JP2012065120A - フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置 - Google Patents

フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置 Download PDF

Info

Publication number
JP2012065120A
JP2012065120A JP2010207221A JP2010207221A JP2012065120A JP 2012065120 A JP2012065120 A JP 2012065120A JP 2010207221 A JP2010207221 A JP 2010207221A JP 2010207221 A JP2010207221 A JP 2010207221A JP 2012065120 A JP2012065120 A JP 2012065120A
Authority
JP
Japan
Prior art keywords
filter
filter coefficient
value
unit
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207221A
Other languages
English (en)
Inventor
Tomohiro Igai
知宏 猪飼
Masanobu Yasugi
将伸 八杉
Tomoyuki Yamamoto
智幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010207221A priority Critical patent/JP2012065120A/ja
Publication of JP2012065120A publication Critical patent/JP2012065120A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

【課題】符号化対象画像から予測画像を減算した予測残差を符号化する際に、予測によって符号量が増大する可能性を低減する。
【解決手段】ループフィルタ部120は、復号画像Dec’に作用する適応フィルタ122のフィルタ係数の値を設定するフィルタ係数設定部123を備えている。フィルタ係数設定部123は、特定のフィルタ係数を特定の値に拘束するという拘束条件の下で、上記特定のフィルタ係数以外のフィルタ係数の値を、適応フィルタ122から出力される復号画像Dec”の原画像Orgに対する誤差を最小化するように設定する。
【選択図】図1

