JP2012064950A - Add-on layer formation method - Google Patents

Add-on layer formation method Download PDF

Info

Publication number
JP2012064950A
JP2012064950A JP2011218346A JP2011218346A JP2012064950A JP 2012064950 A JP2012064950 A JP 2012064950A JP 2011218346 A JP2011218346 A JP 2011218346A JP 2011218346 A JP2011218346 A JP 2011218346A JP 2012064950 A JP2012064950 A JP 2012064950A
Authority
JP
Japan
Prior art keywords
layer
doping
fld
semiconductor substrate
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011218346A
Other languages
Japanese (ja)
Other versions
JP5294517B2 (en
Inventor
Sang-Yun Lee
リー,サン−ユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2012064950A publication Critical patent/JP2012064950A/en
Application granted granted Critical
Publication of JP5294517B2 publication Critical patent/JP5294517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Hall/Mr Elements (AREA)
  • Non-Volatile Memory (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an add-on layer formation method which allows deposition and does not have such a defect that a hot operation which is not compatible with a low temperature treatment required for many semiconductor devices, is required.SOLUTION: An add-on layer formation method which allows deposition includes formation of a first semiconductor substrate removing layer, formation of many doping regions on the first semiconductor substrate on the removing layer, and here in formation of many doping layers, doping is made to provide a first conductive type. The method further includes formation of a first doping layer of the first semiconductor substrate on the removing layer, and doping is made to provide a second conductive type against the first conductive type. The method further includes formation of at least an intermediate doping layer at the first semiconductor substrate on the first doping layer, and formation of at least a third doping layer at the first semiconductor substrate on the intermediate doping layer, formation of a first conductive blanket layer on the third doping layer, formation of a second conductive blanket layer on the first conductive blanket layer, and attaching of the first semiconductor substrate to the second semiconductor substrate so that the second conductive blanket layer contacts to a conductive upper part layer corresponding to the second semiconductor substrate.

Description

本発明は一般に三次元集積回路(IC)構造に用いる、アッド‐オン層形成方法に関する。 The present invention relates generally to an add-on layer formation method for use in three-dimensional integrated circuit (IC) structures.

図1に示す如く、従来技術の三次元ICはハイブリッドICと称する。従来のハイブリッドICの実施方法は一般に以下を含む。即ちベース半導体基板201及び誘電層202から構成される第一ICの提供、またベース半導体基板203及び誘電層204から構成される第二ICの提供、これらのIC又は個別チップの堆積及び結合、及び半導体基板を貫通する米国特許6、600、173に示すような深いビア255の実施又は米国特許6、355、501に示すような微小段差の提供である。   As shown in FIG. 1, the conventional three-dimensional IC is referred to as a hybrid IC. Conventional hybrid IC implementation methods generally include: The provision of a first IC comprised of a base semiconductor substrate 201 and a dielectric layer 202, the provision of a second IC comprised of a base semiconductor substrate 203 and a dielectric layer 204, the deposition and coupling of these ICs or individual chips, and The implementation of deep vias 255 as shown in US Pat. No. 6,600,173 penetrating the semiconductor substrate or the provision of micro steps as shown in US Pat. No. 6,355,501.

なお図1に関して、堆積される半導体基板203の装置は基板203上に配置される誘電層204の相互接続ラインにより通常接続される。同様に堆積基板203の下に配置される誘電層202の相互接続ラインはベース基板201の装置と接続するために使用される。堆積基板203の装置は下部電極を有せず、むしろ上部側からの接点を有する。   Still referring to FIG. 1, the devices of the semiconductor substrate 203 to be deposited are usually connected by interconnect lines of a dielectric layer 204 disposed on the substrate 203. Similarly, the interconnect lines of the dielectric layer 202 disposed below the deposition substrate 203 are used to connect to the base substrate 201 device. The apparatus of the deposition substrate 203 does not have a lower electrode, but rather has a contact from the upper side.

従来の実施で結合するためのウエハーはチップの位置決め印を必要とする。ウエハーの位置決め印は写真処理に使用される位置決め印とは異なる。従って三次元ICで使用される「ハイブリッドIC技術」は別型の多チップパッケージ(MCP)と考えられる。「ハイブリッドIC技術」の主目的は高速の装置作動を容易にするため、パッケージ相互接続で使用される相互接続を減少させることである。   Wafers for bonding in conventional practice require chip positioning marks. The wafer positioning marks are different from the positioning marks used in photographic processing. Therefore, the “hybrid IC technology” used in the three-dimensional IC is considered as another type of multi-chip package (MCP). The main purpose of "Hybrid IC technology" is to reduce the interconnects used in package interconnects to facilitate high speed device operation.

また図1に関して、従来技術の三次元ICの実施は一般に以下のようなことを特徴とする、即ち各IC層は分離処理により実施され、各ICは三次元ICになるため結合及び堆積される、各IC層は半導体基板(例えば201、203)を有し、それぞれ装置(例えば211、212)を保持している。また一般に装置は電気的共通基板241、242又はウエル243を共有する。SOIを使用する従来の実施は電気的共通基板を有していないが、このような実施は物理的に共通の半導体基板を有する。更に従来実施の堆積ICは各堆積ICにおいて装置上にだけ誘電層、相互接続ライン及びビアを有する。   Also with respect to FIG. 1, the implementation of the prior art 3D IC is generally characterized as follows: each IC layer is implemented by a separation process, and each IC becomes a 3D IC and is combined and deposited. Each IC layer has a semiconductor substrate (for example, 201 and 203), and holds devices (for example, 211 and 212), respectively. Also, in general, the device shares an electrical common substrate 241, 242 or well 243. Conventional implementations using SOI do not have an electrical common substrate, but such implementations have a physically common semiconductor substrate. Further, conventional deposition ICs have dielectric layers, interconnect lines and vias only on the device in each deposition IC.

別の従来の試みは、例えばレーザーを使用して誘電層上に配置される溶融多結晶又はアモルファス半導体層により形成される。装置は次に多結晶またはアモルファス層から形成された単結晶半導体層を使用して形成される。また別の従来の試みでは、単結晶エピタキシャル層は、誘電層が下にある単結晶層へそれを通して一部露出した孔を有する誘電層上に成長する。   Another conventional attempt is formed by a molten polycrystalline or amorphous semiconductor layer that is placed on the dielectric layer using, for example, a laser. The device is then formed using a single crystal semiconductor layer formed from a polycrystalline or amorphous layer. In another conventional attempt, a single crystal epitaxial layer is grown on a dielectric layer having holes partially exposed therethrough to the underlying single crystal layer.

しかし上に述べたレーザー再結晶およびエピタキシャル処理は共に多くの半導体装置に必要な低温処理と両立しない高温操作を必要とするような欠点を有し、そして更にこの方法で形成された単結晶半導体層は多くの欠点を有し、従ってこれらの方法は広くは使用されない。   However, both the laser recrystallization and epitaxial processes described above have the disadvantage of requiring high temperature operation that is incompatible with the low temperature processes required for many semiconductor devices, and further, single crystal semiconductor layers formed by this method Has many disadvantages and therefore these methods are not widely used.

簡単には、多くの垂直方向の半導体装置は電気装置そしてまたは相互接続を含む分離して作られた基板に付加される。多くの垂直方向の半導体装置は互いに物理的に分離し、従って同一半導体本体内又は半導体基板内には配置されない。   Briefly, many vertical semiconductor devices are added to a separately fabricated substrate that includes electrical devices and / or interconnects. Many vertical semiconductor devices are physically separated from each other and are therefore not located in the same semiconductor body or semiconductor substrate.

この発明の一つの側面において、多くの垂直方向の半導体装置は、基板への取り付けに続いて個別のドープされたスタック構造を生成するためにエッチングされるいくつかのドープされた半導体領域を含む薄い層として分離して作られた基板へ付加される。この発明の他の実施例では、多くの垂直方向の半導体装置が分離して作られた基板への取り付けに先立ち製作される。   In one aspect of the invention, many vertical semiconductor devices include thin doped semiconductor regions that are etched to produce a discrete doped stack structure following attachment to the substrate. It is added to the substrate made separately as a layer. In another embodiment of the present invention, many vertical semiconductor devices are fabricated prior to attachment to a separately fabricated substrate.

この発明の別の側面では、ドープされたスタック構造は、これに限定しないがダイオード、キャパシタ、n型MOSFET、p型MOSFET、バイポーラトランジスタ、及び浮遊ゲートトランジスタを含む広い範囲の半導体装置のベースを形成する。   In another aspect of the invention, the doped stack structure forms the base of a wide range of semiconductor devices including, but not limited to, diodes, capacitors, n-type MOSFETs, p-type MOSFETs, bipolar transistors, and floating gate transistors. To do.

この発明の別の側面では、強誘電体メモリー装置、強磁性体メモリー装置、カルコニゲド位相変更装置、及び同様の構造が分離して作られる基板と結合して使用されるため堆積できるアッド‐オン層に形成される。   In another aspect of the invention, ferroelectric memory devices, ferromagnetic memory devices, chalcogenide phase change devices, and add-on layers that can be deposited for use in conjunction with separately fabricated substrates Formed.

この発明のまだ更なる側面で、堆積できるアッド‐オン層は最低一層の電気的相互接続ラインを含む。   In yet a further aspect of the invention, the add-on layer that can be deposited includes a minimum of one electrical interconnect line.

従来技術による三次元集積回路と呼ばれる堆積集積回路の断面図である。It is sectional drawing of the deposition integrated circuit called the three-dimensional integrated circuit by a prior art. ベース半導体基板を含むこの発明の実施例の断面図である。It is sectional drawing of the Example of this invention containing a base semiconductor substrate. ベース半導体の無いこの発明の実施例の断面図である。It is sectional drawing of the Example of this invention without a base semiconductor. この発明によるSOI層を使用して3次元IC構造を形成する処理の流れを図解する。2 illustrates a process flow for forming a three-dimensional IC structure using an SOI layer according to the present invention. この発明によるSOI層を使用して3次元IC構造を形成する処理の流れを図解する。2 illustrates a process flow for forming a three-dimensional IC structure using an SOI layer according to the present invention. この発明によるSOI層を使用して3次元IC構造を形成する処理の流れを図解する。2 illustrates a process flow for forming a three-dimensional IC structure using an SOI layer according to the present invention. この発明によるSOI層を使用して3次元IC構造を形成する処理の流れを図解する。2 illustrates a process flow for forming a three-dimensional IC structure using an SOI layer according to the present invention. SOI層の下部は直接接続される電極を有しないこの発明の実施例の断面図である。The lower part of the SOI layer is a cross-sectional view of an embodiment of the present invention having no directly connected electrodes. 多堆積SOI層を含むこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the invention including a multi-deposited SOI layer. SOI層に組み込まれた垂直方向よりもむしろ水平方向の装置を有するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention having a horizontal rather than vertical device incorporated in an SOI layer. SOI層に組み込まれた垂直方向よりもむしろ水平方向の装置を有するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention having a horizontal rather than vertical device incorporated in an SOI layer. 直接接続された下部電極を有するそれらの装置とSOI層に組み込まれた垂直方向装置を生成するこの発明による処理の流れを図解する。FIG. 4 illustrates the process flow according to the present invention to produce those devices with directly connected bottom electrodes and a vertical device incorporated in the SOI layer. 直接接続された下部電極を有するそれらの装置とSOI層に組み込まれた垂直方向装置を生成するこの発明による処理の流れを図解する。FIG. 4 illustrates the process flow according to the present invention to produce those devices with directly connected bottom electrodes and a vertical device incorporated in the SOI layer. 直接接続された下部電極を有するそれらの装置とSOI層に組み込まれた垂直方向装置を生成するこの発明による処理の流れを図解する。FIG. 4 illustrates the process flow according to the present invention to produce those devices with directly connected bottom electrodes and a vertical device incorporated in the SOI layer. 平坦な中間電極を持った垂直装置を有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical device with a flat intermediate electrode. スペーサー中間電極を持った垂直装置を有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer intermediate electrode. 隣接するダミー垂直装置へ延びるスペーサー中間電極を持った垂直装置を有するこの発明の実施例の断面図である。FIG. 4 is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer intermediate electrode extending to an adjacent dummy vertical device. 垂直装置の上部へ延びる中間電極を持った垂直装置を有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical device with an intermediate electrode extending to the top of the vertical device. 18に示す構造の上面図である。Is a top view of the structure shown in FIG. 18. 上部接点電極のための平坦なエッチ停止層を持った垂直装置を有するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention having a vertical device with a flat etch stop layer for the top contact electrode. 上部接点電極のためのスペーサーエッチング停止層を持った垂直装置を有するこの発明の実施例の断面図である。FIG. 6 is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer etch stop layer for the top contact electrode. 垂直方向のp‐n接合ダイオードを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical pn junction diode. 垂直方向ショットキーダイオードを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical Schottky diode. 中間電極に配置されたショットキー接点を持った垂直方向ショットキーダイオードを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the invention having a vertical Schottky diode with a Schottky contact disposed on an intermediate electrode. FIG. 空乏層領域により形成された垂直方向キャパシタを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical capacitor formed by a depletion layer region. 電極間の誘電層により形成された垂直方向キャパシタを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical capacitor formed by a dielectric layer between electrodes. FIG. 垂直方向バイポーラトランジスタを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical bipolar transistor. 多ビット作動用の8個のゲート又は可変ゲート幅を持ったMOSFETを形成する垂直装置を有するこの発明の実施例の上面図である。FIG. 6 is a top view of an embodiment of the invention having a vertical device for forming a MOSFET with 8 gates or variable gate width for multi-bit operation. 多ビット作動用の4個の異なる寸法のゲート又は可変ゲート幅を持ったMOSFETを形成する垂直装置を有するこの発明の実施例の断面図である。FIG. 5 is a cross-sectional view of an embodiment of the present invention having a vertical device for forming MOSFETs with four different sized gates or variable gate widths for multi-bit operation. 垂直方向インバータを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical inverter. この発明によるSRAMセルの上部及び下部レイアウトを図解する。2 illustrates the top and bottom layout of an SRAM cell according to the present invention. この発明によるSRAMセルの上部及び下部レイアウトを図解する。2 illustrates the top and bottom layout of an SRAM cell according to the present invention. SRAMセルの一部として垂直方向サイリスタを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical thyristor as part of an SRAM cell. SOI層に垂直に配置されたそして直列接続されたサイリすタおよびMOSFETの両方を有するこの発明の実施例の断面図である。FIG. 2 is a cross-sectional view of an embodiment of the present invention having both a thyristor and a MOSFET arranged perpendicular to the SOI layer and connected in series. SOI層の空乏層キャパシタ及びMOSFETの垂直接続を持った垂直DRAMセルを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with SOI layer depletion capacitor and MOSFET vertical connection. FIG. SOI層の誘電体キャパシタ及びMOSFETの垂直接続を持った垂直DRAMセルを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with a vertical connection of SOI layer dielectric capacitors and MOSFETs. FIG. SOI層の浮遊ゲート及び制御ゲートを含む垂直不揮発性メモリー(NVM)セルを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical non-volatile memory (NVM) cell including a floating gate and a control gate of an SOI layer. SOI層のチャネル領域を一部カバーする浮遊ゲート、及びSOI層のチャネル領域の浮遊ゲート及び残りをカバーする制御ゲートを含む垂直NVMを有するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention having a vertical NVM including a floating gate partially covering the channel region of the SOI layer and a control gate covering the floating gate and the remainder of the channel region of the SOI layer. SOI層の浮遊ゲート、制御ゲート、及び消去ゲートを持った垂直NVMセルを有するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell with a floating gate, a control gate, and an erase gate in an SOI layer. SOI層の酸化物‐窒化物‐酸化物(ONO)ゲートを持った垂直NVMを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical NVM with an SOI-layer oxide-nitride-oxide (ONO) gate. FIG. SOI層に全て配置された浮遊ゲート、制御ゲート、及びバルク接点を持った垂直NVMを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical NVM with a floating gate, a control gate, and a bulk contact all disposed in an SOI layer. SOI層に8個のゲートをもった図37の構造の上面図である。FIG. 38 is a top view of the structure of FIG. 37 with eight gates in the SOI layer. 異なる型の装置を含む多くのブロックを有するSOI層レイアウトを図解する。3 illustrates an SOI layer layout with many blocks including different types of devices. 異なる型の装置を含む多くのブロックを有するSOI層レイアウトを図解する。3 illustrates an SOI layer layout with many blocks including different types of devices. SOI層に共に配置された強誘電材料を使用するキャパシタに直列接続されたMOSFETを含む垂直NVMセルを有するこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell including a MOSFET connected in series with a capacitor using a ferroelectric material disposed together in an SOI layer. FIG. 45に図解された装置で形成された標準的なメモリー回路を図解する。FIG. 46 illustrates a standard memory circuit formed with the device illustrated in FIG. 45に図解された装置で形成された別の標準的なメモリー回路を図解する。FIG. 46 illustrates another standard memory circuit formed with the device illustrated in FIG. 45に図解された構造を含む垂直NVMセルを有するこの発明の実施例の断面図である。FIG. 46 is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell including the structure illustrated in FIG. 48に示す構造から形成された標準的なメモリー回路を図解する。 48 illustrates a standard memory circuit formed from the structure shown in FIG. SOI層にMOSFETを持った垂直NVMを含み、そしてゲート及びゲート誘電層の間に強誘電材料を使用するこの発明の実施例の断面図である。FIG. 3 is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM with a MOSFET in the SOI layer and uses a ferroelectric material between the gate and the gate dielectric layer. SOI層にMOSFETを持った垂直NVMを含み、そして浮遊ゲート及び制御ゲートの間に強誘電材料を使用するこの発明の実施例の断面図である。FIG. 4 is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM with a MOSFET in the SOI layer and uses a ferroelectric material between the floating gate and the control gate. MOSFETの下部で強誘電材料へ直列接続されたSOI層にMOSFETを有する垂直方向NVMを含むこの発明の実施例の断面図である。FIG. 4 is a cross-sectional view of an embodiment of the present invention including a vertical NVM having a MOSFET in an SOI layer connected in series to a ferroelectric material below the MOSFET. MOSFET上部の強磁性材料へ直列接続されたSOI層のMOSFETを有する垂直方向NVMを含むこの発明の実施例の断面図である。FIG. 4 is a cross-sectional view of an embodiment of the present invention including a vertical NVM having a SOI layer MOSFET connected in series to a ferromagnetic material on top of the MOSFET. カルコゲニ材料から形成された抵抗に直列接続されたSOI層に配置されたMOSFETを有する垂直方向NVMセルを含むこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention including a vertical NVM cell having a MOSFET disposed in an SOI layer connected in series with a resistor formed of a chalcogenide material. FIG. 使用される材料により融合又は反融合のいずれかとして機能する構造に直列接続されたSOI層に配置されたMOSFETを有する垂直方向NVMを含むこの発明の実施例の断面図である。FIG. 6 is a cross-sectional view of an embodiment of the present invention including a vertical NVM having MOSFETs arranged in an SOI layer connected in series in a structure that functions as either fusion or anti-fusion depending on the materials used. 本体接点なしにSOI層にMOSFETを有する垂直揮発性メモリーセルを含むこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention including a vertical volatile memory cell having a MOSFET in an SOI layer without a body contact. 37に示すそれのような浮遊ゲートトランジスタと直列接続されたMOSFETを有する垂直方向NVMセルを含むこの発明の実施例の断面図である。FIG. 38 is a cross-sectional view of an embodiment of the present invention including a vertical NVM cell having a MOSFET connected in series with a floating gate transistor such as that shown in FIG. 57に示す構造のための等価回路の概略図である。FIG. 58 is a schematic diagram of an equivalent circuit for the structure shown in FIG. 57 . SOI層に配置された高電圧MOSFETを含むこの発明の実施例の断面図である。1 is a cross-sectional view of an embodiment of the present invention including a high voltage MOSFET disposed in an SOI layer. 低ドーピングチャネル領域を有するSOI層に配置された高電圧MOSFETを含むこの発明の実施例の断面図である。FIG. 2 is a cross-sectional view of an embodiment of the present invention including a high voltage MOSFET disposed in an SOI layer having a low doping channel region.

