=46166696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214401A Pending JP2012069816A (en) 2010-09-24 2010-09-24 Wiring board using aluminum composite material

Country Status (1)

Country Link
JP (1) JP2012069816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455308A (en) * 2016-08-23 2017-02-22 青岛墨金烯碳新材料科技有限公司 Graphene and carbon fiber composite high-thermal-conductivity circuit board and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157085A (en) * 1980-05-09 1981-12-04 Tokyo Shibaura Electric Co Hybrid integrated circuit
JPS63182571U (en) * 1987-05-19 1988-11-24
JPH03195083A (en) * 1989-12-25 1991-08-26 Sanyo Electric Co Ltd Hybrid integrated circuit and its manufacture
JPH0430491A (en) * 1990-05-25 1992-02-03 Mitsubishi Electric Corp Composite substrate
WO2010084824A1 (en) * 2009-01-22 2010-07-29 電気化学工業株式会社 Aluminum/graphite composite, and heat radiation part and led luminescent member both formed using same
WO2010092923A1 (en) * 2009-02-12 2010-08-19 電気化学工業株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
WO2010140541A1 (en) * 2009-06-02 2010-12-09 電気化学工業株式会社 Aluminum-graphite composite, and heat dissipating component and led luminescent member that use same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157085A (en) * 1980-05-09 1981-12-04 Tokyo Shibaura Electric Co Hybrid integrated circuit
JPS63182571U (en) * 1987-05-19 1988-11-24
JPH03195083A (en) * 1989-12-25 1991-08-26 Sanyo Electric Co Ltd Hybrid integrated circuit and its manufacture
JPH0430491A (en) * 1990-05-25 1992-02-03 Mitsubishi Electric Corp Composite substrate
WO2010084824A1 (en) * 2009-01-22 2010-07-29 電気化学工業株式会社 Aluminum/graphite composite, and heat radiation part and led luminescent member both formed using same
WO2010092923A1 (en) * 2009-02-12 2010-08-19 電気化学工業株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
WO2010140541A1 (en) * 2009-06-02 2010-12-09 電気化学工業株式会社 Aluminum-graphite composite, and heat dissipating component and led luminescent member that use same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455308A (en) * 2016-08-23 2017-02-22 青岛墨金烯碳新材料科技有限公司 Graphene and carbon fiber composite high-thermal-conductivity circuit board and preparation method thereof
CN106455308B (en) * 2016-08-23 2018-10-02 青岛墨金烯碳新材料科技有限公司 A kind of graphene carbon fiber composite high heat conduction wiring board and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5679557B2 (en) Substrate made of aluminum-graphite composite, heat radiation component using the same, and LED light emitting member
KR20080065988A (en) Heat sink module and process for producing the same
JP6462899B2 (en) Heat dissipation plate material for high output elements
TWM507138U (en) Heat dissipation circuit board
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
US20130313606A1 (en) Illuminating device
JP3157576U (en) High thermal conductivity aluminum coated metal substrate
JP2012069816A (en) Wiring board using aluminum composite material
JP5646473B2 (en) Aluminum-graphite composite, heat dissipation component using the same, and LED light-emitting member
TWM399588U (en) wiring board
CN104708869A (en) Aluminum-based copper-clad plate with high thermal conductivity and manufacturing method thereof
JP5676278B2 (en) Aluminum-graphite composite, heat dissipation component using the same, and LED light-emitting member
CN103887396A (en) A light-emitting assembly in which an LED chip is directly welded to the surface of a copper heat sink and a preparation method thereof
TWM502251U (en) LED heat dissipation substrate
JP5681035B2 (en) LED light source package
JP4798171B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
CN212436012U (en) Novel PCB for LED lamp
TWI378580B (en) Socket led device
TW200843053A (en) Composite substrate structure for high heat dissipation
TWM437430U (en) Illumination equipment
CN210351768U (en) Heat dissipation PCB board, heat dissipation PCB board and equipment that contain paster electronic component
JP3139233U (en) Nano-carbon heat transfer structure of electronic devices
JP2009277990A (en) Substrate for power module, power module, and method of manufacturing substrate for power module
TWM405140U (en) Stacked type heat dissipation module
WO2015100711A1 (en) Printed circuit board structure with high thermal conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603