Description

本発明は、適応フィルタのフィルタ係数を設定するフィルタ係数設定装置およびフィルタ係数設定方法に関する。また、そのようなフィルタ係数設定装置を備えた画像符号化装置に関する。
動画像を効率的に伝送または記録するために、動画像を符号化する動画像符号化装置、及び、動画像を復号する動画像復号装置が広く用いられている。代表的な動画像符号化方式としては、例えば、H.264/MPEG−4.AVC(非特許文献1)や、VCEG(Video Coding Expert Group)における共同開発用コーデックであるKTAソフトウェアに採用されている方式などが挙げられる。
このような符号化方式において、動画像を構成する画像(ピクチャ)は、画像を分割することにより得られるスライス、スライスを分割することにより得られるLCU(最大符号化単位)、LCUを分割することにより得られるCU(符号化単位)、CUを分割することにより得られるTU(変換単位)およびPU(予測単位)などからなる階層構造により管理される。
また、このような符号化方式においては、通常、入力画像を符号化/復号化することによって得られる局所復号画像に基づいて予測画像が生成され、当該予測画像と入力画像との差分画像(「残差画像」または「予測残差」と呼ぶこともある)が量子化/符号化される。また、予測画像の生成方法としては、画面間予測(インター予測)、および、画面内予測(イントラ予測)と呼ばれる方法が知られている。
また、復号画像または復号画像に対してブロックノイズ低減処理を施して得られる画像に対して、適応的に設定されたフィルタ係数群を用いたフィルタ処理を施すことによって、ノイズが低減された復号画像(ノイズ低減済復号画像)を生成する適応的ループフィルタ(Adaptive Loop Filter)(以下単に「適応フィルタ」とも呼ぶ)と呼ばれる技術も知られており、インター予測においては、当該適応フィルタが出力するノイズ低減済復号画像を参照画像として予測画像を生成することもできる。
非特許文献2には、復号画像にALF(Adaptive Loop)と呼ばれる適応フィルタを作用させることによって、復号画像の精度を向上させる技術が開示されている。ALFは、復号画像に作用する線形フィルタであり、そのフィルタ係数は、最小2乗法を用いて適応フィルタの出力画像の原画像に対する誤差を最小化するように設定される。
「Recommendation ITU-T H.264」,Telecommunication Standardization Sector of ITU,03/2009 「VCEG-AI18」,Telecommunication Standardization Sector,35th Meeting:Berlin,Germany,07/2008
動画像符号化装置は、ALFのフィルタ係数を、クリップ処理や量子化などの後処理を施したうえで、動画像復号装置に提供する。クリップ処理を施すのは、絶対値が大きなフィルタ係数を符号化するためには、符号長の長い符号を用いることが必要であり、符号化効率が低下してしまうからである。
しかしながら、ALFのフィルタ係数にクリップ処理や量子化などの後処理を施すと、フィルタ係数が適応的に決定された値とは別の値に変更され、フィルタ係数の最適性が損なわれる。つまり、ALFの出力画像は、原画像を最適近似するものでなくなる。このため、ALFの出力画像を参照して生成される予測画像の精度が低下し、これにより符号化効率の悪化を招く。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、クリップ処理や量子化などの後処理を施すことにより損なわれたフィルタ係数の最適性を、少なくとも部分的に回復することが可能なフィルタ係数設定装置およびフィルタ係数設定方法を実現することにある。
上記課題を解決するために、本発明に係るフィルタ係数設定装置は、復号画像に作用する適応フィルタの各フィルタ係数の値を設定するフィルタ係数設定装置であって、特定フィルタ係数の値を特定値に設定するという拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する、ことを特徴とする。
また、上記課題を解決するために、本発明に係るフィルタ係数設定方法は、復号画像に作用する適応フィルタの各フィルタ係数の値を設定するフィルタ係数設定方法であって、特定フィルタ係数の値を特定値に設定するという拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する、ことを特徴とする。
上記構成によれば、クリップ処理や量子化などの後処理の結果、上記特定フィルタ係数が上記特定値に変更され、上記フィルタ係数の最適性が損なわれた場合であっても、その変更結果を活かしたまま、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。これにより符号化効率の向上を図ることができる。
本発明のフィルタ係数設定装置は、上記適応フィルタの各フィルタ係数の値であって、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化する値を導出する導出手段と、上記適応フィルタの少なくとも1つのフィルタ係数の値を、上記導出手段が導出した値以外の値に変更する変更手段と、上記変更手段により値が変更されたフィルタ係数を上記特定フィルタ係数とし、該フィルタ係数の上記変更手段により変更された後の値を上記特定値とする拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する設定手段と、を備えている、ことが望ましい。
上記構成によれば、上記変更手段により上記特定フィルタ係数が上記特定値に変更され、上記フィルタ係数の最適性が損なわれた場合であっても、その変更結果を活かしたまま、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。
本発明のフィルタ係数設定装置において、上記導出手段は、上記原画像と上記復号画像とに基づいて相関行列を生成する生成手段と、上記生成手段によって生成された相関行列を含む正規方程式を解くことによって、上記適応フィルタの各フィルタ係数の値を算出する第1の算出手段とにより構成され、上記設定手段は、上記生成手段によって生成された相関行列を、上記変更手段がどのフィルタ係数の値をどのような値に変更したかに応じて更新する更新手段と、上記更新手段によって更新された相関行列を含む正規方程式を解くことによって、上記特定フィルタ係数以外の各フィルタ係数の値を算出する第2の算出手段とにより構成されている、ことが望ましい。
上記構成によれば、上記設定手段によるフィルタ係数の設定処理を、上記導出手段によるフィルタ係数の導出処理に用いた相関行列を用いて実行することができる。すなわち、設定処理と導出処理との各々において相関行列を算出する場合と比べて、演算量の削減を図ることができる。
本発明のフィルタ係数設定装置において、上記変更手段は、上記適応フィルタの各フィルタ係数について、上記導出手段が導出した値が予め定められた範囲外にある場合、上記導出手段が導出した値を上記範囲内にある値に変更するものである、ことが望ましい。
予め定められた範囲外にあるフィルタ係数の値を該範囲内の値に変更するクリップ処理によって、大きな絶対値をもつフィルタ係数を符号化する必要がなくなる。このため、より短い符号を用いてフィルタ係数を符号化することが可能になる。上記の構成によれば、このようなクリップ処理の効果を活かしつつ、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。
本発明のフィルタ係数設定装置において、上記変更手段は、上記適応フィルタの各フィルタ係数について、上記導出手段が導出した値を量子化するものである、ことが望ましい。
フィルタ係数を量子化することによって、より短い符号を用いてフィルタ係数を符号化することが可能になる。上記の構成によれば、このような量子化処理の効果を活かしつつ、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。例えば、フィルタ係数を8ビット以下に量子化する場合であっても、フィルタ係数を8ビット以上に量子化する場合と同様の符号化効率を得ることができる。
本発明のフィルタ係数設定装置において、上記変更手段は、上記適応フィルタの参照領域の中心画素に係るフィルタ係数について、上記導出手段が導出した値が予め定められた範囲外にある場合、上記導出手段が導出した値を上記範囲内にある値に変更するものである、ことが望ましい。
上記適応フィルタの参照領域の中心画素に係るフィルタ係数が所定の範囲内にない場合、主観画質が低下することが知られている。上記の構成によれば、このような主観画質の低下を避けつつ、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。
本発明のフィルタ係数設定装置は、上記適応フィルタの各フィルタ係数の値であって、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化する値を導出する導出手段と、上記適応フィルタを上記適応フィルタよりもタップ数の少ない他の適応フィルタとして利用するために、上記他の適応フィルタのフィルタ係数として利用するフィルタ係数以外のフィルタの値を0に設定するという拘束条件下で、上記他の適応フィルタのフィルタ係数として利用するフィルタ係数を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する設定手段と、を備えている、ことが望ましい。
上記構成によれば、適応フィルタのタップ数の切り替えを、簡便に行なうことができる。
なお、上記フィルタ係数設定装置を備えた画像符号化装置も本発明の範疇に含まれる。
以上のように、本発明においては、特定フィルタ係数の値を特定値に設定するという拘束条件下で、適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する。したがって、クリップ処理や量子化などの後処理の結果、上記特定フィルタ係数が上記特定値に変更され、上記フィルタ係数の最適性が損なわれた場合であっても、その変更結果を活かしたまま、上記フィルタ係数の最適性を少なくとも部分的に回復することができる。
図2に示す動画像符号化装置が備えているループフィルタ部の構成を示すブロック図である。 本発明の実施形態を示すものであり、動画像符号化装置の構成を示すブロック図である。 図1に示すループフィルタ処理部が備えているフィルタ係数設定部の構成を示すブロック図である。 図3に示すフィルタ係数設定部におけるフィルタ係数設定処理の流れを示すフローチャートである。 本発明の第1の変形例を示すものであり、フィルタ係数設定部の構成を示すブロック図である。 本発明の第1の変形例を示すものであり、図5に示すフィルタ係数設定部におけるフィルタ係数設定処理の流れを示すフローチャートである。 本発明の第2の変形例を示すものであり、ループフィルタ部の構成を示すブロック図である。 本発明の第2の変形例を示すものであり、図7に示すループフィルタ部におけるフィルタ係数設定処理の流れを示すフローチャートである。 図2に示す動画像符号化装置によって生成される符号化データのデータ構造を示す図である。 本発明の実施形態を示すものであり、動画像復号装置の構成を示すブロック図である。 本発明の第3の変形例を説明するための図である。(a)は、9タップの適応フィルタのフィルタ係数と7タップの適応フィルタのフィルタ係数とを表し、(b)は、9タップの適応フィルタと5タップの適応フィルタとを表し、(c)は、対称性を有する9タップの適応フィルタのフィルタ係数と7タップの適応フィルタのフィルタ係数とを表す。 本発明の第3の変形例を示すものであり、フィルタ係数設定部の構成を示すブロック図である。 図3に示すフィルタ係数設定部が備えている最小2乗解算出部の構成を示すブロック図である。
〔動画像符号化装置について〕
本実施形態に係る画像符号化装置2について、図2を参照して説明する。図2は、動画像符号化装置2の構成を示すブロック図である。
動画像符号化装置2は、図2に示すように、予測部111、変換部112、量子化部113、可変長符号化部114、逆量子化部115、逆変換部116、フレームメモリ117、減算部118、加算部119、および、ループフィルタ部120を備えている。動画像符号化装置2は、動画像を構成する各フレームを変換単位TU毎に符号化する。動画像符号化装置2の各部が1の変換単位TUを符号化する際の動作について、図2を参照して説明すれば以下のとおりである。
予測部111は、イントラ予測またはインター予測によって、原画像Org={Org(x,y)|(x,y)∈TU}を近似する予測画像Pred={Pred(x,y)|(x,y)∈TU}を生成する。ここで、Org(x、y)は、画素(x、y)における原画像Orgの画素値を表し、Pred(x、y)は、画素(x、y)における予測画像Predの画素値を表す。変換単位TUが複数の予測単位{PU,PU,…,PU}により構成されている場合、予測部111は、予測画像Predを予測単位PU毎に生成する。予測部111にて生成された予測画像Predは、減算部118および加算部119に供給される。また、予測部111は、イントラ予測の場合は予測モード、インター予測の場合は動きベクトルを示す予測パラメータPPを、予測単位PU毎に可変長符号化部114に供給する。
減算部118は、原画像Orgから予想画像Predを減算することによって、予測残差Res={Res(x,y)|(x,y)∈TU}を生成する。ここで、Res(x、y)=Org(x,y)−Pred(x,y)である。減算部118にて生成された予測残差Resは、変換部112に供給される。
変換部112は、空間領域の予測残差Res={Res(x,y)|(x,y)∈TU}にDCT変換(離散コサイン変換)を施すことによって、周波数領域の予測残差Res’={Res’(u,v)|(u,v)∈Ω}を生成する。ここで、Ωは、2次元周波数空間である。周波数領域の予測残差Res’の各要素Res’(u,v)は、DCT係数と呼ばれる。変換部112にて生成された周波数領域の予測残差Res’は、量子化部113に供給される。
量子化部113は、DCT係数Res’(u,v)を量子化することによって、量子化されたDCT係数Res”(u,v)=[Res’(u,v)/QP]からなる量子化予測残差Res”={Res”(u,v)|(u,v)∈Ω}を生成する。ここで、QPは、量子化ステップを表し、[・]は、・を超えない最大の整数値を表す。量子化部113にて生成された量子化予測残差Res”は、可変長符号化部114および逆量子化部115に供給される。
可変長符号化部114は、量子化予測残差Res”を可変長符号を用いて符号化することによって、符号化データを生成する。この際、上述した予測部111から供給される予測パラメータPP、および、後述するループフィルタ部120から供給されるフィルタパラメータFPを符号化して、符号化データに含める。可変長符号化部114にて生成された符号化データは、後述する動画像復号装置1などに送信される。