この発明による三次元ICを図2に示す。この発明の実施例は装置集積技術を提供する。   A three-dimensional IC according to the present invention is shown in FIG. Embodiments of the present invention provide device integration technology.

ここで「一つの実施例」、「実施例」又は同様の語句への言及は実施例に関連して述べられる特別な特徴、構造、動作、又は特徴がこの発明の最低一つの実施例に含まれることを意味する。こうしてここでこのような慣用句又は語句の出現は全てが必ずしも同じ実施例に言及している訳ではない。さらに色々な特別の特徴、構造、動作、又は特徴は一つ以上の実施例で適切な方法で結合される。   References herein to “one embodiment”, “an embodiment” or similar phrases include at least one specific feature, structure, operation or feature described in connection with the embodiment. Means that Thus, the appearances of such idioms or phrases herein are not necessarily all referring to the same embodiment. In addition, various special features, structures, acts, or characteristics may be combined in any suitable manner in one or more embodiments.

(専門用語)
「ASIC」は「特殊な集積回路の応用」を意味する。「SoC」は「チップ上のシステム」を意味し、「SoCs」はSoCの複数形を意味する。SoCはASICであってもよいが、必ずしもそうである必要はない。ASICはSoCであってもよいが、必ずしもそうである必要はない。
(Terminology)
“ASIC” means “application of a special integrated circuit”. “SoC” means “system on chip”, and “SoCs” means plural forms of SoC. The SoC may be an ASIC, but this is not necessarily so. The ASIC may be a SoC, but this is not necessarily so.

ここで使用される「バックバイアス」という表現は、電界効果トランジスタ(FET)の基板、又は本体へ加えられる電圧を意味する。バックバイアスは代わって基板バイアス又は逆バイアスを意味する。   As used herein, the expression “back bias” refers to a voltage applied to the substrate or body of a field effect transistor (FET). Back bias instead refers to substrate bias or reverse bias.

「電導型」という表現は半導体製造業界ではよく知られている。電導型は一般にn型及びp型を意味する。ドナー型不純物をドープされる半導体領域はn型領域を形成する。アクセプタ型不純物をドープされる半導体領域はp型領域を形成する。   The expression “conductive type” is well known in the semiconductor manufacturing industry. The conductivity type generally means n-type and p-type. The semiconductor region doped with donor-type impurities forms an n-type region. The semiconductor region doped with acceptor-type impurities forms a p-type region.

チップ、半導体装置、集積回路、LSI装置、モノリシック集積回路、ASIC、SoC、マイクロエレクトロニック装置と云う言葉、及び同様の表現はこの業界では時々同じ意味で使用される。マイクロエレクトロニック装置はその他を包含し、最も広い言葉と考えられる。これらのマイクロエレクトロニック装置に関し、信号は一般に物理的な電導接続を経由してこれらと他の回路素子の間で結合される。接続点は時には入力、出力、端子、ライン、ピン、パッド、ポート、インターフェース、又は同様の変形体又は結合体と呼ぶ。   The terms chip, semiconductor device, integrated circuit, LSI device, monolithic integrated circuit, ASIC, SoC, microelectronic device, and similar expressions are sometimes used interchangeably in this industry. Microelectronic devices are considered the broadest term, including others. For these microelectronic devices, signals are typically coupled between these and other circuit elements via physical conductive connections. A connection point is sometimes referred to as an input, output, terminal, line, pin, pad, port, interface, or similar variant or combination.

ここで使用される「装置」と言う言葉は、電圧が異なる特徴を有する一つ以上の回路素子を云う。「装置」はこれに限定されないが、FET(n型及びp型)ダイオード及びバラクターを含む。   As used herein, the term “device” refers to one or more circuit elements having different voltage characteristics. “Devices” include, but are not limited to, FET (n-type and p-type) diodes and varactors.

「垂直方向装置」という表現は、それらの装置を通って流れる電流がベース基板へほぼ垂直であるようなベース基板に対しての方向を有する装置を意味する。   The expression “vertical device” means a device having a direction relative to the base substrate such that the current flowing through the devices is substantially perpendicular to the base substrate.

ここで使用されるFETは金属酸化膜半導体電界効果トランジスタ(MOSFET)を意味する。これらのトランジスタは絶縁ゲート電界効果トランジスタ (IGFET)としても知られる。FETは一般にゲート、ソース、ドレーンを有する3端子装置として記述される。FETは更に、FET本体を考慮する場合、4端子装置として記述される。   The FET used here means a metal oxide semiconductor field effect transistor (MOSFET). These transistors are also known as insulated gate field effect transistors (IGFETs). An FET is generally described as a three terminal device having a gate, source, and drain. The FET is further described as a four terminal device when considering the FET body.

ソース及びドレーン端子はFETの端子を意味し、その間に導通がゲート端子へ加えられる電圧から発生する電界の影響下での半導体表面の反転に続き、電界の影響下で起こる。   The source and drain terminals refer to the terminals of the FET, during which conduction occurs under the influence of the electric field following the reversal of the semiconductor surface under the influence of the electric field generated from the voltage applied to the gate terminal.

頭文字「SOI」は一般に「絶縁体上珪素」を意味する。この分野の専門家が認識するように、SOI層は色々な方法で形成することができる。他の記述がなければ、「SOI層」はここでは三次元スタックがSOI層および先に作られたウエハー又は同様の型の基板から形成されるように、別の先に作られたウエハー又は同様の型の基板へ壁開し、そして結合することができる半導体ウエハーの比較的薄い単結晶部分を意味する。この文脈でSOI層はそれ自身が最低装置そして/または相互接続を含み、そして既に装置そして/又は相互接続を含む半導体基板への接合に適する、取り付け層又は堆積可能なアッド‐オン構造として考えられる。堆積可能なアッド‐オン層として、単結晶層は互いに垂直に隣り合った一つ以上のドープ領域を有するようにドープされる。この開示目的のため、ドープされた領域は、p型およびn型領域は勿論のこと固有領域を含む。個別の半導体構造はそれらの構造を電気的に絶縁するためドープされたスタックの一部を通してエッチングすることにより形成される。このような個別構造の間のスペースは、そこにギャップまたは間隔を持たずに層を再形成するように誘電材料にて充填し、これにより機械的安定性を提供し、そして付加的な堆積層を支持する。   The acronym “SOI” generally means “silicon on insulator”. As those skilled in the art recognize, the SOI layer can be formed in a variety of ways. Unless otherwise stated, “SOI layer” is used herein to refer to another prefabricated wafer or similar, such that a three-dimensional stack is formed from the SOI layer and a prefabricated wafer or similar type of substrate. Means a relatively thin single crystal portion of a semiconductor wafer that can be walled and bonded to a substrate of this type. In this context, an SOI layer can be considered as an attachment layer or a depositable add-on structure that itself contains minimum devices and / or interconnects and is suitable for bonding to a semiconductor substrate that already contains the devices and / or interconnects. . As a depositable add-on layer, the single crystal layer is doped to have one or more doped regions that are vertically adjacent to each other. For the purposes of this disclosure, doped regions include intrinsic regions as well as p-type and n-type regions. Individual semiconductor structures are formed by etching through a portion of the doped stack to electrically isolate the structures. The space between such individual structures is filled with a dielectric material so as to reform the layer without gaps or spaces therein, thereby providing mechanical stability, and an additional deposited layer Support.

ここで使用される三次元ICという表現は、装置そして/またはその上に作られる相互接続構造を有する半導体基板、及び又装置そして/又は相互接続を有する最低一つの
SOI層を含み、ここで半導体基板及びSOI層は堆積され、そして互いに接合されるところの三次元集積回路を意味する。
As used herein, the expression three-dimensional IC includes a semiconductor substrate having a device and / or an interconnect structure made thereon, and also at least one SOI layer having the device and / or interconnect, wherein the semiconductor Substrate and SOI layer refer to a three-dimensional integrated circuit that is deposited and bonded together.

米国特許6、600、173、米国特許5、563、084、及び米国特許6、355、501の開示は、堆積する個別に作動するICを含む圧縮技術としての三次元ICの形成を示す。しかしこの発明の実施例は個別に作動するICを使用せず、むしろ図2に示すように層転移の前の装置形成なしに、接合SOI技術及び薄い単結晶半導体層124を使用して、装置組み立て技術を提供する。単結晶半導体層124はSOI技術により形成されるため、それはここでは単にSOIを意味する。   The disclosures of US Pat. No. 6,600,173, US Pat. No. 5,563,084, and US Pat. No. 6,355,501 show the formation of a three-dimensional IC as a compression technique involving individually operating ICs to be deposited. However, embodiments of the present invention do not use individually operating ICs, rather, using junction SOI technology and a thin single crystal semiconductor layer 124 without device formation prior to layer transition as shown in FIG. Provide assembly technology. Since the single crystal semiconductor layer 124 is formed by SOI technology, it simply means SOI here.

図3の半導体層104を含む薄いフィルムの意味はp型、n型又はi(固有)型のような拡散層、及び誘電層又は金属層のような物理的に区分できる層を含む薄膜単結晶半導体層である。図の「非多装置形成」半導体層124の意味も、SOIの薄い層124は、絶縁構造、金属パターン、多装置用相互接続を有しないし、個別装置用分離不純物領域も有しないことである。 The meaning of the thin film including the semiconductor layer 104 of FIG. 3 is a thin film single crystal including a diffusion layer such as p-type, n-type or i (intrinsic) type, and a physically distinguishable layer such as a dielectric layer or a metal layer. It is a semiconductor layer. The meaning of the “non-multi-device formation” semiconductor layer 124 in FIG. 5 is that the thin SOI layer 124 does not have an insulating structure, a metal pattern, a multi-device interconnection, or an isolation impurity region for individual devices. is there.

図2に示すように、この発明による装置111、112、113は隔離135により分離され、そして充填された誘電材料133に浮遊構造を有する。ここで使用されるように、装置111、112、113は浮遊装置(FLD)を意味する。このような浮遊装置は代わってドープされたスタック構造又は垂直方向の半導体装置を意味する。   As shown in FIG. 2, devices 111, 112, 113 according to the present invention are separated by isolation 135 and have a floating structure in filled dielectric material 133. As used herein, devices 111, 112, 113 refer to floating devices (FLD). Such a floating device instead refers to a doped stack structure or a vertical semiconductor device.

この発明の実施例は、電気的共通領域が設置される共有ウエル142又は基板143を有する従来の接合ICと異なる。更にこの発明の実施例は一つのIC層の全ての装置が下部酸化物の下の基板により支持される従来のSOIIC基板に見出される物理的支持層を有していない。この発明の図解実施例において、FLD112,113を含む第二IC層はFLDIC層102と呼ばれ、そしてFLD113を含む第一IC層はFLDIC層101と呼ばれる。FLDIC層101の上下に配置される中間層の誘電(ILD)層は相互接続ライン132及びビア又は接点131を有する。相互接続ライン132及びビア131は、FLDを直接又は間接的にFLDIC層内で接続させ、又は装置をFLDIC層から別のFLDIC層へ又はベース基板103へ接続される。   The embodiment of the present invention is different from the conventional junction IC having the common well 142 or the substrate 143 in which the electrical common region is disposed. Furthermore, embodiments of the present invention do not have the physical support layer found in conventional SOIIC substrates where all devices of one IC layer are supported by the substrate below the bottom oxide. In the illustrated embodiment of the invention, the second IC layer including FLDs 112 and 113 is referred to as FLDIC layer 102 and the first IC layer including FLD 113 is referred to as FLDIC layer 101. An intermediate dielectric (ILD) layer disposed above and below the FLDIC layer 101 has interconnect lines 132 and vias or contacts 131. Interconnect lines 132 and vias 131 connect the FLD directly or indirectly within the FLDIC layer, or connect the device from one FLDIC layer to another FLDIC layer or to the base substrate 103.

図2に示すように、下部誘電層151へ接合される基板はベース基板103と呼ばれ、ベース基板103上の第一FLDIC層は第一FLD層101と呼ばれ、そして次のFLDIC層は第二FLDIC層102と呼ばれる。   As shown in FIG. 2, the substrate bonded to the lower dielectric layer 151 is called the base substrate 103, the first FLDIC layer on the base substrate 103 is called the first FLD layer 101, and the next FLDIC layer is the first FLDIC layer. Called the two FLDIC layers 102.

図2は多FLDIC層101、102及び一つのベース半導体基板103を示す。破線134は二つのILD層の境界又はインターフェースを示す。第一ILD層151は相互接続ライン及びビアを有し、そしてベース半導体基板103は第一FLDIC層101とのこれらの相互接続ライン及びビアを共有する。ビアのいくつかは第一ILD層151から第二FLDIC層102へ直接接続される。第二ILD層152の相互接続ライン及びバイアスも第一及び第二FLDIC層101、102により共有される。相互接続ライン及びビアのこの共有の仕組みはこの発明の実施例の利点である。   FIG. 2 shows multiple FLDIC layers 101 and 102 and one base semiconductor substrate 103. Dashed line 134 shows the boundary or interface between the two ILD layers. The first ILD layer 151 has interconnect lines and vias, and the base semiconductor substrate 103 shares these interconnect lines and vias with the first FLDIC layer 101. Some of the vias are connected directly from the first ILD layer 151 to the second FLDIC layer 102. The interconnect lines and bias of the second ILD layer 152 are also shared by the first and second FLDIC layers 101, 102. This sharing of interconnect lines and vias is an advantage of embodiments of the present invention.

また図2に関して浮遊装置111、112、113に対する電極形成は各浮遊装置111、112、113の上部及び下部への直接接続による。又この発明の色々な実施例において、垂直分離型の単一又は複数の中間電極123を有する浮遊装置が構築される。これらの電極はFLD層の上部そして/または下部上に配置されるILD層内の相互接続ラインへ接続することができる。   Also, with respect to FIG. 2, the electrode formation for the floating devices 111, 112, 113 is by direct connection to the upper and lower portions of each floating device 111, 112, 113. Also, in various embodiments of the present invention, a floating device having a vertically separated single or multiple intermediate electrodes 123 is constructed. These electrodes can be connected to interconnect lines in the ILD layer that are located above and / or below the FLD layer.

図2において、もし論理ICがベース半導体基板103で実施され、メモリー装置が第一FLDIC層101で実施され、そして画像検出器が第二FLDIC層102で実施されるならば、一つの半導体基板は、難しくそして高価なSoC構造又は半導体処理を使用せずに、異なる型の個別に最適化された装置を集積化できる。   In FIG. 2, if a logic IC is implemented on the base semiconductor substrate 103, a memory device is implemented on the first FLDIC layer 101, and an image detector is implemented on the second FLDIC layer 102, one semiconductor substrate is Different types of individually optimized devices can be integrated without using difficult and expensive SoC structures or semiconductor processing.

