JP2012058118A - On-machine measuring device for laser beam machine - Google Patents

On-machine measuring device for laser beam machine Download PDF

Info

Publication number
JP2012058118A
JP2012058118A JP2010202682A JP2010202682A JP2012058118A JP 2012058118 A JP2012058118 A JP 2012058118A JP 2010202682 A JP2010202682 A JP 2010202682A JP 2010202682 A JP2010202682 A JP 2010202682A JP 2012058118 A JP2012058118 A JP 2012058118A
Authority
JP
Japan
Prior art keywords
measuring device
machine
stage
processing
machine measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010202682A
Other languages
Japanese (ja)
Inventor
Ichiro Ogura
一朗 小倉
Tsuneo Kurita
恒雄 栗田
Nagayoshi Kasashima
永吉 笠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010202682A priority Critical patent/JP2012058118A/en
Publication of JP2012058118A publication Critical patent/JP2012058118A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an on-machine measuring device for a laser beam machine using weak light of a light source for laser beam machining for a light source for measurement.SOLUTION: The on-machine measuring device includes a stage 6 for the on-machine measuring device provided freely movably on a pedestal. The stage 6 for the on-machine measuring device includes: spectroscopic means for dispersing weak continuous light and attaining a reference optical axis and a positioning mechanism 2 for positioning the on-machine measuring device by the reference optical axis; and spectroscopic means 4 and 5 for dispersing reflected light from a machining object 7 of the weak continuous light and a displacement detection mechanism 3 for detecting the displacement of the surface shape of the machining object by the dispersed reflected light. During machining, the stage 6 for the on-machine measuring device is moved to withdraw both the spectroscopic means 4 and 5 from a laser beam for machining. During measurement, the stage 6 for the on-machine measuring device is moved, the stage 6 for the on-machine measuring device is positioned to an irradiation optical axis by the positioning mechanism 2 by using the reference optical axis from the weak continuous light, and the displacement of the surface shape of the machining object 7 is detected by the displacement detection mechanism 3.

Description

本発明は、レーザ加工機に関し、特に、レーザ加工機用の機上計測装置に関するものである。   The present invention relates to a laser beam machine, and more particularly to an on-machine measuring device for a laser beam machine.

レーザ加工において、例えば、製造した半導体集積回路の配線ショート欠陥を、短パルスレーザで除去するレーザリペア加工は、製造ミスによりそのままでは使用できない製品を短時間の作業で修復することが可能であるため、その重要性は大きい。近年、ますます高密度化する半導体産業の現状にあわせ、レーザリペア加工技術も高精度化することが望まれる。
加工対象となる配線の場所を特定し、加工量を精密に評価するためには、従来用いられてきた顕微鏡下での観察だけではなく、機上計測技術を適用した計測装置を加工システムに組み込むことが望ましい。
In laser processing, for example, laser repair processing that removes wiring short-circuit defects in a manufactured semiconductor integrated circuit with a short pulse laser can repair a product that cannot be used as it is due to a manufacturing error in a short time. The importance is great. In recent years, it is desired to increase the precision of laser repair processing technology in accordance with the current state of the semiconductor industry which is becoming increasingly dense.
In order to identify the location of the wiring to be processed and accurately evaluate the processing amount, not only the observation under the microscope that has been used in the past, but also the incorporation of a measuring device using on-machine measurement technology into the processing system It is desirable.

レーザ加工機において、高速で機上計測を行うためには、光を用いた非接触測定が効果的である。これまでの一般的なレーザ加工機用の機上計測装置のアイディアとしては、特許文献1、2のように、加工用レーザとは別の測定用光源をシステムに付加し、加工した形状を測定する例が挙げられる。
一方、特許文献3〜6のように加工光を利用する場合であっても、加工表面あるいは加工状態を観察するためのモニタリング機能を持たせたものに留まり、表面形状変位を数値的に測定する手法には適用されておらず、また、加工時に計測装置を一時退避させるものでもない。
In a laser processing machine, non-contact measurement using light is effective for performing on-machine measurement at high speed. As an idea of an on-machine measuring device for a conventional laser processing machine so far, as in Patent Documents 1 and 2, a measurement light source different from the processing laser is added to the system, and the processed shape is measured. An example is given.
On the other hand, even when processing light is used as in Patent Documents 3 to 6, the processing surface or the processing state is only provided with a monitoring function, and the surface shape displacement is measured numerically. It is not applied to the technique, nor does it temporarily retract the measuring device during processing.

特開平11−245059号公報JP 11-245059 A 特開2008−209299号公報JP 2008-209299 A 特開平5−228671号公報Japanese Patent Laid-Open No. 5-228671 特開2001−179470号公報JP 2001-179470 A 特開2007−54881号公報JP 2007-54881 A 特開2008−290117号公報JP 2008-290117 A

レーザ微細加工機による機上計測において、加工光と測定光の加工対象上の照射点を一致させなければ、加工位置と測定位置の誤差を生じてしまう。この誤差は本来意図しない点を誤って加工してしまう原因になる。予め調整を済ませている場合であっても、経時的あるいは加工熱によって照射点がずれる可能性があり、頻繁な調整を必要とするという問題点があった。そのため、加工光と測定光に別の光源を利用するより、加工用レーザ光の微弱連続光を光源として測定を行った方が有利である。
一方、さらなる高精度測定を行うためには、加工対象近傍に計測装置を設置することが望ましいが、加工時に数百MW/cmに達するといわれるリペア加工レーザにより、計測装置が容易に破壊されるおそれがある。破壊を避けるためには、形状測定を行った後、加工する前に計測装置を一度退避、加工後に再度この装置を設置して測定評価する必要がある。ところがこの場合、計測装置の正確な位置決めを行わなければ測定のゼロ点の誤差が生じ、加工前後における加工量の高精度な比較測定を行うことができないという問題点があった。
本発明の目的は、上記問題点を解決し、加工と計測用光源の同一化によって加工点と測定点の位置誤差をなくしながら、加工時の強力なレーザ光による計測装置の破壊を避け、かつ加工点近傍における高精度形状測定を行うことが可能となるレーザ加工機用機上計測装置を提供することにある。
In the on-machine measurement by the laser micro-machining machine, if the irradiation point on the processing object of the processing light and the measuring light is not matched, an error between the processing position and the measurement position occurs. This error causes an unintended point to be processed by mistake. Even when the adjustment has been made in advance, there is a possibility that the irradiation point may be shifted over time or due to processing heat, and there is a problem that frequent adjustment is required. For this reason, it is advantageous to perform measurement using weak continuous light of the processing laser light as a light source, rather than using separate light sources for the processing light and the measurement light.
On the other hand, further to perform highly accurate measurement, it is desirable to place the measuring device to the processing target near by repair processing laser is said to reach several hundred MW / cm 2 at the time of processing, the measuring device is easily broken There is a risk. In order to avoid destruction, after measuring the shape, it is necessary to retract the measuring device once before processing and install this device again after processing to evaluate the measurement. However, in this case, if the measuring device is not accurately positioned, an error of the measurement zero point occurs, and there is a problem that high-precision comparative measurement of the processing amount before and after the processing cannot be performed.
The object of the present invention is to solve the above-mentioned problems, avoid the position error between the machining point and the measurement point by using the same processing and measurement light source, avoid the destruction of the measuring device due to the powerful laser beam during machining, An object of the present invention is to provide an on-machine measuring device for a laser beam machine capable of performing highly accurate shape measurement in the vicinity of a machining point.

上記課題を解決するために、本発明のレーザ加工機用機上計測装置は、加工用ステージに載置した加工対象物にレーザ光源からの加工用レーザ光を照射して加工するレーザ加工機に用いる機上計測装置において、前記レーザ光源は、加工用レーザ光と測定光として用いる微弱連続光とを同一光源から選択的に同一照射光軸上に照射するものであり、機上計測装置は、台座上に移動自在に設けられた機上計測装置用ステージを備え、機上計測装置用ステージには、微弱連続光を分光して基準光軸とする分光手段及び前記基準光軸により機上測定装置の位置決めを行う位置決め機構と、微弱連続光の加工対象物からの反射光を分光する分光手段及び前記分光された反射光により加工対象物の表面形状の変位を検出する変位検出機構とを備え、加工時には機上計測装置用ステージを移動して加工用レーザ光から前記両分光手段を退避させ、測定時には機上計測装置用ステージを移動して微弱連続光からの前記基準光軸を用いて位置決め機構により機上計測装置用ステージを照射光軸に対して位置決めし、変位検出機構により加工対象物の表面形状の変位を検出することを特徴とする。
さらに、本発明は、レーザ加工機用機上計測装置において、上記台座は、加工用ステージ上に設けられていることを特徴とする。
さらに、本発明は、レーザ加工機用機上計測装置において、上記台座は、加工用ステージ以外の固定部分に設けられていることを特徴とする。
In order to solve the above-described problems, the on-machine measuring device for a laser beam machine according to the present invention is a laser beam machine that performs processing by irradiating a laser beam for processing from a laser light source onto a workpiece to be processed placed on a machining stage. In the on-machine measuring device to be used, the laser light source selectively irradiates the processing laser beam and the weak continuous light used as the measuring light on the same irradiation optical axis from the same light source. An on-machine measuring device stage movably provided on a pedestal is provided, and the on-machine measuring device stage is configured to perform on-machine measurement using a spectroscopic means that splits weak continuous light into a reference optical axis and the reference optical axis. A positioning mechanism for positioning the apparatus; a spectroscopic unit that divides the reflected light from the processing object of weak continuous light; and a displacement detection mechanism that detects the displacement of the surface shape of the processing object by the spectrally reflected light. ,processing In this case, the on-machine measuring device stage is moved to retract both the spectroscopic means from the processing laser beam, and at the time of measurement, the on-machine measuring device stage is moved and positioned using the reference optical axis from the weak continuous light. The on-machine measuring device stage is positioned with respect to the irradiation optical axis by the mechanism, and the displacement of the surface shape of the workpiece is detected by the displacement detection mechanism.
Furthermore, the present invention is characterized in that in the on-machine measuring device for a laser beam machine, the pedestal is provided on a machining stage.
Furthermore, the present invention is characterized in that in the on-machine measuring device for a laser beam machine, the pedestal is provided at a fixed portion other than the machining stage.

高度に集積化された半導体をリペア加工する際、事前の測定によって加工場所を選定、その後加工を行い再度測定評価する必要がある。その際、意図した点と異なる場所に加工レーザを照射してしまうと、隣接する回路を誤って破壊してしまう可能性がある。加工光と別光源の測定光を用いる従来技術の場合、この誤差をなくすためには頻繁な調整が必要であった。
本発明では、加工用光源の微弱光を測定用光源に用いることから、加工点と測定点の位置誤差が発生せず、これらの調整が不要である。また加工対象に近い場所で測定を行うため、空気揺らぎなどによる影響を受けにくく、高精度な測定が可能となる。また、加工・計測用光軸を基準として機上計測装置自体の位置決めを行うことができるため、加工前後の測定のゼロ点誤差が発生せず、加工量の精密な測定評価が可能となる。
When repairing a highly integrated semiconductor, it is necessary to select a processing location by prior measurement, then perform processing and evaluate again. At that time, if a processing laser is irradiated to a place different from the intended point, there is a possibility that an adjacent circuit is erroneously destroyed. In the case of the conventional technique using the processing light and the measurement light of another light source, frequent adjustment is necessary to eliminate this error.
In the present invention, since the weak light of the processing light source is used as the measurement light source, no position error between the processing point and the measurement point occurs, and these adjustments are unnecessary. In addition, since measurement is performed at a location close to the object to be processed, it is difficult to be affected by air fluctuations, and high-precision measurement is possible. Further, since the on-machine measuring device itself can be positioned with reference to the machining / measurement optical axis, a zero point error in measurement before and after the machining does not occur, and the machining amount can be accurately measured and evaluated.