逆量子化部115は、量子化されたDCT係数Res”(u,v)を逆量子化することによって、周波数領域の予測残差Res’を復元する。逆量子化部115にて復元される周波数領域の予測残差{Res”(u,v)×QP|(u,v)∈Ω}は、量子化ノイズを除いて復元しようとする周波数領域の予測残差Res’に一致するので、図2ではこれをRes’と示している。逆量子化部115にて復元された周波数領域の予測残差Res’は、逆変換部116に供給される。
逆変換部116は、復元された周波数領域の予測残差Res’に逆DCT変換(逆離散コサイン変換)を施すことによって、空間領域の予測残差Resを復元する。逆変換部116によって復元される空間領域の予測残差は、量子化ノイズを除いて復元しようとする空間領域の予測残差Resに一致するので、図2ではこれをResと示している。逆変換部116にて復元された空間領域の予測残差Resは、加算部119に供給される。
加算部119は、復元された予測残差Resに予測画像Predを加算することによって、復号画像Dec={Dec(x,y)|(x,y)∈TU}を生成する。ここで、Dec(x,y)=Res(x,y)+Pred(x,y)である。加算部119にて生成された復号画像Decは、量子化ノイズを除いて原画像Orgに一致する。加算部119にて生成された復号画像Decは、フレームメモリ117に格納される。なお、動画像符号化装置2内で生成される復号画像Decは、局所復号画像と呼ばれる。
ループフィルタ部120は、フレームメモリ117に格納された復号画像Decに作用する。ループフィルタ部120は、後述するようにデブロッキングフィルタ121と適応フィルタ122とを含み、これらのフィルタを用いて復号画像Decに含まれる量子化ノイズを除去する。ループフィルタ部120により量子化ノイズが除去された復号画像Dec”は、同じフレーム内の他の変換単位TU’(イントラ予測の場合)、あるいは、異なるフレーム内の同じ(同じ位置を占める)変換単位TU(インター予測の場合)を符号化する際に原画像Org’から減算する予測画像Pred’を生成するために利用される。
なお、ループフィルタ部120は、適応フィルタ122のフィルタ係数の値をフィルタ係数設定単位U毎に設定する。そして、設定したフィルタ係数の値を示すフィルタパラメータFPを、フィルタ係数設定単位U毎に可変長符号化部114に供給する。ここで、適応フィルタ122のフィルタ係数は、特定の拘束条件の下で、復号画像Dec”の画素値Dec”(x,y)と原画像Orgの画素値Org(x,y)との差の2乗和Σ|Org(x,y)−Dec”(x,y)|を最小化するように適応的に設定される。
なお、本実施形態においては、適応フィルタのフィルタ係数の値をスライス毎に設定し、フィルタパラメータFPを符号化データのスライスヘッダに含める構成を想定するが、本発明はこれに限定されない。すなわち、フィルタ係数設定単位Uは、LCU(最大符号化単位)、CU(符号化単位)、リーフ(最小符号化単位)、TU(変換単位)、PU(予測単位)の何れであってもよい。
(ループフィルタ部の詳細)
次に、図2に示す動画像符号化装置2が備えているループフィルタ部120の詳細について、図1を参照して説明する。図1は、ループフィルタ部120の構成を示すブロック図である。
ループフィルタ部120は、図1に示すように、デブロッキングフィルタ121、適応フィルタ122、フィルタ係数設定部123、および、フィルタ係数保存部124を備えている。各部の動作について図1を参照して説明すれば以下のとおりである。
デブロッキングフィルタ121は、復号画像Decに作用する非線形フィルタであり、TU(変換単位)境界で発生するブロックノイズを低減するように構成されている。ただし、デブロッキングフィルタ121は、TU境界で発生するブロックノイズの他に、LCU(最大符号化単位)境界、CU(符号化単位)境界、リーフ(最小符号化単位)境界、および、PU(予測単位)境界の少なくとも何れかで発生するブロックノイズを低減するように構成されていてもよい。デブロッキングフィルタ121から出力される復号画像Dec’は、適応フィルタ122に供給される。
適応フィルタ122は、復号画像Dec’(デブロッキングフィルタ121の出力画像)に作用する線形フィルタである。適応フィルタ122の参照画素数(入力画素数)をNとすると、適応フィルタ122から出力される復号画像Dec”の画素値Dec”(x,y)は、Dec”(x,y)=a×Dec’(x,y)+a×Dec’(x,y)+…+aN−1×Dec’N−1(x,y)+aと表せる。ここで、{Dec’(x,y),Dec’(x,y),…,Dec’N−1(x,y)}は、画素値Dec”(x,y)を導出するために適応フィルタ122が参照する復号画像Dec’の画素値の集合である。a,a,…,aN−1,aは、フィルタ係数と呼ばれる。また、aは、オフセットとも呼ばれる。適応フィルタ122から出力される復号画像Dec”は、フレームメモリ117に格納され、予測画像Pred’を生成するために予測部111により参照される。
なお、画素値Dec”(x,y)を導出するために適応フィルタ122が参照する画素値の集合{Dec’(x,y),Dec’(x,y),…,Dec’N−1(x,y)}は、復号画像Dec’において画素(x,y)を含む領域R(以下、「参照領域R」と呼ぶ)に属する各画素の画素値からなる集合であり、{Dec’(p,q)|(p,q)∈R}と表現することができる。ここで、Dec’(p,q)は、復号画像Dec’の画素(p,q)における画素値である。
例えば、参照領域Rが画素(x,y)を中心とするM×M画素の正方形領域である場合、{Dec’(x,y),Dec’(x,y),…,Dec’N−1(x,y)}={Dec’(p,q)|x−(M−1)/2≦p≦x+(M−1)/2,y−(M−1)/2≦q≦y+(M−1)/2}である(N=M×M)。また、参照領域Rが画素(x,y)を左上隅の頂点とするM×M画素の正方形領域である場合、{Dec’(x,y),Dec’(x,y),…,Dec’N−1(x,y)}={Dec’(p,q)|x≦p≦x+M−1,y≦q≦y+M−1}である(N=M×M)。また、参照領域Rが画素(x,y)を中心とする菱形領域である場合、{Dec’(x,y),Dec’(x,y),…,Dec’N−1(x,y)}={Dec’(p,q)|dis((p,q),(x,y))≦Th}である。ここで、dis((p,q),(x,y))は、画素(p,q)と画素(x,y)との間の市街地距離(マンハッタン距離)を表し、Thは予め定められた閾値を表す。ただし、参照領域Rは、画素(x,y)を含む領域であれば何でもよく、ここに例示したものに限らない。
フィルタ係数設定部123は、特定の拘束条件の下で、復号画像Dec”の画素値Dec”(x,y)と原画像Orgの画素値Org(x,y)との差の2乗和Σ|Org(x,y)−Dec”(x,y)|を最小化するよう、フィルタ係数a,a,…,aの値を設定する。ここで、Σは、(x,y)∈U(フィルタ係数設定単位)に関する和である。具体的には、フィルタ係数a,a,…,aの値を、以下に説明する2回の最小2乗法により設定する。
まず、1回目の最小2乗法により、Σ|Org(x,y)−Dec”(x,y)|を最小化するように、フィルタ係数a,a,…,aの値を設定する。Σは、(x,y)∈U(フィルタ係数設定単位)に関する和である。ここでは、フィルタ係数a,a,…,aに対して拘束条件を課さない。
なお、Σ|Org(x,y)−Dec”(x,y)|を最小化するフィルタ係数a,a,…,aは、正規方程式(1)を解くことにより得られる。
Figure 2012065120
ここで、X(x,y)は、X=(Dec’(x,y),Dec’,…,Dec’N−1(x,y),1)により定義されるベクトルであり、Yは、Y=Org(x,y)により定義されるスカラーであり、θは、θ=(a,a,…,aにより定義されるベクトルである。また、(1)の両辺に現れるΣは、何れも(x,y)∈Uに関する和である。
(2)および(3)式により定義される相関行列MおよびVを用いれば、正規方程式(1)は、(4)式のように書き変えることができる。なお、(2)および(3)式に現れるΣは、何れも(x,y)∈Uに関する和である。
Figure 2012065120
Figure 2012065120
Figure 2012065120
次に、1回目の最小2乗法により設定されたフィルタ係数a,a,…,aのうち、値が閾値−cを下回るフィルタ係数aはc=−cにクリップし、値が閾値cを上回るフィルタ係数aはc=cにクリップする。ここで、cは、正の定数であり、例えば2である。
このようなクリップ処理を施すのは、絶対値が大きなフィルタ係数を符号化するためには、符号長の長い符号を用いる必要があり、符号化効率が低下してしまうからである。また、大きすぎるフィルタ係数は、画質を劣化させる虞があるからである。ところが、このようなクリップ処理によって、フィルタ係数の最適性が損なわれる。つまり、適応フィルタ122から出力される復号画像Dec”は、a=cという条件下で原画像Orgを最良近似するものではなくなる。そこで、2回目の最小2乗法により、クリップ処理により損なわれた最適性を部分的に回復する。
すなわち、2回目の最小2乗法により、クリップされた各フィルタ係数aがa=cを満たすという拘束条件の下で、Σ|Org(x,y)−Dec”(x,y)|を最小化するよう、フィルタ係数a,a,…,aの値を設定する。Σは、(x,y)∈U(フィルタ係数設定単位)に関する和である。換言すれば、Σ|Org(x,y)−Dec”(x,y)|+Σm∈BINDλ|a−cを最小化するよう、フィルタ係数a,a,…,aの値を設定する。ここで、λは、未定定数であり、十分大きな値に設定しておけばよい。また、BINDは、拘束をかける成分を指定するインデックスの集合であり、ここではクリップされた係数の集合を意味する。
なお、Σ|Org(x,y)−Dec”(x,y)|+Σm∈BINDλ|a−cを最小化するフィルタ係数a,a,…,aは、正規方程式(5)を解くことにより得られる。ここで、相関行列M’は、(2)式により定義される相関行列Mのmm成分MmmをMmm+λに置き換えて得られる行列であり、相関行列(ベクトル)V’は、(3)式により定義される相関行列(ベクトル)Vのm成分をV+λcに置き換えて得られる行列(ベクトル)である。
Figure 2012065120
2回目の最小2乗法により、適応フィルタ122から出力される復号画像Dec”は、a=cという条件下で原画像Orgを最良近似するものとなる。すなわち、クリップ処理により損なわれた最適性が少なくとも部分的に回復される。これにより、クリップ処理を施さない場合に生じるデメリットを回避しつつ、符号化効率を向上させることができる。
フィルタ係数設定部123は、このようにして設定したフィルタ係数a,a,…,aの値をフィルタ係数保存部124に保存する。上述した適応フィルタ122は、フィルタ係数保存部124に保存されたフィルタ係数a,a,…,aを、復号画像Dec”の画素値Dec”(x,y)を導出するために利用する。
なお、本実施形態においては、適応フィルタ122をデブロッキング処理後の復号画像Dec’に作用させているが、本発明はこれに限定されない。すなわち、適応フィルタ122をデブロッキング処理前の復号画像Decに作用させてもよい。また、デブロッキングフィルタ121を省略する構成を採用してもよい。
(フィルタ係数設定部の詳細)
次に、図1に示すループフィルタ部120が備えているフィルタ係数設定部123の構成例について、図3および図4を参照して説明する。図3は、フィルタ係数設定部123の構成例を示すブロック図であり、図4は、フィルタ係数設定部123におけるフィルタ係数設定処理の構成例を示すフローチャートである。
フィルタ係数設定部123は、図3に示すように、相関行列算出部123a、相関行列保存部123b、最小2乗解算出部123c、クリップ部123d、拘束条件設定部123e、および、量子化部123fを備えている。フィルタ係数設定部123の各部の動作について、図4を参照して説明すれば以下のとおりである。
ステップS1:相関行列算出部123aが、相関行列MおよびVを算出する。算出すべき相関行列MおよびVは、それぞれ、上述した(2)および(3)式により定義されるものである。
ステップS2:ステップS1にて算出した相関行列MおよびVを相関行列保存部123bに保存する。
ステップS3:最小2乗解算出部123cが、相関行列保存部123bに保存されている相関行列MおよびVに関する正規方程式(4)を解き、ベクトルθ=(a,a,…,a)を得る。このステップが、上述した1回目の最小2乗法に対応する。最小2乗解算出部123cは、得られたベクトルθ=(a,a,…,a)をクリップ部123dに提供する。
ステップS4:ステップS3にて得られたベクトルθの各成分(フィルタ係数a,a,…,aの各値)に対して、クリップ部123dがクリップ処理を施す。具体的には、a<−cであれば、フィルタ係数aをc=−cに設定し、a>cであれば、フィルタ係数aをc=cに設定する。クリップ部123dは、どのフィルタ係数(m)をどの値(cm)にクリップしたかを示すクリップ情報を拘束条件設定部123eに提供する。
ステップS5:拘束条件設定部123eが、クリップ部123dから提供されたクリップ情報に基づいて、相関行列保存部123bに保存されている相関行列MおよびVを書き変える。具体的には、フィルタ係数aが値cにクリップされた場合、相関行列保存部123bに保存されている相関行列Mのmm成分MmmをMmm+λに書き換え、相関行列保存部123bに保存されている相関行列(ベクトル)Vのm成分Vを(V+λcm)に書き換える。複数のフィルタ係数aがクリップされた場合には、各々に対応する書き換えを行う。
ステップS6:最小2乗解算出部123cが相関行列保存部123bに保存されている相関行列M’およびV’に関する正規方程式(5)を解き、ベクトルθ’=(a,a,…,a)を得る。このステップが、上述した2回目の最小2乗法に対応する。最小2乗解算出部123cは、得られたベクトルθ’=(a,a,…,a)をクリップ部123dに提供する。
ステップS7:ステップS6にて得られたベクトルθ’の各成分(フィルタ係数a,a,…,aの各々)に対して、クリップ部123dがクリップ処理を施す。クリップ処理の内容は、スッテプS4と同様である。クリップ部123は、クリップ処理済みのフィルタ係数a,a,…,aを、量子化部123fに提供する。
ステップS8:量子化部123fが、クリップ処理済みのフィルタ係数a,a,…,aを量子化し、フィルタ係数保存部124に格納する。
図4に示したアルゴリズムにおいては、正規方程式(5)に現れる相関行列M’およびV’の各成分を、正規方程式(4)に現れる相関行列MおよびVから流用している。このため、正規方程式(5)に現れる相関行列M’およびV’の各成分を新たに算出および保存する場合に比べて、計算時間およびメモリ使用量を削減することができる。
なお、ここでは、相関方程式を必ず2回解くアルゴリズムについて説明したが、これに限定されない。例えば、ステップS3にて得られたベクトルθの全ての成分が−c以上+c以下であれば、ステップS4〜S7までをスキップして、ステップS3にて得られたベクトルθを直ちに量子化するようにしてもよい。また、ステップS7にて新たにクリップされるフィルタ係数がなくなるまで、ステップS5〜ステップS7を繰り返し実行するようにしてもよい。