図3は取り付けベース基板のないFLDIC層を有する三次元IC構造を示す。図3の構造を得る一つの方法において、第一にILD層153はベース基板の上部上に配置され、次にSOI層124はILD層153上に形成され、次に装置はSOI層124を使用して実施され、次に相互接続ライン132及びビア131を含む別のILD層154が単結晶半導体装置104の上部上に配置され、次にベース基板がILD層153から取り外される。ベース基板(表示なし)は、プラスチック、セラミック、ガラス、金属、又は半導体材料のような平坦な表面の平坦な基板である。ベース基板は250〜650℃の範囲の処理温度に耐えられるべきであり、この範囲は「非高温半導体処理温度」と考えられる。   FIG. 3 shows a three-dimensional IC structure having an FLDIC layer without a mounting base substrate. In one way to obtain the structure of FIG. 3, first the ILD layer 153 is placed on top of the base substrate, then the SOI layer 124 is formed on the ILD layer 153, and then the device uses the SOI layer 124. Then, another ILD layer 154 including interconnect lines 132 and vias 131 is placed on top of the single crystal semiconductor device 104, and then the base substrate is removed from the ILD layer 153. A base substrate (not shown) is a flat substrate with a flat surface, such as plastic, ceramic, glass, metal, or semiconductor material. The base substrate should be able to withstand processing temperatures in the range of 250-650 ° C., which is considered a “non-high temperature semiconductor processing temperature”.

また図3に関して、本発明の実施例は第一IDL層153の下部そして/または第二ILD層154の上部に配置されたパッケージ(表示なし)に接続されるパッドを有する。下部パッド146は例えばはんだを利用してパッケージへ接続できる。上部パッド145は例えばワイヤーを使用してパッケージへ接続できる。この発明によるこのようなパッド構造はパッケージの金型領域及び集積度を下げる。   Also with reference to FIG. 3, an embodiment of the present invention has a pad connected to a package (not shown) disposed below the first IDL layer 153 and / or above the second ILD layer 154. The lower pad 146 can be connected to the package using, for example, solder. The upper pad 145 can be connected to the package using, for example, a wire. Such a pad structure according to the invention reduces the mold area and integration of the package.

この発明の色々な実施例は浮遊装置のための物理的支持基板を必要としない。又ベース基板なしに色々な実施例が相互接続ライン、ビア及びFLDと共に存在する。   Various embodiments of the present invention do not require a physical support substrate for the floating device. Various embodiments exist with interconnect lines, vias and FLDs without a base substrate.

この発明の色々な実施例は誘電体隔離領域により分離される浮遊装置を提供する。これらの電気的に分離された構造は従来技術の試みに一般的に見出される寄生装置を有していない。   Various embodiments of the present invention provide a floating device separated by a dielectric isolation region. These electrically isolated structures do not have parasitic devices commonly found in prior art attempts.

この発明の色々な実施例は直接又は間接的に接続される浮遊装置を提供する。   Various embodiments of the present invention provide floating devices that are directly or indirectly connected.

この発明の色々な実施例において、SOI層を半導体基板と組み合わせることには、フォトリソグラフィ処理で使用されるような同型のウエハー位置決め構造を必要とせず、むしろウエハー位置決め構造はウエハー位置決め印又は段差型位置決め構造として実施される。代わってウエハー位置決め構造なしに、SOI層は転移SOI層が水平分割される隔離構造又は相互接続ラインのような多装置用構造を有していないので、簡単なノッチ位置決めで転移できる。転移SOI層は垂直に分割される数個の層を有するだけである。   In various embodiments of the present invention, combining an SOI layer with a semiconductor substrate does not require the same type of wafer positioning structure as used in photolithography processes; rather, the wafer positioning structure is a wafer positioning mark or step type. Implemented as a positioning structure. Alternatively, without a wafer positioning structure, the SOI layer can be transferred with a simple notch positioning because it does not have a multi-device structure such as an isolation structure or interconnect line in which the transfer SOI layer is horizontally divided. The transition SOI layer has only a few layers divided vertically.

この発明の色々な実施例はFLDの上下両方の浮遊装置の相互接続を提供する。   Various embodiments of the present invention provide interconnection of floating devices both above and below the FLD.

従来技術は一般に水平方向のMOSFETを使用する。従来の垂直MOSFETの場合に、接点及び相互接続の実施は困難で、そして処理は垂直及び水平MOSFETの間で互換性がない。しかしこの発明の実施例はMOSFETを含む垂直装置を容易に実施することができ、そして従来の試みに比べ相互接続及び接点を低接触抵抗で実施することは容易である。   The prior art generally uses a horizontal MOSFET. In the case of conventional vertical MOSFETs, the implementation of contacts and interconnections is difficult and the process is not compatible between vertical and horizontal MOSFETs. However, embodiments of the present invention can easily implement vertical devices including MOSFETs, and it is easier to implement interconnects and contacts with lower contact resistance than previous attempts.

従来方法で論理装置を実施するために、個別装置は接続の必要がある。しかしこの発明のいくつかの実施例においてFLD論理装置は、この発明の実施例がSOI装置の形を含み、そしてウエルは必要でないので、相互接続ラインなしで垂直接続された個別装置を使用して形成できる。   In order to implement the logic device in a conventional manner, the individual devices need to be connected. However, in some embodiments of the present invention, the FLD logic device uses discrete devices that are vertically connected without interconnect lines, as embodiments of the present invention include the form of SOI devices and no wells are required. Can be formed.

この発明の色々な実施例においてFLDは上部、下部、及び中間部領域で直接接触の金属電極を有することができる。金属電極領域は隔離エッチングにより形成されるFLDの単結晶半導体の上部及び下部寸法と同一である。従って装置の電圧降下は少なくすることができる。   In various embodiments of the invention, the FLD can have metal electrodes in direct contact at the top, bottom, and middle regions. The metal electrode region is the same as the upper and lower dimensions of the FLD single crystal semiconductor formed by isolation etching. Therefore, the voltage drop of the device can be reduced.

4〜7は図3で示すそれのような三次元IC製作の処理流れを説明する。基板180上のマスク位置決め印(表示なし)の形成の後、単又は多ILD層133が誘電層153、及び電導材料が形成される相互接続ライン132及びビア131に形成される。ここで誘電層153からなる各ILD層133の境界線を破線134として示す。ベース基板180は250℃〜650℃の範囲で半導体処理温度に耐えるべきである。電圧/電流を伝え、そしてアルミ及び銅、耐熱金属、珪素、又は高ドーピングした低抵抗多結晶/アモルファス半導体材料のような金属である低電気抵抗材料の伝導体が形成される。一旦直接又は間接でFLDへ接続されたビア131が誘電層153に形成されると、FLDの下部電極121として使用される金属層が配置され、そして必要ならば、中間接合層120である別の金属層を実施することができる。中間接合層120用に使用される金属は、一般に誘電層153上の金属層より低い融点を有する。金属120はSOI基板190接合処理における表面の微細粗度による間隔を防ぐため表面平坦化のための低温における望ましいリフロー特性を有することが要求される。もし誘電層153の相互接続ライン132がアルミならば、中間接合層120の金属は、アルミの融点660℃より下の250℃〜650℃の範囲の融点を有する必要がある。ここに中間接合層となれる金属の表及び融点があり、アルミ合金204℃〜674℃、亜鉛420℃、亜鉛合金377℃〜484℃、鉛328℃、タリウム304℃、テルリウム445℃、はんだ268℃〜579℃、及びスズ合金223℃〜422℃である。 4-7 describe the process flow for producing a three-dimensional IC like that shown in FIG. After formation of mask positioning marks (not shown) on the substrate 180, a single or multiple ILD layer 133 is formed in the dielectric layer 153 and the interconnect lines 132 and vias 131 on which the conductive material is formed. Here, the boundary line of each ILD layer 133 made of the dielectric layer 153 is shown as a broken line 134. Base substrate 180 should withstand semiconductor processing temperatures in the range of 250 ° C to 650 ° C. Conductors of low electrical resistance materials are formed that carry voltage / current and are metals such as aluminum and copper, refractory metals, silicon, or highly doped low resistance polycrystalline / amorphous semiconductor materials. Once the via 131 connected directly or indirectly to the FLD is formed in the dielectric layer 153, a metal layer used as the bottom electrode 121 of the FLD is placed and, if necessary, another intermediate junction layer 120. A metal layer can be implemented. The metal used for the intermediate bonding layer 120 generally has a lower melting point than the metal layer on the dielectric layer 153. The metal 120 is required to have desirable reflow characteristics at a low temperature for surface flattening in order to prevent a gap due to surface fine roughness in the SOI substrate 190 bonding process. If interconnect line 132 of dielectric layer 153 is aluminum, the metal of intermediate bonding layer 120 should have a melting point in the range of 250 ° C. to 650 ° C. below the melting point of aluminum, 660 ° C. Here are the table and melting point of the metal that can be an intermediate bonding layer, aluminum alloy 204 ° C to 674 ° C, zinc 420 ° C, zinc alloy 377 ° C to 484 ° C, lead 328 ° C, thallium 304 ° C, tellurium 445 ° C, solder 268 ° C. ˜579 ° C. and tin alloy 223 ° C. to 422 ° C.

はSOI基板190を示す。FLDを実施するため、ドーピング層が単結晶半導体層124に形成され、ここでドーピング層が、限定されないが、イオン注入又は単結晶半導体層124形成のためのエピタキシャル層成長の間の不純物混合を含む適当な方法により形成される。金属層121は単結晶半導体層124上に形成され、そして中間接合層120が金属層121上に形成される。この発明の標準的な実施例において、金属層121及び接合層120は全表面上に形成されるブランケット層として形成される。SOI基板190は単結晶半導体基板であり、そしてFLD単結晶半導体層124のための材料である。SOI基板190は、珪素及びゲルマニウムのような単ソース半導体か又はSiGe、GaAs、GaP、及びInPのような複合半導体である。又SOI基板190は単ソース半導体及び化合物半導体の組み合わせである。接合前に、SOI基板が、表面粗度を除去するため低温融点で高リフロー率を有する中間接合層を有することがよりよい。 FIG. 5 shows the SOI substrate 190. In order to perform FLD, a doping layer is formed in the single crystal semiconductor layer 124, where the doping layer includes, but is not limited to, impurity implantation during ion implantation or epitaxial layer growth to form the single crystal semiconductor layer 124. It is formed by an appropriate method. The metal layer 121 is formed on the single crystal semiconductor layer 124, and the intermediate bonding layer 120 is formed on the metal layer 121. In the standard embodiment of the present invention, the metal layer 121 and the bonding layer 120 are formed as a blanket layer formed on the entire surface. The SOI substrate 190 is a single crystal semiconductor substrate and is a material for the FLD single crystal semiconductor layer 124. The SOI substrate 190 is a single source semiconductor such as silicon and germanium or a composite semiconductor such as SiGe, GaAs, GaP, and InP. The SOI substrate 190 is a combination of a single source semiconductor and a compound semiconductor. Before bonding, it is better that the SOI substrate has an intermediate bonding layer having a high reflow rate at a low temperature melting point in order to remove surface roughness.

SOI基板190は、例えばスマートカット(Smart Cut)(米国特許5、882、987)、エルトラン(ELTRAN)(米国特許5、371、037)又はSiGen技術を使用したある所望深さに多孔性の又は変形層である取り外し層191を有する。取り外し層191は半導体格子における欠陥領域で、そして誘電層153と接合の後、SOI基板190はFLDを形成する単結晶層124を除いて除去される。   The SOI substrate 190 is porous to a desired depth using, for example, Smart Cut (US Pat. No. 5,882,987), ELTRAN (US Pat. No. 5,371,037) or SiGen technology, or It has a removal layer 191 which is a deformation layer. The removal layer 191 is a defect region in the semiconductor lattice, and after bonding with the dielectric layer 153, the SOI substrate 190 is removed except for the single crystal layer 124 that forms the FLD.

は図の誘電層153及び図のSOI基板の接合の断面図である。図に示すSOI基板190は上下が逆で、そして図の誘電層153上に接合される。接合処理の間に、接合強度を増加させそして接合接触面の間の間隙を除去するため熱処理と共に圧力が加えられる。代わって、金による共晶接合又は軟質金属薄膜による熱圧着接合は中間層接合処理として使用できる。接合処理で使用される中間接合層120を含む金属層121はFLDの下部電極として使用される。 6 is a cross-sectional view of the junction of the SOI substrate of the dielectric layer 153 and 5 of FIG. SOI substrate 190 shown in FIG. 5 is vertically reversed, and is bonded onto the dielectric layer 153 of FIG. During the bonding process, pressure is applied with the heat treatment to increase the bonding strength and to remove the gaps between the bonding contact surfaces. Alternatively, eutectic bonding with gold or thermocompression bonding with a soft metal thin film can be used as the intermediate layer bonding process. The metal layer 121 including the intermediate bonding layer 120 used in the bonding process is used as a lower electrode of the FLD.

に関して、SOI基板190は、FLDが実装される場所で誘電層153上にSOI層124を除去した後に取り外され、次に隔離構造135がFLD層の全面又は一部で実施される。SOI基板190は取り外し層191を使用して取り外され、そしてウエハージェットがSOI基板取り外しのために使用される。取り外し層191なしに、ボンド・エッチバック法(米国特許5、013、681)を使用して、浮遊装置が実施される場所でSOI層124が取り外される。このSOI層も堆積可能なアッド‐オン層と称する。SOI基板190はエッチング又は研磨にて除去できる。又取り扱い基板を使用してSOI基板190を取り扱い基板と接合し、SOI基板190は取り扱い基板から取り外され、そしてSOI層124を除去し、次にSOI層は取り扱い基板から誘電層へ転移される。取り扱い基板はベース基板に使用されるものと同種の基板である。又取り扱い基板はSOI基板からの単結晶半導体層を一時的に保持するため真空を使用し、次にSOI層の誘電層への転移が真空を開放することにより容易に行える。真空表面はSOI層を保護する厚い誘電層を有するのがよりよい。取り扱い基板の役割は損傷なくSOI層をSOI基板から誘電層へ転移することである。又米国特許6、355、501で説明するようにSOI基板及び取り扱い基板はポリアミドを使用して接合できる。一旦SOI基板が分離されると、化学機械研磨(CMP)が転移されたSOI層の表面粗度を下げるために使用される。 With reference to FIG. 7 , the SOI substrate 190 is removed after removing the SOI layer 124 on the dielectric layer 153 where the FLD is mounted, and then the isolation structure 135 is implemented on the entire surface or part of the FLD layer. The SOI substrate 190 is removed using the removal layer 191 and a wafer jet is used for SOI substrate removal. Without the removal layer 191, the SOI layer 124 is removed where the floating device is implemented using a bond etchback method (US Pat. No. 5,013,681). This SOI layer is also referred to as an add-on layer that can be deposited. The SOI substrate 190 can be removed by etching or polishing. The handling substrate is also used to bond the SOI substrate 190 to the handling substrate, the SOI substrate 190 is removed from the handling substrate, and the SOI layer 124 is removed, and then the SOI layer is transferred from the handling substrate to the dielectric layer. The handling substrate is the same type of substrate used for the base substrate. The handling substrate uses a vacuum to temporarily hold the single crystal semiconductor layer from the SOI substrate, and then the transfer of the SOI layer to the dielectric layer can be easily performed by releasing the vacuum. It is better that the vacuum surface has a thick dielectric layer that protects the SOI layer. The role of the handling substrate is to transfer the SOI layer from the SOI substrate to the dielectric layer without damage. Also, as described in US Pat. No. 6,355,501, the SOI substrate and the handling substrate can be bonded using polyamide. Once the SOI substrate is separated, chemical mechanical polishing (CMP) is used to reduce the surface roughness of the transferred SOI layer.

一旦単結晶半導体層(即ちSOI層)が転移されると、個別浮遊装置を作るための隔離が実施される。隔離形成のためトレンチ技術が使用される。又同時にケガキ線上部の上のSOI層は、これが続く金型切断操作を容易にするため除去されることになる。FLDの下部電極121はトレンチ隔離処理の間に自動的に実施される。下部電極121の形成方法は図12〜14に関連して下に説明する。一旦SOI層が転送されると、マスク位置決め印がマスク位置決め印上のSOI層を除去することによりベース基板180上に露出し、次に露出したマスク位置決め印を使用して、マスク上のFLDパターン及び131により誘電層上のパターンは位置決めすることができる。電流が垂直方向に流れる垂直FLDは中間電極を有する。上部電極及び相互接続ラインと接続する相互接続ライン及び接点は従来の半導体処理方法により形成される。 Once the single crystal semiconductor layer (i.e., SOI layer) is transferred, isolation is performed to create an individual floating device. Trench technology is used for isolation formation. At the same time, the SOI layer above the top of the marking line will be removed to facilitate subsequent die cutting operations. The lower electrode 121 of the FLD is automatically implemented during the trench isolation process. The method of forming the lower electrode 121 is discussed below in connection with FIG. 12-14. Once the SOI layer has been transferred, the mask positioning marks are exposed on the base substrate 180 by removing the SOI layer on the mask positioning marks, and then using the exposed mask positioning marks, the FLD pattern on the mask. And 131 allow the pattern on the dielectric layer to be positioned. A vertical FLD in which current flows in a vertical direction has an intermediate electrode. Interconnect lines and contacts that connect to the upper electrodes and interconnect lines are formed by conventional semiconductor processing methods.