本発明の一実施例の概要を説明する図である。It is a figure explaining the outline | summary of one Example of this invention. 図1の実施例における、測定時の概観を示す図である。It is a figure which shows the external appearance at the time of a measurement in the Example of FIG. 図1の実施例における、計測装置を退避した加工時の概観を示す図である。It is a figure which shows the general view at the time of the process which retracted | retracted the measuring device in the Example of FIG. 本発明の他の実施例の概要を説明する図である。It is a figure explaining the outline | summary of the other Example of this invention. 実験システムの概観図。An overview of the experimental system. 位置検出の結果のグラフ(センサをx軸方向に移動)。Graph of position detection result (sensor moved in x-axis direction). 位置検出の結果のグラフ(センサをy軸方向に移動)。Graph of position detection result (sensor moved in y-axis direction). 再位置決めの結果のグラフ。Graph of the result of repositioning. オンマシン測定システム出力結果のグラフ。Graph of on-machine measurement system output result.

(実施例1)
図1に本発明の一実施例を示す。加工対象である集積回路7は加工用ステージ8上に設置されている。加工用レーザ照射口1とステージ8の間に機上計測装置2〜6が設置される。この機上計測装置は位置決め機構2、変位検出機構3、ビームスプリッタ4、5、機上計測装置用ステージ6からなる。
図2に、本実施例の測定時の概観を示す。
加工前後に集積回路7の表面形状を測定するときは、まず加工用レーザを微弱連続光にして出力を弱めた上で、ビームスプリッタ4によって分光された光を基準光軸にして、位置決め機構2の受光素子の出力を元に機上計測装置の位置決めを行う。受光素子には4分割フォトダイオードやPSD、CCDなど、光スポットの位置を検出できるものを使用する。その後、集積回路7からの反射光をビームスプリッタ5で折り曲げて変位検出機構3に導き、この機構中の変位検出用光学系と受光素子により表面形状の変位を測定する。図1の実施例では、シリンドリカルレンズと2つの凸レンズによる非点収差法を測定原理としているが、三角法やナイフエッジ法で測定してもよい。
ステージ8を動かして集積回路7の表面をスキャン測定する場合においても、位置決め機構2とステージ6を用いて光軸に追従させることで表面形状の変位を測定することが可能である。
図3は加工時の概観を示しており、機上計測装置用ステージ6により機上計測装置を退避させ、加工光による受光素子の破壊を避ける。
Example 1
FIG. 1 shows an embodiment of the present invention. The integrated circuit 7 to be processed is installed on a processing stage 8. On-machine measuring devices 2 to 6 are installed between the processing laser irradiation port 1 and the stage 8. This on-machine measuring device includes a positioning mechanism 2, a displacement detecting mechanism 3, beam splitters 4 and 5, and an on-machine measuring device stage 6.
FIG. 2 shows an overview at the time of measurement of this example.
When measuring the surface shape of the integrated circuit 7 before and after processing, first, the processing laser is weakly continuous light to weaken the output, and then the light split by the beam splitter 4 is used as a reference optical axis to determine the positioning mechanism 2. The on-machine measuring device is positioned based on the output of the light receiving element. As the light receiving element, an element capable of detecting the position of the light spot, such as a quadrant photodiode, PSD, or CCD, is used. Thereafter, the reflected light from the integrated circuit 7 is bent by the beam splitter 5 and guided to the displacement detection mechanism 3, and the displacement of the surface shape is measured by the displacement detection optical system and the light receiving element in this mechanism. In the embodiment shown in FIG. 1, the astigmatism method using a cylindrical lens and two convex lenses is used as a measurement principle, but the measurement may be performed by a trigonometric method or a knife edge method.
Even when the stage 8 is moved to scan the surface of the integrated circuit 7, the displacement of the surface shape can be measured by following the optical axis using the positioning mechanism 2 and the stage 6.
FIG. 3 shows an overview at the time of processing, and the on-machine measuring device is retracted by the on-machine measuring device stage 6 to avoid the destruction of the light receiving element by the processing light.

(実施例2)
図4に、本発明の他の実施例を示す。この実施例においては、機上計測装置をステージ8以外の固定部分に設置した点で、図1の実施例と異なっており、それ以外の部分は図1の構成と同様である。図4に示すように、機上計測装置をステージ8以外の固定部分に設置する場合は、加工前後に光軸を基準とした位置決めを行うだけで表面のスキャン測定は可能となり、ステージ6の追従動作は不要となる。
(Example 2)
FIG. 4 shows another embodiment of the present invention. This embodiment is different from the embodiment of FIG. 1 in that the on-machine measuring device is installed at a fixed portion other than the stage 8, and the other portions are the same as the configuration of FIG. As shown in FIG. 4, when the on-machine measuring device is installed on a fixed part other than the stage 8, it is possible to perform surface scan measurement just by positioning with respect to the optical axis before and after processing, and follow the stage 6. No action is required.