図3および図4においては、クリップされたフィルタ係数aをクリップ後の値cに拘束し、2回目の最小2乗法によって他のフィルタ係数ak(k≠m)の値を調整する構成について説明したが、本発明はこれに限定されない。すなわち、拘束するフィルタ係数aと拘束する値cとを変更することにより、各種目的に応じたフィルタ係数の最適化を実現することができる。以下、このような変形例について説明する。
(変形例1)
フィルタ係数a,a,…,aは、量子化/逆量子化したうえで利用される。量子化は非可逆過程であるため、量子化/逆量子化によってフィルタ係数の最適性が損なわれる。量子化ステップを小さくすれば、量子化の非可逆性に伴う量子化誤差は小さくなるが、量子化ステップを小さくすると、フィルタパラメータFPの符号量が増大してしまう。このため、量子化ステップの大きさは、通常、フィルタ係数が8ビット程度になるように設定される。この場合、フィルタ係数の最適性が損なわれることに起因して無視できない程度に符号化効率が低下する可能性がある。
本変形例は、非拘束フィルタ係数として予め定められたフィルタ係数a以外のフィルタ係数a(m≠k)をクリップ/量子化/逆量子化後の値cに拘束し、2回目の最小2乗法によって非拘束フィルタ係数として予め定められたフィルタ係数aの値を調整することによって、量子化によって損なわれたフィルタ係数の最適性を回復するものである。
図5は、フィルタ係数設定部123の構成例を示すブロック図であり、図6は、フィルタ係数設定部123におけるフィルタ係数設定処理の構成例を示すフローチャートである。
フィルタ係数設定部123は、図5に示すように、相関行列算出部123a、相関行列保存部123b、最小2乗解算出部123c、クリップ部123d、拘束条件設定部123e、量子化部123f、および、逆量子化部123gを備えている。すなわち、図5に示すフィルタ係数設定部123は、逆量子化部123gが追加されている点で、図3に示すフィルタ係数設定部123と異なる。
フィルタ係数設定部123の各部の動作について、図6を参照して説明すれば以下のとおりである。
ステップS1:相関行列算出部123aが、相関行列MおよびVを算出する。算出すべき相関行列MおよびVは、それぞれ、上述した(2)および(3)式により定義されるものである。
ステップS2:ステップS1にて算出した相関行列MおよびVを相関行列保存部123bに保存する。
ステップS3:最小2乗解算出部123cが、相関行列保存部123bに保存されている相関行列MおよびVに関する正規方程式(4)を解き、ベクトルθ=(a,a,…,a)を得る。最小2乗解算出部123cは、得られたベクトルθ=(a,a,…,a)をクリップ部123dに提供する。
ステップS4:ステップS3にて得られたベクトルθの各成分(フィルタ係数a,a,…,aの各値)に対して、クリップ部123dがクリップ処理を施す。具体的には、a<−cであれば、フィルタ係数aをc=−cに設定し、a>cであれば、フィルタ係数aをc=cに設定する。クリップ部123は、クリップ処理済みのフィルタ係数a,a,…,aを量子化部123fに提供する。
ステップS11:量子化部123fが、クリップ処理済みのフィルタ係数a,a,…,aの各々を量子化する。フィルタ係数aを量子化するとは、量子化されたフィルタ係数a’=[a/δ]を導出することを指す。ここで、δは、量子化ステップを表し、[・]は、・を超えない最大の整数値を表す。例えば、量子化ステップδを2c/256(2cはクリップ済みのフィルタ係数のダイナミックレンジ)に設定すれば、量子化されたフィルタ係数a’,a’,…,a’は、8ビットの整数になる。量子化部123fは、量子化されたフィルタ係数a’,a’,…,a’を逆量子化部123gに提供する。
ステップS12:逆量子化部123gが、量子化されたフィルタ係数a’,a’,…,a’の各々を逆量子化する。量子化されたフィルタ係数a’を逆量子化するとは、逆量子化されたフィルタ係数ci=a’×δを導出することを指す。ここで、δは、量子化の際に用いられた量子化ステップδと同じものである。なお、量子化の際に剰余の切捨てが行なわれているため、[a/δ]=a/δとなる例外的なケースを除いてa≠ciである。逆量子化部123gは、逆量子化されたフィルタ係数c,c,…,cを拘束条件設定部123eに提供する。
ステップS13:拘束条件設定部123eが、逆量子化されたフィルタ係数c,c,…,cに基づいて、相関行列保存部123bに保存されている相関行列MおよびVを書き変える。具体的には、予め定められたフィルタ係数a以外のフィルタ係数a(m≠k)をクリップ/量子化/逆量子化後の値cに拘束するために、m≠kとなる各mについて、相関行列保存部123bに保存されている相関行列Mのmm成分Mmmを(Mmm+λ)に書き換え、相関行列保存部123bに保存されている相関行列(ベクトル)Vのm成分Vを(V+λc)に書き換える。
ステップS6:最小2乗解算出部123cが、相関行列保存部123bに保存されている相関行列M’およびV’に関する正規方程式(5)を解き、ベクトルθ’=(a,a,…,a)を得る。最小2乗解算出部123cは、得られたベクトルθ’=(a,a,…,a)をクリップ部123dに提供する。
ステップS7:ステップS6にて得られたベクトルθ’の各成分(フィルタ係数a,a,…,aの各々)に対して、クリップ部123dがクリップ処理を施す。クリップ処理の内容は、スッテプS4と同様である。クリップ部123は、クリップ処理済みのフィルタ係数a,a,…,aを、量子化部123fに提供する。
ステップS8:量子化部123fが、クリップ処理済みのフィルタ係数a,a,…,aを量子化し、フィルタ係数保存部124に格納する。
なお、量子化部123fは、(1)量子化されたフィルタ係数が5ビットになるように、(2)量子化されたフィルタ係数が8ビットになるように、あるいは、(3)量子化されたフィルタ係数のうち精度の要求されるもの(例えば参照領域Rの中心画素の画素値に係る係数である中心係数およびオフセット)は8ビットになり、かつ、それ以外のものは5ビットになるように、クリップ処理済みのフィルタ係数a,a,…,aを量子化する。
なお、非拘束にするフィルタ係数の個数は、特に限定されないが、例えば、2個である。オフセットaと中心係数aN−1(参照領域Rの中心画素の画素値に係る係数)とを非拘束にした場合、非拘束にするフィルタ係数の個数が2個であっても、符号化効率が向上するという効果が実験により確かめられている。
(変形例2)
適応フィルタ122を、復号画像Dec’を入力とする1入力構成から、復号画像Decと復号画像Dec’とを入力とする2入力構成に置き換えることができる。このような置き換えがなされたループフィルタ部120の構成を図7に示す。
図7に示すループフィルタ部120においては、デブロッキングフィルタ121を作用させる前の復号画像Decとデブロッキングフィルタ121を作用させた後の復号画像Dec’とが適応フィルタ122に入力されている。この場合、適応フィルタ122から出力される復号画像Dec”の画素値Dec”(x,y)は、Dec”(x,y)=Σa×Dec(x,y)+Σa×Dec’(x,y)+a2Nと表せる。
ここで、右辺第1項に現れる{Dec(x,y),Dec(x,y),…,DecN−1(x,y)}は、画素値Dec”(x,y)を導出するために適応フィルタ122が参照する復号画像Decの画素値の集合であり、右辺第2項に現れる{Dec’(x,y),Dec’N+1(x,y),…,Dec’2N−1(x,y)}は、画素値Dec”(x,y)を導出するために適応フィルタ122が参照する復号画像Dec’の画素値の集合である。なお、右辺第1項のΣは、i=0からN−1までの和であり、右辺第2項のΣは、j=Nから2N−1までの和である。
フィルタ係数設定部123は、オフセットa2Nを含めて2N+1個あるフィルタ係数の値を、特定の拘束条件の下でΣ|Org(x,y)−Dec”(x,y)|を最小化するよう設定する。Σは、(x,y)∈U(フィルタ係数設定単位)に関する和である。設定すべきフィルタ係数の数が増えているだけで、フィルタ係数設定方法の基本に変わるところはない。
このような構成を採用する場合、デブロッキングフィルタ121を作用させた後の復号画像Dec’の中心画素に係るフィルタ係数a2N−1が主観画質を左右することが実験的に確かめられている。より具体的に言うと、フィルタ係数a2N−1が0.8未満であると、視聴者は「画質が悪い」と判断する傾向がある。とくに、フィルタ係数a2N−1が0.8未満であるループフィルタ部120をイントラフレームに作用させた場合、この傾向が顕著である。また、量子化ステップQPが大きければ大きいほど、この傾向が顕著になる。
このような主観画質の低下を回避するためには、クリップされたフィルタ係数aをクリップ後の値cに拘束すると共に、復号画像Dec’の中心画素に係るフィルタ係数a2N−1の値を0.8以上の値に拘束し、2回目の最小2乗法によって他のフィルタ係数ak(k≠m,2N−1)の値を調整する構成を採用すればよい。
本変形例は、図3に示すフィルタ係数設定部123を、図8に示すフローチャートに従って動作させることによって実現することができる。本変形例におけるフィルタ係数設定部123の各部の動作について、図8を参照して説明すれば以下のとおりである。
ステップS1:相関行列算出部123aが、相関行列MおよびVを算出する。算出すべき相関行列MおよびVは、それぞれ、上述した(2)および(3)式により定義されるものである。
ステップS2:ステップS1にて算出した相関行列MおよびVを相関行列保存部123bに保存する。
ステップS3:最小2乗解算出部123cが、相関行列保存部123bに保存されている相関行列MおよびVに関する正規方程式(4)を解き、ベクトルθ=(a,a,…,a2N)を得る。このステップが、上述した1回目の最小2乗法に対応する。最小2乗解算出部123cは、得られたベクトルθ=(a,a,…,a2N)をクリップ部123dに提供する。
ステップS4:ステップS3にて得られたベクトルθの各成分(フィルタ係数a,a,…,a2Nの各値)に対して、クリップ部123dがクリップ処理を施す。具体的には、a<−cであれば、フィルタ係数aをc=−cに設定し、a>cであれば、フィルタ係数aをc=cに設定する。クリップ部123dは、どのフィルタ係数(m)をどの値(cm)にクリップしたかを示すクリップ情報を拘束条件設定部123eに提供する。
ステップS5:拘束条件設定部123eが、クリップ部123dから提供されたクリップ情報に基づいて、相関行列保存部123bに保存されている相関行列MおよびVを書き変える。具体的には、フィルタ係数aが値cにクリップされた場合、相関行列保存部123bに保存されている相関行列Mのmm成分MmmをMmm+λに書き換え、相関行列保存部123bに保存されている相関行列(ベクトル)Vのm成分Vを(V+λcm)に書き換える。複数のフィルタ係数aがクリップされた場合には、各々に対応する書き換えを行う。
ステップS21:更に、拘束条件設定部123eは、a2N-1<0.8であれば、相関行列保存部123bに保存されている相関行列Mの(2N−1,2N−1)成分M2N-1,2N−1をM2N-1,2N−1+λに書き換え、相関行列保存部123bに保存されている相関行列(ベクトル)Vの2N-1成分V2N-1を(V2N-1+λ×0.8)に書き換える。a2N-1≧0.8であれば、相関行列MおよびVの書き替えを行わない。
ステップS6:最小2乗解算出部123cが相関行列保存部123bに保存されている相関行列M’およびV’に関する正規方程式(5)を解き、ベクトルθ’=(a,a,…,a2N)を得る。このステップが、上述した2回目の最小2乗法に対応する。最小2乗解算出部123cは、得られたベクトルθ’=(a,a,…,a2N)をクリップ部123dに提供する。
ステップS7:ステップS6にて得られたベクトルθ’の各成分(フィルタ係数a,a,…,a2Nの各々)に対して、クリップ部123dがクリップ処理を施す。クリップ処理の内容は、スッテプS4と同様である。クリップ部123は、クリップ処理済みのフィルタ係数a,a,…,a2Nを、量子化部123fに提供する。
ステップS8:量子化部123fが、クリップ処理済みのフィルタ係数a,a,…,a2Nを量子化し、フィルタ係数保存部124に格納する。
なお、ここでは、復号画像Dec’の中心画素に係るフィルタ係数a2N−1の値を常に0.8以上に拘束する構成について説明したが、これに限定されるものではない。例えば、対象フレームがイントラフレームである場合に限って、あるいは、量子化ステップ(又は量子化パラメータ)が予め定められた閾値以上である場合に限って、フィルタ係数a2N−1の値を常に0.8以上に拘束する構成を採用してもよい。主観画質の顕著な低下が生じるのは、対処フレームがイントラフレームである場合、あるいは、量子化ステップ(又は量子化パラメータ)が大きいときに限られるからである。また、ここでは拘束値として0.8を用いたが、拘束値として1以下の他の値を用いてもよい。また、拘束値が可変である場合には、拘束値を量子化ステップに応じて(より具体的には、量子化ステップが大きくなるほど拘束値が大きくなるように)設定するとよい。
(応用例)
非特許文献2に記載のALFでは、適応フィルタのタップ数を適応的に増減させる構成が採用されている。これは、タップ数を増やして予測画像の精度を高くした方が符号化効率の向上が期待できる場合と、タップ数を減らして符号化データに含めるフィルタ係数の個数を少なくした方が符号化効率の向上が期待できる場合とがあるためである。しかしながら、適応フィルタのタップ数を適応的に増減させる構成が採用する場合、タップ数を変更する度に変更後のタップ数に応じた相関行列を生成することになるので、演算能力の低い動画像符号化装置への実装が困難であるという問題があった。
上述したフィルタ係数設定方法を応用すれば、そのつど相関行列を生成し直すことなくタップ数を変更することができる。Tmaxタップの適応フィルタ122のフィルタ係数を設定する際に生成した相関行列MおよびVを、Tタップ(T<Tmax)の適応フィルタ122のフィルタ係数を設定する際に流用することができるからである。
例えば、9タップの適応フィルタ122は、図11(a)に示すように、オフセットを除いて81個のフィルタ係数a,a,…,a80をもつ。これらのフィルタ係数a,a,…,a80は、相関行列MおよびVを用いて、Σ|Org(x,y)−Dec”(x,y)|を最小化するように設定されたものである。
例えば、タップ数を9から7に変更する場合、9タップの適応フィルタ122のフィルタ係数a,a,…,a80のうち、図11(a)において最外周に配置された32個のフィルタ係数を除く49個のフィルタ係数を、7タップの適応フィルタ122のフィルタ係数であると見做す。そして、タップ数を9から7に変更するときには、最外周に配置された32個のフィルタ係数を0に拘束したうえで、これらのフィルタ係数を除く49個のフィルタ係数を、Σ|Org(x,y)−Dec”(x,y)|を最小化するように設定する。
これら49個のフィルタ係数を設定する際に必要となる処理は、相関行列Mの32個の対角成分を書き換える処理と、正規方程式(5)を解く処理とである。したがって、新たに49×49個の要素をもつ相関行列を生成する場合と比べて、演算量を格段に減らすことができる。なお、相関行列Vの更新は不要である。なぜなら、更新すべき値が0だからである。