上で説明した方法を使用して、多FLDは堆積でき、従ってIC集積度を増加することができる。本発明の色々な実施例は、従って単結晶半導体層を有するSOI基板及び相互接続ライン及びビアを有する誘電層の接合時にはウエハー又はチップ位置決め印又はウエハー位置決めのための微細段差を必要としない。本発明の色々な実施例は従来の写真処理で使用されるマスク位置決め印により実施することができる。隔離構造は誘電材料及び中間電極材料により充填される。隔離構造における誘電及び中間電極の形成方法は図15〜18で説明される。図の処理の後、従来の半導体処理に従い、ILD、相互接続ライン及びビアが実施され、そしてベース基板は取り外され、次にそれは図3に示す構造になる。 Using the method described above, multiple FLDs can be deposited, thus increasing IC integration. Various embodiments of the present invention therefore do not require wafer or chip positioning marks or fine steps for wafer positioning when bonding SOI substrates with single crystal semiconductor layers and dielectric layers with interconnect lines and vias. Various embodiments of the present invention can be implemented with mask positioning marks used in conventional photographic processing. The isolation structure is filled with a dielectric material and an intermediate electrode material. The method of forming the dielectric and the intermediate electrode in the isolation structure is illustrated in Figure 15-18. After the process of FIGS. 4-7, in accordance with conventional semiconductor processing, ILD, interconnect lines and vias is performed, and the base substrate is removed, then it becomes a structure shown in FIG.

4〜7で、SOI基板190の上部にあるn+層は直接金属層121へ接続される。しかし図に見る如く、別の誘電体189がSOI基板190の上部及び金属層121の間に形成され、次に誘電層153へ転送される。この場合下部電極121はゲート誘電体189を有するゲート電極として使用できる。又別の下部電極121cがFLDの下部電極を接続するために使用される。 4 to 7 , the n + layer on the top of the SOI substrate 190 is directly connected to the metal layer 121. However, as seen in FIG. 8 , another dielectric 189 is formed between the top of the SOI substrate 190 and the metal layer 121 and then transferred to the dielectric layer 153. In this case, the lower electrode 121 can be used as a gate electrode having a gate dielectric 189. Another lower electrode 121c is used to connect the lower electrode of the FLD.

FLDIC層は一つ以上のSOI層を有する。図3及び5に示すFLDIC層は単一SOI層を有する。図は一つのFLDIC層105を構成する多SOI層124、128を示す。図に示すように、SOI層124とSOI層128の間にはビアはない。もしビアが図2に示すように多SOI層の間に存在すれば、一つのFLDIC層101及びもう一つのFLDIC層102は分離し区分できる。多SOI層は順次に既に転移されたSOI層124上に別のSOI層128を付加することにより実施される。図に示す多SOI層124、128は多SOI層124、128を電気的に分離する誘電層138を有する。従って多SOI層124、128は各SOI層で電気的に分離した、異なる型の装置を有する。例えば一つのSOI層はp型MOSFETを有し、そしてもう一つのSOI層はメモリー装置になる。 The FLDIC layer has one or more SOI layers. The FLDIC layer shown in FIGS. 3 and 5 has a single SOI layer. FIG. 9 shows multi-SOI layers 124 and 128 constituting one FLDIC layer 105. As shown in FIG. 9, there are no vias between the SOI layer 124 and the SOI layer 128. If vias exist between multiple SOI layers as shown in FIG. 2, one FLDIC layer 101 and another FLDIC layer 102 can be separated and separated. Multiple SOI layers are implemented by sequentially adding another SOI layer 128 on the already transferred SOI layer 124. The multi-SOI layers 124 and 128 shown in FIG. 9 have a dielectric layer 138 that electrically isolates the multi-SOI layers 124 and 128. Thus, the multiple SOI layers 124, 128 have different types of devices that are electrically isolated at each SOI layer. For example, one SOI layer has a p-type MOSFET and the other SOI layer becomes a memory device.

FLDは従来の半導体装置である。MOSFET、バイポーラトランジスタ、ダイオード、キャパシタ、及び抵抗、画像検出器(例えば電荷結合装置(CCD)又は能動画素検出器(APS))、又はマイクロエレクトロメカニカルシステム(MEMS)などである。FLDは円形柱の形(図28参照)、長方形柱(図29参照)、又は多角形柱、又は円筒柱である。もしFLDの幅が狭くなれば、柱構造の縦横比が増加し、そしてぐらつき又は接合された誘電層から取り外される。このような現象を防止するためFLDは上部は狭い幅で下部は広い幅の台形型である。 FLD is a conventional semiconductor device. MOSFETs, bipolar transistors, diodes, capacitors and resistors, image detectors (eg charge coupled devices (CCD) or active pixel detectors (APS)), or microelectromechanical systems (MEMS). The FLD has a circular column shape (see FIG. 28 ), a rectangular column (see FIG. 29 ), a polygonal column, or a cylindrical column. If the width of the FLD is narrowed, the column structure aspect ratio increases and is removed from the wobbled or bonded dielectric layer. In order to prevent such a phenomenon, the FLD is a trapezoidal shape having a narrow upper portion and a wide lower portion.

FLDは、製造過程で使用される温度に応じて高温装置(HT)と低温装置(LT)に分割できる。同様に装置作動方向によりFLDは垂直装置(V)と水平装置(H)に分割でき、ここで「V」及び「H」は主な装置の電流方向が「垂直」及び「水平」方向を意味する。   The FLD can be divided into a high temperature apparatus (HT) and a low temperature apparatus (LT) according to the temperature used in the manufacturing process. Similarly, FLD can be divided into vertical device (V) and horizontal device (H) according to the device operating direction, where “V” and “H” mean the current direction of main device is “vertical” and “horizontal” direction. To do.

FLD処理温度は800℃より上の高温及び650℃より下の低温に分割できる。この開示で我々は高温処理で製造した装置をHT−FLDと呼び、そして低温処理で製造された装置をLT‐FLDと呼び、又は単にFLDと呼ぶ、何故ならばこの発明による利点は低い処理温度で三次元ICの実施だからである。HF−FLDは注入イオンの熱的活性化のため高温で処理でき、そして垂直又は水平装置となる。HT−FLDを実施するため図4〜7に示す誘電層153の相互接続132及びビア131は銅又はタンタル、モリブデン又はタングステンのような耐熱金属であるべきである。又HF−FLDで使用されるベース基板は800℃以上に耐えるべきである。 The FLD processing temperature can be divided into a high temperature above 800 ° C. and a low temperature below 650 ° C. In this disclosure we will refer to equipment manufactured with high temperature processing as HT-FLD and equipment manufactured with low temperature processing as LT-FLD, or simply as FLD, because the advantages of this invention are low processing temperatures. This is because 3D IC is implemented. HF-FLD can be processed at high temperatures for thermal activation of implanted ions and becomes a vertical or horizontal device. To implement HT-FLD, the interconnect 132 and via 131 of the dielectric layer 153 shown in FIGS. 4-7 should be refractory metal such as copper or tantalum, molybdenum or tungsten. The base substrate used in HF-FLD should withstand 800 ° C. or higher.

LT−FLD又はFLDは装置作動に必要な不純物層が誘電層への転移の前にSOI基板に形成されているため、イオン注入、イオン注入のための熱処理及び写真処理は必要でない。もし高温がFLD処理の間に必要であれば、他の層上に存在する装置の特徴が変化する。変化の早期予想に基づく装置工程制御は大変難しい。従って本発明の実施例は工程変更のない装置を有するベース半導体基板の上部の上に実施することができる。この発明の利点は低コストの工程がイオン注入及び写真処理が必要でないため得られることである。又本発明の色々な実施例は、高温処理、耐熱金属、アルミを必要とせず、低融点でそして半導体で広く使用されるアルミが使えることである。又LT‐FLDは従来の製造工程より容易に金属ゲート及び高k誘電材料を使用できる。   LT-FLD or FLD does not require ion implantation, heat treatment for ion implantation, and photographic processing because an impurity layer necessary for device operation is formed on the SOI substrate before transfer to the dielectric layer. If high temperatures are required during the FLD process, the characteristics of the devices present on the other layers will change. Equipment process control based on early prediction of changes is very difficult. Accordingly, embodiments of the present invention can be implemented on top of a base semiconductor substrate having a device with no process changes. An advantage of the present invention is that a low cost process is obtained because ion implantation and photographic processing are not required. Also, various embodiments of the present invention do not require high-temperature processing, refractory metals, and aluminum, have a low melting point, and can use aluminum widely used in semiconductors. Also, LT-FLD can use metal gates and high-k dielectric materials more easily than conventional manufacturing processes.

LT−FLDの標準的な形は垂直不純物接合は既にSOI基板に形成されており、そして下部電極を実施することは容易であるため、VFLD(垂直FLD)である。しかし低温でHFLD(水平FLD)はイオン注入なしで実施できる。HFLD(水平FLD)はMESFET、MOSFET、ダイオード又は水平バイポーラトランジスタの形である。図10に示すように、一旦SOI層の一部がPR(フォトレジスト)又はハードマスク171を使用してエッチングされれば、図10は形成される。図11はショットキーダイオードを形成する金属ゲートを持ったMESFET型HFLDを示す。又下部電極121はゲート電極として使用できる。図11は図2のFLD113である。もしゲート172がその下に誘電層を有するならば、FLDはMOSFETとなる。もし図11のゲート172が抵抗接点を有し、そしてn型領域がp型領域に切り替えられればそれは水平バイポーラトランジスタとなる。もしn+領域が陽極でそしてp型領域が陰極であれば、それは水平バイポーラトランジスタから水平ダイオードになる。又ゲートなしに、FLDはn型領域のみを使用して抵抗になることができる。 The standard form of LT-FLD is VFLD (vertical FLD) because the vertical impurity junction is already formed on the SOI substrate and the bottom electrode is easy to implement. However, at low temperatures, HFLD (horizontal FLD) can be performed without ion implantation. HFLD (horizontal FLD) is in the form of a MESFET, MOSFET, diode or horizontal bipolar transistor. As shown in FIG. 10 , once a portion of the SOI layer is etched using PR (photoresist) or hard mask 171, FIG. 10 is formed. FIG. 11 shows a MESFET type HFLD having a metal gate forming a Schottky diode. The lower electrode 121 can be used as a gate electrode. FIG. 11 shows the FLD 113 shown in FIG. If gate 172 has a dielectric layer below it, the FLD becomes a MOSFET. If gate 172 in FIG. 11 has a resistive contact and the n-type region is switched to the p-type region, it becomes a horizontal bipolar transistor. If the n + region is the anode and the p-type region is the cathode, it becomes a horizontal diode from a horizontal bipolar transistor. Also, without a gate, the FLD can become a resistor using only the n-type region.

VFLD(又はLT−FLD)はMESFET、MOSFET、ダイオード、キャパシタ、抵抗、バイポーラ、サイリスタの形か、又は単一装置に代わって回路を実施するFLD装置の異なる型の垂直接続の形をとる。ベース半導体基板の最適水平装置及び最適VFLD、SoCの組み合わせは性能及び価格の面で最適である。   VFLD (or LT-FLD) takes the form of MESFETs, MOSFETs, diodes, capacitors, resistors, bipolars, thyristors, or different types of vertical connections of FLD devices that implement circuits on behalf of a single device. The combination of the optimum horizontal device for the base semiconductor substrate and the optimum VFLD and SoC is optimal in terms of performance and price.

図1に示す従来技術の垂直装置212とは異なり、VFLDに電極、接点、及び相互接続ラインの形成及び接続を実施することは容易である。この開示で「電極」はゲート誘電材料にて装置又はゲートへ直接接続される電気部品を意味する。「接点」は通常垂直形の電極及び相互接続ラインの間の接続部品を意味する。米国特許5、414、288、米国特許6、027、975、米国特許6、337、247、及び米国特許6、449、186における垂直装置は、ソース/ドレーン及び接点形成のための空間を提供するために使用される水平に延びたドーピング領域を有するべきである。従って従来技術では延びたソース/ドレーン領域は抵抗及び寄生キャパシタを増加させる。図2に示すように、電極はFLD111の上部122及び下部121に形成される。VFLDの場合、中間電極123はFLDの上部及び下部において相互接続ラインへ接続される。更に中間電極は部分相互接続として使用される。三次元ICに対するこの非常に柔軟な相互接続の仕組みは三次元ICを形成するための従来の試みでは可能でない。   Unlike the prior art vertical device 212 shown in FIG. 1, it is easy to implement and connect electrodes, contacts, and interconnect lines to the VFLD. In this disclosure, “electrode” means an electrical component that is directly connected to a device or gate with a gate dielectric material. “Contact” means a connecting piece between a normally vertical electrode and an interconnect line. The vertical devices in US Pat. No. 5,414,288, US Pat. No. 6,027,975, US Pat. No. 6,337,247 and US Pat. No. 6,449,186 provide space for source / drain and contact formation. It should have a horizontally extending doping region that is used for this purpose. Thus, in the prior art, the extended source / drain region increases resistance and parasitic capacitors. As shown in FIG. 2, the electrodes are formed on the upper part 122 and the lower part 121 of the FLD 111. In the case of VFLD, the intermediate electrode 123 is connected to the interconnect line at the top and bottom of the FLD. Furthermore, the intermediate electrode is used as a partial interconnect. This very flexible interconnection mechanism for 3D ICs is not possible with conventional attempts to form 3D ICs.

FLDの下部はILD層151のビア131へも直接接続される金属層121へ接続される。従ってFLDの下部は既に予め形成される電極及び接点を有する。FLD111の下部電極121を誘電層151のビア131を経由して接続するため、それらは位置決めが必要である。この技術で使用される位置決めの仕組みは従来の写真位置決め印(表示なし)により行われる。しかし写真処理は不整合余裕を有し、そして下部電極121及びビア131は整合余裕内で位置決めされるべきである。一般に図2に示すように相互接続ラインをILD層の異なるレベルでビア131を通して接続するため、相互接続ラインの幅はビア131の寸法より広い必要がある。写真マスク及びエッチング処理による写真処理は相互接続ライン132及びビア131の形成のため必要である。   The lower part of the FLD is connected to the metal layer 121 that is also directly connected to the via 131 of the ILD layer 151. Therefore, the lower part of the FLD already has pre-formed electrodes and contacts. Since the lower electrode 121 of the FLD 111 is connected via the via 131 of the dielectric layer 151, they need to be positioned. The positioning mechanism used in this technique is performed by a conventional photographic positioning mark (no display). However, photographic processing has a misalignment margin, and the lower electrode 121 and via 131 should be positioned within the alignment margin. In general, as shown in FIG. 2, interconnect lines are connected through vias 131 at different levels in the ILD layer, so the width of the interconnect lines needs to be wider than the dimensions of the vias 131. Photoprocessing by photographic mask and etching is necessary to form interconnect lines 132 and vias 131.

12及び13に関して、FLDの下部部分124z及びビア131の間の位置決めに使用される下部電極121の形成は自己位置決め技術を使用し、従って処理の写真マスク型を必要としない。SOI基板接合処理で使用される金属層の一部はFLDの下部部分の延長であり、そして金属層の他の部分は下部電極121になる。図12に示すようにエッチングマスク173を使用して破線により表示される層122及び124の部分はエッチングで除かれる。図13は下部電極121をビア131より広くすることを可能にするスペーサー型エッチングマスクを示す。もしエッチングマスクがFLDより高く配置され、そして例えば乾式エッチング処理よりエッチングされるならば下部電極121の幅は例えばFLDの高さの二倍以上になる。下部電極121の幅は、ハードマスクの厚さ、FLDの高さ、FLDの幅、及びスペーサー182のエッチング量により制御される。もしFLDの幅が写真処理余裕より大きい場合は、より広い下部電極121は必要でない。 12 and 13 , the formation of the bottom electrode 121 used for positioning between the lower portion 124z of the FLD and the via 131 uses a self-positioning technique and therefore does not require a photographic mask mold for processing. Part of the metal layer used in the SOI substrate bonding process is an extension of the lower part of the FLD, and the other part of the metal layer becomes the lower electrode 121. Using etching mask 173 as shown in FIG. 12 , the portions of layers 122 and 124, which are indicated by broken lines, are etched away. FIG. 13 shows a spacer type etching mask that allows the lower electrode 121 to be wider than the via 131. If the etching mask is placed higher than the FLD and etched by, for example, a dry etching process, the width of the lower electrode 121 is, for example, more than twice the height of the FLD. The width of the lower electrode 121 is controlled by the thickness of the hard mask, the height of the FLD, the width of the FLD, and the etching amount of the spacer 182. If the width of the FLD is larger than the photographic processing margin, the wider lower electrode 121 is not necessary.

15〜18に関して、この発明による中間電極は以下のように実施できる。最初に平坦な中間電極法又は平坦な電極方法がある。電極材料配置及び平坦化のためのCMP操作の後、乾式エッチングが、図15に示す平坦な電極123を提供するために行われる。平坦な電極123のパターン形成は乾式エッチング処理の前後で実施される。設置される電極材料はVFLDの高さより厚い。又処理のこの点でエッチング停止層122はSOI層124の損傷を防ぐためFLDの上部の上に必要である。エッチング停止122は一般に多酸化物、窒化物又は金属層の組み合わせである。図15で、誘電材料133aは平坦電極123の形成に似た方法で配置され、平坦化されそして乾式エッチングがされる。誘電材料133aは下部電極121及び平坦電極123の間の寄生キャパシタンスを低下させる。 15-18 , the intermediate electrode according to the present invention can be implemented as follows. First, there is a flat intermediate electrode method or a flat electrode method. After the CMP operation for electrode material positioned and flattened, dry etching is performed to provide a planar electrode 123 shown in FIG. 15. The pattern formation of the flat electrode 123 is performed before and after the dry etching process. The installed electrode material is thicker than the height of the VFLD. Also at this point in the process, the etch stop layer 122 is necessary on top of the FLD to prevent damage to the SOI layer 124. The etch stop 122 is typically a combination of a multi-oxide, nitride or metal layer. In FIG. 15 , the dielectric material 133a is placed in a manner similar to the formation of the flat electrode 123, planarized and dry etched. The dielectric material 133 a reduces the parasitic capacitance between the lower electrode 121 and the flat electrode 123.