本発明の機上計測装置における再位置決めの再現性を確認するために、図5に示す実験システムを組み上げて、以下の実験を行った。
加工用パルスレーザの微弱連続光の代わりにHe−Neレーザ(メレスグリオ05LHP171,波長632.8nm,出力7.0mW)を使用した。レーザヘッド直下に焦点距離200mmの凸レンズを設置し、試料表面上に焦点を結ぶよう高さを調整している。オンマシン測定システム本体はTholabsレンズチューブを利用して構築した。受光素子の4分割フォトダイオードは浜ホトS4349を使用している。
x−yステージは粗動用ステッピングモータステージ(シグマ光機SGSP20−20)上に圧電アクチュエータ駆動微動ステージを設置した。このステージの上に機上計測装置が固定されている。ステージの動きはレーザリニアエンコーダ(Renishow RLE10−DX−XG)で測定し,センサシステムの特性評価に利用した。
zステージ(シグマ光機OPT−MIKE)上に試料としてアルミ蒸着平面ミラーを乗せ、zステージの駆動で模擬的な形状変位を与えた。
本来の加工システムでは、試料とレーザ光とのx−y面内相対変位を与えるため、さらに平面駆動ステージが必要である。しかし本実験では、機上計測装置の基本特性を調べることが目的であるため、この部分は省略した。
In order to confirm reproducibility of repositioning in the on-machine measuring device of the present invention, the following experiment was conducted by assembling the experimental system shown in FIG.
A He—Ne laser (Meles Grio 05LHP171, wavelength 632.8 nm, output 7.0 mW) was used instead of the weak continuous light of the processing pulse laser. A convex lens with a focal length of 200 mm is installed directly under the laser head, and the height is adjusted so as to focus on the sample surface. The on-machine measurement system body was constructed using a Tholabs lens tube. A four-divided photodiode of the light receiving element uses Hama Photo S4349.
As the xy stage, a piezoelectric actuator-driven fine movement stage was installed on a coarse movement stepping motor stage (Sigma light machine SGSP20-20). An on-machine measuring device is fixed on the stage. The movement of the stage was measured with a laser linear encoder (Renishaw RLE10-DX-XG) and used for evaluating the characteristics of the sensor system.
An aluminum vapor deposition flat mirror was placed as a sample on the z stage (Sigma optical machine OPT-MIKE), and a simulated shape displacement was given by driving the z stage.
In the original processing system, a plane driving stage is further required in order to give a relative displacement in the xy plane between the sample and the laser beam. However, in this experiment, the purpose was to investigate the basic characteristics of the on-machine measuring device, so this part was omitted.

図6、7は光軸を基準にして機上計測装置をx−y方向にそれぞれ駆動したときの各軸方向検出変位を調べたものである。図6はセンサをx軸方向に移動させたときの出力、図7はy軸方向に移動させたときのものをそれぞれ3回繰り返したものを示してある。4分割PDの各出力を測定用パソコンに取り込み、プログラム上で各軸方向の移動量を計算した。変位にしてサブミクロンオーダーの繰り返し性があることが確認できる。この関係を用いれば、レーザが試料表面をスキャンする際、横方向の試料位置を測定することが可能である。   6 and 7 show the detected displacements in the respective axial directions when the on-machine measuring device is driven in the xy directions with reference to the optical axis. FIG. 6 shows the output when the sensor is moved in the x-axis direction, and FIG. 7 shows the output when the sensor is moved in the y-axis direction, repeated three times. Each output of the 4-split PD was taken into a measurement personal computer, and the amount of movement in each axis direction was calculated on the program. It can be confirmed that the displacement is repeatable on the order of submicrons. Using this relationship, it is possible to measure the lateral sample position when the laser scans the sample surface.