また、タップ数を9から5に変更する場合、9タップの適応フィルタ122のフィルタ係数a,a,…,a80のうち、図11(b)において最外周に配置された32個のフィルタ係数と最外周の内側に配置された24個のフィルタ係数とを除く25個のフィルタ係数を、5タップの適応フィルタ122のフィルタ係数であると見做す。そして、タップ数を9から5に変更するときには、最外周に配置された32個のフィルタ係数と最外周の内側に配置された24個のフィルタ係数とを0に拘束したうえで、これらのフィルタ係数を除く25個のフィルタ係数を、Σ|Org(x,y)−Dec”(x,y)|を最小化するように設定する。
これら49個のフィルタ係数を設定する際に必要となる処理は、相関行列Mの56個の対角成分を書き換える処理と、正規方程式(5)を解く処理とである。したがって、新たに25×25個の要素をもつ相関行列を生成する場合と比べて、演算量を格段に減らすことができる。なお、相関行列Vの更新は不要である。なぜなら、更新すべき値が0だからである。
なお、ここでは、フィルタ係数の対称性を考慮せずに全てのフィルタ係数を設定する構成について説明したが、これに限定されるものではない。例えば、9タップの適応フィルタ122が回転対称性(a=a80−i)をもつ場合には、図11(c)に示すように、オフセットを除いて41個のフィルタ係数a,a,…,a40を設定すればよい。
タップ数を9から7に変更する場合、9タップの適応フィルタ122のフィルタ係数a,a,…,a40のうち、図11(c)において最外周(下辺を除く)に配置された16個のフィルタ係数を除く25個のフィルタ係数を、7タップの適応フィルタ122のフィルタ係数であると見做す。そして、タップ数を9から7に変更するときには、最外周に配置された16個のフィルタ係数を0に拘束したうえで、これらのフィルタ係数を除く25個のフィルタ係数を、Σ|Org(x,y)−Dec”(x,y)|を最小化するように設定する。タップ数を9から5に減らす場合も同様である。
図12は、本応用例に適したフィルタ係数設定部123の構成例を示すブロック図である。図12に示すフィルタ係数設定部123は、相関行列算出部123a、相関行列保存部123b、最小2乗解算出部123c、クリップ部123d、拘束条件設定部123e、量子化部123fを備えている。
図12に示すフィルタ係数設定部123は、適応フィルタ122のタップ数を指定するタップ数指定情報を拘束条件設定部123eに入力できるようになっている点で、図3に示すフィルタ係数設定部123と異なる。タップ数指定情報の供給源は特に限定されないが、例えば、符号化方法を制御する符号化方法制御部を動画像符号化装置2が備えている場合には、これをタップ数指定情報の供給源とするとよい。
この場合、符号化方法制御部は、まず、最大タップ数Tmaxを指定するタップ数指定情報を渡すことによって、Tmaxタップの適応フィルタ122のフィルタ係数a,a,…,aTmax×Tmaxを設定するよう、フィルタ係数設定部123に指示する。この指示を受けたフィルタ係数設定部123は、(1a)相関行列算出部123aにて相関行列MおよびVを算出し、(2a)相関行列MおよびVを相関行列保存部123bに保存し、(3a)最小2乗解算出部123cにて相関行列MおよびVに関する正規方程式を解き、(4a)クリップ部123dにてフィルタ係数a,a,…,aTmax×Tmaxをクリップし、(5a)量子化部123fにてフィルタ係数a,a,…,aTmax×Tmaxを量子化する。
続いて、符号化方法制御部は、最大タップ数Tmaxよりも小さいタップ数Tを指定するタップ数指定情報を渡すことによって、Tタップの適応フィルタ122のフィルタ係数a,a,…,aT×Tを設定するよう、フィルタ係数設定部123に指示する。この指示を受けたフィルタ係数設定部123は、(1b)拘束条件設定部123eにより相関行列MをM’に更新し、(2b)最小2乗解算出部123cにて相関行列M’およびVに関する正規方程式を解き、(3b)クリップ部123dにてフィルタ係数a,a,…,aT×Tをクリップし、(4b)量子化部123fにてフィルタ係数a,a,…,aT×Tを量子化する。
なお、上記の手順に、図3、図5を用いて説明したフィルタ係数の拘束を組み合わせることが可能である。すなわち、(1b)において、(4a)でクリップされたフィルタ係数、および/または、(5a)で量子化されたフィルタ係数を拘束したうえで、拘束条件設定部123eにより相関行列MをM’に更新する処理を行ってもよい。
(最小2乗解算出部の詳細)
最後に、最小2乗解算出部123cの詳細について、図13を参照して説明する。図13(a)は、基本的な最小2乗解算出部123cの構成を示すブロック図であり、図13(b)は、改良された最小2乗解算出部123cの構成を示すブロック図である。
図13(a)に示す最小2乗解算出部123cは、1回目の最小2乗法において、2乗誤差Σ|Org(x,y)−Dec”(x,y)|を最小化するフィルタ係数a,a,…,aを得るために、行列解算出部1230にて正規方程式(4)をθについて解く。また、2回目の最小2乗法において、2乗誤差Σ|Org(x,y)−Dec”(x,y)|+Σm∈BINDλ|a−cを最小化するフィルタ係数a,a,…,aを得るために、行列解算出部1230にて正規方程式(5)をθについて解く。ここで、正規方程式(4)および(5)を解くためのアルゴリズムとしては、例えば、ガウスの消去法やLU分解法を用いることができる。なお、相関行列Mに逆行列が存在しない場合など、解が算出できない場合には、中心係数を1、それ以外のフィルタ係数を0に設定する。すなわち、フィルタ係数a=1(i=N−1)、a=0(i=それ以外)とする。
図13(b)に示す最小2乗解算出部123cは、2乗誤差Σ|Org(x,y)−Dec”(x,y)|を最小化するフィルタ係数a,a,…,aを求める代わりに、正則化項Σi∈REG λreg|aiを加えた、Σ|Org(x,y)−Dec”(x,y)|+Σi∈REGλreg|aiを最小化するフィルタ係数a,a,…,aを求める。また、2乗誤差Σ|Org(x,y)−Dec”(x,y)|+Σm∈BINDλ|a−cを最小化するフィルタ係数a,a,…,aを求める代わりに、正則化項Σi∈REGλreg|aiを加えた、Σ|Org(x,y)−Dec”(x,y)|+Σm∈BINDλ|a−c+Σi∈REGλreg|aiを最小化するフィルタ係数a,a,…,aを求める。つまり、2回の最小2乗法の代わりに2回の正則化最小2乗法を適用することによって、フィルタ係数a,a,…,aの最適化を図る。なお、REGは、正則化をかける成分を指定するインデックスの集合を意味する。ここでは、中心係数aN−1およびオフセットa以外の成分に正則化をかけるものとする。つまり、集合REG={0,1,…,N−2}とする。なお、変形例2のように中心係数が複数存在する場合には、1つの中心係数とオフセット以外の成分に正則化をかける。例えば、変形例2では、デブロッキングフィルタ121に入力される復号画像Decの画素値の中心係数には正則化をかけ、デブロッキングフィルタ121から出力される復号画像Dec’には正則化をかけない。一方のみに正則化をかけることにより、中心係数同士が近く線形従属になる問題と正則化により2乗誤差が大きくなる問題を回避できる。
このような動作を行うため、図13(b)に示す最小2乗解算出部123cは、行列解算出部1230に加え、正則化コスト算出部1231および正則化部1232を備えている。
正則化コスト算出部1231は、相関行列Mの対角成分Mmmまたは相関行列(ベクトル)Vの成分Vの値を参照し、(6)式または(7)式に従って、正則化コストλregを定める。
Figure 2012065120
Figure 2012065120
ここで、kは、予め定められた定数である。発明者の実験によると、kを10−16以上に設定したときに正則化の効果が生じ、kを10−7以上10−9以下に設定したときに正則化の効果が最も高くなる。なお、(6)式および(7)式は、相関行列MおよびVの各要素の値がほぼ等しいことを考慮して、相関行列MおよびVの各要素の値をそれぞれ1つの成分で代表させているが、これに限定されるものではない。例えば、(6)式におけるMooを、相関行列Mの各対角成分の他の代表値(例えば対角成分の平均値)に置き換えたり、(7)式におけるVoを、相関行列(ベクトル)Vの各成分の他の代表値(例えば各成分の平均値)に置き換えたりしてもよい。
正則化部1232は、正則化コスト算出部1231により算出された正則化コストλregを用いて、相関行列M(1回目の最小2乗法)およびM’(2回目の最小2乗法)を正規化する。例えば、1回目の最小2乗法においては、各i∈{0,1,…,N−2}について、相関行列Mの対角成分Mi,iをMi,i+λregに置き換え、2回目の最小2乗法においては、各i∈{0,1,…,N−2}について、相関行列M’の対角成分M’i,iをM’i,i+λregに置き換える。行列解算出部1230は、1回目の最小2乗法においては、正則化された相関行列M(上記の置き換えが為された相関行列)を含む正規方程式(4)をθについて解き、2回目の最小2乗法においては、正則化された相関行列M’を含む正規方程式(5)をθについて解く。
このように中心係数を除くフィルタ係数を0に近づけるような正則化を行うことによって、算出されるフィルタ係数が大きくなることを防ぐことができる。これによりフィルタ係数の符号量を抑えることができる。また、適応フィルタ122が参照する復号画像Dec’の画素値が互いに線形従属もしくはそれに近い場合には、相関行列Vの逆行列が定まらない問題が生じるが、正則化を行うことによって、このような問題の発生を回避することができる。特に、変形例2では、デブロッキングフィルタ121に入力される復号画像Decの画素値と、デブロッキングフィルタ121から出力される復号画像Dec’の画素値とが極めて近くなることがあることから、このような問題が生じやすい。また、1フレーム内で領域毎に異なるフィルタを用いる場合など、フィルタ係数設定単位Uが小さい領域となる場合にも、このような問題が生じやすい。
正則化の強さの決定や、正則化の対象となるパラメータの選択は、適用する技術領域、目的毎に特有の方法を必要とする。特に画像符号化装置および画像復号装置における、適応フィルタに適用する場合においては、上述したように、1)相関行列Mの対角成分もしくは相関行列(ベクトル)Vの成分に比例するコストを用いること、2)中心係数にコストをかけないこと(中心係数が複数存在する場合には、1つの中心係数にはコストをかけないこと)が重要である。第1の条件によって、適応する画像や領域の大きさ(フィルタ係数設定単位U)によらずコストを算出することができるという効果が補償される。また、第2の条件から、一般に0に近くない中心係数の値を正則化で抑え込むことによって、2乗誤差が大きくなるという問題を避けることができる。なお、拘束条件設定部123eで拘束条件を設定する場合には、拘束条件を設定したフィルタ係数以外のフィルタ係数に正則化コストを加えることが好ましい。また2条件を満たせばオフセットに正則化をかけることも可能である。また、係数によらず固定のλregを用いる例を説明したが、(8)式、(9)式の従って係数(インデックスi)により異なるλiを用いることもできる。
Figure 2012065120
Figure 2012065120
〔符号化データについて〕
次に、動画像符号化装置2によって生成される符号化データのデータ構造について、図9を参照して説明する。符号化データは、シーケンスレイヤ、GOP(Group Of Pictures)レイヤ、ピクチャレイヤ、スライスレイヤ、及び、最大符号化単位(LCU:Largest Coding Unit)レイヤからなる階層構造を有している。
符号化データにおけるピクチャレイヤ以下の階層の構造を図9に示す。図9(a)〜(g)は、それぞれ、ピクチャレイヤP、スライスレイヤS、LCUレイヤLCU、LCUヘッダLCUH、インター予測(画面間予測)パーティションの予測パラメータPP、イントラ予測(画面内予測)パーティションの予測パラメータPP、フィルタパラメータFPの構造を示す図である。
(ピクチャレイヤ)
ピクチャレイヤPは、対象ピクチャを復号するために動画像復号装置1(後述)が参照するデータの集合である。ピクチャレイヤPは、図9(a)に示すように、ピクチャヘッダPH、及び、スライスレイヤS1〜SNsを含んでいる(NsはピクチャレイヤPに含まれるスライスレイヤの総数)。
ピクチャヘッダPHには、対象ピクチャの復号方法を決定するために動画像復号装置1が参照する符号化パラメータ群が含まれている。例えば、動画像符号化装置2が符号化の際に用いた可変長符号化のモードを示す符号化モード情報(entoropy_coding_mode_flag)は、ピクチャヘッダPHに含まれる符号化パラメータの一例である。
(スライスレイヤ)
ピクチャレイヤPに含まれる各スライスレイヤSは、対象スライスを復号するために動画像復号装置1が参照するデータの集合である。スライスレイヤSは、図9(b)に示すように、スライスヘッダSH、及び、LCUレイヤLCU1〜LCUNc(NcはスライスSに含まれるLCUの総数)を含んでいる。
スライスヘッダSHには、対象スライスの復号方法を決定するために動画像復号装置1が参照する符号化パラメータ群が含まれる。スライスタイプを指定するスライスタイプ指定情報(slice_type)は、スライスヘッダSHに含まれる符号化パラメータの一例である。また、スライスヘッダSHには、ループフィルタ部120によって設定されたフィルタ係数a,a,…,aを表すフィルタパラメータFPが含まれる。
なお、スライスタイプ指定情報により指定可能なスライスタイプとしては、(1)符号化の際にイントラ予測のみを用いるIスライス、(2)符号化の際に単方向予測、又は、イントラ予測を用いるPスライス、(3)符号化の際に単方向予測、双方向予測、又は、イントラ予測を用いるBスライスなどが挙げられる。
(LCUレイヤ)
スライスレイヤSに含まれる各LCUレイヤLCUは、対象LCUを復号するために動画像復号装置1が参照するデータの集合である。各LCUは、複数の符号化単位(CU:Coding Unit)に4分木分割される。各CUのサイズは、符号化データのシーケンスパラメータセットSPSに含まれる、LCUのサイズおよび階層深度(hierarchical depth)によって定められる。
例えば、LCUのサイズが128×128画素であって、最大階層深度が5である場合には、当該LCUに含まれるCUは、5種類のサイズ、すなわち、128×128画素、64×64画素、32×32画素、16×16画素、および、8×8画素の何れかをとり得る。
(予測単位(PU)について)
それ以上分割することができないCU(CUのリーフ)は予測単位(PU:Prediction Unit)として取り扱われる。各PUについて、予測タイプ、および、パーティションへの分割(PU Splitting)が規定され、予測画像は、パーティション毎に生成される。また、予測タイプとしては、イントラ予測およびインター予測の何れか一方が選択可能であり、各PUのパーティションへの分割は、当該PUについて選択された予測タイプに応じて定められる。以下では、イントラ予測が適用されるPUをイントラPUとも呼称し、インター予測が適用されるPUをインターPUとも呼称する。