第二は図16に示すようなスペーサー123を使用する方法である。もしスペーサー中間電極又はスペーサー電極の幅が広い場合、スペーサー電極との電気的接触を得ることは容易である。しかし高集積度を達成することは困難である。もし幅が狭ければ、スペーサー法は写真又はCPM処理を必要としない。 The second is a method of using the spacer 123 as shown in FIG. 16. If the spacer intermediate electrode or the spacer electrode is wide, it is easy to obtain electrical contact with the spacer electrode. However, it is difficult to achieve high integration. If the width is narrow, the spacer method does not require photographic or CPM processing.

第三の方法はダミーFLD(即ち、装置として作動しないFLD)を使用するスペーサー法である。図17に示すように、ダミーFLD124aはFLDに接近して設置され、そして中間電極123のために使用されるスペーサーの幅を増加させる。中間電極123へ接続される接点123aはダミーFLD124aの上部の上に設置されるため、接点形成のための余裕は増加する。図17に示すように、FLD及びダミーFLD124aの間のスペースはスペーサー膜の厚さの二倍より小さくあるべきである。 The third method is a spacer method using a dummy FLD (that is, an FLD that does not operate as a device). As shown in FIG. 17 , the dummy FLD 124 a is installed close to the FLD and increases the width of the spacer used for the intermediate electrode 123. Since the contact 123a connected to the intermediate electrode 123 is installed on the upper part of the dummy FLD 124a, a margin for forming the contact increases. As shown in FIG. 17 , the space between the FLD and the dummy FLD 124a should be less than twice the thickness of the spacer film.

第四の方法は図18に示すように中間電極123をFLDの上部へ延長する薄いスペーサー法である。中間上の接点形成領域をカバーし、そして残りの領域をエッチングし、中間電極材料の配置の後、我々は図18の構造を得る。この方法は薄いスペーサー厚によい。上部電極と中間のそれの間の寄生キャパシタンスを減らすため、厚い誘電層が上部電極上に使用される。 A fourth method is a thin spacers method of extending the intermediate electrode 123 to the top of the FLD, as shown in FIG. 18. Covering the contact forming region on the intermediate, and the remaining area is etched, after the placement of the intermediate electrode material, we obtain a structure in FIG. 18. This method is good for thin spacer thicknesses. A thick dielectric layer is used on the top electrode to reduce the parasitic capacitance between the top electrode and that in the middle.

中間電極はVFLDの中間領域の全体又は一部を取り囲む。又多中間電極は一つのFLDに形成できる。   The intermediate electrode surrounds all or part of the intermediate region of the VFLD. The multi-intermediate electrode can be formed in one FLD.

SOI層がSOI基板から転送された後、電極材料122はSOI層へ配置され、そしてFLDにパターンをつけた後、上部電極は図12に示す如く実施される。接点122aの寸法が上部電極122の寸法より小さい場合、従来の半導体写真/エッチング技術が図18に示すように使用できる。しかしもしFLD幅が接点122aの形成のための写真処理のずれ余裕より小さい場合、又は接点122aの寸法がFLD領域より大きい場合、接点122aのための写真/エッチング処理は中間電極への短絡を起こす。従ってこの開示は、接点122a形成の間に写真/エッチングのための処理エラー余裕を増加させるこの発明によるいくつかの構造を記述する。第一にエッチング処理余裕を提供するため上部電極形成材料の厚さを増加させることである。第二に図20に示すように平坦化技術でエッチング停止層184を使用することである。第三に図21に示すようにスペーサー技術でエッチング停止層184を使用することであり、ここでエッチング停止層184は接点122a形成の間に誘電層133cに比べ遅いエッチング率を有する。例えば、もし誘電層133cが酸化物膜であれば、エッチング停止層184は窒化物である。 After the SOI layer is transferred from the SOI substrate, the electrode material 122 is disposed to the SOI layer, and after applying the pattern to the FLD, the upper electrode is carried out as shown in FIG. 12. If the size of the contact 122a is smaller than the dimension of the upper electrode 122, a conventional semiconductor photo / etching techniques may be used as shown in FIG. 18. However, if the FLD width is less than the photographic process deviation margin for forming the contact 122a, or if the size of the contact 122a is larger than the FLD region, the photo / etch process for the contact 122a will cause a short to the intermediate electrode. . This disclosure thus describes several structures according to the present invention that increase the processing error margin for photo / etching during contact 122a formation. The first is to increase the thickness of the upper electrode forming material in order to provide an etching process margin. In Second, as shown in FIG. 20 planarization technique is to use an etch stop layer 184. Third, using an etch stop layer 184 with spacer technology, as shown in FIG. 21 , where the etch stop layer 184 has a slower etch rate than the dielectric layer 133c during contact 122a formation. For example, if the dielectric layer 133c is an oxide film, the etch stop layer 184 is a nitride.

この開示で我々は低温で実施され、そして垂直操作を有するVFLDに以下のような注釈を付ける。即ち
MOSFET VMFLD、MESFET VMEFLD、ダイオードVDFLD、抵抗VRFLD、キャパシタVCFLD、バイポーラVBFLD及びサイリスタVTFLDである。
In this disclosure we annotate VFLD which is performed at low temperature and has vertical operation as follows. That is, MOSFET VMFLD, MESFET VMEFLD, diode VDFLD, resistor VRFLD, capacitor VCFLD, bipolar VBFLD, and thyristor VTFLD.

VDFLDは図22に示すように垂直p−n又はp−i−n接合ダイオードとして実施される。又図23は上部電極122及びSOI124の間のショットキー接合を有する垂直ショットキー接合を有する垂直ショットキーダイオードを示す。又図24に示すように金属中間電極123は三次元ショットキーダイオードのために使用される。図22に示すVDFLDは、電流は中間電極123の陽極から上部及び下部電極の陰極へ進むので、図23の電流駆動能力に比べ二倍の能力を有する。 VDFLD is implemented as a vertical p-n or p-i-n junction diode as shown in FIG. 22. FIG. 23 also shows a vertical Schottky diode having a vertical Schottky junction with a Schottky junction between the upper electrode 122 and the SOI 124. As shown in FIG. 24 , the metal intermediate electrode 123 is used for a three-dimensional Schottky diode. The VDFLD shown in FIG. 22 has a capacity that is twice that of the current driving capacity of FIG. 23 because the current travels from the anode of the intermediate electrode 123 to the cathodes of the upper and lower electrodes.

VCFLDには二つの型がある。一つは単結晶半導体に形成される空乏層領域を使用するMOSキャパシタ型又は空乏層キャパシタであり、そしてもう一つ又は誘電キャパシタは空乏層領域なしで誘電接触面に電荷を蓄積する。もし半導体のドーピング濃度が低ければ、空乏層が半導体領域に存在する。もしドーピング濃度が高ければ半導体領域に存在する。もしドーピング濃度が高ければそれは誘電キャパシタ、空乏層のないVCFLDになる。VCFLDは図25及び26に示す。図25において、n型単結晶を取り囲むゲート誘電体半導体及びn型半導体を接続する電極がある。一般に全キャパシタンスは電極領域に比例するので、取り囲みゲート123bはVCFLDの全キャパシタンスを増加させる。ゲート誘電層なしに、ショットキーダイオードを形成する金属ゲートは逆バイアスを持ったキャパシタとして使用できる。 There are two types of VCFLD. One is a MOS capacitor type or a depletion layer capacitor using a depletion layer region formed in a single crystal semiconductor, and the other or a dielectric capacitor accumulates electric charge on a dielectric contact surface without a depletion layer region. If the semiconductor doping concentration is low, a depletion layer is present in the semiconductor region. If the doping concentration is high, it exists in the semiconductor region. If the doping concentration is high, it becomes a dielectric capacitor, VCFLD without a depletion layer. VCFLD are shown in Figures 25 and 26. In FIG. 25 , there is a gate dielectric semiconductor surrounding the n-type single crystal and an electrode connecting the n-type semiconductor. Since the total capacitance is generally proportional to the electrode area, the surrounding gate 123b increases the total capacitance of the VCFLD. Without a gate dielectric layer, the metal gate forming the Schottky diode can be used as a capacitor with reverse bias.

半導体が柱構造を有する場合、VCFLDのキャパシタンスは増加した半導体及びゲート接触面領域のため増加する。又図26に示すようにゲート123b、123c及びゲート誘電層はVCFLD上に繰り返し堆積され、そして堆積キャパシタ及びVCFLDは並列に接続され次にキャパシタンスは増加する。この型のキャパシタはDRAMで使用される堆積キャパシタと同一構造を有する。図26の接点121aは堆積キャパシタのゲートと下部電極121を接続する。 If the semiconductor has a pillar structure, the capacitance of the VCFLD increases due to the increased semiconductor and gate contact area. Also, as shown in FIG. 26 , the gates 123b, 123c and the gate dielectric layer are repeatedly deposited on the VCFLD, and the deposition capacitor and VCFLD are connected in parallel and then the capacitance is increased. This type of capacitor has the same structure as the deposited capacitor used in DRAM. A contact 121a in FIG. 26 connects the gate of the deposited capacitor and the lower electrode 121.

バイポーラ型VBFLDを図2に示す。コレクタ124c、124d、ベース124b、及びエミッタ124aから構成される不純物領域はSOI基板に実施され、次に転移される。エミッタ124a及びコレクター124dを構成する電極は下部121及び上部122に形成され、そしてベース124b電極123はFLDの中間に形成される。エミッター124aはVBFLDの上部又は下部に配置されても、エミッターは図解実施例でVBFLDの下部にある。この場合、エミッターは単結晶半導体124a〜124dが転移される前に、SOI基板の上部に実施される。従って正確な接合制御は、エミッター124a及びベース124b領域が形成される時可能となる。又SiGeヘテロ接合ベースは可能で、そして多結晶半導体がエミッター領域の一部として使用できる。更にエミッターは、VBFLDの下部に配置されるため、エミッターはSOI層転移処理の後平坦化処理の間に厚さ変動を避けることができる。もし取り扱い基板がSOI層転移に使用されるならば、エミッターはFLDの上部に配置される。 Bipolar VBFLD shown in FIG 7. Impurity regions composed of collectors 124c, 124d, base 124b, and emitter 124a are implemented in the SOI substrate and then transferred. Electrodes constituting the emitter 124a and the collector 124d are formed in the lower part 121 and the upper part 122, and the base 124b electrode 123 is formed in the middle of the FLD. Even though the emitter 124a is located above or below the VBFLD, the emitter is at the bottom of the VBFLD in the illustrated embodiment. In this case, the emitter is implemented on the top of the SOI substrate before the single crystal semiconductors 124a to 124d are transferred. Thus, precise junction control is possible when the emitter 124a and base 124b regions are formed. SiGe heterojunction bases are also possible, and polycrystalline semiconductors can be used as part of the emitter region. Furthermore, since the emitter is disposed below the VBFLD, the emitter can avoid thickness variation during the planarization process after the SOI layer transfer process. If the handling substrate is used for SOI layer transition, the emitter is placed on top of the FLD.

この発明によると、低いコレクター直列抵抗を得るために、VBFLDは、コレクター接点と埋設層を接続する埋没層及び高ドーピングコレクター領域を必要としない。この発明の色々な実施例は従来の試みに比べ、より低いコレクター直列抵抗を提供する。又ベース直列抵抗はVBFLDの中間に形成された取り囲みベース電極123はベース領域に広い接触表面を有するため、高ドーピング固有ベース領域なしに低くすることができる。更にVBFLDは高速作動を防ぐ寄生キャパシタを有しない。更にVBFLDは基板を有していないため、ベースコレクター基板の寄生バイポーラトランジスタはこの発明の実施例に存在しない。従来の実施は深くそして浅いトレンチ隔離が必要な一方、VBFLDは一つの隔離構造135を必要とするだけである。図25において、もしベース中間電極123がベース領域からコレクター領域へ延びているならば、低ドーピングのコレクター領域124CはVBFLDの高速作動を可能にするベース電極を持ったショットキーダイオードを形成する。 According to the present invention, to obtain a low collector series resistance, the VBFLD does not require a buried layer and a highly doped collector region connecting the collector contact and the buried layer. Various embodiments of the present invention provide a lower collector series resistance compared to prior attempts. In addition, the base series resistance can be lowered without the high doping intrinsic base region because the surrounding base electrode 123 formed in the middle of the VBFLD has a wide contact surface in the base region. Furthermore, VBFLD does not have a parasitic capacitor that prevents high speed operation. Further, since VBFLD does not have a substrate, the parasitic bipolar transistor of the base collector substrate does not exist in the embodiment of the present invention. While conventional implementations require deep and shallow trench isolation, VBFLD only requires one isolation structure 135. In FIG. 25 , if the base intermediate electrode 123 extends from the base region to the collector region, the lightly doped collector region 124C forms a Schottky diode with a base electrode that allows high speed operation of the VBFLD.

MOSFET型VMFLDは図15〜18及び図20〜21に示す。垂直MOSFETは小さい空間で高集積度を有する。この発明によるMOSFETのチャネル長は写真及びエッチング処理限界により限定されるのではなく、むしろドーピング層の厚さにより決定される。又VMFLDは、チャネル幅が同一チャネル長を有する従来構造に比べ取り囲みゲートで容易に増加できるため、高い駆動電流を有することができる。 MOSFET type VMFLD is shown in FIGS. 15-18 and 20-21. The vertical MOSFET has a high degree of integration in a small space. The channel length of the MOSFET according to the invention is not limited by photography and etching process limitations, but rather is determined by the thickness of the doping layer. Further, VMFLD can have a high driving current because the channel width can be easily increased by the surrounding gate as compared with the conventional structure having the same channel length.

しかし従来技術の垂直MOSFETは、欠点が多いため使用されない。米国特許5、414、288、及び米国特許6、027、975に示す垂直トランジスタは露出単結晶領域のエピタキシャル成長により形成される。この技術はエピタキシャル成長のための困難な製造技術及び高温操作を必要とするため低温半導体処理にはよくない。   However, prior art vertical MOSFETs are not used due to many drawbacks. The vertical transistors shown in US Pat. No. 5,414,288 and US Pat. No. 6,027,975 are formed by epitaxial growth of exposed single crystal regions. This technique is not good for low temperature semiconductor processing because it requires difficult manufacturing techniques and high temperature operation for epitaxial growth.

米国特許6、337、247、及び米国特許6、449、186に示す柱型取り囲みゲートトランジスタ(SGT)は最適水平装置と共存することは困難で、そして柱型トランジスタによるイオン注入の間にシャドウ効果を起こす。またSGTは、それがソース/ドレーン及びゲート領域での電極形成に問題があるので、高集積密度を有していない。従ってこれらの試みはSoC形成に適していない。   US Pat. No. 6,337,247, and US Pat. No. 6,449,186, columnar surrounding gate transistors (SGTs) are difficult to coexist with optimal horizontal devices, and shadow effects during ion implantation by columnar transistors Wake up. SGT also does not have a high integration density because it has problems with electrode formation in the source / drain and gate regions. Therefore, these attempts are not suitable for SoC formation.

VMFLDは、電圧降下及び寄生抵抗による電流減少を減らす直接接続された下部電極を有する。又VMFLDはFLD幅の制御で容易に完全又は部分的空乏層モードになり、ここで空乏層モードも操作電圧及びゲート誘電体定数により制御できる。SOI基板より取り外された表面は高ドーピングのソース/ドレーン領域となるため、従来技術の水平装置とは異なり、小さな表面欠陥があっても、ゲート酸化物品質、装置動作、及び製造には僅かしか影響はない。   The VMFLD has a directly connected bottom electrode that reduces current reduction due to voltage drop and parasitic resistance. The VMFLD can easily be in a complete or partial depletion layer mode by controlling the FLD width, where the depletion layer mode can also be controlled by the operating voltage and the gate dielectric constant. Because the surface removed from the SOI substrate becomes a highly doped source / drain region, unlike the prior art horizontal devices, there are few gate oxide quality, device operation, and manufacturing, even with small surface defects. There is no effect.

VMFLDはチャネル領域に不純物分布の傾斜を有し、そして電界は段階的不純物によるチャネル領域に形成され、ここで誘導された電界は電流の流れを加速し、そして段階的不純物が短チャネル効果(SEC)を削減する。段階的不純物はイオン注入またはエピタキシャル処理により容易に形成できる訳ではない。ソース側からドレーン側へのチャネル領域における不純物濃度の増加は非対称動作を行う。更にLDD(低ドーピングドレーン)がドレーン側のみで選択的に形成できる。高傾斜イオン注入及び装置配置での困難のため、従来技術での水平MOSFETの段階的チャネルの実施は困難である。   The VMFLD has a gradient of impurity distribution in the channel region, and an electric field is formed in the channel region due to stepped impurities, where the induced electric field accelerates the flow of current, and stepped impurities become short channel effects (SEC). ). Stepped impurities cannot be easily formed by ion implantation or epitaxial processing. Increasing the impurity concentration in the channel region from the source side to the drain side performs an asymmetric operation. Furthermore, LDD (low doping drain) can be selectively formed only on the drain side. Due to the difficulties in high tilt ion implantation and device placement, it is difficult to implement a stepped channel of a horizontal MOSFET in the prior art.