図8はレーザによるリペア加工前後の状況を想定し、機上計測装置の再位置決め実験を行った結果である。
ここでは粗動ステージを用いて機上計測装置を一度光軸から5mm移動させてから再び元に戻し、センサの位置検出センサ出力が一定になるようステージをフィードバックさせることを繰り返した。そのときのレーザリニアエンコーダ読みのずれをプロットしてある。x方向、y方向ともに±0.7μm以内の再現性で計測装置を固定されることが確認できた。
機上計測装置の出力を調べた結果を図9に示す。光学系の調整不足とz軸ステージの送り精度が良好でないといった理由により、出力の線形誤差がやや目立つが、本センサで表面形状の測定が可能であることは確認できる。
FIG. 8 shows the result of a repositioning experiment of the on-machine measuring device, assuming a situation before and after repair processing by a laser.
Here, the on-machine measuring device was once moved 5 mm from the optical axis using the coarse movement stage, then returned to the original position, and the stage was repeatedly fed back so that the position detection sensor output of the sensor became constant. The deviation of the laser linear encoder reading at that time is plotted. It was confirmed that the measuring device was fixed with a reproducibility within ± 0.7 μm in both the x and y directions.
The result of examining the output of the on-machine measuring device is shown in FIG. The linear error of output is somewhat conspicuous due to insufficient adjustment of the optical system and poor feed accuracy of the z-axis stage, but it can be confirmed that the surface shape can be measured with this sensor.

以上では、本発明のレーザ加工機用機上計測装置をICリペア装置に組み込むことで、高精度な計測システムの実現手段を提供できることを説明したが、一般のレーザ加工機に本発明を適用することで、安価に高精度機上計測手段を提供することも可能となる。
さらに紫外線レーザなど、不可視光レーザであるためにカメラによる照射光観察ができない場合であっても、本発明によって加工点と一致した機上計測が可能であるため、高精度なリペア加工を実現できる。
In the above, it has been described that the on-machine measuring device for a laser beam machine according to the present invention can be provided with a means for realizing a highly accurate measurement system by incorporating it into an IC repair device. However, the present invention is applied to a general laser beam machine. Thus, it is possible to provide high-precision on-machine measuring means at low cost.
Furthermore, even if the irradiation light cannot be observed with a camera because it is an invisible laser such as an ultraviolet laser, on-machine measurement that matches the processing point is possible according to the present invention, so that highly accurate repair processing can be realized. .

1 加工用レーザ照射口
2 位置決め機構
3 変位検出機構
4 位置決め機構用ビームスプリッタ
5 変位検出機構用ビームスプリッタ
6 機上計測装置用ステージ
7 集積回路(加工対象)
8 加工用ステージ
DESCRIPTION OF SYMBOLS 1 Laser irradiation port for processing 2 Positioning mechanism 3 Displacement detection mechanism 4 Beam splitter for positioning mechanism 5 Beam splitter for displacement detection mechanism 6 On-machine measuring device stage 7 Integrated circuit (object to be processed)
8 Processing stage

Claims (3)

加工用ステージに載置した加工対象物にレーザ光源からの加工用レーザ光を照射して加工するレーザ加工機に用いる機上計測装置において、
前記レーザ光源は、加工用レーザ光と測定光として用いる微弱連続光とを同一光源から選択的に同一照射光軸上に照射するものであり、
機上計測装置は、台座上に移動自在に設けられた機上計測装置用ステージを備え、
機上計測装置用ステージには、微弱連続光を分光して基準光軸とする分光手段及び前記基準光軸により機上測定装置の位置決めを行う位置決め機構と、微弱連続光の加工対象物からの反射光を分光する分光手段及び前記分光された反射光により加工対象物の表面形状の変位を検出する変位検出機構とを備え、
加工時には機上計測装置用ステージを移動して加工用レーザ光から前記両分光手段を退避させ、測定時には機上計測装置用ステージを移動して微弱連続光からの前記基準光軸を用いて位置決め機構により機上計測装置用ステージを照射光軸に対して位置決めし、変位検出機構により加工対象物の表面形状の変位を検出することを特徴とするレーザ加工機用機上計測装置。
In an on-machine measuring device used in a laser processing machine that processes a processing object placed on a processing stage by irradiating a processing laser beam from a laser light source,
The laser light source selectively irradiates a processing laser beam and a weak continuous light used as a measurement beam on the same irradiation optical axis from the same light source,
The on-machine measuring device includes an on-machine measuring device stage movably provided on the pedestal,
The on-machine measuring device stage includes a spectroscopic unit that splits weak continuous light into a reference optical axis, a positioning mechanism that positions the on-machine measuring device using the reference optical axis, and a weak continuous light from the workpiece. A spectroscopic means for splitting the reflected light, and a displacement detection mechanism for detecting the displacement of the surface shape of the workpiece by the split reflected light,
During processing, the on-machine measuring device stage is moved to retract both of the spectroscopic means from the processing laser beam, and at the measuring time, the on-machine measuring device stage is moved to perform positioning using the reference optical axis from weak continuous light. An on-machine measuring device for a laser processing machine, wherein the on-machine measuring device stage is positioned with respect to the irradiation optical axis by a mechanism, and the displacement of the surface shape of the workpiece is detected by a displacement detection mechanism.
前記台座は、加工用ステージ上に設けられていることを特徴とする請求項1記載のレーザ加工機用機上計測装置。   The on-machine measuring device for a laser beam machine according to claim 1, wherein the pedestal is provided on a machining stage. 前記台座は、加工用ステージ以外の固定部分に設けられていることを特徴とする請求項1記載のレーザ加工機用機上計測装置。   The on-machine measuring device for a laser beam machine according to claim 1, wherein the pedestal is provided at a fixed portion other than the machining stage.
JP2010202682A 2010-09-10 2010-09-10 On-machine measuring device for laser beam machine Pending JP2012058118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202682A JP2012058118A (en) 2010-09-10 2010-09-10 On-machine measuring device for laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202682A JP2012058118A (en) 2010-09-10 2010-09-10 On-machine measuring device for laser beam machine

Publications (1)

Publication Number Publication Date
JP2012058118A true JP2012058118A (en) 2012-03-22

Family

ID=46055384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202682A Pending JP2012058118A (en) 2010-09-10 2010-09-10 On-machine measuring device for laser beam machine

Country Status (1)

Country Link
JP (1) JP2012058118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006985A (en) * 2015-06-17 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company Hybrid laser machining of multi-material laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006985A (en) * 2015-06-17 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company Hybrid laser machining of multi-material laminate

Similar Documents

Publication Publication Date Title
JP4885762B2 (en) Measuring device for workpiece held on chuck table and laser processing machine
JP6148075B2 (en) Laser processing equipment
US9791411B2 (en) Processing apparatus including a three-dimensional interferometric imager
KR102226222B1 (en) Laser machining apparatus
US9644950B2 (en) Shape measuring apparatus and point sensor positioning unit
US10340170B2 (en) Method and device for grooving wafers
CN108723617B (en) Laser processing method
JP2011122894A (en) Apparatus for measuring workpiece held at chuck table and laser beam machine
GB2536167A (en) Surface shape measuring device and machine tool provided with same, and surface shape measuring method
JP2011033383A (en) Measuring device of workpiece held on chuck table, and laser beam machine
JPWO2016031935A1 (en) Surface shape measuring device
JP5177643B2 (en) High precision laser processing and combined laser / electrolytic processing equipment
KR20140084483A (en) method of laser machining and apparatus adopting the method
CN112658473A (en) Laser processing apparatus
JP2010188395A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
JP6224462B2 (en) Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus
JP5371514B2 (en) Laser light state inspection method and apparatus, and solar panel manufacturing method
JP2012058118A (en) On-machine measuring device for laser beam machine
JP6157245B2 (en) Laser processing apparatus and laser optical axis adjustment method
JP5389613B2 (en) Method for managing consumption of cutting blade in cutting apparatus
JP2010217113A (en) Sectional shape measuring device
JP2010188396A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
JP2010184291A (en) Method and device for inspecting state of laser beam and method of manufacturing solar panel
JP6389759B2 (en) Non-contact edge shape measuring method and apparatus
KR102069906B1 (en) Detecting apparatus