イントラPUは、2N×2N画素、および、N×N画素の2種類のパーティションに分割することが可能である。一方で、インターPUは、2N×2N画素、2N×N画素、N×2N画素、およびN×N画素の4つの対称的分割(symmetric splittings)、並びに、2N×nU画素、2N×nD画素、nL×2N画素、およびnR×2N画素の4つの非対称的分割(asymmetric splittings)により、合計8種類のパーティションに分割することが可能である。ここで、Nの具体的な値は、当該PUが属するCUのサイズによって規定され、nU、nD、nL、および、nRの具体的な値は、Nの値に応じて定められる。
例えば、128×128画素のCUは、128×128画素、および、64×64画素のイントラ予測パーティションへ分割することが可能であると共に、128×128画素、128×64画素、64×128画素、64×64画素、128×32画素、128×96画素、32×128画素、および、96×128画素のインター予測パーティションへ分割することも可能である。
(変換単位(TU)について)
また、それ以上分割することができないCU(CUのリーフ)は、1または複数の変換単位(TU:Transform Unit)へ分割することが可能である。ここで、変換単位とは、DCT変換および量子化の単位である。CUのリーフは、2分木分割により、TUに分割される。TUのとり得る最大のサイズ、および当該2分木分割の最大深度(maximum depth)を示す情報は、符号化データに含まれる。各TUは、例えば、64×64画素から2×2画素までのサイズをとり得る。
図9(c)に示すように、LCUレイヤLCUは、(1)スキップフラグSKIP、(2)LCUヘッダLCUH、(3)各パーティションに割り付けられた予測パラメータPP1〜PPNP、及び、(4)各TUに割り付けられた量子化予測残差(上述した量子化予測残差Res”を符号化したもの)QD1〜QDNbを含んでいる。ここで、Npは、対象LCUに含まれるパーティションの総数を表し、Nbは、対象LCUに含まれるTUの総数を表す。スキップフラグSKIPの値が1の場合、すなわち、対象LCUにスキップモードが適用されている場合、そのLCUレイヤにおけるLCUヘッダLCUH、予測パラメータPP1〜PPNP、及び、量子化予測残差QD1〜QDNbは省略される。
(LCUヘッダ)
LCUヘッダLCUHには、対象LCUの復号方法を決定するために動画像復号装置1が参照する符号化パラメータが含まれる。具体的には、図9(d)に示すように、対象LCUのLCUタイプを指定するLCUタイプ指定情報LCUT(mb_type)、符号化ブロックパターンを指定するCBP(coded_block_pattern)、量子化ステップの大きさを指定する量子化パラメータ差分Δqp(mb_qp_delta)が含まれる。LCUタイプ指定情報LCUTは、予測単位指定情報PTと変換単位指定情報TTとを含む。
予測単位指定情報PTは、対象LCUのパーティションへの分割パターン(すなわち、対象LCUに含まれる各パーティションのサイズ、及び、対象LCU内での位置)と、動画像符号化装置2が各パーティションにおける予測画像を生成する際に用いた予測方法(L0単方向予測、L1単方向予測、双方向予測、イントラ予測など)を指定する。
一方、変換単位指定情報TTは、対象LCUのTUへの分割パターン(すなわち、対象LCUに含まれる各TUのサイズ、及び、対象LCU内での位置)を指定する。なお、以下では、TUをブロックとも称する。
量子化パラメータ差分Δqpは、対象LCUにおける量子化パラメータqpと、そのLCUの直前に符号化されたLCUにおける量子化パラメータqp’との差分qp−qp’である。
(量子化予測残差および予測パラメータ)
LCUレイヤLCUに含まれる各量子化予測残差QDnは、動画像符号化装置2が以下の処理1〜3を対象ブロックに施すことによって生成した符号化データである。処理1:符号化対象画像から予測画像を減算した予測残差をDCT変換(Discrete Cosine Transform)する。処理2:処理1にて得られたDCT係数を量子化する。処理3:処理2にて量子化されたDCT係数を可変長符号化する。上述した量子化パラメータqpは、動画像符号化装置2がDCT係数を量子化する際に用いた量子化ステップQPの大きさを表す(QP=2qp/6)。
LCUレイヤLCUに含まれる予測パラメータPPのうち、インター予測によって予測画像が生成されるインター予測パーティションに関する予測パラメータPPは、図9(e)に示すように、参照画像インデックスRIと、推定動きベクトルインデックスPMVIと、動きベクトル残差MVDとを含んでいる。
LCUレイヤLCUに含まれる予測パラメータPPのうち、イントラ予測によって予測画像が生成されるイントラ予測パーティションに関する予測パラメータPPは、図9(f)に示すように、予測インデックスPIを含んでいる。ここで、予測インデックスPIは、対象パーティションについてのイントラ予測方法(予測モード)を指定するためのインデックスである。なお、符号化データを生成する動画像符号化装置2は、対象パーティションの周辺のパーティションの予測インデックスに基づいて、当該対象パーティションについての予測インデックスの推定値を算出し、当該推定値と当該対象パーティションについての予測インデックスとが同じであるか否かを示すフラグを符号化データに含める構成としてもよい。このような構成とすることにより、当該推定値と当該対象パーティションについての予測インデックスとが同じである場合には、当該対象パーティションについての予測インデックスの符号化を省略することができる。
(フィルタパラメータFP)
また、符号化データに含まれるスライスヘッダSHには、動画像符号化装置2のループフィルタ部120によって設定されたフィルタ係数a,a,…,aを表すフィルタパラメータFPが含まれる。フィルタパラメータFPの構成について概略的に説明すれば以下の通りである。なお、フィルタパラメータFPの構成については、動画像復号装置1の説明において詳述する。
フィルタパラメータFPには、動画像復号装置1の備えるループフィルタをスライス毎に制御するために参照されるフィルタ制御情報(入力画像指定情報)、および、フィルタ係数群1〜フィルタ係数群Nfが含まれる(Nfは、フィルタパラメータFPに含まれるフィルタ係数群の総数)。各フィルタ係数群は、フィルタ係数およびオフセットから構成される。ここで、各フィルタ係数およびオフセットは、そのまま符号化されていてもよいし、予測値との差分として符号化(予測符号化)されていてもよい。
フィルタ制御情報は、動画像復号装置1の備えるループフィルタへの入力画像を指定するための情報である。なお、動画像復号装置1の備えるループフィルタは、復号画像のノイズを除去するためのデブロッキングフィルタ部を備えており、フィルタ制御情報には、このデブロッキングフィルタ部のオンオフを指定する情報も含まれる。
また、フィルタ制御情報は、例えば、ループフィルタへの入力画像の組み合わせを指定する情報(ループフィルタモード)であってもよいし、複数の入力画像の各々について、ループフィルタに入力するか否かを指定するフラグより構成される情報であってもよい。また、入力画像の候補が複数存在する場合には、適応的フィルタ処理に恒常的に用いられるデフォルト入力画像を指定する情報、および、適応的フィルタ処理に追加的に用いられる追加入力画像を指定する情報を含む構成としてもよい。
なお、フィルタ制御情報をスライスヘッダに含めずに、シーケンスについてのヘッダ情報であるシーケンスヘッダに含める構成とし、動画像復号装置1の備えるループフィルタをシーケンス毎に制御する構成としてもよい。この場合には、シーケンス全体に対して、ループフィルタへの入力画像の数が規定されるため、シーケンス全体の復号において、適応的フィルタ処理に用いられるメモリサイズを削減することができる。
〔動画像復号装置について〕
次に、本実施形態に係る画像復号装置1について、図10を参照して説明する。図10は、動画像復号装置1の構成を示すブロック図である。
動画像復号装置1は、図10に示すように、可変長符号復号部101、逆量子化部102、逆変換部103、予測部104、加算部105、フレームメモリ106、および、ループフィルタ部107を備えている。ループフィルタ部107は、デブロッキングフィルタ107a、適応フィルタ107b、および、フィルタ係数保存部107cを含む。
動画像復号装置1は、動画像を構成する各フレームを変換単位TU毎に復号する。動画像復号装置1の各部が1の変換単位TUを復号する際の動作について、図10を参照して説明すれば以下のとおりである。
可変長符号復号部101は、符号化データから量子化予測残差Res”を復号し、得られた量子化予測残差Res”を逆量子化部102に供給する。また、符号化データから予測パラメータPPを復号し、得られた予測パラメータPPを予測部104に供給する。また、符号化データからフィルタパラメータFPを復号し、得られたフィルタパラメータFPをフィルタ係数保存部107cに格納する。なお、可変長符号復号部101にて復号されたフィルタパラメータFPに含まれるフィルタ係数は、5ビットであってもよいし、8ビットであってもよい。
逆量子化部102は、量子化されたDCT係数Res”(u,v)を逆量子化することによって、周波数領域の予測残差Res’を復元する。逆量子化部102にて復元された周波数領域の予測残差Res’は、逆変換部103に供給される。
逆変換部103は、復元された周波数領域の予測残差Res’に逆DCT変換(逆離散コサイン変換)を施すことによって、空間領域の予測残差Resを復元する。逆変換部103にて復元された空間領域の予測残差Resは、加算部105に供給される。
予測部104は、予測パラメータPPに従って、予測画像Pred={Pred(x,y)|(x,y)∈TU}を生成する。予測部104にて生成された予測画像Predは、加算部105に供給される。
加算部105は、復元された予測残差Resに予測画像Predを加算することによって、復号画像Dec={Dec(x,y)|(x,y)∈TU}を生成する。加算部105にて生成された復号画像Decは、フレームメモリ106に格納される。
ループフィルタ部107は、フレームメモリ106に格納された復号画像Decに作用する。ループフィルタ部107は、デブロッキングフィルタ107aと適応フィルタ107bとを含み、これらのフィルタを用いて復号画像Decに含まれる量子化ノイズを除去する。適応フィルタ107bは、自身のフィルタ係数をフィルタ係数保存部107cに格納されたフィルタパラメータFPを参照して設定する。
ループフィルタ部107により量子化ノイズが除去された復号画像Dec”は、同じフレーム内の他の変換単位TU’(イントラ予測の場合)、あるいは、異なるフレーム内の同じ(同じ位置を占める)変換単位TU(インター予測の場合)を符号化する際に予測残差Resに加算する予測画像Pred’を生成するために利用される。
上述したとおり、可変長符号復号部101にて復号されたフィルタパラメータFPに含まれるフィルタ係数は、5ビットであってもよいし、8ビットであってもよい。このように、量子化精度の低いフィルタ係数であっても復号画像Decの精度の保てるのは、動画像符号化装置2において実行される2回の最小2乗法によって量子化精度の低さに見合ったフィルタ係数の最適化が図られているためである。例えば、フィルタ係数のうち精度の要求されるもの(例えば中心係数およびオフセット)は8ビット、それ以外のものは5ビットとすることが可能である。
〔プログラムおよび記録媒体について〕
最後に、上述した動画像復号装置1および動画像符号化装置2の各ブロックは、集積回路(ICチップ)上に形成された論理回路によってハードウェア的に実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェア的に実現してもよい。
後者の場合、上記各装置は、各機能を実現するプログラムの命令を実行するCPU、上記プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである上記各装置の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記各装置に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD−ROM/MO/MD/DVD/CD−R等の光ディスクを含むディスク類、ICカード(メモリカードを含む)/光カード等のカード類、マスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ類、あるいはPLD(Programmable logic device)やFPGA(Field Programmable Gate Array)等の論理回路類などを用いることができる。
また、上記各装置を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークは、プログラムコードを伝送可能であればよく、特に限定されない。例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な媒体であればよく、特定の構成または種類のものに限定されない。例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(Asymmetric Digital Subscriber Line)回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(High Data Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、適応フィルタを用いた動画像符号化装置および動画像復号装置に好適に利用することができる。ただし、適応フィルタを用いたものであれば、動画像符号化装置および動画像復号装置に限らず、静止画像符号化装置および静止画像復号装置を含む画像符号化装置および画像復号装置全般に広く適用することができる。
2 動画像符号化装置(画像符号化装置)
111 予測部
112 変換部
113 量子化部
114 可変長符号化部
115 逆量子化部
116 逆変換部
117 フレームメモリ
118 減算部
119 加算部
120 ループフィルタ部
121 デブロッキングフィルタ
122 適応フィルタ
123 フィルタ係数設定部(フィルタ係数設定装置)
123a 相関行列算出部(導出手段を構成する生成手段)
123b 相関行列保存部
123c 最小2乗解算出部(導出手段を構成する第1の算出手段、
設定手段を構成する第2の算出手段)
123d クリップ部(変更手段の一例)
123e 拘束条件設定手段(設定手段の一部、更新手段)
123f 量子化部(変更手段の一例)
1230 行列解算出部
1231 正則化コスト算出部
1232 正則化部
124 フィルタ係数保存部
1 動画像復号装置
101 可変長符号復号部
102 逆量子化部
103 逆変換部
104 予測部
105 加算部
106 フレームメモリ
107 ループフィルタ部