MOSFET型VFLD又はVMFLDは米国特許5、330、935、及び米国特許5、443、863に示すように650℃より下で実施されるゲート誘電層を有する。誘電層は熱酸化物、堆積酸化物、酸化窒化物、又はONO及びNO(窒素酸化物)のような酸化物及び窒化物の組み合わせである。適当な誘電材料は650℃以上を要求する高温処理膜を除いて使用できる。この発明の実施例の別の利点は、限定しないが、ゲート誘電層にAl23,ZrO2,HfO2,Y23,La23,Ta25,TiO2及びBSTのようなの高誘電定数(高k)を使用することにより容易であることである。.MOSFETの従来の製造において、高温熱活性操作はソース/ドレーンイオン注入の後に必要である。この時点で高k材料の特性は変更できる。しかしVMFLD処理は高温処理を必要とせず、それで高k材料は安定状態で使用できる。またもしALD(原子層配置)がゲート誘電層を提供するために使用されると、ほぼ一様な層が得られる。 A MOSFET type VFLD or VMFLD has a gate dielectric layer implemented below 650 ° C. as shown in US Pat. No. 5,330,935 and US Pat. No. 5,443,863. The dielectric layer is a thermal oxide, a deposited oxide, an oxynitride, or a combination of oxides and nitrides such as ONO and NO (nitrogen oxide). A suitable dielectric material can be used except for a high-temperature processing film requiring 650 ° C. or more. Another advantage of embodiments of the invention includes, but is not limited to, Al 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , TiO 2 and BST in the gate dielectric layer. It is easy to use such a high dielectric constant (high k). In conventional fabrication of MOSFETs, high temperature thermal activation operation is necessary after source / drain ion implantation. At this point, the properties of the high-k material can be changed. However, VMFLD processing does not require high temperature processing, so high k materials can be used in a stable state. Also, if ALD (atomic layer arrangement) is used to provide the gate dielectric layer, a substantially uniform layer is obtained.

この発明によると、閾電圧はゲートの誘電体の厚さそして/またはFLDの幅を変化させることにより制御できる。もし異なるゲートの誘電体厚さが使用されるか又は異なる誘電定数材料がVMFLDで使用されるならば、多くの操作電圧及び閾電圧が同じSOI層で実施でき、そしてそれはSoCに有効である。又VMFLDは低温で製造され、そして取り囲みゲートが使用されるので、従来技術による製造の試みに比べ金属ゲートを使用することは容易である。   According to the present invention, the threshold voltage can be controlled by changing the thickness of the gate dielectric and / or the width of the FLD. If different gate dielectric thicknesses are used or different dielectric constant materials are used in VMFLD, many operating voltages and threshold voltages can be implemented in the same SOI layer, which is valid for SoC. Also, since VMFLD is manufactured at low temperature and an enclosing gate is used, it is easier to use a metal gate compared to prior art manufacturing attempts.

従来技術において、デジタル応用に対し、MOSFETは電圧又は電流状態により「オフ」又は「オン」状態のどちらかにある。図28に示すVMFLDは多くのゲートが一つのソース/ドレーンを共有し、多くの状態を有する多レベル(ML)VMFLDである。VMFLDの電流駆動能力はゲート領域に比例する。従って同じゲート寸法の単なる多ゲートは電流の漸増のために使用される。又VMFLDの同じゲート寸法の多くのゲートがML−VMFLDに使用される。図29は二つの「W」寸法のゲート及び二つの「3W」寸法のゲートを有するML−VMFLDを示し、ここで「W」は定数でそして「3W」は「W」値の三倍を意味する。これらの四つの異なるゲートの組み合わせの使用して、ML−VMFLDは「0」から「8」の9個の異なる電流値を有することができる。もし同じ寸法のゲートがML−VMFLDに使用されると、8個のゲートは図28に示すように9個の異なる値が必要である。ML−FLDは記憶装置又はデジタル論理装置への応用に使用される。多レベル用中間電極はベース電極としてバイポーラトランジスタに使用される。 In the prior art, for digital applications, a MOSFET is in either an “off” or “on” state depending on the voltage or current state. The VMFLD shown in FIG. 28 is a multi-level (ML) VMFLD in which many gates share one source / drain and have many states. The current driving capability of VMFLD is proportional to the gate region. Thus, simply multiple gates of the same gate size are used for current ramping. Also, many gates with the same gate dimensions of VMFLD are used for ML-VMFLD. FIG. 29 shows an ML-VMFLD having two “W” size gates and two “3W” size gates, where “W” is a constant and “3W” means three times the “W” value. To do. Using these four different gate combinations, the ML-VMFLD can have nine different current values from “0” to “8”. If the gate of the same dimensions is used for ML-VMFLD, 8 pieces of gates are required nine different values as shown in FIG. 28. ML-FLD is used for application to storage devices or digital logic devices. The multilevel intermediate electrode is used as a base electrode in bipolar transistors.

FLDを含む三次元ICはMOSFET又はバイポーラトランジスタのような単一装置の形を有するだけでなく、単一FLD層に形成された多くの装置を有する。図30は単一インバータ型VFLDを示す。インバータを構成する。p−MOSFET及びn−MOSFETは異なるウエルを必要とせず、従ってこのインバータは高集積度を有する。p−MOSFET及びn−MOSFETのゲートを共に接続する接点123fはインバータの入力端子となる。P−MOSFET及びn−MOSFETのドレーンは共に接続されそして電極123g及び接点123hへ接続される。図30でp+-p-p+型p−MOSFETは空乏層モードのMOSFETである。またp-MOSFETはp+-n-p+型でありそしてこの場合n領域は基準電圧を必要とする。図30に示すように、FLD隔離構造に使用される誘電層を貫通する接点はFLD層の上又は下の相互接続ラインへ接続される。 Three-dimensional ICs including FLDs not only have the form of a single device, such as a MOSFET or bipolar transistor, but also have many devices formed in a single FLD layer. FIG. 30 shows a single inverter type VFLD. Configure the inverter. The p-MOSFET and n-MOSFET do not require different wells, so this inverter has a high degree of integration. A contact 123f that connects the gates of the p-MOSFET and the n-MOSFET together serves as an input terminal of the inverter. The drains of the P-MOSFET and n-MOSFET are connected together and connected to electrode 123g and contact 123h. In FIG. 30 , the p + -p-p + type p-MOSFET is a depletion layer mode MOSFET. The p-MOSFET is of the p + -n-p + type and in this case the n region requires a reference voltage. As shown in FIG. 30 , the contacts through the dielectric layer used in the FLD isolation structure are connected to interconnect lines above or below the FLD layer.

一つだけのSOI層を使用する図30に示すFLDインバータへ加え、FLDインバータが図に示すように二つのSOI層を使用して実施することができる。この場合一つのSOI層はn−MOSFETを有し、そして他方のSOI層はp−MOSFETを有する。 In addition to the FLD inverter shown in FIG. 30 that uses the SOI layer of only one, it is possible to FLD inverter implemented using two SOI layer as shown in FIG. In this case, one SOI layer has an n-MOSFET and the other SOI layer has a p-MOSFET.

この発明によるとメモリー装置は多くのFLDを使用して実施することができる。   According to the present invention, the memory device can be implemented using many FLDs.

ベース半導体基板上の二つのインバータ及び二つのパストランジスタを使用して、6−トランジスタSRAMセルが図32に示すように実施できる。二つのインバータはVFLDで、そしてワードライン及びビットラインを有する二つのトランジスタはベース半導体基板上にある。図31及び図32は夫々上部及び下部接点の相互接続ラインを示す。二つのFLDインバータは各インバータの入力を出力へ接続してラッチされる。一つのインバータ接点122a、123h、123f、131の相手は下線付き122a、123h、123f、131で示す。従ってこの様なSRAMセルは高集積度を有する。特にベース半導体基板はSRAMセルにおけるp−MOSFETのためのn-ウエルを必要としないので、ベース半導体基板の集積度は高い。もし4個のパストランジスタが使用される場合、2ポートSRAMが実施できる。 Using two inverters and two pass transistors on the base semiconductor substrate, six-transistor SRAM cell can be implemented as shown in FIG. 32. The two inverters are VFLD and the two transistors with word lines and bit lines are on the base semiconductor substrate. 31 and 32 show the interconnect lines for the upper and lower contacts, respectively. Two FLD inverters are latched with the input of each inverter connected to the output. The counterpart of one inverter contact 122a, 123h, 123f, 131 is indicated by underlined 122a, 123h, 123f, 131. Therefore, such an SRAM cell has a high degree of integration. In particular, since the base semiconductor substrate does not require an n-well for the p-MOSFET in the SRAM cell, the degree of integration of the base semiconductor substrate is high. If 4 pass transistors are used, a 2-port SRAM can be implemented.

この発明によるSRAMを実施するためには多くの方法がある。第一の方法はベース半導体基板上の4個のn−MOSFET及び2個のp−MOSFET型FLDの使用による。第二の方法はベース半導体基板上の2個のp−MOSFET、及び4個のn−MOSFET型FLDの配置による。第三の方法は2個のp−MOSFET型FLDをSOI層上に及び4個のn−MOSFET型FLDを別のSOI基板上に配置することによる。第四の方法はベース半導体基板上の4個のn−MOSFET型FLD又は4個のn−MOSFETのいずれかを有する。4トランジスタSRAMセルの使用により、そして抵抗がFLD層上に形成されるか、又は多結晶半導体抵抗が使用される。   There are many ways to implement the SRAM according to the invention. The first method is by using four n-MOSFETs and two p-MOSFET type FLDs on a base semiconductor substrate. The second method is based on the arrangement of two p-MOSFETs and four n-MOSFET type FLDs on the base semiconductor substrate. The third method is by placing two p-MOSFET type FLDs on the SOI layer and four n-MOSFET type FLDs on another SOI substrate. The fourth method has either four n-MOSFET type FLDs or four n-MOSFETs on a base semiconductor substrate. With the use of a 4-transistor SRAM cell and a resistor is formed on the FLD layer, or a polycrystalline semiconductor resistor is used.

サイリスタを使用する従来技術のSRAMセルは同じ半導体基板上に垂直サイリスタ及び水平MOSFETを有する複雑な構造を有する。従ってこのSRAMは他の装置とのプロセス非互換性を有し、そしてそれはSoC応用にはよくない。図33はこの発明によるゲート123jを有するVTFLDSRAMセルを示す。中間電極ゲート123jはワードライン2に使用され、そして上部電極は基準電圧へ接続される。VTFLDはベース半導体基板上の水平アクセストランジスタへ接続され、従って各装置は最適化され、そして高集積度がSoC応用へ提供される。アクセストランジスタのゲートはワードラインに使用される。図34は図33に示す別構造のSRAMセルを示し、これが垂直にアクセストランジスタ161c及びサイリスタを接続し、そして最終的にVFLDSRAMセルを形成する。サイリスタゲート123j及びアクセストランジスタゲート123iは全て中間電極である。図33のVTFLDは米国特許6、225、165B、及び米国特許6、172、899に示すSRAMセルと同じである。この発明によるダイナミックランダムアクセスメモリー(DRAM)セルは一つのトランジスタ及び一つのキャパシタを有し、ここでトランジスタはベース半導体基板上か又はFLDIC層上のVMFLDであり、トランジスタの浮遊ソースは別FLDIC層上のVCFLDへ接続される。VCFLDは図25〜26に示す。また一つのFLDIC層を構成する多SOI層から、トランジスタを有する一つのSOI層及びキャパシタを有するもう一つのSOI層は接続されDRAM構成を形成する。別のVFLDDRAM構造はSOI層内でトランジスタ及びキャパシタの直列接続を有する。図35はそれと直列接続されるn型MOSFET及び空乏層キャパシタを有するDRAM構造を示す。上部電極122はビットラインへ接続され、そして中間電極123はワードラインへ接続される。図35において、下部電極121へ接続される浮遊n+ソース124e及びp領域124fの間に形成される空乏層領域はn型MOSFETより広い幅を有し、ここでより広い半導体領域は図12〜14に示すような付加的写真処理操作無しにスペーサー技術を使用し実施することができる。図36で浮遊ソース及び誘電キャパシタを有するMOSFETは並列に接続され、ここで浮遊ソースp領域は基準電圧ソース(表示なし)へ接続される。図36で下部電極121はビットラインへ接続され、そして中間電極123はワードラインへ接続される。 Prior art SRAM cells using thyristors have a complex structure with vertical thyristors and horizontal MOSFETs on the same semiconductor substrate. This SRAM is therefore process incompatible with other devices and it is not good for SoC applications. FIG. 33 shows a VTFLDSRAM cell having a gate 123j according to the present invention. Intermediate electrode gate 123j is used for word line 2 and the upper electrode is connected to the reference voltage. The VTFLD is connected to a horizontal access transistor on the base semiconductor substrate so that each device is optimized and high integration is provided for SoC applications. The gate of the access transistor is used for the word line. FIG. 34 shows an SRAM cell having another structure shown in FIG. 33 , which vertically connects the access transistor 161c and the thyristor, and finally forms a VFLDSRAM cell. The thyristor gate 123j and the access transistor gate 123i are all intermediate electrodes. 33 is the same as the SRAM cell shown in US Pat. No. 6,225,165B and US Pat. No. 6,172,899. A dynamic random access memory (DRAM) cell according to the present invention has one transistor and one capacitor, where the transistor is a VMFLD on the base semiconductor substrate or on the FLDIC layer, and the floating source of the transistor is on another FLDIC layer. Connected to the VCFLD. VCFLD are shown in Figure 25-26. In addition, one SOI layer having a transistor and another SOI layer having a capacitor are connected from a multi-SOI layer constituting one FLDIC layer to form a DRAM structure. Another VFLD DRAM structure has a series connection of transistors and capacitors in the SOI layer. FIG. 35 shows a DRAM structure having an n-type MOSFET and a depletion layer capacitor connected in series therewith. The upper electrode 122 is connected to the bit line, and the intermediate electrode 123 is connected to the word line. In Figure 35, a depletion layer region formed between the floating n + source 124e and p region 124f is connected to the lower electrode 121 has a width greater than n-type MOSFET, a wider semiconductor region herein 12-14 Can be carried out using spacer technology without additional photographic processing operations as shown in FIG. In FIG. 36 , MOSFETs having a floating source and a dielectric capacitor are connected in parallel, where the floating source p region is connected to a reference voltage source (not shown). In FIG. 36 , the lower electrode 121 is connected to the bit line, and the intermediate electrode 123 is connected to the word line.

この発明による不揮発性FLDメモリー構造を図3742に示す。図37は二つのゲートを有し、ここで一つの浮遊ゲートはゲート誘電層183bでp型チャネル領域を囲み、そしてビアへ接続される制御ゲート123は別ゲートの誘電層183cで浮遊ゲート123kを取り囲む。図38は分割ゲートの不揮発性メモリー装置を示し、ここで浮遊ゲート123kはp型チャネル領域の一部を含み、そしてチャネル領域の残り及び浮遊ゲート123kは制御ゲート123により取り囲まれる。図39は浮遊ゲート123k、制御ゲート123、及びデータ消去のために設計される消去ゲート323の3個のゲートを有する。図40はONOゲートの誘電層183を有する浮遊ゲートのない不揮発性メモリー装置VFLDを示し、ここで情報は電流の流れにより異なる場所30にストアーされる。図41はp型バルク領域124上のバルク接点122cを持ったフラッシュメモリーFLD構造を示す。VMFLDは一方の側にはゲート誘電層のないバルク接点及び他方の側にはゲート誘電層のあるゲート接点を有する。 Showing a nonvolatile FLD memory structure according to the invention. FIG 37-42. FIG. 37 has two gates, where one floating gate surrounds the p-type channel region with a gate dielectric layer 183b, and the control gate 123 connected to the via has a floating gate 123k with another gate dielectric layer 183c. surround. FIG. 38 shows a split gate non-volatile memory device where the floating gate 123k includes a portion of the p-type channel region, and the remainder of the channel region and the floating gate 123k are surrounded by the control gate 123. FIG. FIG. 39 has three gates: a floating gate 123k, a control gate 123, and an erase gate 323 designed for erasing data. FIG. 40 shows a floating gateless non-volatile memory device VFLD with an ONO gate dielectric layer 183, where information is stored at different locations 30 according to current flow. FIG. 41 shows a flash memory FLD structure having a bulk contact 122 c on a p-type bulk region 124. The VMFLD has a bulk contact without a gate dielectric layer on one side and a gate contact with a gate dielectric layer on the other side.

この発明の実施例の利点の一つは、不揮発性メモリーはFLD内に多ビット情報をストアーするML‐VMFLDである。図42に示すように、一つのソース/ドレーンを有するFLDは8個の分離ゲートを有し、次に一つのFLDは8個の多ビットメモリ−セルを有する。図42はバルク接点122cを有し、そして残りの接点はFLDを形成するSOI層のソース/ドレーンへ接続される。図41では、点線‘‘756‘‘が上部FLDからむき出しになったFLDバルク領域の境界線を示す。SOI領域124上の残りの接点122aはソース/ドレーンへ接続される。もし図37から18cの不揮発性メモリー、ソース及びドレーンが異なるドーピング濃度を有すれば、多ビット不揮発性メモリーはETOXに似た装置操作により達成できる。 One of the advantages of the embodiment of the present invention is ML-VMFLD in which the non-volatile memory stores multi-bit information in the FLD. As shown in FIG. 42 , an FLD having one source / drain has eight isolation gates, and then one FLD has eight multi-bit memory cells. FIG. 42 has a bulk contact 122c and the remaining contacts are connected to the source / drain of the SOI layer forming the FLD. In FIG. 41 , the dotted line “756” indicates the boundary line of the FLD bulk region exposed from the upper FLD. The remaining contacts 122a on the SOI region 124 are connected to the source / drain. If the non-volatile memory, source and drain of FIGS. 37 to 18c have different doping concentrations, a multi-bit non-volatile memory can be achieved by device operation similar to ETOX.

