JP2012064543A - Coaxial cable - Google Patents

Coaxial cable Download PDF

Info

Publication number
JP2012064543A
JP2012064543A JP2010209991A JP2010209991A JP2012064543A JP 2012064543 A JP2012064543 A JP 2012064543A JP 2010209991 A JP2010209991 A JP 2010209991A JP 2010209991 A JP2010209991 A JP 2010209991A JP 2012064543 A JP2012064543 A JP 2012064543A
Authority
JP
Japan
Prior art keywords
coaxial cable
conductor
wire
cable
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010209991A
Other languages
Japanese (ja)
Inventor
Misato Kusakari
美里 草刈
Yoshihiro Nakai
由弘 中井
Taichiro Nishikawa
太一郎 西川
Tetsuya Kuwabara
鉄也 桑原
Akira Tanji
亮 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010209991A priority Critical patent/JP2012064543A/en
Priority to CN2011800442228A priority patent/CN103098146A/en
Priority to KR1020137006502A priority patent/KR20140001836A/en
Priority to PCT/JP2011/065919 priority patent/WO2012035862A1/en
Priority to TW100125749A priority patent/TWI521549B/en
Publication of JP2012064543A publication Critical patent/JP2012064543A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines

Abstract

PROBLEM TO BE SOLVED: To provide a coaxial cable having a central conductor composed of a single wire and excellent fatigue characteristics, and to provide a coaxial cable bundle.SOLUTION: A coaxial cable 1 is a short material with length of 1000 mm or less, and a central conductor 10 is a single wire conductor mainly composed of one Cu-Ag alloy wire 11. The Cu-Ag alloy wire 11: consists of Cu-Ag alloys containing Ag of 5 mass % or more and 15 mass % or less; has a diameter of 15 μm or more and 50 μm or less; and includes a plating layer 12 on the outer periphery. The central conductor 10 satisfies conductivity of 50% IACS or more and tensile strength of 1330 MPa or more. The coaxial cable 1 is protected from disconnection by bending or twisting, and has excellent fatigue characteristics, by comprising the Cu-Ag alloy wire 11 containing Ag in a specified range and having a specified size, and the central conductor 10 satisfying conductivity and tensile strength in the specified range.

Description

本発明は、Cu-Ag合金線からなる中心導体を具える同軸ケーブル、及びこの同軸ケーブルを複数束ねた同軸ケーブルバンドルに関するものである。特に、中心導体が単線導体であり、疲労特性に優れる同軸ケーブルに関するものである。   The present invention relates to a coaxial cable having a central conductor made of a Cu-Ag alloy wire, and a coaxial cable bundle in which a plurality of coaxial cables are bundled. In particular, the present invention relates to a coaxial cable in which the central conductor is a single wire conductor and has excellent fatigue characteristics.

携帯電話や携帯用コンピュータといった携帯機器、超音波診断装置の診断プローブや内視鏡といった医療機器、産業用ロボットなどの各種の電気・電子機器の配線に、同軸ケーブルが利用されている。上記配線は、使用時、屈曲や捻回が加えられることが多いことから、屈曲や捻回により断線し難い、即ち、疲労特性に優れることが望まれる。屈曲や捻回による断線を抑制するには、複数の線材を撚り合わせた撚線を利用することが挙げられる。そこで、従来、上記同軸ケーブルの中心導体には、撚線導体が汎用されている。また、上記線材には、純銅からなるものが汎用されている。   Coaxial cables are used for wiring of various electric / electronic devices such as portable devices such as mobile phones and portable computers, medical devices such as diagnostic probes and endoscopes of ultrasonic diagnostic apparatuses, and industrial robots. Since the wiring is often bent or twisted in use, it is desired that the wiring is not easily broken by bending or twisting, that is, excellent in fatigue characteristics. In order to suppress disconnection due to bending or twisting, use of a twisted wire obtained by twisting a plurality of wire materials can be mentioned. Therefore, conventionally, a stranded conductor is widely used as the central conductor of the coaxial cable. Moreover, what consists of pure copper is used widely for the said wire.

昨今、上述の電気・電子機器の小型化に伴い、同軸ケーブルも細径になってきている。そのため、中心導体を構成する線材も細くする必要があるが、細いことで伸線途中に断線し易かったり(伸線性が悪かったり)、伸線できても撚り合わせ難かったり、撚り合わせの際に断線したりする(撚線性が悪い)。また、同軸ケーブルの中心導体を電子回路基板などに接続するにあたり、ハンダ付けといった端末接続処理を行う際に撚り合わせた線材がばらけて、これら線材を介して基板上の配線パターン同士が短絡する恐れがある。これに対して、特許文献1では、中心導体をCu-Ag合金からなる単線導体とすることを提案している。Cu-Ag合金は純銅に比較して強度が高く、かつ単線導体とすることで、伸線性の向上、撚線工程の省略、端末接続処理の作業性の向上を図ることができる。   Recently, along with the miniaturization of the above-mentioned electric / electronic devices, the coaxial cable has also become thinner. Therefore, it is necessary to make the wire constituting the central conductor thin, but it is easy to break in the middle of wire drawing due to its thinness (the wire drawability is bad), it is difficult to twist even if it can be drawn, or when twisting Disconnection (poor twisting). Also, when connecting the central conductor of the coaxial cable to an electronic circuit board or the like, the wire materials twisted together when performing terminal connection processing such as soldering are scattered, and the wiring patterns on the substrate are short-circuited via these wire materials. There is a fear. On the other hand, Patent Document 1 proposes that the central conductor is a single wire conductor made of a Cu—Ag alloy. The Cu-Ag alloy has higher strength than pure copper, and can be made as a single wire conductor, thereby improving the wire drawing property, omitting the stranded wire process, and improving the workability of the terminal connection process.

特開2008-258172号公報JP 2008-258172 A

特許文献1に記載の同軸ケーブルは、主として、医療機器や産業用ロボットの配線といった比較的長尺なものを対象としている。これに対し、携帯電話や携帯用コンピュータなどの比較的小型な電気・電子機器の配線は短尺である。具体的には、1m(1000mm)以下、用途によっては50cm(500mm)以下、30cm(300mm)以下といった更に長さが短い場合がある。そして、このような長さが1000mm以下といった比較的短い配線に利用される同軸ケーブルに対して、疲労特性に優れるものの開発が望まれている。   The coaxial cable described in Patent Document 1 is mainly intended for relatively long cables such as medical equipment and industrial robot wiring. On the other hand, the wiring of relatively small electric / electronic devices such as mobile phones and portable computers is short. Specifically, the length may be even shorter, such as 1 m (1000 mm) or less, 50 cm (500 mm) or less, or 30 cm (300 mm) or less depending on the application. Further, it is desired to develop a coaxial cable having excellent fatigue characteristics for a coaxial cable used for such a relatively short wiring having a length of 1000 mm or less.

例えば、長さが短いケーブルと長さが長いケーブルとに同じ捻回を加えた場合、短いケーブルでは、その全長に対して捻回による疲労を受ける領域の割合が大きく、かつ疲労度合いも大きい。そのため、長いケーブルを単純に短くしただけでは、長いケーブルと同等並み、或いは同等以上の特性を確保することが難しい。特に、上述のように、伸線性や生産性を考慮して単線導体とすると撚線導体よりも疲労し易くなるため、撚線導体を具える同軸ケーブルと同等並み、或いは同等以上の特性を有する単線導体の同軸ケーブルの開発が望まれる。   For example, when the same twist is applied to a cable having a short length and a cable having a long length, the short cable has a large proportion of a region subjected to fatigue due to the twist with respect to the entire length, and the degree of fatigue is also large. For this reason, simply shortening a long cable makes it difficult to secure the same or better characteristics than a long cable. In particular, as described above, a single wire conductor is easier to be fatigued than a stranded wire conductor in consideration of wire drawability and productivity, and therefore has characteristics equivalent to or better than a coaxial cable having a stranded wire conductor. The development of a single-conductor coaxial cable is desired.

そこで、本発明の目的の一つは、中心導体が単線導体であって、疲労特性に優れる同軸ケーブルを提供することにある。また、本発明の他の目的は、上記同軸ケーブルを複数束ねた同軸ケーブルバンドルを提供することにある。   Accordingly, one of the objects of the present invention is to provide a coaxial cable having a central conductor that is a single conductor and excellent in fatigue characteristics. Another object of the present invention is to provide a coaxial cable bundle in which a plurality of the coaxial cables are bundled.

本発明者らは、導電率が比較的低下し難く、強度の向上に効果がある添加元素としてAgを選択し、Cu-Ag合金線を対象として、上述のような長さが比較的短い用途の同軸ケーブルであって、その中心導体を単線導体とした場合に疲労特性に優れる構成を種々検討した。その結果、Agの含有量及び大きさ(直径)が特定の範囲を満たすCu-Ag合金線を利用し、導電率及び引張強さが特定の範囲を満たすように中心導体を構成することで、比較的短尺な同軸ケーブルであって、中心導体が単線導体でありながら、疲労特性に優れる同軸ケーブルが得られる、との知見を得た。本発明は、上記知見に基づくものである。   The inventors of the present invention select Ag as an additive element that has a relatively low conductivity and is effective in improving strength, and is intended for Cu-Ag alloy wires and has a relatively short length as described above. A variety of configurations with excellent fatigue characteristics when the center conductor is a single-wire conductor were studied. As a result, by using a Cu-Ag alloy wire satisfying a specific range in the content and size (diameter) of Ag, by configuring the central conductor so that the electrical conductivity and tensile strength satisfy a specific range, It was found that a coaxial cable having excellent fatigue characteristics can be obtained even though it is a relatively short coaxial cable and the central conductor is a single conductor. The present invention is based on the above findings.

本発明同軸ケーブルは、中心導体と、この中心導体の外周に設けられた電気絶縁層と、この電気絶縁層の外周に設けられ、上記中心導体と同軸に配置される外部導体とを具え、その長さが1000mm以下の比較的短尺なケーブルである。また、この同軸ケーブルの中心導体は、1本の素線から構成される単線導体である。上記素線は、Agを5質量%以上15質量%以下含有し、残部がCu及び不純物からなるCu-Ag合金から構成されるCu-Ag合金線と、このCu-Ag合金線の外周に設けられたAgめっき層、又はSnめっき層とを具える。そして、上記Cu-Ag合金線の直径が15μm以上50μm以下、上記中心導体の導電率が50%IACS以上、かつ上記中心導体の引張強さが1330MPa以上を満たす。   The coaxial cable of the present invention comprises a central conductor, an electrical insulating layer provided on the outer periphery of the central conductor, and an outer conductor provided on the outer periphery of the electrical insulating layer and disposed coaxially with the central conductor. It is a relatively short cable with a length of 1000mm or less. Further, the central conductor of this coaxial cable is a single wire conductor composed of one strand. The element wire includes a Cu-Ag alloy wire composed of a Cu-Ag alloy containing 5 mass% to 15 mass% of Ag and the balance being Cu and impurities, and an outer periphery of the Cu-Ag alloy wire. And an Ag plating layer or Sn plating layer. The diameter of the Cu—Ag alloy wire is 15 μm or more and 50 μm or less, the conductivity of the center conductor is 50% IACS or more, and the tensile strength of the center conductor is 1330 MPa or more.