Claims (9)

  1. 復号画像に作用する適応フィルタの各フィルタ係数の値を設定するフィルタ係数設定装置であって、
    特定フィルタ係数の値を特定値に設定するという拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する、
    ことを特徴とするフィルタ係数設定装置。
  2. 上記適応フィルタの各フィルタ係数の値であって、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化する値を導出する導出手段と、
    上記適応フィルタの少なくとも1つのフィルタ係数の値を、上記導出手段が導出した値以外の値に変更する変更手段と、
    上記変更手段により値が変更されたフィルタ係数を上記特定フィルタ係数とし、該フィルタ係数の上記変更手段により変更された後の値を上記特定値とする拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する設定手段と、を備えている、
    ことを特徴とする請求項1に記載のフィルタ係数設定装置。
  3. 上記導出手段は、
    上記原画像と上記復号画像とに基づいて相関行列を生成する生成手段と、
    上記生成手段によって生成された相関行列を含む正規方程式を解くことによって、上記適応フィルタの各フィルタ係数の値を算出する第1の算出手段とにより構成され、
    上記設定手段は、
    上記生成手段によって生成された相関行列を、上記変更手段がどのフィルタ係数の値をどのような値に変更したかに応じて更新する更新手段と、
    上記更新手段によって更新された相関行列を含む正規方程式を解くことによって、上記特定フィルタ係数以外の各フィルタ係数の値を算出する第2の算出手段とにより構成されている、ことを特徴とする請求項2に記載のフィルタ係数設定装置。
  4. 上記変更手段は、上記適応フィルタの各フィルタ係数について、上記導出手段が導出した値が予め定められた範囲外にある場合、上記導出手段が導出した値を上記範囲内にある値に変更するものである、
    ことを特徴とする2または3に記載のフィルタ係数設定装置。
  5. 上記変更手段は、上記適応フィルタの各フィルタ係数について、上記導出手段が導出した値を量子化するものである、
    ことを特徴とする請求項2または3に記載のフィルタ係数設定装置。
  6. 上記変更手段は、上記適応フィルタの参照領域の中心画素に係るフィルタ係数について、上記導出手段が導出した値が予め定められた範囲外にある場合、上記導出手段が導出した値を上記範囲内にある値に変更するものである、
    ことを特徴とする請求項2または3に記載のフィルタ係数設定装置。
  7. 上記適応フィルタの各フィルタ係数の値であって、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化する値を導出する導出手段と、
    上記適応フィルタを上記適応フィルタよりもタップ数の少ない他の適応フィルタとして利用するために、上記他の適応フィルタのフィルタ係数として利用するフィルタ係数以外のフィルタの値を0に設定するという拘束条件下で、上記他の適応フィルタのフィルタ係数として利用するフィルタ係数を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する設定手段と、を備えている、
    ことを特徴とする請求項1に記載のフィルタ係数設定装置。
  8. 請求項1から6までの何れか1項に記載のフィルタ係数設定装置を備え、上記フィルタ係数設定装置にて設定されたフィルタ係数を含む符号化データを生成する、
    ことを特徴とする画像符号化装置。
  9. 復号画像に作用する適応フィルタの各フィルタ係数の値を設定するフィルタ係数設定方法であって、
    特定フィルタ係数の値を特定値に設定するという拘束条件下で、上記適応フィルタの上記特定フィルタ係数以外の各フィルタ係数の値を、上記適応フィルタから出力される出力画像の原画像に対する誤差を最小化するように設定する、
    ことを特徴とするフィルタ係数設定方法。
JP2010207221A 2010-09-15 2010-09-15 フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置 Pending JP2012065120A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207221A JP2012065120A (ja) 2010-09-15 2010-09-15 フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207221A JP2012065120A (ja) 2010-09-15 2010-09-15 フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置