この発明の一つの実施例で、FLDメモリー装置は同じ又は異なるFLDIC層上に冗長性を有する   In one embodiment of the invention, the FLD memory device has redundancy on the same or different FLDIC layers.

この発明の一つの実施例は図43〜44に示すようにFLDICにブロック領域を有し、ここで各ブロックは異なる型のFLDを有する。図43及び44はFLDICの上面図で、そして各チップ441はケガキ線により区分される。たとえば一つのFLDIC層は4個のブロック413a〜413dを有し、ここで第一ブロックはプログラマブルFPGAを有し、第二ブロックはフラッシュメモリーを有し、第三ブロックはバイポーラ装置を有し、そして第四ブロックはSRAMを有する。各ブロックは異なる装置型には異なる不純物接合を要求し、ここで不純物接合はLT-FLDの場合、SOI層転移処理の前に形成されるべきである。ブロックFLD形成にはSOI基板及びベース基板にウエハー位置決め印が必要である。この場合ウエハーのずれを考慮してオーバーレイエラー補正領域(OECA)412を有することがよりよく、ここでOECAは数ミクロンから数百ミクロンの隔たりを有する。 One embodiment of the present invention has a block area in the FLDIC, as shown in FIGS. 43-44 , where each block has a different type of FLD. 43 and 44 are top views of the FLDIC, and each chip 441 is divided by a marking line. For example, one FLDIC layer has four blocks 413a-413d, where the first block has a programmable FPGA, the second block has a flash memory, the third block has a bipolar device, and The fourth block has SRAM. Each block requires a different impurity junction for different device types, where the impurity junction should be formed prior to the SOI layer transfer process in the case of LT-FLD. In order to form the block FLD, wafer positioning marks are required on the SOI substrate and the base substrate. In this case, it is better to have an overlay error correction area (OECA) 412 to account for wafer misalignment, where OECA has a gap of a few microns to a few hundred microns.

45は、強誘電膜710を使用したキャパシタを持った不揮発性メモリーセル700及びキャパシタへ直列接続されるVMFLDを示す。強誘電膜700を使用した不揮発性メモリーはFRAM(強誘電ランダムアクセスメモリー)と呼ばれる.従来の強誘電体は(PbZr)TiO(PZTと称す)、SrBiTa(SBTと称す)及びYMnOである。もし電界がこのような強誘電体に加えられると強誘電体は分極特性を有する。図45でFRAMセル700は強誘電キャパシタとVMFLDを直接接続する。VMFLDのゲート123はワードライン(WL)で、そしてドレーンはビットライン(BL)であり、そしてソースは強誘電キャパシタへ接続され、そしてもう一つの電極122aは駆動ライン(DL又はプレートライン)へ接続される。 FIG. 45 shows a nonvolatile memory cell 700 having a capacitor using a ferroelectric film 710 and a VMFLD connected in series to the capacitor. Nonvolatile memory using the ferroelectric film 700 is called FRAM (ferroelectric random access memory). Conventional ferroelectrics are (PbZr) TiO 3 (referred to as PZT) and SrBi 2 Ta 2 O 9 (referred to as SBT). And YMnO 3 . If an electric field is applied to such a ferroelectric, the ferroelectric has polarization properties. In FIG. 45 , the FRAM cell 700 directly connects a ferroelectric capacitor and VMFLD. The VMFLD gate 123 is the word line (WL), the drain is the bit line (BL), the source is connected to the ferroelectric capacitor, and the other electrode 122a is connected to the drive line (DL or plate line). Is done.

46はFRAMメモリーセル700の等価回路を示し、ここでセンスアンプ770用論理装置は一般にベース基板上で実施され、そしてVMFLDを含むFRAMセル700はSOI層内で実施される。 FIG. 46 shows an equivalent circuit for FRAM memory cell 700, where the logic device for sense amplifier 770 is typically implemented on a base substrate, and FRAM cell 700 including VMFLD is implemented in the SOI layer.

47は図45に示す二つのFRAMセルを使用した一つのメモリービットを示し、ここでセンスアンプ700用論理装置は一般にベース基板103上で実施され、そしてVMFLDを含むFRAMセル700がSOI層内で実施される。 FIG. 47 shows one memory bit using the two FRAM cells shown in FIG. 45 , where the logic device for the sense amplifier 700 is generally implemented on the base substrate 103, and the FRAM cell 700 containing VMFLD is in the SOI layer. Will be implemented.

48は強誘電膜710及びキャパシタへ並列接続されたVMFLDを使用したキャパシタを持った不発性メモリーセル730を示す。並列接続FRAMはより速い速度で作動し、そして直列接続されたFRAMセルに比べより低い電力消費を有する。一つの中間電極123はWLである。もう一つの中間電極123aは加えられた基準電圧を有し、そして強誘電キャパシタ及びVFLDを並列接続するため定電流状態を保持する。 FIG. 48 shows a non-volatile memory cell 730 having a capacitor using a ferroelectric film 710 and a VMFLD connected in parallel to the capacitor. Parallel connected FRAMs operate at higher speeds and have lower power consumption compared to series connected FRAM cells. One intermediate electrode 123 is WL. Another intermediate electrode 123a has an applied reference voltage and maintains a constant current state for parallel connection of the ferroelectric capacitor and VFLD.

49はFRAMセル730の等価回路である。FRAMセル730は連結しバイトを形成する。 FIG. 49 is an equivalent circuit of the FRAM cell 730. FRAM cells 730 are concatenated to form a byte.

強誘電膜710を使用したキャパシタは図45及び46のVFLDの上部に設置される。しかし強誘電膜710を使用したキャパシタはVFLDの下部に設置できる。又VFLDはMOSFET、バイポーラ、又は他の型のトランジスタでもよい、 Capacitor using a ferroelectric film 710 is disposed on top of VFLD in FIGS. 45 and 46. However, a capacitor using the ferroelectric film 710 can be installed under the VFLD. VFLD may also be a MOSFET, bipolar, or other type of transistor,

50及び51はVFLD構造の一部としての強誘電膜710を有する不揮発性VMFLD750を示す。図50においてFRAMはゲート誘電層183及びゲート電極123の間に設定された強誘電膜710を有する.これは金属強誘電絶縁珪素(MFIS)と呼ばれる。ゲート誘電層183は標準的MOSFETゲート誘電層でそして例えば二酸化珪素又は酸化窒素化合物で形成することができる。もし図50にゲート誘電層183がなく、そして強誘電膜710がゲート誘電層として使用されるならば、装置は金属強誘電珪素(MFMIS)型FRAMとなる。 50 and 51 show a non-volatile VMFLD 750 having a ferroelectric film 710 as part of a VFLD structure. 50 , the FRAM has a ferroelectric film 710 set between a gate dielectric layer 183 and a gate electrode 123. This is called metal ferroelectric insulating silicon (MFIS). Gate dielectric layer 183 is a standard MOSFET gate dielectric layer and can be formed of, for example, silicon dioxide or nitric oxide compounds. If there is no gate dielectric layer 183 in FIG. 50 and ferroelectric film 710 is used as the gate dielectric layer, the device is a metal ferroelectric silicon (MFMIS) type FRAM.

51で、強誘電膜710はVMFLDの浮遊ゲート123k及び制御ゲート123の間に配置され、そしてそれは金属強誘電金属絶縁珪素(MFMIS)型FRAM760FLDを形成する。 In FIG. 51 , a ferroelectric film 710 is disposed between the floating gate 123k and the control gate 123 of the VMFLD, which forms a metal ferroelectric metal-insulated silicon (MFMIS) type FRAM 760FLD.

4551の図解実施例で使用される強誘電膜710は低温FLDのため660℃より下で実施すべきである。 Ferroelectric layer 710 used in the illustrated embodiment of FIGS. 45-51 should be carried out at below 660 ° C. for low temperature FLD.

52は、VMFLD及び直列接続されたMJT磁気トンネル接合スタック810を使用した、不揮発性MRAM磁気抵抗性ランダムアクセスメモリー800セル構造を示す。図52でMJT810はILD133及びFLD124の下に形成され設置される。 FIG. 52 shows a non-volatile MRAM magnetoresistive random access memory 800 cell structure using VMFLD and series-connected MJT magnetic tunnel junction stack 810. In FIG. 52 , the MJT 810 is formed and installed under the ILD 133 and the FLD 124.

53もMJT810を使用したMRAMセル850を示す。MJT810はFLD124より上に形成され設置される。 FIG. 53 also shows an MRAM cell 850 using the MJT 810. The MJT 810 is formed and installed above the FLD 124.

MJT810は印加磁界により色々な電気抵抗特性を有し、ここで電気抵抗はMJT810の分極により変化する。MJT810は多くの薄膜層から構成される。一般に一つの磁気ファイルは印加磁界により分極される自由層である。もう一方の磁気膜はピン層であり、そして一般に反強磁性層である交換層と共に使用される。ピン層は印加磁界により分極される。従って膜スタックは磁気トンネル接合スタック(MJT)と呼ばれる。MJTは二つの磁気膜及び誘電膜を有する構造に限定されない。MJTは異なる薄い層の組み合わせを有する。MJTは堆積層により二つの型に分類され、一つは非磁性材料を使用した巨大磁気抵抗(GMR)で、そしてもう一つは酸化層のような誘電層を使用したトンネル磁気抵抗(TMR)である。図52及び53に示すVFLDはMOSFET、バイポーラ、又はMESFETである。 The MJT 810 has various electric resistance characteristics depending on the applied magnetic field, and the electric resistance changes depending on the polarization of the MJT 810. The MJT 810 is composed of many thin film layers. In general, one magnetic file is a free layer that is polarized by an applied magnetic field. The other magnetic film is a pinned layer and is used with an exchange layer that is generally an antiferromagnetic layer. The pinned layer is polarized by the applied magnetic field. The film stack is therefore called a magnetic tunnel junction stack (MJT). The MJT is not limited to a structure having two magnetic films and a dielectric film. The MJT has a combination of different thin layers. The MJT is classified into two types according to the deposited layer, one is a giant magnetoresistance (GMR) using a non-magnetic material, and the other is a tunnel magnetoresistance (TMR) using a dielectric layer such as an oxide layer. It is. The VFLD shown in FIGS. 52 and 53 is a MOSFET, bipolar, or MESFET.

図54は反転構造の位相変更膜(RSPCF)910及び直列接続VFLDを使用したオボニック統合メモリー(OUM)900セル構造を示す。図54でRSPCF910はFLD124形成後に実施され、そしてFLD124より上に配置される。又RSPCF910はFLD124の形成前に実施され、そしてFLD124(表示無し)より下へ設置される。RSPCF910は、電流量及び時間、言換えればRSPCFへ加えられる温度によるアモルファス又は多結晶層を有し、ここで多結晶は低い電気抵抗を有する。   FIG. 54 shows an Ovonic integrated memory (OUM) 900 cell structure using a phase change film (RSPCF) 910 with an inverted structure and a series-connected VFLD. 54, the RSPCF 910 is implemented after the FLD 124 is formed and is disposed above the FLD 124. The RSPCF 910 is performed before the formation of the FLD 124 and is installed below the FLD 124 (no display). The RSPCF 910 has an amorphous or polycrystalline layer depending on the amount of current and time, in other words, the temperature applied to the RSPCF, where the polycrystalline has a low electrical resistance.

RSPCF910はカルコゲニド及び周期律表のVI元素の合金である。従ってRSPCF910はGe‐Sb‐Te、GaSb、InSb、InSe、SbTe、GeTe、GeSbTe、InSbTe、GaSeTe、SbSbTe、InSbGe、AgInSbTe、(GeSn)SbTe、GeSb(SeTe)又はTe81Ge15Sbの合金である。RSPCF910へ接続される電極910aは650℃で安定なTiAIN又はTiWである。図54に示すVFLDはMOSFET、バイポーラ装置又はMESFETである。 RSPCF910 is an alloy of chalcogenide and the VI element of the periodic table. Therefore, RSPCF 910 is Ge-Sb-Te, GaSb, InSb, InSe, Sb 2 Te 3 , GeTe, Ge 2 Sb 2 Te 5 , InSbTe, GaSeTe, SbSb 2 Te 4 , InSbGe, AgInSbTe, (GeSnTe, TeS ) Or an alloy of Te 81 Ge 15 Sb 2 S 2 . The electrode 910a connected to the RSPCF 910 is TiAIN or TiW which is stable at 650 ° C. 54 is a MOSFET, a bipolar device or a MESFET.

図55は融合又は反融合層310及び直列接続VFLDを使用したプログラマブルリードオンリーメモリー(PROM)セル構造を示す。図55で融合又は反融合層310はFLD形成後にFLD124上に形成される。又融合又は反融合層310はFLD形成前にFLD124の下に形成される。反融合層310は高い電気抵抗を有する。しかしもし高いプログラミング電圧/電流が反融合層へ加えられれば、それは低い電気抵抗になる。PROMは一般に再プログラム可能ではない。   FIG. 55 shows a programmable read-only memory (PROM) cell structure using a fused or antifused layer 310 and series connected VFLD. In FIG. 55, the fused or antifused layer 310 is formed on the FLD 124 after the FLD is formed. Also, the fused or antifused layer 310 is formed under the FLD 124 before the FLD is formed. The anti-fusion layer 310 has a high electrical resistance. However, if a high programming voltage / current is applied to the antifusion layer, it will have a low electrical resistance. PROMs are generally not reprogrammable.

PROMはアプリケーション‐スぺシフィック集積回路(ASIC)フィールドプログラマブルゲートアレー(FPGA)、又はプログラマブルロジックアレー(PLA)で使用される。   PROMs are used in application-specific integrated circuit (ASIC) field programmable gate arrays (FPGA), or programmable logic arrays (PLA).

反融合層はONO層、金属酸化物層、カルコゲニド層、又は非ドーピングアモルファス珪素層から形成されるが、しかしこれらの材料に限定されない。融合層はニクロム又は多結晶珪素から形成されるが、しかしこれらの材料に限定されない。融合又は反融合のための電極301a、301bは高温で安定なTiWから形成される。   The anti-fusion layer is formed from an ONO layer, a metal oxide layer, a chalcogenide layer, or an undoped amorphous silicon layer, but is not limited to these materials. The fusion layer is formed from nichrome or polycrystalline silicon, but is not limited to these materials. The electrodes 301a and 301b for fusion or anti-fusion are made of TiW that is stable at high temperatures.

図55でVFLDはMOSFET、バイポーラトランジスタ、MESFET又はダイオードである。   In FIG. 55, VFLD is a MOSFET, bipolar transistor, MESFET, or diode.

図56はVFLD124だけを有するDRAM400セル構造を示す.SOI層を使用したVMFLD124は、印加バイアスなしで図56に示すように浮遊体p領域を有し、そして電荷は短時間(即ち更新時間)浮遊体に蓄積される。電荷は読み取り可能又は書き込み可能データとなる。   FIG. 56 shows a DRAM 400 cell structure with VFLD 124 only. The VMFLD 124 using the SOI layer has a floating body p region as shown in FIG. 56 without an applied bias, and charges are accumulated in the floating body for a short time (ie, update time). The charge becomes readable or writable data.

57はVMFLD及び直列接続された不揮発性VFLDメモリーを有する電気的消去可プログラム読取専用メモリー(EEPROM)500セル構造を示す。不揮発性メモリーは浮遊ゲート及び制御ゲートの二つのゲートを有する。しかしこれは珪素酸化物窒素酸化物(SONOS)型不揮発性メモリーである。図57に示すような選択ラインに接続されるMOSFETが不揮発性メモリーの上に配置される。しかしこれらの装置の位置は反転できる。 FIG. 57 shows an electrically erasable programmable read only memory (EEPROM) 500 cell structure with VMFLD and non-volatile VFLD memory connected in series. The nonvolatile memory has two gates, a floating gate and a control gate. However, this is a silicon oxide nitrogen oxide (SONOS) type nonvolatile memory. A MOSFET connected to the selection line as shown in FIG. 57 is arranged on the nonvolatile memory. However, the position of these devices can be reversed.

58は一つのEEPROMセルの等価回路である。 FIG. 58 is an equivalent circuit of one EEPROM cell.

59は高電圧で作動する出力VMFLD600である。従来の低出力VMFLDに比べ出力VMFLDは数μmから数百μmの範囲のSOI層厚さを有し、そしてゲート誘電層の厚さは10分の1nmから数千nmの範囲を有する。作動電圧は7Vから1000Vの範囲である。又FLDは空乏層領域の延長と電界の減少に役立つ台形を有し、従って作動電圧を増加させる FIG. 59 shows an output VMFLD 600 operating at a high voltage. Compared to conventional low power VMFLD, the output VMFLD has an SOI layer thickness in the range of several μm to several hundred μm, and the thickness of the gate dielectric layer has a range of 1/10 nm to several thousand nm. The operating voltage ranges from 7V to 1000V. The FLD also has a trapezoid that helps extend the depletion region and reduce the electric field, thus increasing the operating voltage.