本発明同軸ケーブルは、中心導体が単線導体であることで、撚線導体である場合と比較して、伸線性の向上、撚線工程の省略、端末接続処理の作業性の向上を図ることができる。また、本発明同軸ケーブルは、中心導体が、上述のようにAgの含有量が特定の範囲である特定の組成からなり、特定の大きさ(直径)を満たすCu-Ag合金線を主たる構成要素とすると共に、導電率及び引張強さが特定の範囲を満たすことで、1m以下といった比較的短尺なケーブルであって、かつ単線導体でありながら、捻回や屈曲に対する耐性に優れ、疲労特性に優れる。   In the coaxial cable of the present invention, since the central conductor is a single wire conductor, it is possible to improve the wire drawing property, omit the twisting step, and improve the workability of the terminal connection process as compared with the case where it is a stranded wire conductor. it can. In addition, the coaxial cable of the present invention is mainly composed of a Cu-Ag alloy wire that has a specific composition in which the center conductor has a specific Ag content as described above and satisfies a specific size (diameter). In addition, by satisfying specific ranges of conductivity and tensile strength, it is a relatively short cable of 1 m or less and is a single wire conductor, but has excellent resistance to twisting and bending, and fatigue characteristics. Excellent.

本発明の一形態として、上記中心導体の直径に対する上記電気絶縁層の厚さの割合が65%以上、当該同軸ケーブルの1GHzにおける減衰量が12dB/m以下である形態が挙げられる。また、本発明の一形態として、以下の疲労試験における当該同軸ケーブルのサイクル回数が20万回以上である形態が挙げられる。
[疲労試験]
上記同軸ケーブルを30本〜40本束ねたバンドル試料を作製し、当該試料の各端部をそれぞれ二軸回転動作が可能な治具に固定し、以下の開閉・捻回試験を実施する。上記二軸は、一方の軸と他方の軸とが直交するように配置されている。
開閉・捻回試験 一方の軸を回転軸として、回転角θ:0°から90°の開動作を行う。引き続き、他方の軸を回転軸として、回転角α:0°から180°の回転動作を行い、更に回転角α:180°から0°の逆回転動作を行う。引き続き、上記一方の軸を回転軸として、回転角θ:90°から0°の閉動作を行う。これら一連の二軸回転動作を1サイクルとし、約11秒/サイクルで行う。
As an embodiment of the present invention, there is an embodiment in which the ratio of the thickness of the electrical insulating layer to the diameter of the central conductor is 65% or more and the attenuation amount of the coaxial cable at 1 GHz is 12 dB / m or less. Moreover, as one form of this invention, the form whose cycle number of the said coaxial cable in the following fatigue tests is 200,000 times or more is mentioned.
[Fatigue test]
A bundle sample in which 30 to 40 coaxial cables are bundled is prepared, each end of the sample is fixed to a jig capable of biaxial rotation, and the following opening / closing and twisting tests are performed. The two axes are arranged so that one axis and the other axis are orthogonal to each other.
Opening / Closing / Torsion Test Using one axis as the rotation axis, the opening angle is rotated from 0 ° to 90 °. Subsequently, with the other axis as a rotation axis, a rotation operation is performed from a rotation angle α of 0 ° to 180 °, and a reverse rotation operation is further performed from a rotation angle α: 180 ° to 0 °. Subsequently, the closing operation is performed from the rotation angle θ of 90 ° to 0 ° with the one axis as a rotation axis. A series of these biaxial rotation operations is defined as one cycle, and is performed at about 11 seconds / cycle.

上記形態によれば、電気絶縁層の厚さが十分に厚いことで減衰量が少なく、信号伝送路として好適に利用できる。また、上記形態によれば、短尺な同軸ケーブルであり、かつ単線導体であっても、十分な疲労特性を有していることから、例えば、二軸回転機構を具え、小型である各種の電気・電子機器、代表的には携帯電話の配線に好適に利用できる。上記電気絶縁層の厚さの割合は大きいほど減衰量が少ないため、75%以上、更に80%以上が好ましいが、電気絶縁層の厚さが厚過ぎるとケーブルが太くなることから、100%以下が好ましい。また、減衰量は少ないほど信号伝送路に好ましいため、特に下限は設けない。   According to the said form, since the thickness of an electric insulation layer is thick enough, there is little attenuation amount and it can utilize suitably as a signal transmission path. In addition, according to the above-described embodiment, even a short coaxial cable and a single wire conductor have sufficient fatigue characteristics. -It can be suitably used for wiring of electronic devices, typically mobile phones. The greater the ratio of the thickness of the electrical insulation layer, the less the attenuation, so 75% or more, more preferably 80% or more. However, if the thickness of the electrical insulation layer is too thick, the cable becomes thick, so 100% or less Is preferred. Further, since the smaller the attenuation, the better for the signal transmission path, there is no particular lower limit.

本発明の一形態として、上記中心導体の直径が以下の比較ケーブルの中心導体の直径の90%以下、かつ上記電気絶縁層の外径が上記比較ケーブルの電気絶縁層の外径と等しく、当該同軸ケーブルの1GHzにおける減衰量が上記比較ケーブルの減衰量と同等以下である形態が挙げられる。また、本発明の一形態として、以下の疲労試験における当該同軸ケーブルのサイクル回数が上記比較ケーブルのサイクル回数と同等以上である形態が挙げられる。
[比較ケーブル]
中心導体は、Agを0.6質量%含有し、残部がCu及び不純物からなるCu-Ag合金により構成された撚線用素線を7本撚り合わせた撚線導体であり、各撚線用素線の直径が16μmである(撚線導体の直径:48μm)。また、比較ケーブルの電気絶縁層は、上記同軸ケーブルの電気絶縁層を構成する材質と同じ材質から構成される。
[疲労試験]
上記同軸ケーブルを30本〜40本束ねたバンドル試料と、上記比較ケーブルを上記同軸ケーブルと同数本束ねたバンドル比較試料とを作製し、各試料の各端部をそれぞれ二軸回転可能な治具に固定し、上述した開閉・捻回試験を実施する。
As one aspect of the present invention, the diameter of the center conductor is 90% or less of the diameter of the center conductor of the following comparison cable, and the outer diameter of the electric insulation layer is equal to the outer diameter of the electric insulation layer of the comparison cable. A form in which the attenuation amount of the coaxial cable at 1 GHz is equal to or less than the attenuation amount of the comparison cable can be mentioned. Moreover, as one form of this invention, the form whose cycle number of the said coaxial cable in the following fatigue tests is more than equivalent to the cycle number of the said comparison cable is mentioned.
[Comparison cable]
The central conductor is a stranded conductor made by twisting seven strands of strands composed of a Cu-Ag alloy containing 0.6% by mass of Ag and the balance being Cu and impurities. Has a diameter of 16 μm (diameter of stranded conductor: 48 μm). In addition, the electrical insulation layer of the comparison cable is made of the same material as that constituting the electrical insulation layer of the coaxial cable.
[Fatigue test]
A bundle sample in which 30 to 40 coaxial cables are bundled and a bundle comparison sample in which the same number of comparison cables are bundled with the coaxial cable are produced, and each end of each sample can be rotated biaxially. And open / close and twist tests as described above.

上記形態の同軸ケーブルは、中心導体が撚線導体である汎用の同軸ケーブルを模した比較ケーブルと比較して中心導体が細い。かつ、上記形態の同軸ケーブルと比較ケーブルとは電気絶縁層の外径(中心導体と電気絶縁層との合計径)が等しいため、上記形態の同軸ケーブルは、電気絶縁層の厚さが相対的に厚い。このように電気絶縁層が十分に厚いことで減衰量が少ないため、上記形態によれば、信号伝送路に好適に利用できる。また、上記形態によれば、短尺な同軸ケーブルであり、かつ単線導体であっても、撚線導体を具える比較ケーブルと同等以上の疲労特性を有している。従って、上記形態の同軸ケーブルは、例えば、二軸回転機構を具える各種の電気・電子機器、特に携帯電話といった小型な機器の配線に好適に利用できる。   The coaxial cable of the said form has a thin center conductor compared with the comparison cable which imitated the general purpose coaxial cable whose center conductor is a stranded conductor. And since the outer diameter of the electrical insulation layer (the total diameter of the center conductor and the electrical insulation layer) is equal between the coaxial cable of the above form and the comparison cable, the thickness of the electrical insulation layer of the coaxial cable of the above form is relatively Thick. In this way, since the electrical insulation layer is sufficiently thick, the amount of attenuation is small. Therefore, according to the above embodiment, it can be suitably used for a signal transmission line. Moreover, according to the said form, even if it is a short coaxial cable and is a single wire conductor, it has the fatigue characteristic equivalent to or more than the comparison cable which provides a twisted wire conductor. Therefore, the coaxial cable of the above-described form can be suitably used for wiring of various electric / electronic devices having a biaxial rotation mechanism, particularly a small device such as a mobile phone.

本発明同軸ケーブルは、1本のままでも利用できるが、複数本束ねた形態(本発明同軸ケーブルバンドル)で利用することができる。同軸ケーブルバンドルは、一纏めとなっていることで、非常に取り扱い易い。   The coaxial cable of the present invention can be used as it is, but can be used in a bundled form (coaxial cable bundle of the present invention). Coaxial cable bundles are very easy to handle because they are bundled together.

本発明同軸ケーブル及び同軸ケーブルバンドルは、疲労特性に優れる。   The coaxial cable and coaxial cable bundle of the present invention are excellent in fatigue characteristics.

図1は、本発明同軸ケーブルの横断面図である。FIG. 1 is a cross-sectional view of the coaxial cable of the present invention. 図2は、疲労試験に利用する二軸回転可能な治具の構成、及び同軸ケーブルの固定状態を説明する模式説明図であり、図2(A)は正面図、図2(B)は側面図である。FIG. 2 is a schematic explanatory view illustrating the configuration of a biaxially rotatable jig used for a fatigue test and a fixed state of a coaxial cable, FIG. 2 (A) is a front view, and FIG. 2 (B) is a side view. FIG. 図3は、疲労試験の手順を説明する模式説明図である。FIG. 3 is a schematic explanatory view illustrating the procedure of a fatigue test. 図4は、Cu-Ag合金線において周波数と減衰量との関係を示す減衰特性グラフである。FIG. 4 is an attenuation characteristic graph showing the relationship between frequency and attenuation in a Cu—Ag alloy wire.

以下、本発明をより詳細に説明する。
〔同軸ケーブル〕
≪全体構成≫
本発明の同軸ケーブル1は、図1に示すように中心導体10と、この中心導体10と同軸に配される外部導体14と、両導体10,14間を絶縁する電気絶縁層13とを具え、更に、外部導体14の外周を覆う外装15を具える構成が代表的である。中心導体10は、Cu-Ag合金線11と、Cu-Ag合金線11の表面に設けられためっき層12とを具える。本発明同軸ケーブルは、構造的特徴として、後述するように中心導体が単線導体であること、この単線導体を構成する素線の直径が特定の範囲を満たすこと、長さが比較的短いことが挙げられる。また、より好ましい形態として、後述するように電気絶縁層の厚さが特定の範囲を満たすことが挙げられる。
Hereinafter, the present invention will be described in more detail.
〔coaxial cable〕
≪Overall structure≫
As shown in FIG. 1, the coaxial cable 1 of the present invention includes a center conductor 10, an outer conductor 14 arranged coaxially with the center conductor 10, and an electric insulation layer 13 that insulates between the two conductors 10 and 14. Further, a configuration including an exterior 15 covering the outer periphery of the outer conductor 14 is representative. The center conductor 10 includes a Cu—Ag alloy wire 11 and a plating layer 12 provided on the surface of the Cu—Ag alloy wire 11. The coaxial cable of the present invention has structural features that the center conductor is a single wire conductor as described later, the diameter of the strands constituting the single wire conductor satisfies a specific range, and the length is relatively short. Can be mentioned. Moreover, as a more preferable form, it is mentioned that the thickness of an electrical insulating layer satisfy | fills a specific range so that it may mention later.

≪長さ≫
本発明同軸ケーブルはその長さを1000mm以下とする。用途によっては、500mm以下、300mm以下といった形態が挙げられる。この長さは、用途に応じて適宜選択することができる。長尺な同軸ケーブルを製造して所望の長さに切断すると、本発明同軸ケーブルを生産性よく製造できる。
≪Length≫
The coaxial cable of the present invention has a length of 1000 mm or less. Depending on the application, forms such as 500 mm or less and 300 mm or less can be mentioned. This length can be appropriately selected according to the application. When a long coaxial cable is manufactured and cut to a desired length, the coaxial cable of the present invention can be manufactured with high productivity.

≪中心導体≫
[組成]
中心導体を構成する主たる線材は、特定量のAgを含有する二元合金(Cu-Ag合金)から構成されるCu-Ag合金線である。Agの含有量が5質量%以上では、Agの析出強化による強度の向上、延いては、疲労特性の向上の効果が得られ易く、Agが多くなるほど、疲労特性に更に優れる傾向にある。しかし、15質量%超の場合、Agが過剰に析出することでCu-Ag間の界面抵抗が増えるために導電率が低下する。従って、優れた疲労特性と高い導電率との両立を図るために、本発明では、Agの含有量を5質量%以上15質量%以下とする。
≪Center conductor≫
[composition]
The main wire constituting the central conductor is a Cu—Ag alloy wire made of a binary alloy (Cu—Ag alloy) containing a specific amount of Ag. When the Ag content is 5% by mass or more, the strength is improved by precipitation strengthening of Ag, and the effect of improving the fatigue characteristics is easily obtained, and the fatigue characteristics tend to be further improved as the amount of Ag increases. However, in the case of more than 15% by mass, excessive precipitation of Ag increases the interfacial resistance between Cu and Ag, so that the conductivity decreases. Therefore, in order to achieve both excellent fatigue characteristics and high electrical conductivity, the content of Ag is set to 5% by mass or more and 15% by mass or less in the present invention.

[線径]
上記Cu-Ag合金線は、代表的には断面円形状の丸線である。特に、本発明では、単線導体として十分に利用可能な大きさとして、上記Cu-Ag合金線の直径を15μm(0.015mm)以上50μm(0.05mm)以下とする。15μm以上とすることで、伸線時の加工度が大き過ぎることによる導電率の低下を抑制し、特定の大きさの導電率を有することができる上に、伸線時に断線が発生し難く伸線性に優れ、線材の生産性に優れる。また、50μm以下とすることで、ケーブル径が大きくなり過ぎず、細径のケーブルとすることができる。45μm(0.045mm)以下、更に40μm(0.04mm)以下がより好ましい。Cu-Ag合金線と、後述するめっき層とを具える中心導体の直径も50μm以下、特に45μm以下、更に40μm以下が好ましい。また、中心導体の直径は、上述した汎用の同軸ケーブルを模した比較ケーブルの中心導体の直径の90%以下であると、汎用の同軸ケーブルよりも細く、細径化の効果が得られる。但し、上述のように細過ぎると導電率の低下や生産性の低下を招くことから、中心導体の直径は、比較ケーブルの中心導体の直径の30%以上であることが好ましい。Cu-Ag合金線の直径は、伸線加工時の加工度を適宜変更することで変化させられ、このCu-Ag合金線を具える中心導体の直径は、上記Cu-Ag合金線の直径と、後述するめっき層の厚さとを適宜変更することで変化させられる。
[Wire diameter]
The Cu-Ag alloy wire is typically a round wire having a circular cross section. In particular, in the present invention, the diameter of the Cu—Ag alloy wire is set to 15 μm (0.015 mm) or more and 50 μm (0.05 mm) or less as a size that can be sufficiently used as a single wire conductor. By setting the thickness to 15 μm or more, it is possible to suppress a decrease in conductivity due to an excessively high degree of workability at the time of wire drawing, and to have a specific size of conductivity, and it is difficult to cause disconnection at the time of wire drawing. Excellent linearity and excellent wire productivity. In addition, when the thickness is 50 μm or less, the cable diameter does not become too large, and a thin cable can be obtained. More preferably, it is 45 μm (0.045 mm) or less, and more preferably 40 μm (0.04 mm) or less. The diameter of the central conductor including the Cu-Ag alloy wire and the plating layer described later is also preferably 50 μm or less, particularly 45 μm or less, and more preferably 40 μm or less. Further, the diameter of the center conductor is 90% or less of the diameter of the center conductor of the comparative cable imitating the above-described general-purpose coaxial cable, which is thinner than the general-purpose coaxial cable, and the effect of reducing the diameter can be obtained. However, if it is too thin as described above, the conductivity and the productivity are lowered, and therefore the diameter of the center conductor is preferably 30% or more of the diameter of the center conductor of the comparison cable. The diameter of the Cu-Ag alloy wire can be changed by appropriately changing the degree of processing at the time of wire drawing, and the diameter of the central conductor comprising this Cu-Ag alloy wire is the same as the diameter of the Cu-Ag alloy wire. The thickness can be changed by appropriately changing the thickness of the plating layer described later.

[特性]
ここで、Cu-Ag合金では、引張強さと導電率とが概ねトレードオフの関係にあり、かつAgの含有量と引張強さとが概ね比例の関係にある。本発明者らは、これらの関係から、中心導体を単線導体とする場合に十分な疲労特性を有する範囲を見出し、本発明は、その範囲を規定する。具体的には、上記Cu-Ag合金線を具える中心導体の導電率を50%IACS以上、かつ引張強さを1330MPa以上とする。上記導電率及び引張強さは上記下限値を満たせば高いほど好ましく、導電率は、55%IACS以上、更に60%IACS以上、引張強さは、1400MPa以上、更に1500MPa以上が好ましい。引張強さは、Agの含有量を多くしたり、伸線時の加工度を高くしたり、熱処理によりAgの析出物の存在状態を調整したりすることで大きくなる傾向にあり、導電率は、Agの含有量を少なくしたり、熱処理を施してAgの析出物を十分に析出させたりすることで大きくなる傾向にある。所望の特性となるようにAgの含有量や製造条件を調整するとよい。
[Characteristic]
Here, in the Cu-Ag alloy, the tensile strength and the electrical conductivity are generally in a trade-off relationship, and the Ag content and the tensile strength are in a generally proportional relationship. From these relationships, the present inventors have found a range having sufficient fatigue characteristics when the central conductor is a single wire conductor, and the present invention defines the range. Specifically, the conductivity of the central conductor including the Cu-Ag alloy wire is 50% IACS or more and the tensile strength is 1330 MPa or more. The conductivity and tensile strength are preferably as high as the above lower limit values are satisfied. The conductivity is preferably 55% IACS or more, more preferably 60% IACS or more, and the tensile strength is preferably 1400 MPa or more, more preferably 1500 MPa or more. Tensile strength tends to increase by increasing the Ag content, increasing the degree of processing during wire drawing, or adjusting the presence of Ag precipitates by heat treatment. , The content of Ag tends to be increased by reducing the Ag content or sufficiently precipitating the Ag precipitate by heat treatment. It is preferable to adjust the Ag content and production conditions so as to obtain desired characteristics.

[めっき層]
同軸ケーブルを回路基板などに接続する場合、一般にハンダを利用する。上記Cu-Ag合金線の外周にめっき層を具えることでハンダとの濡れ性を高められる上に、Cu-Ag合金線の耐食性を高められる。めっき層の材質は、Ag又はSnが好適である。めっき層の厚さは適宜選択することができるが、1μm以下、特に0.3μm以下といった薄さでもハンダとの濡れ性を十分に高められる上に、中心導体が過度に大きくならず、細径の中心導体にできて好ましい。めっき層は、厚さ:0.8μm〜0.2μmが利用し易い。
[Plating layer]
When connecting a coaxial cable to a circuit board or the like, solder is generally used. By providing a plating layer on the outer periphery of the Cu-Ag alloy wire, the wettability with solder can be improved and the corrosion resistance of the Cu-Ag alloy wire can be improved. The material of the plating layer is preferably Ag or Sn. Although the thickness of the plating layer can be selected as appropriate, the wettability with the solder can be sufficiently enhanced even with a thickness of 1 μm or less, particularly 0.3 μm or less, and the center conductor is not excessively large and has a small diameter. A center conductor is preferable. The thickness of the plating layer is easily 0.8 μm to 0.2 μm.

≪電気絶縁層≫
上記中心導体の外周に形成される電気絶縁層の構成材料は、電気絶縁性及び可撓性に優れる適宜なもの、代表的には絶縁性樹脂が好適に利用できる。具体的には、エポキシ系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリビニルアルコール系樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、アクリル系樹脂、エポキシアクリレート系樹脂、ジアリルフタレート系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂が挙げられる。特に、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)といったフッ素系樹脂が好適である。
≪Electrical insulation layer≫
As the constituent material of the electrical insulating layer formed on the outer periphery of the central conductor, an appropriate material excellent in electrical insulation and flexibility, typically an insulating resin, can be suitably used. Specifically, epoxy resins, polyester resins, polyurethane resins, polyvinyl alcohol resins, vinyl chloride resins, vinyl ester resins, acrylic resins, epoxy acrylate resins, diallyl phthalate resins, phenol resins, Polyamide resin, polyimide resin, and melamine resin are listed. In particular, a fluororesin such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is suitable.

上記電気絶縁層は、その厚さが厚いほど減衰量を低減できる傾向にある。この効果を得るためには、電気絶縁層の厚さは、上記中心導体の直径に対して、当該電気絶縁層の厚さの割合が65%以上、更に75%以上であることが好ましい。また、同軸ケーブルの中心導体の直径が上述した比較ケーブルの中心導体の直径の90%以下であり、かつ当該同軸ケーブルの電気絶縁層の外径が上述の比較ケーブルの電気絶縁層の外径と等しい形態では、当該同軸ケーブルの中心導体が細いほど、当該電気絶縁層の厚さが比較ケーブルよりも相対的に厚くなる。従って、この形態では、中心導体の直径を小さくするほど、減衰量を低減できる。上述のようにCu-Ag合金線が40μm以下とより細径である形態も、電気絶縁層を比較的厚く形成できることで減衰量を低減できる。なお、誘電率が低い材料(例えば、50pF/m以下)により電気絶縁層が構成される場合、厚さがある程度薄くても、減衰量を低下できると期待される。   The electrical insulating layer tends to reduce the attenuation as the thickness thereof increases. In order to obtain this effect, the thickness of the electrical insulating layer is preferably 65% or more, more preferably 75% or more, with respect to the diameter of the central conductor. Further, the diameter of the central conductor of the coaxial cable is 90% or less of the diameter of the central conductor of the comparison cable, and the outer diameter of the electric insulation layer of the coaxial cable is equal to the outer diameter of the electric insulation layer of the comparison cable. In the same form, the thinner the central conductor of the coaxial cable, the thicker the electrical insulation layer is than the comparative cable. Therefore, in this embodiment, the attenuation can be reduced as the diameter of the central conductor is reduced. As described above, even when the Cu-Ag alloy wire has a smaller diameter of 40 μm or less, the attenuation can be reduced by forming the electrical insulating layer relatively thick. Note that when the electrical insulating layer is made of a material having a low dielectric constant (for example, 50 pF / m or less), it is expected that the attenuation can be reduced even if the thickness is somewhat thin.

≪その他の構成≫
外部導体や外装は、公知の細径の同軸ケーブルの構成を適宜利用できる。外部導体は、シールド層として機能する部位であり、その構成材料には、CuやCu-Ag合金からなる線材を好適に利用できる。テープ状線材や丸線材を上記電気絶縁層の外周に横巻きした形態(螺旋状に巻回した形態)や、上記線材を編んだ編組材を上記電気絶縁層の外周に配置した形態などが挙げられる。外装の構成材料も、電気絶縁層で説明した電気絶縁性及び可撓性に優れる樹脂、特に、熱可塑性樹脂を好適に利用できる。
≪Other composition≫
As the outer conductor and the exterior, a known thin coaxial cable configuration can be used as appropriate. The outer conductor is a part that functions as a shield layer, and a wire made of Cu or a Cu—Ag alloy can be suitably used as a constituent material thereof. Examples include a form in which a tape-shaped wire or a round wire is laterally wound around the outer periphery of the electrical insulating layer (a spirally wound form), a form in which a braided material knitting the wire is disposed on the outer periphery of the electrical insulating layer, etc. It is done. As the constituent material of the exterior, a resin excellent in electrical insulation and flexibility described in the electrical insulation layer, in particular, a thermoplastic resin can be suitably used.

〔同軸ケーブルバンドル〕
本発明同軸ケーブルバンドルは、複数の本発明同軸ケーブルと、これらのケーブルを一体化する結束部材とを具える。結束部材による一体化状態は、例えば、複数の同軸ケーブルを並列させて接着テープを巻回して一体化した形態、複数の同軸ケーブルを並列させて、その外周に樹脂などを押し出して一体化した形態などが挙げられる。また、同軸ケーブルバンドルの一形態として、両端部にコネクタといった接続部材が取り付けられた形態が挙げられる。この形態によれば、複数の同軸ケーブルを電気・電子機器に一度に装着できるため、接続作業性に優れる。代表的な形態は、結束部材により一体化された同軸ケーブル群に対して、一つのコネクタを具える形態が挙げられる。上記コネクタなどの接続部材を具えていない形態では、上記同軸ケーブル群の端部に直接ハンダを塗布して、基板などに接続される。接続部材や結束部材の材質、形成方法、取り付け方法などは、公知の技術を適宜利用できる。
(Coaxial cable bundle)
The coaxial cable bundle of the present invention includes a plurality of coaxial cables of the present invention and a bundling member that integrates these cables. The integrated state by the bundling member is, for example, a form in which a plurality of coaxial cables are arranged in parallel and wound with an adhesive tape, and a form in which a plurality of coaxial cables are arranged in parallel and extruded with resin or the like on its outer periphery Etc. In addition, as one form of the coaxial cable bundle, a form in which connection members such as connectors are attached to both ends can be cited. According to this embodiment, since a plurality of coaxial cables can be attached to an electric / electronic device at a time, the connection workability is excellent. A typical form includes a form in which one connector is provided for a coaxial cable group integrated by a bundling member. In a form that does not include a connecting member such as the connector, solder is applied directly to the end of the coaxial cable group and connected to a substrate or the like. Known materials can be used as appropriate for the material, forming method, attaching method, and the like of the connecting member and the binding member.

〔用途〕
本発明同軸ケーブル及び同軸ケーブルバンドルは、その長さが1000mm以下と比較的短いため、小型な電気・電子機器の配線、代表的には、携帯電話、携帯用コンピュータといった携帯機器、特に、二軸回転機構を具える機器の配線に好適に利用できる。なお、長さを1000mm超とした場合、医療機器や産業用ロボットなどの配線にも利用できる。
[Use]
The coaxial cable and the coaxial cable bundle of the present invention have a relatively short length of 1000 mm or less. Therefore, the wiring of a small electric / electronic device, typically a portable device such as a mobile phone or a portable computer, particularly a biaxial It can be suitably used for the wiring of equipment having a rotating mechanism. In addition, when the length exceeds 1000 mm, it can also be used for wiring of medical equipment and industrial robots.

〔同軸ケーブルの特性〕
上記構成を具える同軸ケーブルは、上述の疲労試験を行った場合にサイクル回数が20万回以上、或いは比較ケーブルと同等以上のサイクル回数であり、疲労特性に優れる。また、上記電気絶縁層が特定の厚さである同軸ケーブルは、1GHzにおける減衰量が12dB/m以下、或いは比較ケーブルと同等以下であり、減衰し難い。従って、本発明同軸ケーブルや同軸ケーブルバンドルは、信号伝送路に好適に利用できる。
[Characteristics of coaxial cable]
The coaxial cable having the above configuration has a cycle number of 200,000 times or more when the above-described fatigue test is performed, or a cycle number equal to or greater than that of the comparative cable, and has excellent fatigue characteristics. Further, the coaxial cable having the specific thickness of the electrical insulating layer has an attenuation amount of 1 dB / m or less at 1 GHz or equal to or less than that of the comparative cable, and is not easily attenuated. Therefore, the coaxial cable and coaxial cable bundle of the present invention can be suitably used for a signal transmission path.

〔製造方法〕
本発明同軸ケーブルは、代表的には、中心導体の製造⇒電気絶縁層の形成⇒外部導体の形成⇒外装の形成、といった製造工程により製造することができる。特に、中心導体の基本的な製造工程は、鋳造材の製造⇒伸線加工が挙げられる。伸線途中に中間熱処理を施してもよい。中間熱処理を施す時期は、適宜選択することができ、中間熱処理を行わなくてもよい。
〔Production method〕
The coaxial cable of the present invention can be typically manufactured by a manufacturing process in which a central conductor is formed, an electrical insulating layer is formed, an external conductor is formed, and an exterior is formed. In particular, the basic manufacturing process of the center conductor includes the production of cast material ⇒ wire drawing. An intermediate heat treatment may be performed during the wire drawing. The timing for performing the intermediate heat treatment can be selected as appropriate, and the intermediate heat treatment may not be performed.

本発明者らは、Agの含有量が上記特定の範囲であって、特定の大きさ、特定の導電率及び引張強さを有するCu-Ag合金線を製造するにあたり、以下の知見を得た。Agの含有量が5質量%以上15質量%以下の範囲において比較的少ない場合(5質量%以上10質量%程度以下)には、伸線途中に中間熱処理を施さなくても導電率が50%IACS以上、引張強さが1330MPa以上のCu-Ag合金線が得られ、比較的多い場合(10質量%程度以上)には、伸線途中に中間熱処理を施す、特に、Agの含有量が多いほど当該中間熱処理を施す時期を遅くする(線径が小さくなってから中間熱処理を施す)ことが好ましい、との知見を得た。本発明では、Agの含有量の範囲をある程度広く規定しているが、Agの含有量に基づいた製造工程を上述のように確立したことで、上記特定のCu-Ag合金線を生産性よく製造可能であり、工業的意義が高い。   The inventors of the present invention have obtained the following knowledge in manufacturing a Cu-Ag alloy wire having a specific content, specific conductivity, and tensile strength in which the Ag content is in the specific range described above. . When the Ag content is relatively low in the range of 5% to 15% by mass (5% to 10% by mass or less), the conductivity is 50% even without intermediate heat treatment in the middle of wire drawing. Cu-Ag alloy wire with IACS or higher and tensile strength of 1330 MPa or higher is obtained. When the amount is relatively high (about 10% by mass or more), intermediate heat treatment is performed during wire drawing, especially with high Ag content. It was found that it is preferable to delay the time for performing the intermediate heat treatment (intermediate heat treatment is performed after the wire diameter is reduced). In the present invention, the range of the Ag content is specified to some extent, but by establishing the manufacturing process based on the Ag content as described above, the specific Cu-Ag alloy wire can be produced with high productivity. It can be manufactured and has high industrial significance.

鋳造材を製造するにあたり、所定の組成となるように、原料を用意する。原料Cuや原料Agは純度の高いもの、例えば、フォーナイン(純度99.99%)以上のものを利用すると不純物が少なく、細径の線材を製造するにあたり、断線に関与し得る異物を低減できる。   In producing a cast material, raw materials are prepared so as to have a predetermined composition. When the raw material Cu or the raw material Ag has a high purity, for example, one having four nines (purity 99.99%) or more is used, there are few impurities, and foreign matter that can be involved in disconnection can be reduced when manufacturing a thin wire.

上記鋳造材には、伸線加工前に、溶体化処理や均質化処理といった熱処理を施してもよい。溶体化処理の条件は、加熱温度:600℃以上850℃以下、保持時間:0.5時間以上、冷却速度:1.5℃/sec以上が挙げられる。この条件で溶体化処理を施すことで、Cu中にAgを十分に固溶させられる。上記保持時間は長いほどAgをCu中に十分に固溶させられる傾向にあり、生産性の低下を招かない範囲で適宜選択することが好ましい。上記冷却速度は速いほどAgの析出を抑制でき、1.5℃/sec以上、更に3℃/sec以上の急冷とすることが好ましい。このような急冷は、水や油、砂などの流動性のある冷媒を利用した直接冷却、ファンなどを利用した衝風、その他、水冷銅ブロックを利用するなど、強制冷却手段を適宜利用することで実現できる。上記溶体化処理を施す場合、伸線途中で中間熱処理を施して固溶させたAgを析出させると、析出強化による強度(疲労特性)の向上を図ることができる。均質化処理の条件は、加熱温度:500℃以上、保持時間:0.5時間以上、冷却速度:50℃/sec以下が挙げられる。   The cast material may be subjected to heat treatment such as solution treatment or homogenization treatment before wire drawing. The conditions for the solution treatment include heating temperature: 600 ° C. or more and 850 ° C. or less, holding time: 0.5 hour or more, and cooling rate: 1.5 ° C./sec or more. By performing solution treatment under these conditions, Ag can be sufficiently dissolved in Cu. As the holding time is longer, Ag tends to be sufficiently dissolved in Cu, and it is preferable to select appropriately within a range not causing a decrease in productivity. As the cooling rate is higher, the precipitation of Ag can be suppressed, and it is preferable to perform rapid cooling at 1.5 ° C./sec or more, and further 3 ° C./sec or more. For such rapid cooling, use forced cooling means as appropriate, such as direct cooling using a fluid refrigerant such as water, oil, sand, blast using a fan, etc., or using a water-cooled copper block. Can be realized. In the case of performing the solution treatment, the strength (fatigue property) can be improved by precipitation strengthening by precipitating Ag that has been subjected to intermediate heat treatment in the middle of wire drawing to cause solid solution. The conditions for the homogenization treatment include heating temperature: 500 ° C. or more, holding time: 0.5 hour or more, and cooling rate: 50 ° C./sec or less.

伸線(代表的には冷間)加工は、最終線径となるまで複数パスに亘って行う。各パスの加工度は、組成(Agの含有量)、最終線径などを考慮して適宜調整するとよい。伸線加工により、析出されたAgの一部は、繊維状に引き伸ばされ、この繊維状Agによる強化により、強度(疲労特性)の向上効果が得られると考えられる。   The wire drawing (typically cold) is performed over a plurality of passes until the final wire diameter is reached. The degree of processing of each pass may be appropriately adjusted in consideration of the composition (Ag content), the final wire diameter, and the like. A part of the precipitated Ag is drawn into a fibrous shape by the wire drawing process, and it is considered that an effect of improving the strength (fatigue property) can be obtained by strengthening with the fibrous Ag.

伸線加工途中に施す中間熱処理は、主として、Agを析出させ、析出強化による強度の向上効果を目的とする。この熱処理により、析出されたAgの一部は、ナノオーダーといった非常に微細な粒状になっていると考えられる。上述した繊維状のAgが存在したり、上記超微粒のAgが均一的に分散して存在したり、両者が共存したりすることにより、導電率及び強度が高いCu-Ag合金線を製造できると考えられる。   The intermediate heat treatment performed in the middle of wire drawing mainly aims at the effect of improving the strength by precipitation strengthening of Ag. It is considered that a part of the precipitated Ag by this heat treatment is in the form of very fine particles such as nano-order. Cu-Ag alloy wire with high electrical conductivity and strength can be produced by the presence of the above-mentioned fibrous Ag, the presence of the above-mentioned ultrafine Ag uniformly dispersed, or the coexistence of both. it is conceivable that.

上記中間熱処理は、複数回施してもよいが1回とすると、製造工程が少なく生産性に優れる。複数回施す場合、Agが十分に析出されて強度や導電率を高めたり、伸線加工により導入された加工歪みを除去して導電率を向上したり、熱処理以降の伸線加工を行い易くしたりすることができると期待される。   The intermediate heat treatment may be performed a plurality of times, but if it is performed once, the number of manufacturing steps is small and the productivity is excellent. When applied multiple times, Ag is sufficiently precipitated to increase strength and electrical conductivity, to improve the electrical conductivity by removing processing strain introduced by wire drawing, or to make wire drawing after heat treatment easier. It is expected that you can.

上記中間熱処理の条件は、加熱温度:300℃以上、保持時間:0.5時間以上が挙げられる。加熱温度を300℃以上、及び保持時間を0.5時間以上とすることで、Agを十分に析出させたり、加工歪みを十分に除去したりできる。加熱温度が高いほど、また、保持時間が長いほど、Agを析出させ易い。また、加熱温度を600℃以下とすることでAgが再びCu中に固溶することによる導電率の低下を抑制できる。そのため、加熱温度は600℃以下、特に350℃以上550℃以下、更に400℃以上450℃以下が好ましく、保持時間は、0.5時間以上10時間以下が好ましい。中間熱処理時の冷却方法は、例えば、熱処理炉内に放置して自然放冷により冷却する炉冷が挙げられる。   The conditions for the intermediate heat treatment include heating temperature: 300 ° C. or higher and holding time: 0.5 hour or longer. By setting the heating temperature to 300 ° C. or more and the holding time to 0.5 hours or more, Ag can be sufficiently precipitated or processing strain can be sufficiently removed. The higher the heating temperature and the longer the holding time, the easier it is to precipitate Ag. Moreover, the fall of the electroconductivity by Ag solid-dissolving in Cu again can be suppressed by making heating temperature 600 degrees C or less. Therefore, the heating temperature is preferably 600 ° C. or less, particularly 350 ° C. or more and 550 ° C. or less, more preferably 400 ° C. or more and 450 ° C. or less, and the holding time is preferably 0.5 hours or more and 10 hours or less. The cooling method during the intermediate heat treatment includes, for example, furnace cooling in which it is left in a heat treatment furnace and cooled by natural cooling.

伸線加工途中、或いは最終線径の線材にめっき層を形成する。めっき方法は、代表的には電気めっきが挙げられるが、無電解めっきを利用してもよい。   A plating layer is formed during the wire drawing process or on the wire having the final wire diameter. The plating method typically includes electroplating, but electroless plating may be used.

外部導体及び外装の形成、同軸ケーブルバンドルの形成は、公知の方法を適宜利用することができる。   A known method can be used as appropriate for the formation of the outer conductor and the exterior and the formation of the coaxial cable bundle.

〔試験例〕
種々の条件でCu-Ag合金線を製造し、このCu-Ag合金線を中心導体に用いた同軸ケーブルを作製し、得られた各同軸ケーブルについて、機械的特性、及び疲労特性、減衰特性、端末処理時の状態を調べた。
[Test example]
Manufacture Cu-Ag alloy wire under various conditions, manufacture coaxial cable using this Cu-Ag alloy wire as the central conductor, and for each coaxial cable obtained, mechanical characteristics, fatigue characteristics, damping characteristics, The state at the time of terminal processing was examined.

Cu-Ag合金線は、以下のように作製した。原料Cuとして、純度99.99%以上の電気銅、原料Agとして純度99.99%以上の銀粒(Ag)を用意し、高純度カーボン製坩堝に投入して連続鋳造装置内で真空溶解させ、Cu及びAgが溶解した混合溶湯を作製した。銀粒の添加量は、表1に示すように、混合溶湯に対するAg含有量(濃度)が0.6質量%(試料No.100)、5質量%〜15質量%(試料No.1〜5)となるように調整した。   The Cu-Ag alloy wire was produced as follows. Prepare copper as the raw material Cu with a purity of 99.99% or more, and silver grains (Ag) with a purity of 99.99% or more as the raw material Ag, put them in a high-purity carbon crucible, and vacuum-melt them in a continuous casting machine. Cu and Ag A mixed molten metal was dissolved. As shown in Table 1, the amount of silver grains added is 0.6 mass% (sample No. 100), 5 mass% to 15 mass% (sample No. 1 to 5) with respect to the mixed molten metal. It adjusted so that it might become.

得られた混合溶湯を用い、高純度カーボン製鋳型で連続鋳造により、表1に示す鋳造サイズ(φ22mm、φ16mm、φ8.0mmのいずれか)の断面円形状の鋳造材を製造した。   Using the obtained molten metal, a cast material having a circular cross section having a casting size (any one of φ22 mm, φ16 mm, and φ8.0 mm) shown in Table 1 was manufactured by continuous casting with a high-purity carbon mold.

得られた鋳造材に冷間伸線加工を施し、表1に示す線径(最終線径)の素線(試料No.100は撚線用素線)を得た。試料No.2〜5は、伸線加工途中において表1に示す線径(サイズ)のときに、表1に示す条件で中間熱処理を施した。また、いずれの試料も、伸線加工途中において、線径がφ0.36mmのときに、電気めっきにより、表1に示す材質のめっき層を形成した後、引き続き伸線加工を施した。従って、得られた素線は、いずれの試料もCu-Ag合金線の外周にめっき層を具える。ここではいずれの試料も、めっき層の厚さは0.3μm以下である。   The obtained cast material was subjected to cold drawing to obtain strands having the wire diameters (final wire diameters) shown in Table 1 (sample No. 100 was a strand for strands). Samples Nos. 2 to 5 were subjected to intermediate heat treatment under the conditions shown in Table 1 when the wire diameters (sizes) shown in Table 1 were in the middle of the wire drawing. In addition, in each sample, when the wire diameter was φ0.36 mm in the middle of wire drawing, a plating layer having the material shown in Table 1 was formed by electroplating, and subsequently wire drawing was performed. Therefore, all the obtained strands have a plating layer on the outer periphery of the Cu-Ag alloy wire. Here, in any sample, the thickness of the plating layer is 0.3 μm or less.

上記最終線径の素線を2kg作製するまでに、試料No.1〜5は、一度も断線しなかったが、試料No.100は、表1に示すように13回断線した。   Sample Nos. 1 to 5 were never disconnected until 2 kg of the strand having the final wire diameter was produced, but sample No. 100 was disconnected 13 times as shown in Table 1.

得られためっき層を具える素線の引張強さ(MPa)及び導電率(%IACS)を測定した。その結果を表1に示す。引張強さは、JIS Z 2241(1998)の規定に準じて測定した(標点距離GL:250mm)。導電率は、ブリッジ法により測定した。なお、中心導体・電気絶縁層・外部導体・外装を具える同軸ケーブルに対して、中心導体の引張強さや導電率を測定する場合、同軸ケーブルを解体して、中心導体を適宜取り出して行うとよい。   The tensile strength (MPa) and electrical conductivity (% IACS) of the wire comprising the obtained plating layer were measured. The results are shown in Table 1. The tensile strength was measured in accordance with the provisions of JIS Z 2241 (1998) (marking distance GL: 250 mm). The conductivity was measured by the bridge method. When measuring the tensile strength and conductivity of the center conductor for a coaxial cable with a center conductor, electrical insulation layer, outer conductor, and sheath, disassembling the coaxial cable and taking out the center conductor as appropriate Good.

試料No.1〜5のめっき層を具える素線を中心導体とし、この中心導体の外周に表1に示す材質を用いて、表1に示す厚さとなるように電気絶縁層を押出により形成し、更に、その外周に外部導体、外装を順に形成して、同軸ケーブルを作製した。外部導体、外装は、公知の素材を利用し、いずれの試料においても同じものを利用した。試料No.100は、線径φ16μmの撚線用素線を7本用意して撚り合わせた後、試料No.1〜5と同様に、同様の材質を用いて電気絶縁層、外部導体、外装を形成して、同軸ケーブル(以下、比較ケーブルと呼ぶ)を作製した。試料No.1〜5の同軸ケーブルの電気絶縁層は、中心導体の全周に亘って均一的な厚さである。これに対し、試料No.100の比較ケーブルでは、中心導体の外形が凹凸形状であるため、電気絶縁層は、中心導体の全周に亘って不均一な厚さである。従って、試料No.100の比較ケーブルでは、電気絶縁層の厚さがもっとも薄い箇所(撚線のクラウン部分を覆う箇所)の厚さを表1に示す。なお、試料No.1〜5,100の電気絶縁層はいずれも、同じ材質で構成されることで誘電率が等しい。同軸ケーブルの中心導体の直径(線径)や電気絶縁層の厚さは、横断面を顕微鏡観察することで容易に測定できる。   Using the wire with the plating layer of sample No. 1 to 5 as the central conductor and using the material shown in Table 1 on the outer periphery of this central conductor, the electrical insulation layer is formed by extrusion to the thickness shown in Table 1. Furthermore, an outer conductor and an exterior were formed in that order on the outer periphery to produce a coaxial cable. For the outer conductor and the exterior, a known material was used, and the same material was used for any sample. Sample No. 100 was prepared by twisting and twisting 7 strands for stranded wire with a diameter of φ16μm, and using the same materials as Sample No. 1 to 5, using the same material as the insulation layer, external conductor, and exterior A coaxial cable (hereinafter referred to as a comparative cable) was produced. The electrical insulation layers of the coaxial cables of Sample Nos. 1 to 5 have a uniform thickness over the entire circumference of the center conductor. On the other hand, in the comparative cable of sample No. 100, since the outer shape of the center conductor is uneven, the electrical insulating layer has a nonuniform thickness over the entire circumference of the center conductor. Therefore, in the comparative cable of sample No. 100, Table 1 shows the thickness of the portion where the thickness of the electric insulating layer is the thinnest (the portion covering the crown portion of the stranded wire). Note that the electrical insulating layers of Samples Nos. 1 to 5 and 100 are all made of the same material, and thus have the same dielectric constant. The diameter (wire diameter) of the central conductor of the coaxial cable and the thickness of the electrical insulating layer can be easily measured by observing the cross section under a microscope.

得られた各試料No.1〜5の同軸ケーブル及び試料No.100の比較ケーブルに対して、市販の装置(ここでは、ネットワークアナライザ アジレント・テクノロジー株式会社 HP8753ES)を利用して、減衰量(dB/m)を測定した。周波数が1GHzのときの減衰量を表1に示す。また、試料No.2,3,100において種々の周波数における減衰量を図4に示す。ここでは、減衰量の測定にあたり、演算が容易なように各試料のケーブルの長さを1mとしたが、短くしてもよい。   For each of the obtained coaxial cables of sample Nos. 1 to 5 and the comparative cable of sample No. 100, using a commercially available device (here, Network Analyzer Agilent Technologies, Inc. HP8753ES), the attenuation (dB / m) was measured. Table 1 shows the attenuation when the frequency is 1 GHz. In addition, FIG. 4 shows attenuation amounts at various frequencies in sample Nos. 2, 3, and 100. Here, in measuring the attenuation, the cable length of each sample is set to 1 m so that the calculation is easy, but it may be shortened.

得られた試料No.1〜5の同軸ケーブル及び試料No.100の比較ケーブルに対して、二軸回転機構を具える携帯電話を模擬した疲労試験を行い、サイクル回数を測定した。この疲労試験は、以下のバンドル試料及びバンドル比較試料をそれぞれ作製し、各バンドル試料及びバンドル比較試料を後述する治具に固定して行った。   A fatigue test simulating a mobile phone having a biaxial rotation mechanism was performed on the obtained coaxial cables of Sample Nos. 1 to 5 and the comparative cable of Sample No. 100, and the number of cycles was measured. This fatigue test was performed by preparing the following bundle samples and bundle comparison samples, and fixing each bundle sample and bundle comparison sample to a jig described later.

試料No.1〜5の同軸ケーブル及び試料No.100の比較ケーブル(いずれも長さ:約200mm)を40本ずつ用意し、並列させたケーブル群の外周に発泡フッ素樹脂テープ(ここではポアフロン(住友電気工業株式会社の登録商標)テープ)を巻回して束ねることで、バンドル試料(試料No.1〜5)及びバンドル比較試料(試料No.100)を作製した。   Prepare 40 coaxial cables of sample Nos. 1 to 5 and a comparative cable of sample No. 100 (both length: approx. 200 mm). A bundle sample (sample Nos. 1 to 5) and a bundle comparison sample (sample No. 100) were produced by winding and bundling (registered trademark of Sumitomo Electric Industries, Ltd.) tape).

次に、図2を参照して、疲労試験に用いた治具を説明する。この治具100は、二軸回転が可能な機構を有するものであり、支持脚101と、支持脚101に対して回転可能に軸支される可動板102と、支持脚101に対して、可動板102を回転可能に支持する第一回転軸103及び第二回転軸105とを具える。第一回転軸103に対して第二回転軸105は、各軸方向が直交するように配置されると共に、可動板102を回転可能に支持枠104に装着される。ここでは、可動板102は、第一回転軸103を軸として回転角θ:0°〜180°の回転を可能に第一回転軸103に軸支される。この回転動作は、図2(B)において左方〜上方〜右方に円弧を描く動作となり、図3に示す軸部110(第一回転軸と第二回転軸とを模式的に示す)により開閉可能に支持される一対の板状部111,112が軸部110(第一回転軸)を軸として、開閉動作を行う状態を模した動作である。また、可動板102は、第一回転軸103を軸として、回転角θ:90°の回転を行った状態(図2(B),図3(B)に示す状態)において、更に、第二回転軸105を軸として回転角α:0°〜180°の回転を可能に第二回転軸105に軸支される。この回転動作は、図2(B)において左方〜手前〜右方に円弧を描く動作となり、図3(B)〜図3(D)に示すように、一方の板状部112を支持脚101と見なし、軸部110(第一回転軸)を軸として、回転角θ:0°から90°の開動作を行って他方の板状部111を板状部112に直交させ、この状態で、軸部110(第二回転軸)を軸として、板状部111を回転角α:0°から180°の回転動作を行う状態、或いは回転角α:180°から0°の回転動作を行う状態を模したものである。ここでは、第一回転軸103及び第二回転軸105を構成するヒンジ筒の内径をいずれも2mm、可動板102の厚さを1mmとする。   Next, the jig used in the fatigue test will be described with reference to FIG. The jig 100 has a mechanism capable of biaxial rotation, and is movable with respect to the support leg 101, the movable plate 102 pivotally supported with respect to the support leg 101, and the support leg 101. A first rotating shaft 103 and a second rotating shaft 105 that support the plate 102 rotatably are provided. The second rotation shaft 105 is disposed so that the respective axis directions are orthogonal to the first rotation shaft 103, and the movable plate 102 is rotatably mounted on the support frame 104. Here, the movable plate 102 is pivotally supported by the first rotation shaft 103 so as to be able to rotate at a rotation angle θ: 0 ° to 180 ° about the first rotation shaft 103. This rotation operation is an operation of drawing an arc from left to upper to right in FIG. 2 (B), and is performed by the shaft portion 110 (a first rotation axis and a second rotation axis are schematically shown) shown in FIG. This is an operation simulating a state in which the pair of plate-like portions 111 and 112 supported to be opened and closed performs an opening and closing operation with the shaft portion 110 (first rotation shaft) as an axis. Further, in the state where the movable plate 102 is rotated at the rotation angle θ: 90 ° about the first rotation shaft 103 (the state shown in FIGS. 2 (B) and 3 (B)), the movable plate 102 is further The rotary shaft 105 is pivotally supported by the second rotary shaft 105 so as to be able to rotate at a rotation angle α of 0 ° to 180 °. This rotating motion is a motion of drawing an arc from left to front to right in FIG. 2 (B), and as shown in FIGS. 3 (B) to 3 (D), one plate-like portion 112 is supported by the support leg. 101, the shaft portion 110 (first rotation axis) is used as an axis, and the rotation angle θ: 0 ° to 90 ° is opened to make the other plate-like portion 111 orthogonal to the plate-like portion 112. , With the shaft portion 110 (second rotation axis) as an axis, the plate-like portion 111 is rotated at a rotation angle α of 0 ° to 180 °, or the rotation angle α is rotated at a rotation angle of 180 ° to 0 °. It imitates the state. Here, the inner diameters of the hinge cylinders constituting the first rotating shaft 103 and the second rotating shaft 105 are both 2 mm, and the thickness of the movable plate 102 is 1 mm.

作製したバンドル試料20やバンドル比較試料の一端を図2(A)に示すように支持脚101に固定し、他端を可動板102の表面に固定する。第一回転軸103を構成するヒンジ筒(支持枠104)内や当該ヒンジ筒に導入する際にバンドル試料20やバンドル比較試料を適宜屈曲させる。ここでは、図2(A)に示すように曲げ半径R1=5mm、曲げ半径R2=3mm、バンドル試料20やバンドル比較試料の一端の固定箇所から第一回転軸103の中心(図2(A)において一点鎖線で示す)までの距離L1=3mm、第一回転軸103の中心から可動板102の表面までの距離L2=5mm、バンドル試料20やバンドル比較試料の一端の固定箇所から第二回転軸105の中心までの距離L3=10mmとする。 One end of the produced bundle sample 20 or bundle comparison sample is fixed to the support leg 101 as shown in FIG. 2 (A), and the other end is fixed to the surface of the movable plate. When being introduced into the hinge cylinder (support frame 104) constituting the first rotation shaft 103 or into the hinge cylinder, the bundle sample 20 and the bundle comparison sample are appropriately bent. Here, as shown in FIG. 2 (A), the bending radius R 1 = 5 mm, the bending radius R 2 = 3 mm, the center of the first rotating shaft 103 from the fixed position of one end of the bundle sample 20 or the bundle comparison sample (FIG. 2 ( The distance L1 from the center of the first rotating shaft 103 to the surface of the movable plate 102 is 5 mm, and the second distance from the fixed position at one end of the bundle sample 20 or the bundle comparison sample The distance L3 to the center of the rotating shaft 105 is 10 mm.

バンドル試料20・バンドル比較試料を治具100にそれぞれ固定して、携帯電話の開閉動作及び携帯電話の画面の回転動作を模した、以下の開閉・捻回試験を行う。具体的には、図3(A)に示すように、一対の板状部111,112が閉じた状態を開始状態とし、図3(B)に示すように、軸部110(第一回転軸)を回転軸として、板状部111を回転角θ:0°から90°に回転させる開動作を行い、次に軸部110(第二回転軸)を軸として、板状部111を回転角α:0°から180°に回転させ、図3(C)に示すように当該板状部111の表面fと裏面bとを反対向きにする。引き続いて板状部111を回転角α:180°から0°に逆回転させ、図3(D)に示すように裏面bと表面fとを回転前の向き(図3(B)と同じ向き)に戻した後、軸部110(第一回転軸)を軸として、板状部111を回転角θ:90°から0°に回転させる閉動作を行い、図3(E)に示すように一対の板状部111,112が閉じた状態に戻す。これら一連の二軸回転動作を疲労試験の1サイクルとし、約11秒/サイクルで行って、各試料において40本のケーブルのうち、少なくとも1本について断線が発生するまでの回数を計測する。   The following opening / closing / twisting test simulating the opening / closing operation of the mobile phone and the rotation operation of the screen of the mobile phone is performed by fixing the bundle sample 20 and the bundle comparison sample to the jig 100, respectively. Specifically, as shown in FIG. 3 (A), a state in which the pair of plate-like portions 111 and 112 are closed is set as a start state, and as shown in FIG. 3 (B), the shaft portion 110 (first rotating shaft) is moved. An opening operation is performed to rotate the plate-like portion 111 from the rotation angle θ: 0 ° to 90 ° using the rotation axis as a rotation axis, and then the plate-like portion 111 is set to the rotation angle α: By rotating from 0 ° to 180 °, the front surface f and the back surface b of the plate-like portion 111 are opposite to each other as shown in FIG. Subsequently, the plate-like portion 111 is reversely rotated from a rotation angle α: 180 ° to 0 °, and the back surface b and the front surface f are rotated as shown in FIG. 3D (the same direction as that in FIG. 3B). 3), the plate portion 111 is rotated from the rotation angle θ: 90 ° to 0 ° around the shaft portion 110 (first rotation shaft) as shown in FIG. The pair of plate-like portions 111 and 112 are returned to the closed state. A series of these biaxial rotation operations is defined as one cycle of the fatigue test, and is performed at about 11 seconds / cycle, and the number of times until disconnection occurs in at least one of 40 cables in each sample is measured.

試料No.1,3のバンドル試料及び試料No.100のバンドル比較試料に対して、実際の端末接続処理を模した処理を行い、変形加工性と、基板への接続性を調べた。その結果を表1に示す。変形加工性は、各バンドル試料の端末、バンドル比較試料の端末をそれぞれ金型に挟み込み、異なる二方向から荷重を加えて、即ち、二回の荷重を加えて端末を圧縮変形させ、これらの圧縮前後において、各試料に具える中心導体の断面形状を顕微鏡で観察することで評価する。なお、合計二回の荷重を加える前(圧縮変形前)は、いずれの試料の中心導体(試料No.100では撚線を構成する素線)も、断面が略真円状であった。基板への接続性は、上記圧縮変形後、基板上にハンダで接合した状態を調べた。   The sample No. 1 and 3 bundle sample and the sample No. 100 bundle comparison sample were subjected to a process simulating an actual terminal connection process, and the deformation processability and the connectivity to the substrate were examined. The results are shown in Table 1. Deformability is achieved by sandwiching the end of each bundle sample and the end of the bundle comparison sample in a mold, and applying loads from two different directions, that is, compressing and deforming the ends by applying two loads. Before and after, the cross-sectional shape of the central conductor included in each sample is evaluated by observing with a microscope. Before applying the load twice in total (before compressive deformation), the central conductor of each sample (element No. 100, which forms a stranded wire) had a substantially circular cross section. The connectivity to the substrate was examined after solder compression on the substrate after the compression deformation.

Figure 2012064543
Figure 2012064543

表1に示すように、Agの含有量が5質量%以上15質量%以下の範囲において、直径が15μm〜50μmのCu-Ag合金線を中心導体に用い、この中心導体の導電率が50%IACS以上かつ引張強さが1330MPa以上である試料No.1〜3,5は、中心導体が単線であっても、上記疲労試験におけるサイクル回数が20万回以上であり、疲労特性に優れることが分かる。また、試料No.1〜3,5は、撚線導体を具える試料No.100の比較ケーブルや、Agが少ない試料No.4よりも疲労特性に優れることが分かる。   As shown in Table 1, a Cu-Ag alloy wire with a diameter of 15 μm to 50 μm is used as the central conductor in the Ag content range of 5% to 15% by mass, and the conductivity of the central conductor is 50%. Sample Nos. 1 to 3 and 5 with IACS or more and tensile strength of 1330 MPa or more have excellent fatigue characteristics even if the center conductor is a single wire and the number of cycles in the fatigue test is 200,000 or more. I understand. In addition, it can be seen that Samples Nos. 1 to 3 and 5 have better fatigue characteristics than the comparative cable of Sample No. 100 having a stranded conductor and Sample No. 4 with less Ag.

更に、電気絶縁層の厚さが中心導体の直径(線径)に対して65%以上であると、減衰量が少なく、減衰特性に優れることが分かる。また、単線導体の線径が撚線導体の線径の90%以下であり、かつ電気絶縁層の外径が撚線導体を具える比較ケーブルと同じ場合、単線導体を具える同軸ケーブルは、電気絶縁層の厚さが相対的に厚くなることで、減衰特性に優れることが分かる。具体的には、これらの同軸ケーブルの減衰量は、比較ケーブルと同程度、或いは同程度以下である。更に、図4に示すように試料No.2,3はいずれも、2.5GHz程度までは試料No.100よりも減衰量が小さく、600MHzにおける減衰量が9dB/m以下、750MHzにおける減衰量が10dB/m以下であり、減衰特性に優れることが分かる。特に、試料No.2は、2GHzにおける減衰量がほぼ15dB/m以下、3GHzにおける減衰量でも20dB/m以下であり減衰特性に更に優れる。   Furthermore, it can be seen that when the thickness of the electrical insulating layer is 65% or more with respect to the diameter (wire diameter) of the central conductor, the attenuation is small and the attenuation characteristics are excellent. In addition, when the wire diameter of the single wire conductor is 90% or less of the wire diameter of the stranded wire conductor and the outer diameter of the electrical insulating layer is the same as that of the comparison cable including the stranded wire conductor, the coaxial cable including the single wire conductor is It turns out that it is excellent in the attenuation | damping characteristic because the thickness of an electrically insulating layer becomes relatively thick. Specifically, the attenuation of these coaxial cables is about the same as or less than that of the comparative cables. Furthermore, as shown in Fig. 4, sample Nos. 2 and 3 are both less attenuated than sample No. 100 up to about 2.5 GHz, the attenuation at 600 MHz is 9 dB / m or less, and the attenuation at 750 MHz is 10 dB. It can be seen that the attenuation characteristics are excellent. In particular, Sample No. 2 has an attenuation of approximately 15 dB / m or less at 2 GHz, and 20 dB / m or less even at 3 GHz.

また、表1に示すようにAgの含有量が5質量%以上15質量%以下の範囲において、Agが比較的少ない場合は、中間熱処理を省略しても、導電率が50%IACS以上、かつ引張強さが1330MPa以上である素線が得られ、Agが比較的多い場合には、Agが多くなるほど、伸線加工途中において中間熱処理を施す線径を小さくすることで、導電率が50%IACS以上、かつ引張強さが1330MPa以上である素線が得られることが分かる。   Also, as shown in Table 1, in the range where the Ag content is 5% by mass or more and 15% by mass or less, when the Ag is relatively small, even if the intermediate heat treatment is omitted, the conductivity is 50% IACS or more and When a strand with a tensile strength of 1330 MPa or more is obtained and there is a relatively large amount of Ag, the greater the Ag, the smaller the wire diameter that is subjected to intermediate heat treatment during the wire drawing process, resulting in a conductivity of 50%. It can be seen that a wire having an IACS or higher and a tensile strength of 1330 MPa or higher can be obtained.

その他、試料No.1,3はいずれも、上述の圧縮変形後の断面が楕円状に変形しており、その形状には再現性があった(圧縮変形ごとの断面形状のばらつきが小さかった)。これに対し、試料No.100では、撚線を構成する素線がばらけ、圧縮変形ごとに断面形状が異なった。また、試料No.1,3はいずれも、中心導体の断面が扁平な楕円状に変形されたことで、楕円の偏平な面を接点として基板に良好に接続することができた。これに対し、試料No.100は、撚線を構成していた素線がばらけたことで、接続が困難であり、基板にまとめて固定するために、先端部に予備的なハンダ付けを施す必要があった。この結果から、中心導体を単線導体とする同軸ケーブルは、端末の加工性、及び基板などへの接続性にも優れることが分かる。   In addition, in each of sample Nos. 1 and 3, the section after the above-described compression deformation was deformed into an ellipse, and the shape was reproducible (the variation in the cross-sectional shape for each compression deformation was small). . On the other hand, in sample No. 100, the strands constituting the stranded wire were scattered and the cross-sectional shape was different for each compression deformation. In addition, in each of Sample Nos. 1 and 3, the cross section of the central conductor was deformed into a flat oval shape, so that the flat surface of the ellipse could be satisfactorily connected to the substrate. On the other hand, sample No. 100 is difficult to connect because the strands constituting the stranded wire are scattered, and preliminary soldering is applied to the tip in order to fix them together on the substrate. There was a need. From this result, it can be seen that the coaxial cable having the single conductor as the center conductor is excellent in the processability of the terminal and the connectivity to the substrate.

上記試験結果から、Agを特定の範囲で含有し、特定の大きさのCu-Ag合金線を利用すると共に、導電率及び引張強さが特定の範囲であることで、中心導体が単線導体であっても、疲労特性に優れる同軸ケーブルや同軸ケーブルバンドルが得られることが分かる。また、これらの同軸ケーブルや同軸ケーブルバンドルは、中心導体が撚線導体である試料No.100と同等以上の疲労特性を有していながら、中心導体をより細くすることができ、軽量化に寄与できると期待される。   From the above test results, Ag is contained in a specific range, a Cu-Ag alloy wire of a specific size is used, and the conductivity and tensile strength are within a specific range, so that the central conductor is a single wire conductor. Even if it exists, it turns out that the coaxial cable and coaxial cable bundle which are excellent in a fatigue characteristic are obtained. In addition, these coaxial cables and coaxial cable bundles have fatigue characteristics equivalent to or better than those of Sample No. 100, where the center conductor is a stranded conductor, but the center conductor can be made thinner, contributing to weight reduction. It is expected to be possible.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、同軸ケーブルの長さ、中心導体を構成するCu-Ag合金線の直径、中心導体の導電率・引張強さ、電気絶縁層の厚さ・材質・形成方法、その他製造条件(中間熱処理時の加熱温度、保持時間、中間熱処理を施す時期など)などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the length of the coaxial cable, the diameter of the Cu-Ag alloy wire constituting the center conductor, the conductivity / tensile strength of the center conductor, the thickness / material / formation method of the electrical insulation layer, and other manufacturing conditions (during intermediate heat treatment) The heating temperature, the holding time, the timing for performing the intermediate heat treatment, etc.) can be appropriately changed.

本発明同軸ケーブル及び同軸ケーブルバンドルは、携帯電話、携帯用コンピュータなどの小型な電子・電気機器の配線といった比較的短尺な配線に好適に利用することができる。   The coaxial cable and the coaxial cable bundle of the present invention can be suitably used for relatively short wiring such as wiring of small electronic / electric equipment such as a mobile phone and a portable computer.

1 同軸ケーブル
10 中心導体 11 Cu-Ag合金線 12 めっき層 13 電気絶縁層
14 外部導体 15 外装
20 バンドル試料
100 治具 101 支持脚 102 可動板 103 第一回転軸 104 支持枠
105 第二回転軸
110 軸部 111,112 板状部 f 板状部111の表面 b 板状部111の裏面
1 Coaxial cable
10 Center conductor 11 Cu-Ag alloy wire 12 Plating layer 13 Electrical insulation layer
14 Outer conductor 15 Exterior
20 Bundle samples
100 Jig 101 Support leg 102 Movable plate 103 First rotating shaft 104 Support frame
105 Second rotation axis
110 Shaft 111,112 Plate-shaped part f Front surface of plate-shaped part 111 b Back surface of plate-shaped part 111

Claims (4)

中心導体と、この中心導体の外周に設けられた電気絶縁層と、この電気絶縁層の外周に設けられ、前記中心導体と同軸に配置された外部導体とを具える同軸ケーブルであって、
当該同軸ケーブルは、その長さが1000mm以下であり、
前記中心導体は、1本の素線から構成される単線導体であり、
前記素線は、Agを5質量%以上15質量%以下含有し、残部がCu及び不純物からなるCu-Ag合金から構成されたCu-Ag合金線と、
前記Cu-Ag合金線の外周に設けられたAgめっき層、又はSnめっき層とを具え、
前記Cu-Ag合金線の直径が15μm以上50μm以下、
前記中心導体の導電率が50%IACS以上、
前記中心導体の引張強さが1330MPa以上であることを特徴とする同軸ケーブル。
A coaxial cable comprising a central conductor, an electrical insulating layer provided on the outer periphery of the central conductor, and an outer conductor provided on the outer periphery of the electrical insulating layer and disposed coaxially with the central conductor,
The coaxial cable has a length of 1000 mm or less,
The central conductor is a single wire conductor composed of one strand,
The element wire contains 5 mass% or more and 15 mass% or less of Ag, and a Cu-Ag alloy wire composed of a Cu-Ag alloy with the balance being Cu and impurities,
Ag plating layer provided on the outer periphery of the Cu-Ag alloy wire, or Sn plating layer,
The diameter of the Cu-Ag alloy wire is 15 μm or more and 50 μm or less,
The conductivity of the central conductor is 50% IACS or more,
A coaxial cable, wherein the central conductor has a tensile strength of 1330 MPa or more.
前記中心導体の直径に対する前記電気絶縁層の厚さの割合が65%以上、
当該同軸ケーブルの1GHzにおける減衰量が12dB/m以下、
疲労試験における当該同軸ケーブルのサイクル回数が20万回以上であることを特徴とする請求項1に記載の同軸ケーブル。
The ratio of the thickness of the electrical insulating layer to the diameter of the central conductor is 65% or more,
The attenuation of the coaxial cable at 1 GHz is 12 dB / m or less,
2. The coaxial cable according to claim 1, wherein the number of cycles of the coaxial cable in the fatigue test is 200,000 times or more.
前記中心導体の直径は、以下の比較ケーブルの中心導体の直径の90%以下、かつ、前記電気絶縁層の外径が前記比較ケーブルの電気絶縁層の外径と等しく、
当該同軸ケーブルの1GHzにおける減衰量が前記比較ケーブルの減衰量と同等以下、
疲労試験における当該同軸ケーブルのサイクル回数が前記比較ケーブルのサイクル回数と同等以上であることを特徴とする請求項1又は2に記載の同軸ケーブル。
[比較ケーブル]
中心導体は、Agを0.6質量%含有し、残部がCu及び不純物からなるCu-Ag合金により構成された撚線用素線を7本撚り合わせた撚線導体であり、各撚線用素線の直径が16μmである。また、比較ケーブルの電気絶縁層は、前記同軸ケーブルの電気絶縁層を構成する材質と同じ材質から構成される。
The diameter of the center conductor is 90% or less of the diameter of the center conductor of the following comparison cable, and the outer diameter of the electric insulation layer is equal to the outer diameter of the electric insulation layer of the comparison cable,
The attenuation of the coaxial cable at 1 GHz is equal to or less than the attenuation of the comparison cable,
3. The coaxial cable according to claim 1, wherein the number of cycles of the coaxial cable in the fatigue test is equal to or greater than the number of cycles of the comparative cable.
[Comparison cable]
The central conductor is a stranded conductor made by twisting seven strands of strands composed of a Cu-Ag alloy containing 0.6% by mass of Ag and the balance being Cu and impurities. Has a diameter of 16 μm. The electrical insulation layer of the comparison cable is made of the same material as that constituting the electrical insulation layer of the coaxial cable.
請求項1〜3のいずれか1項に記載の同軸ケーブルを複数本束ねたことを特徴とする同軸ケーブルバンドル。   A coaxial cable bundle in which a plurality of the coaxial cables according to any one of claims 1 to 3 are bundled.
JP2010209991A 2010-09-17 2010-09-17 Coaxial cable Pending JP2012064543A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010209991A JP2012064543A (en) 2010-09-17 2010-09-17 Coaxial cable
CN2011800442228A CN103098146A (en) 2010-09-17 2011-07-13 Coaxial cable
KR1020137006502A KR20140001836A (en) 2010-09-17 2011-07-13 Coaxial cable
PCT/JP2011/065919 WO2012035862A1 (en) 2010-09-17 2011-07-13 Coaxial cable
TW100125749A TWI521549B (en) 2010-09-17 2011-07-21 Coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209991A JP2012064543A (en) 2010-09-17 2010-09-17 Coaxial cable

Publications (1)

Publication Number Publication Date
JP2012064543A true JP2012064543A (en) 2012-03-29

Family

ID=45831338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209991A Pending JP2012064543A (en) 2010-09-17 2010-09-17 Coaxial cable

Country Status (5)

Country Link
JP (1) JP2012064543A (en)
KR (1) KR20140001836A (en)
CN (1) CN103098146A (en)
TW (1) TWI521549B (en)
WO (1) WO2012035862A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6561774B2 (en) * 2015-10-29 2019-08-21 セイコーエプソン株式会社 Printing device and transmission cable
CN106521231A (en) * 2016-12-07 2017-03-22 常州恒丰特导股份有限公司 High strength silver copper alloy conductor and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023456A (en) * 1999-07-06 2001-01-26 Sumitomo Electric Ind Ltd Coaxial cable strand, coaxial cable, and coaxial cable bundle
JP2010177056A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd Method for manufacturing cu-ag alloy wire, and cu-ag alloy wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295011A (en) * 2000-04-05 2001-10-26 Hitachi Cable Ltd Bending resistant copper alloy wire and cable using the same
JP2009249660A (en) * 2008-04-02 2009-10-29 Sumitomo Electric Ind Ltd Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JP5443744B2 (en) * 2008-11-28 2014-03-19 昭和電線ケーブルシステム株式会社 Electric wire conductor manufacturing method and electric wire conductor
JP5344150B2 (en) * 2009-01-29 2013-11-20 住友電気工業株式会社 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
CN101791638A (en) * 2009-01-29 2010-08-04 住友电气工业株式会社 The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023456A (en) * 1999-07-06 2001-01-26 Sumitomo Electric Ind Ltd Coaxial cable strand, coaxial cable, and coaxial cable bundle
JP2010177056A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd Method for manufacturing cu-ag alloy wire, and cu-ag alloy wire

Also Published As

Publication number Publication date
TW201222564A (en) 2012-06-01
TWI521549B (en) 2016-02-11
CN103098146A (en) 2013-05-08
WO2012035862A1 (en) 2012-03-22
KR20140001836A (en) 2014-01-07

Similar Documents

Publication Publication Date Title
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
US20070187134A1 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
EP1761935A1 (en) Differential signal transmission cable
KR20120004910A (en) Electronic wire and method of manufacturing the same
JP5601146B2 (en) Winding for speaker voice coil and manufacturing method thereof
WO2006022117A1 (en) Coaxial cable
JP2011146352A (en) Cu-Ag ALLOY WIRE
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
JP3994698B2 (en) Semi-flexible micro coaxial cable and its terminal connection method
JP4288844B2 (en) Extra fine copper alloy wire
JP2004014337A (en) Extrafine multicore coaxial cable
WO2012035862A1 (en) Coaxial cable
JP4686931B2 (en) Ultra-fine coaxial cable
JP5595754B2 (en) Ultra-fine coaxial cable and manufacturing method thereof
CN113299421B (en) Copper alloy wire, plated wire, wire and cable
KR100751664B1 (en) Differential Signal Transmission Cable
JP5672939B2 (en) Cable for movable part and manufacturing method thereof
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
US20220223313A1 (en) Copper alloy wire, plated wire, electric wire and cable using these
JP5239304B2 (en) Coaxial cable and manufacturing method thereof
JP2022109209A (en) Copper alloy wire, plated wire, electric wire, and cable
JPH11213761A (en) Composite conductor and its manufacture
JP5637435B2 (en) Coaxial cable and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150105