Publications (1)

Publication Number Publication Date
JP2012065120A true JP2012065120A (ja) 2012-03-29

Family

ID=46060390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207221A Pending JP2012065120A (ja) 2010-09-15 2010-09-15 フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置

Country Status (1)

Country Link
JP (1) JP2012065120A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520416A (ja) * 2011-08-31 2014-08-21 メディアテック インコーポレイテッド 制約付きフィルタ係数を有する適応ループフィルタの方法及び装置
JP2015199254A (ja) * 2014-04-08 2015-11-12 キヤノン株式会社 画像形成装置
JP2019047277A (ja) * 2017-08-31 2019-03-22 沖電気工業株式会社 画像処理装置、プログラム及び方法、並びに、映像符号化装置、映像復号装置、及び映像処理システム
JP2021505074A (ja) * 2017-11-29 2021-02-15 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute ループ内フィルタリングを用いた画像符号化/復号化方法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520416A (ja) * 2011-08-31 2014-08-21 メディアテック インコーポレイテッド 制約付きフィルタ係数を有する適応ループフィルタの方法及び装置
JP2015199254A (ja) * 2014-04-08 2015-11-12 キヤノン株式会社 画像形成装置
JP2019047277A (ja) * 2017-08-31 2019-03-22 沖電気工業株式会社 画像処理装置、プログラム及び方法、並びに、映像符号化装置、映像復号装置、及び映像処理システム
JP2021505074A (ja) * 2017-11-29 2021-02-15 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute ループ内フィルタリングを用いた画像符号化/復号化方法及び装置
US11943436B2 (en) 2017-11-29 2024-03-26 Electronics And Telecommunications Research Institute Image encoding/decoding method and device employing in-loop filtering

Similar Documents

Publication Publication Date Title
US11089302B2 (en) Offset decoding device, offset coding device, image filtering device
JP7308946B2 (ja) 非線形クリッピングのアダプティブループフィルタ
AU2017202576B2 (en) Sample adaptive offset control
US8249154B2 (en) Method and apparatus for encoding/decoding image based on intra prediction
JP4747975B2 (ja) 画像処理装置および方法、プログラム、並びに、記録媒体
KR101446771B1 (ko) 영상 부호화장치 및 영상 복호화장치
CN107347157B (zh) 视频解码装置
JP5551274B2 (ja) 画像フィルタ装置
US20200120345A1 (en) Luma and chroma reshaping of hdr video encoding
AU2019298063B2 (en) Apparatus and method for filtering in video coding
US8243802B2 (en) Moving picture encoding apparatus, moving picture encoding method, moving picture encoding program, moving picture decoding apparatus, moving picture decoding method, and moving picture decoding program
CN112352428A (zh) 图像处理装置和方法
JP2012065120A (ja) フィルタ係数設定装置、フィルタ係数設定方法、および、画像符号化装置
JP2023530630A (ja) ビデオ符号化のための適応量子化器設計
KR20200000543A (ko) 지도 학습을 이용한 영상 개선 방법 및 장치
JP2008271039A (ja) 画像符号化装置及び画像復号化装置
JP2022105653A (ja) デブロッキングフィルタ制御装置及びプログラム
JP4952282B2 (ja) 画像符号化装置、画像符号化方法、および画像符号化プログラム
WO2013145174A1 (ja) 動画像符号化方法、動画像復号方法、動画像符号化装置及び動画像復号装置
JP2020150441A (ja) 画像パディング方法、画像パディング装置、及びプログラム
JPWO2011161823A1 (ja) 動画像符号化方法および復号方法
WO2012001833A1 (ja) 動画像符号化装置、動画像復号化装置及び方法
JP5728330B2 (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム
WO2012043766A1 (ja) 画像復号装置、画像符号化装置、および、符号化データのデータ構造
WO2012001818A1 (ja) 動画像符号化装置及び動画像復号化装置