電力VMFLD600は水平MOSFETについて多くの利点を有する。従来の水平MOSFETは作動電圧を増加させるために長いチャネル長を有する必要がある。しかしそれは低い集積度のため高価になる。しかし電力VMFLD600のチャネル長はチャネル長がSOI層の垂直高さにより決定されるため、集積度を変化させない。又電力VMFLDは取り囲みゲートを有するため、それは抵抗が低くそしてその電流駆動能力は従来の水平MOSFETの二倍以上である。従って図59の電力VMFLDは外側二重拡散MOS(LDMOS)及びトレンチMOSのような他の従来の電力装置を置換する。又ベース基板の低電圧装置と電力VMFLDを一つのチップに組み合わせることにより、アナログ及びデジタル信号を一つのチップで扱うスマートパワー又はスマートMOSを達成できる。   The power VMFLD 600 has many advantages over horizontal MOSFETs. Conventional horizontal MOSFETs need to have a long channel length in order to increase the operating voltage. However, it is expensive due to the low integration. However, since the channel length of the power VMFLD 600 is determined by the vertical height of the SOI layer, the integration degree is not changed. Also, because the power VMFLD has a surrounding gate, it has a low resistance and its current drive capability is more than twice that of a conventional horizontal MOSFET. Thus, the power VMFLD of FIG. 59 replaces other conventional power devices such as outer double diffused MOS (LDMOS) and trench MOS. Also, by combining the low voltage device of the base substrate and the power VMFLD into one chip, smart power or smart MOS that handles analog and digital signals with one chip can be achieved.

もし図59の電力VMFLDが二重拡散ドレーンを有するれば、それは図60に示すような装置になる。二重拡散領域は高ドーピングドレーン領域への空乏層領域拡大を防ぎ、そして高電圧で装置が作動できるようにする。 If lever power VMFLD in FIG. 59 has a double diffused drain, it becomes an apparatus as shown in FIG. 60. The double diffusion region prevents depletion region expansion to the highly doped drain region and allows the device to operate at high voltages.

59及び図60は、もしゲート誘電層が低温熱酸化物、高k誘電体及びCVD誘電体の組み合わせを有する場合、装置の信頼性は増加し、そして半導体124とゲート誘電層183の間の接触面のトラップは減少する。又電流駆動能力は増加しそしてオンレジスタンスは減少する。 59 and 60 show that if the gate dielectric layer has a combination of low temperature thermal oxide, high k dielectric and CVD dielectric, the reliability of the device is increased, and between the semiconductor 124 and the gate dielectric layer 183. Contact surface traps are reduced. Also, current drive capability increases and on-resistance decreases.

この発明は上に記述した実施例に限定されるのではなく、しかし追加の請求項の範囲内でのいずれか及び全ての実施例を包含することは理解すべきである。   It is to be understood that the invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the additional claims.

101、102、105:FLDIC層
103:ベース基板
104:単結晶半導体装置
111、112、113:FLD
120:中間接合層
121、122:下部電極
122、122a:上部電極
123:中間電極
124、128:SOI層
123a、123f、123h、131:接点
123a、123f、123h、131:接点(上記の相手)
123b:エッチング停止
123c:ゲート
123j:サイリスタ電極
123i:トランジスタ電極
124a:エミッター
124b:ベース
124c、124d:コレクター
124e:浮遊ソース
131:接点/バイアス
132:相互接続ライン
133、133a:誘電材料
134:境界
135:隔離
138、133c:誘電層
142:共有ウエル
143:基板
145:上パッド
146:下パッド
151、152、153:ILD層
161c:トランジスタ
171:ハードマスク
172:ゲート
173:エッチングマスク
180:ベース基板
182:スペーサー
183、183b、183c、189:誘電層
184:エッチング停止層
190:SOI基板
191:取り外し層
201、203:ベース半導体基板
202、204、241、242:誘電層
211、212:保持装置
243:ウエル
255:ビア
301a、301b:溶融/反溶融電極
310:溶融/反溶融層
323:消去ゲート
400:DRAM
412:補正領域(OECA)
413a、413b、413c、413d:ブロックFLDIC層
441:チップ
500:EEPROM
600:VMFLD
700、710:強誘電膜
730:FRAMセル
760:絶縁体珪素型FRAM(MFMIS)
770:センスアンプ
800:セル構造
810:MJT
850:MRAMセル
910:RSPCF
101, 102, 105: FLDIC layer 103: base substrate 104: single crystal semiconductor devices 111, 112, 113: FLD
120: Intermediate bonding layer 121, 122: Lower electrode 122, 122a: Upper electrode 123: Intermediate electrode 124, 128: SOI layers 123a, 123f, 123h, 131: Contacts 123a, 123f, 123h, 131: Contacts (the above-mentioned counterparts)
123b: Etching stop 123c: Gate 123j: Thyristor electrode 123i: Transistor electrode 124a: Emitter 124b: Base 124c, 124d: Collector 124e: Floating source 131: Contact / bias 132: Interconnect line 133, 133a: Dielectric material 134: Boundary 135 : Isolation 138, 133c: dielectric layer 142: common well 143: substrate 145: upper pad 146: lower pads 151, 152, 153: ILD layer 161c: transistor 171: hard mask 172: gate 173: etching mask 180: base substrate 182 : Spacers 183, 183b, 183c, 189: Dielectric layer 184: Etching stop layer 190: SOI substrate 191: Removal layer 201, 203: Base semiconductor substrates 202, 204, 241, 24 : Dielectric layer 211: retention device 243: well 255: via 301a, 301b: melting / anti molten electrode 310: melt / anti molten layer 323: the erase gate 400: DRAM
412: Correction area (OECA)
413a, 413b, 413c, 413d: Block FLDIC layer 441: Chip 500: EEPROM
600: VMFLD
700, 710: Ferroelectric film 730: FRAM cell 760: Insulator silicon type FRAM (MFMIS)
770: Sense amplifier 800: Cell structure 810: MJT
850: MRAM cell 910: RSPCF

Claims (7)

第一半導体基板の取り外し層の形成、取り外し層の上の第一半導体基板に多くのドーピング領域の形成、ここで多くのドーピング層の形成は、第一電導型を有するように、ドーピングされ、取り外し層の上の第一半導体基板の第一ドーピング層の形成、第一電導型に対する第二電導型を有するようにドーピングされ、第一ドーピング層の上の第一半導体基板に最低中間ドーピング層の形成、及び中間ドーピング層上の第一半導体基板に最低第三ドーピング層の形成からなり、第三ドーピング層上に第一の電導性ブランケット層の形成、第一電導ブランケット層上に第二の電導性ブランケット層の形成、及び第二電導性ブランケット層が第二半導体基板の対応する電導性上部層と接触するように、第一半導体基板を第二半導体基板への取り付け、からなる堆積可能なアッド‐オン層形成方法。   Formation of the removal layer of the first semiconductor substrate, formation of many doping regions in the first semiconductor substrate above the removal layer, wherein formation of many doping layers is doped and removed to have the first conductivity type Forming a first doping layer of a first semiconductor substrate over the layer, doped to have a second conductivity type relative to a first conductivity type, and forming a minimum intermediate doping layer on the first semiconductor substrate over the first doping layer , And formation of at least a third doping layer on the first semiconductor substrate on the intermediate doping layer, formation of a first conductive blanket layer on the third doping layer, and second conductivity on the first conductive blanket layer Formation of the blanket layer and attachment of the first semiconductor substrate to the second semiconductor substrate such that the second conductive blanket layer contacts the corresponding conductive upper layer of the second semiconductor substrate Consisting depositable add - one layer forming method. 第一ドーピング層が露出するように第一ドーピング層を配置した側に対向する取り外し層の側の第一基板の一部を除去することから更になる請求項の方法。 The method of claim 1 , further comprising removing a portion of the first substrate on the side of the removal layer opposite the side on which the first doping layer is disposed such that the first doping layer is exposed. 第一ドーピング層の露出部分上に第三の電導性ブランケット層を形成することから更になる請求項の方法。 The method of claim 2 , further comprising forming a third conductive blanket layer on the exposed portion of the first doping layer. 第三の電導性ブランケット層の一部をエッチングし、これにより下にある多くのドーピング領域の表面を露出させ、第三の電導性ブランケット層の非エッチング部分によりマスクされない多くのドーピング層の露出部分をエッチングし、これにより多くの個別ドープされたスタック構造を形成し、そして個別ドープされたスタック構造によりマスクされない第一電導性ブランケット層の部分を露出することから更になる請求項の方法。 Etch a portion of the third conductive blanket layer, thereby exposing the surface of many underlying doped regions, and exposing portions of the many doped layers that are not masked by unetched portions of the third conductive blanket layer 4. The method of claim 3 , further comprising: etching a plurality of individually doped stack structures to expose portions of the first conductive blanket layer that are not masked by the individually doped stack structures. 誘電材料の第一層が第三のドープされたスタック層、及び各個別ドープされたスタックの中間ドーピング層の一部を取り囲むように、そして中間ドーピング層の最低一部が露出されるように個別ドープされたスタック構造の間に誘電材料の第一層を配置し、多くの個別ドープされたスタック構造の最低一つの露出中間ドーピング層へ電気的に接続される最低一つの電導ラインを形成することから更になる請求項の方法。 Individually such that the first layer of dielectric material surrounds the third doped stack layer and a portion of the intermediate doping layer of each individually doped stack, and a minimum portion of the intermediate doping layer is exposed. Disposing a first layer of dielectric material between the doped stack structures to form at least one conductive line electrically connected to at least one exposed intermediate doping layer of many individually doped stack structures; The method of claim 4 further comprising: 第一層の誘電材料上に第二層の誘電材料を配置することから更になる請求項の方法。 6. The method of claim 5 , further comprising disposing a second layer of dielectric material on the first layer of dielectric material. 最低一つのドープされたスタック構造の最低一部の周りにゲート誘電層を形成し、そしてゲート誘電層の最低一部に隣接してゲート電極を形成することから更になる、請求項の方法。 5. The method of claim 4 , further comprising forming a gate dielectric layer around a minimum portion of at least one doped stack structure and forming a gate electrode adjacent to the minimum portion of the gate dielectric layer.
JP2011218346A 2003-06-24 2011-09-30 Add-on layer forming method Expired - Fee Related JP5294517B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20030040920 2003-06-24
KR10-2003-0040920 2003-06-24
KR10-2003-0047515 2003-07-12
KR1020030047515A KR100904771B1 (en) 2003-06-24 2003-07-12 3-Dimensional Integrated Circuit Structure and Method of Making the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006517574A Division JP5202842B2 (en) 2003-06-24 2004-06-23 Three-dimensional integrated circuit structure and method of making the same

Publications (2)

Publication Number Publication Date
JP2012064950A true JP2012064950A (en) 2012-03-29
JP5294517B2 JP5294517B2 (en) 2013-09-18

Family

ID=36840981

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011218346A Expired - Fee Related JP5294517B2 (en) 2003-06-24 2011-09-30 Add-on layer forming method
JP2012135533A Pending JP2012253358A (en) 2003-06-24 2012-06-15 Semiconductor structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012135533A Pending JP2012253358A (en) 2003-06-24 2012-06-15 Semiconductor structure

Country Status (3)

Country Link
JP (2) JP5294517B2 (en)
KR (1) KR100904771B1 (en)
CN (1) CN1809914B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10229948B2 (en) 2012-09-28 2019-03-12 Canon Kabushiki Kaisha Semiconductor apparatus
CN113241348A (en) * 2016-08-12 2021-08-10 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989546B1 (en) * 2008-05-21 2010-10-25 이상윤 Method for fabricating three-dimensional semiconductor device
KR100975332B1 (en) * 2008-05-30 2010-08-12 이상윤 Semiconductor device and method for fabricating the same
KR100791071B1 (en) 2006-07-04 2008-01-02 삼성전자주식회사 One time programmable device, electronic system including the same and operating method of the same
KR101468595B1 (en) * 2008-12-19 2014-12-04 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
US8395191B2 (en) * 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
KR101669244B1 (en) 2010-06-08 2016-10-25 삼성전자주식회사 Sram devices and methods for fabricating the same
KR101360947B1 (en) * 2011-10-27 2014-02-10 윤재만 Semiconductor memory device
JP2013161878A (en) * 2012-02-02 2013-08-19 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
US9112047B2 (en) * 2013-02-28 2015-08-18 Freescale Semiconductor, Inc. Split gate non-volatile memory (NVM) cell and method therefor
US9123546B2 (en) * 2013-11-14 2015-09-01 Taiwan Semiconductor Manufacturing Company Limited Multi-layer semiconductor device structures with different channel materials
CN104752393B (en) * 2013-12-27 2017-11-03 中芯国际集成电路制造(上海)有限公司 The wire structures and wiring method of metal-oxide-semiconductor capacitor
US20150348874A1 (en) * 2014-05-29 2015-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC Interconnect Devices and Methods of Forming Same
CN106463406A (en) * 2014-06-16 2017-02-22 英特尔公司 Embedded memory in interconnect stack on silicon die
CN106463467B (en) 2014-06-16 2019-12-10 英特尔公司 method for directly integrating memory die to logic die without using Through Silicon Vias (TSVs)
US9893278B1 (en) * 2016-08-08 2018-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded memory device between noncontigous interconnect metal layers
CN110785843A (en) * 2017-08-31 2020-02-11 美光科技公司 Apparatus having a memory cell with two transistors and one capacitor and having a body region of the transistors coupled to a reference voltage
US10930595B2 (en) * 2017-09-28 2021-02-23 Taiwan Semiconductor Manufacturing Co., Ltd. Standard cells having via rail and deep via structures
US11374003B2 (en) * 2019-04-12 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit
US11049880B2 (en) * 2019-08-02 2021-06-29 Sandisk Technologies Llc Three-dimensional memory device containing epitaxial ferroelectric memory elements and methods for forming the same
CN112635461B (en) * 2020-12-08 2024-04-16 中国科学院微电子研究所 Three-dimensional memory circuit structure and preparation method thereof
CN114709168A (en) * 2022-03-10 2022-07-05 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113267A (en) * 1980-11-19 1982-07-14 Ibm Method of producing semiconductor device
JPH04192368A (en) * 1990-11-23 1992-07-10 Sony Corp Longitudinal channel fet
JP2001230326A (en) * 2000-02-17 2001-08-24 Nec Corp Semiconductor integrated circuit device and its driving method
JP2001250913A (en) * 1999-12-28 2001-09-14 Mitsumasa Koyanagi Three-dimensional semiconductor integrated circuit device and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU588700B2 (en) 1986-06-30 1989-09-21 Canon Kabushiki Kaisha Semiconductor device and method for producing the same
DE4433845A1 (en) 1994-09-22 1996-03-28 Fraunhofer Ges Forschung Method of manufacturing a three-dimensional integrated circuit
US6194290B1 (en) * 1998-03-09 2001-02-27 Intersil Corporation Methods for making semiconductor devices by low temperature direct bonding
JP2003514399A (en) * 1999-11-15 2003-04-15 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Circuit structure having at least one capacitor and at least one transistor connected thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113267A (en) * 1980-11-19 1982-07-14 Ibm Method of producing semiconductor device
JPH04192368A (en) * 1990-11-23 1992-07-10 Sony Corp Longitudinal channel fet
JP2001250913A (en) * 1999-12-28 2001-09-14 Mitsumasa Koyanagi Three-dimensional semiconductor integrated circuit device and its manufacturing method
JP2001230326A (en) * 2000-02-17 2001-08-24 Nec Corp Semiconductor integrated circuit device and its driving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10229948B2 (en) 2012-09-28 2019-03-12 Canon Kabushiki Kaisha Semiconductor apparatus
CN113241348A (en) * 2016-08-12 2021-08-10 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells
CN113241348B (en) * 2016-08-12 2024-03-19 铠侠股份有限公司 Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell

Also Published As

Publication number Publication date
CN1809914B (en) 2010-06-09
KR100904771B1 (en) 2009-06-26
JP2012253358A (en) 2012-12-20
JP5294517B2 (en) 2013-09-18
KR20050003326A (en) 2005-01-10
CN1809914A (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP5294517B2 (en) Add-on layer forming method
JP5202842B2 (en) Three-dimensional integrated circuit structure and method of making the same
JP7331119B2 (en) Integration of three-dimensional NAND memory devices with multiple functional chips
JP7242908B2 (en) Three-dimensional memory device with backside isolation structure
JP2022535515A (en) Structures and methods for forming capacitors for 3D NAND
JP2022534538A (en) 3D memory device with deep isolation structure
US20200411594A1 (en) 3d semiconductor device and structure
JP2022534615A (en) Structures and methods for bit line driver isolation for 3D NAND
US20200335399A1 (en) 3d semiconductor device and structure
US10388568B2 (en) 3D semiconductor device and system
US11335731B1 (en) 3D semiconductor device and structure with transistors
US20230335521A1 (en) Three-dimensional nand memory device and method of forming the same
US20190067110A1 (en) 3d semiconductor device and system
US20180350688A1 (en) 3d semiconductor device and system
US20180350689A1 (en) 3d semiconductor device and system
US11315980B1 (en) 3D semiconductor device and structure with transistors
US11133351B2 (en) 3D semiconductor device and structure
US20190109049A1 (en) 3d semiconductor device and system
US20190057903A1 (en) 3d semiconductor device and system
US20190006240A1 (en) 3d semiconductor device and system
US11462586B1 (en) Method to produce 3D semiconductor devices and structures with memory
US10290682B2 (en) 3D IC semiconductor device and structure with stacked memory
JPH06163921A (en) Non-volatile semiconductor memory
US20220068966A1 (en) Three-dimensional memory device with vertical field effect transistors and method of making thereof
US11469271B2 (en) Method to produce 3D semiconductor devices and structures with memory

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5294517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees