JP2012057567A - Method for controlling exhaust cleaning apparatus - Google Patents

Method for controlling exhaust cleaning apparatus Download PDF

Info

Publication number
JP2012057567A
JP2012057567A JP2010202876A JP2010202876A JP2012057567A JP 2012057567 A JP2012057567 A JP 2012057567A JP 2010202876 A JP2010202876 A JP 2010202876A JP 2010202876 A JP2010202876 A JP 2010202876A JP 2012057567 A JP2012057567 A JP 2012057567A
Authority
JP
Japan
Prior art keywords
fuel
temperature
exhaust
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202876A
Other languages
Japanese (ja)
Other versions
JP5713612B2 (en
Inventor
Takatoshi Furukawa
卓俊 古川
Yoshihiro Hashizume
芳弘 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010202876A priority Critical patent/JP5713612B2/en
Publication of JP2012057567A publication Critical patent/JP2012057567A/en
Application granted granted Critical
Publication of JP5713612B2 publication Critical patent/JP5713612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To maintain a high NOreducing rate without degrading performance while improving fuel efficiency than before.SOLUTION: In the method for controlling an exhaust cleaning apparatus, fuel 8 is added to an entry side of an NOoccluding reducing catalyst 5, the added fuel 8 is decomposed to Hand CO with a reforming catalyst 9 and is introduced to the NOoccluding reducing catalyst 5. An exhaust temperature to gain a prescribed level NOreducing rate or more with a reducer HC in the NOoccluding reducing catalyst 5 is made a reference temperature. When an exhaust temperature is lower than the reference temperature, a first fuel adding is executed in the range not reaching fuel rich atmosphere to heighten floor temperature of the reforming catalyst 9 to a fuel reforming temperature. Then, following the first fuel adding, a second fuel adding is executed to form fuel rich atmosphere. Further, when the exhaust temperature is not lower than the reference temperature, the fuel adding is controlled so as to discontinue the first fuel adding and to execute only the second fuel adding.

Description

本発明は、排気浄化装置の制御方法に関するものである。   The present invention relates to a method for controlling an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒を排気管の途中に装備し、このNOx吸蔵還元触媒によりNOxの排出濃度を低減することが行われている。 Conventionally, in a diesel engine, when the exhaust air-fuel ratio is lean, NOx in the exhaust gas is oxidized and temporarily stored in the form of nitrate, and when the O 2 concentration in the exhaust gas decreases, unburned HC and CO For example, a NOx storage reduction catalyst having a property of decomposing and releasing NOx by the intervention of the above and the like to reduce and purify is installed in the middle of the exhaust pipe, and the NOx emission concentration is reduced by this NOx storage reduction catalyst.

ただし、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、NOxの吸蔵量が飽和量に達する前にNOx吸蔵還元触媒に流入する排気ガスのO2濃度をHC等の還元剤により低下させてNOxを分解放出させる必要がある。 However, in the NOx occlusion reduction catalyst, if the NOx occlusion amount increases and reaches the saturation amount, no more NOx can be occluded, and therefore the NOx occlusion reduction catalyst before the NOx occlusion amount reaches the saturation amount. It is necessary to decompose and release NOx by reducing the O 2 concentration of the exhaust gas flowing into the exhaust gas with a reducing agent such as HC.

例えば、ガソリンエンジンに使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼルエンジンの排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust gas purification device for a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒をディーゼルエンジンの排気浄化装置として使用する場合には、NOx吸蔵還元触媒の上流側で排気ガス中に燃料を添加することにより、この添加燃料から生じたHCを還元剤としてNOx吸蔵還元触媒上でO2と反応させて排気ガス中のO2濃度を低下させる必要がある。 For this reason, when the NOx storage reduction catalyst is used as an exhaust gas purification device for a diesel engine, by adding fuel to the exhaust gas upstream of the NOx storage reduction catalyst, the HC generated from the added fuel is reduced. It is necessary to reduce the O 2 concentration in the exhaust gas by reacting with O 2 on the NOx storage reduction catalyst.

ただし、このようにNOx吸蔵還元触媒の上流側で燃料添加を行う方式では、その添加燃料が蒸発して生じたHCの一部がNOx吸蔵還元触媒の表面上で排気ガス中のO2と反応(燃焼)し、NOx吸蔵還元触媒の周囲の雰囲気中におけるO2濃度が零となってからNOxの分解放出が開始されることになるため、NOx吸蔵還元触媒の表面上でHCがO2と反応(燃焼)するのに必要な燃焼温度(約300℃)が得られない運転条件下(例えば渋滞の多い都市内での徐行運転等)では、NOx吸蔵還元触媒からNOxを効率良く分解放出させることができず、NOx吸蔵還元触媒の再生が効率良く進まないことで触媒の容積中に占めるNOx吸蔵サイトの回復割合が小さくなって吸蔵能力が落ちるという懸念があった。 However, in such a system in which fuel is added upstream of the NOx storage reduction catalyst, a part of HC generated by evaporation of the added fuel reacts with O 2 in the exhaust gas on the surface of the NOx storage reduction catalyst. (Combustion), and NOx decomposition and release starts after the O 2 concentration in the atmosphere around the NOx storage reduction catalyst becomes zero, so that HC is converted to O 2 on the surface of the NOx storage reduction catalyst. Under operating conditions where the combustion temperature (about 300 ° C) required for reaction (combustion) cannot be obtained (for example, slow driving in a city with heavy traffic), NOx is efficiently decomposed and released from the NOx storage reduction catalyst. As a result, the regeneration of the NOx storage reduction catalyst does not proceed efficiently, so that there is a concern that the recovery rate of the NOx storage site in the volume of the catalyst is reduced and the storage capacity is lowered.

このため、NOx吸蔵還元触媒の前段に添加燃料をH2とCOに分解し得る改質触媒を配設し、反応性の高いH2及びCOにより比較的低い温度領域から高いNOx低減率を得られるようにすることが考えられており、事実、図5にグラフで示す通り、特にH2を還元剤とした場合には、HCを還元剤とした場合と比較して極めて顕著な性能向上となることが確認されている。 For this reason, a reforming catalyst capable of decomposing the added fuel into H 2 and CO is arranged in front of the NO x storage reduction catalyst, and a high NO x reduction rate is obtained from a relatively low temperature range by the highly reactive H 2 and CO. In fact, as shown in the graph of FIG. 5, in particular, when H 2 is used as the reducing agent, the performance is significantly improved as compared with the case where HC is used as the reducing agent. It has been confirmed that

尚、この種の排気浄化装置に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to this type of exhaust purification device, there is the following Patent Document 1 and the like.

特開2007−9718号公報Japanese Patent Laid-Open No. 2007-9718

しかしながら、改質触媒により添加燃料をH2とCOに分解するためには、改質触媒の床温度を約600℃程度(燃料改質温度:この温度は一般的な改質触媒の場合で例示したもので改質触媒の種類により異なるものである)まで昇温させた上、O2濃度が零の燃料リッチ雰囲気を形成する必要があるため、改質触媒の床温度を約600℃程度まで昇温させるために余分な燃料添加を行う必要が生じる。 However, in order to decompose the added fuel into H 2 and CO by the reforming catalyst, the bed temperature of the reforming catalyst is about 600 ° C. (fuel reforming temperature: this temperature is exemplified in the case of a general reforming catalyst) The temperature of the reforming catalyst varies depending on the type of reforming catalyst), and it is necessary to form a fuel-rich atmosphere with zero O 2 concentration. It is necessary to add extra fuel to raise the temperature.

先の図5のグラフにも示されている通り、排気温度が約350℃以上となっていれば、HCを還元剤とした場合であっても約80%もの高いNOx低減率が得られることが判っており、このような排気温度の高い温度領域においては、H2を還元剤とした場合との性能差が小さいため、H2を還元剤とするメリットを差し引いても燃費悪化のデメリットが大きいという問題があった。 As shown in the graph of FIG. 5, if the exhaust temperature is about 350 ° C. or higher, a high NOx reduction rate of about 80% can be obtained even when HC is used as the reducing agent. are known, in the high temperature range of such exhaust gas temperature, since the performance difference between the case of of H 2 and the reducing agent is small, the disadvantage of also fuel efficiency by subtracting the benefits of of H 2 with a reducing agent There was a problem of being big.

また、図6にグラフで示す如く、一般的なNOx吸蔵還元触媒の飽和吸蔵量は、約300℃近辺をピーク温度として、このピーク温度に到達するまで触媒床温度の上昇に応じて増加するものの、ピーク温度を超えて更に触媒床温度が上昇すると逆に低下してしまう性質となっているため、排気温度が比較的高い運転状態で改質触媒の床温度を約600℃程度まで昇温させる燃料添加を実施すると、NOx吸蔵還元触媒の床温度も上昇してNOxの飽和吸蔵量の低下を招き、NOx吸蔵還元触媒の吸蔵能力が大幅に下がってしまうという問題もあった。   In addition, as shown in the graph of FIG. 6, the saturated storage amount of a general NOx storage reduction catalyst has a peak temperature in the vicinity of about 300 ° C., but increases as the catalyst bed temperature increases until this peak temperature is reached. The catalyst bed temperature rises when the catalyst bed temperature further rises beyond the peak temperature. Therefore, the bed temperature of the reforming catalyst is raised to about 600 ° C. in an operation state where the exhaust temperature is relatively high. When fuel is added, the bed temperature of the NOx occlusion reduction catalyst also rises, leading to a decrease in the NOx saturation occlusion amount, and the NOx occlusion reduction catalyst occludes significantly.

即ち、改質触媒の床温度を約600℃程度まで昇温させるための燃料添加によりNOx吸蔵還元触媒の飽和吸蔵量が低下して吸蔵能力が下がってしまうと、排気空燃比をリーンとしてNOxを吸蔵する間隔を短縮せざるを得なくなり、これにより燃料添加を頻繁に行わなければならなくなって、更なるNOx吸蔵還元触媒の温度上昇を招いてしまうという悪循環に陥り、せっかく反応性の高いH2を生成しても、NOx低減率の向上にうまく繋がらなくなるという問題があった。 That is, if the saturated storage amount of the NOx occlusion reduction catalyst decreases due to the addition of fuel to raise the bed temperature of the reforming catalyst to about 600 ° C. and the occlusion capacity decreases, the exhaust air / fuel ratio becomes lean and NOx is reduced. The interval between occlusions has to be shortened, so that fuel addition must be performed frequently, resulting in a vicious circle in which the temperature of the NOx occlusion reduction catalyst is further increased, and H 2 having high reactivity. There is a problem that the generation of NO does not lead to an improvement in the NOx reduction rate.

本発明は上述の実情に鑑みてなしたもので、従来より燃費悪化を改善しながらも、性能低下を招くことなく高いNOx低減率を維持し得るようにした排気浄化装置の制御方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a control method for an exhaust gas purification device that can maintain a high NOx reduction rate without causing performance degradation while improving fuel consumption deterioration as compared with the prior art. For the purpose.

本発明は、排気管の途中にNOx吸蔵還元触媒を装備し、該NOx吸蔵還元触媒の入側に燃料を添加し且つその添加燃料を改質触媒によりH2とCOに分解して前記NOx吸蔵還元触媒に導き得るようにした排気浄化装置の制御方法であって、NOx吸蔵還元触媒にてHCを還元剤として所定以上のNOx低減率が得られる排気温度を基準温度とし、排気温度が基準温度を下まわる時に燃料リッチ雰囲気にまで到らない範囲内で第一の燃料添加を実施して改質触媒の床温度を燃料改質温度まで昇温せしめ且つこの第一の燃料添加に続いて燃料リッチ雰囲気を形成するための第二の燃料添加を実施する一方、排気温度が基準温度以上の時には前記第一の燃料添加を中止して第二の燃料添加のみを実施するように燃料添加制御を行うことを特徴とするものである。 The present invention is equipped with a NOx occlusion reduction catalyst in the middle of an exhaust pipe, fuel is added to the inlet side of the NOx occlusion reduction catalyst, and the added fuel is decomposed into H 2 and CO by a reforming catalyst, and the NOx occlusion is performed. A control method for an exhaust gas purification device that can be led to a reduction catalyst, wherein an exhaust temperature at which a NOx reduction rate equal to or higher than a predetermined value is obtained using HC as a reducing agent in a NOx storage reduction catalyst is a reference temperature, and the exhaust temperature is a reference temperature The first fuel addition is performed within a range that does not reach a fuel-rich atmosphere when the temperature falls below the temperature, and the bed temperature of the reforming catalyst is raised to the fuel reforming temperature. While the second fuel addition for forming a rich atmosphere is performed, the fuel addition control is performed so that when the exhaust temperature is equal to or higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed. What is characterized by doing It is.

而して、このようにすれば、排気温度が基準温度を下まわる時に、第一の燃料添加が実施され、その添加された燃料が改質触媒にて周囲に共存するO2と反応して改質触媒の床温度が燃料改質温度まで昇温されると共に、この第一の燃料添加に続き第二の燃料添加が実施され、改質触媒の周囲にO2濃度が零の燃料リッチ雰囲気が形成されるので、雰囲気中に残存する燃料が改質触媒にてH2とCOに分解されてNOx吸蔵還元触媒に供給され、その供給直後から雰囲気中のO2濃度が零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒の表面上で反応性の高いH2及びCOにより、HCを還元剤とした場合よりも低い温度からNOxが効率良くN2に還元処理されることになる。 Thus, in this way, when the exhaust temperature falls below the reference temperature, the first fuel addition is performed, and the added fuel reacts with O 2 coexisting in the surroundings in the reforming catalyst. The bed temperature of the reforming catalyst is raised to the fuel reforming temperature, and the second fuel addition is carried out following the first fuel addition, and a fuel-rich atmosphere in which the O 2 concentration is zero around the reforming catalyst. Therefore, the fuel remaining in the atmosphere is decomposed into H 2 and CO by the reforming catalyst and supplied to the NOx occlusion reduction catalyst, and immediately after the supply, the O 2 concentration in the atmosphere becomes zero and the NOx is reduced. the onset of decomposition release immediately, NOx from a low temperature is reduced processed efficiently N 2 than when the highly reactive H 2 and CO, and the HC as a reducing agent directly on the surface of the NOx storage reduction catalyst It will be.

一方、排気温度が基準温度以上の時には、前記第一の燃料添加が中止されて第二の燃料添加のみが実施されるが、基準温度以上に排気温度が高まっていれば、HCを還元剤としても所定以上の十分に効果的なNOx低減率を得ることが可能であり、第一の燃料添加の中止による性能低下を招かなくて済む。   On the other hand, when the exhaust temperature is higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed. However, if the exhaust temperature is higher than the reference temperature, HC is used as a reducing agent. However, it is possible to obtain a sufficiently effective NOx reduction rate that is greater than or equal to a predetermined value, and it is not necessary to cause a performance degradation due to the stop of the first fuel addition.

寧ろ基準温度以上の排気温度の高い温度領域で第二の燃料添加により燃料リッチ雰囲気が形成されることで、燃料改質温度まで昇温させなくても微量のH2、CO、高活性のHCを改質触媒にて生成することが可能であり、改質触媒なしでHCを還元剤とした場合よりも高いNOx低減率が得られる。 On the contrary, a fuel-rich atmosphere is formed by the addition of the second fuel in a temperature range where the exhaust temperature is higher than the reference temperature, so that a small amount of H 2 , CO, and highly active HC can be obtained without raising the temperature to the fuel reforming temperature. Can be produced by a reforming catalyst, and a higher NOx reduction rate can be obtained than when HC is used as a reducing agent without a reforming catalyst.

しかも、これまで改質触媒の昇温に用いていた第一の燃料添加の分が削減されることで燃費悪化の大幅な改善が図られると共に、第一の燃料添加による改質触媒の昇温が行われないことでNOx吸蔵還元触媒の床温度の上昇が抑えられて飽和吸蔵量の低下が抑制され、NOx吸蔵還元触媒の吸蔵能力の大幅な低下が防止される。   In addition, since the amount of the first fuel addition that has been used to raise the temperature of the reforming catalyst has been reduced so far, the fuel consumption can be greatly improved, and the temperature of the reforming catalyst can be raised by the first fuel addition. As a result, the increase in the bed temperature of the NOx occlusion reduction catalyst is suppressed, the decrease in the saturated occlusion amount is suppressed, and the NOx occlusion reduction catalyst's occlusion capacity is largely prevented from being lowered.

また、本発明においては、第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御を行うことが好ましく、このようにすれば、改質触媒の床温度が低くて触媒活性が落ちている状態で処理能力を超えた過剰な量の燃料添加が行われることが防止され、このような処理能力を超えた燃料添加による床温度の低下(燃料冷却)が回避されて極めて効率の良い反応熱の発生が促され、改質触媒の床温度を燃料の添加開始から早期に温度上昇させることが可能となる。   Further, in the present invention, it is preferable to perform gradual change control so as to gradually increase the amount of fuel added at the start of the first fuel addition, and in this way, the bed temperature of the reforming catalyst is low and the catalyst activity is reduced. It is possible to prevent an excessive amount of fuel addition exceeding the processing capacity in the state where the gas is falling, and to avoid a decrease in the bed temperature (fuel cooling) due to the fuel addition exceeding the processing capacity. Generation of good reaction heat is promoted, and the bed temperature of the reforming catalyst can be raised quickly from the start of fuel addition.

尚、本発明において、燃料添加制御を切り替えるための排気温度の基準温度を設定するにあたっては、HCを還元剤とした場合に少なくとも80%のNOx低減率が得られる排気温度を基準温度として設定すると良い。   In the present invention, when setting the reference temperature of the exhaust temperature for switching the fuel addition control, if the exhaust temperature at which an NOx reduction rate of at least 80% is obtained when HC is used as the reducing agent is set as the reference temperature. good.

上記した本発明の排気浄化装置の制御方法によれば、下記の如き種々の優れた効果を奏し得る。   According to the control method of the exhaust purification apparatus of the present invention described above, various excellent effects as described below can be obtained.

(I)排気温度が基準温度を下まわる時に第一の燃料添加により改質触媒の床温度を燃料改質温度まで昇温させ、これに続く第二の燃料添加により改質触媒の周囲にO2濃度が零の燃料リッチ雰囲気を形成し、添加燃料をH2とCOに分解してNOx吸蔵還元触媒に供給することで、HCを還元剤とした場合よりも低い温度からNOxを効率良くN2に還元処理することができ、しかも、排気温度が基準温度以上の時に前記第一の燃料添加を中止して第二の燃料添加のみを実施し、基準温度以上の排気温度の高い温度領域で燃料リッチ雰囲気を形成することで燃料改質温度まで昇温させなくても微量のH2、CO、高活性のHCを改質触媒にて生成し、改質触媒なしでHCを還元剤とした場合よりも高いNOx低減率を得ることができ、更には、第一の燃料添加による改質触媒の昇温を実施しないことでNOx吸蔵還元触媒の床温度の上昇を抑え、飽和吸蔵量の低下を抑制してNOx吸蔵還元触媒の吸蔵能力の大幅な低下を防ぐことができるので、これまで改質触媒の昇温に用いていた第一の燃料添加の分を排気温度が基準温度以上の時に削減することで従来より燃費悪化を改善しながらも、性能低下を招くことなく高いNOx低減率を維持することができる。 (I) When the exhaust temperature falls below the reference temperature, the bed temperature of the reforming catalyst is raised to the fuel reforming temperature by the first fuel addition, and the second fuel addition is continued to add O around the reforming catalyst. 2 A fuel-rich atmosphere with a zero concentration is formed, and the added fuel is decomposed into H 2 and CO and supplied to the NOx storage reduction catalyst, so that NOx is efficiently removed from a lower temperature than when HC is used as the reducing agent. In addition, when the exhaust temperature is equal to or higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed, and in a temperature range where the exhaust temperature is higher than the reference temperature. By forming a fuel-rich atmosphere, a small amount of H 2 , CO, and highly active HC can be generated in the reforming catalyst without raising the temperature to the fuel reforming temperature, and HC is used as a reducing agent without the reforming catalyst. Higher NOx reduction rate than the case can be obtained. By not increasing the temperature of the reforming catalyst due to the addition of fuel, the increase in the bed temperature of the NOx storage reduction catalyst is suppressed, and the decrease in the saturated storage amount is suppressed to prevent the NOx storage reduction catalyst from significantly decreasing the storage capacity. Therefore, reducing the amount of the first fuel added, which has been used to raise the temperature of the reforming catalyst until now, when the exhaust temperature is higher than the reference temperature, improves the fuel efficiency and lowers the performance. A high NOx reduction rate can be maintained without any problems.

(II)第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御を行うようにすれば、処理能力を超えた過剰な量の燃料添加による床温度の低下(燃料冷却)を確実に回避して極めて効率の良い反応熱の発生を促すことができ、これにより改質触媒の床温度を燃料の添加開始から早期に温度上昇させることができるので、無駄な燃料添加を回避して燃費悪化の更なる改善を図ることができる。   (II) If the gradual change control is performed so that the fuel addition amount is gradually increased at the start of the first fuel addition, the bed temperature is lowered due to an excessive amount of fuel addition exceeding the processing capacity (fuel cooling). Can be avoided, and the generation of extremely efficient reaction heat can be promoted. As a result, the bed temperature of the reforming catalyst can be raised at an early stage from the start of fuel addition, thereby avoiding unnecessary fuel addition. As a result, further improvement in fuel consumption can be achieved.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の制御装置の燃料添加に関する制御手順を示すフローチャートである。It is a flowchart which shows the control procedure regarding the fuel addition of the control apparatus of FIG. 排気温度が基準温度を下まわる時の添加燃料制御を説明するグラフである。It is a graph explaining addition fuel control when exhaust gas temperature falls below reference temperature. 排気温度が基準温度以上の時の添加燃料制御を説明するグラフである。It is a graph explaining addition fuel control when exhaust gas temperature is more than reference temperature. 還元剤がHCの場合とH2の場合の性能差を示すグラフである。The reducing agent is a graph showing the performance difference between the case of the and H 2 For HC. NOx吸蔵還元触媒の飽和吸蔵量と温度との関係を示すグラフである。It is a graph which shows the relationship between the saturated occlusion amount of NOx occlusion reduction catalyst, and temperature.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、フロースルー方式のハニカム構造を有するNOx吸蔵還元触媒5が触媒ケース6に抱持されて装備されており、該触媒ケース6の入側には、前記NOx吸蔵還元触媒5の吸蔵サイトを回復させるための還元剤として燃料8(軽油)を噴射する燃料添加弁7が設けられている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, the exhaust pipe 4 through which the exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows is shown. In addition, a NOx occlusion reduction catalyst 5 having a flow-through type honeycomb structure is mounted and mounted on the catalyst case 6, and the occlusion site of the NOx occlusion reduction catalyst 5 is recovered on the entrance side of the catalyst case 6 A fuel addition valve 7 for injecting fuel 8 (light oil) as a reducing agent is provided.

また、本形態例においては、前記触媒ケース6内におけるNOx吸蔵還元触媒5の前段に、前記燃料添加弁7により添加された燃料8をH2とCOに分解する改質触媒9が装備されており、該改質触媒9には、例えばアルミナやシリカ等の酸化物又はゼオライト等の複合酸化物を担体として、Pd、Pt、Rh、Rb等を活性金属として担持させたものが用いられている。 Further, in this embodiment, a reforming catalyst 9 for decomposing the fuel 8 added by the fuel addition valve 7 into H 2 and CO is provided in the preceding stage of the NOx storage reduction catalyst 5 in the catalyst case 6. As the reforming catalyst 9, for example, a catalyst in which Pd, Pt, Rh, Rb or the like is supported as an active metal using an oxide such as alumina or silica or a composite oxide such as zeolite as a carrier is used. .

更に、前記改質触媒9の入側には、排気温度(排気ガス3の温度)を検出する温度センサ10が配設されており、該温度センサ10からの検出信号10aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置11に入力されるようになっている。   Further, a temperature sensor 10 for detecting the exhaust temperature (the temperature of the exhaust gas 3) is disposed on the inlet side of the reforming catalyst 9, and a detection signal 10a from the temperature sensor 10 is sent to an engine control computer (ECU). : An electronic control unit).

ここで、前記制御装置11においては、図2に燃料添加に関する制御手順をフローチャートで示しているように、前記温度センサ10からの検出信号10aに基づき改質触媒9の入側の排気温度を監視し、排気温度が所定の基準温度を下まわる時に燃料リッチ雰囲気にまで到らない範囲内で第一の燃料添加を実施して改質触媒の床温度を燃料改質温度まで昇温せしめ且つこの第一の燃料添加に続いて燃料リッチ雰囲気を形成するための第二の燃料添加を実施する一方、排気温度が前記基準温度以上の時には前記第一の燃料添加を中止して第二の燃料添加のみを実施する燃料添加制御が行われるようになっている。   Here, in the control device 11, the exhaust temperature on the inlet side of the reforming catalyst 9 is monitored based on the detection signal 10 a from the temperature sensor 10 as shown in the flowchart in FIG. The first fuel addition is performed within a range that does not reach a fuel rich atmosphere when the exhaust temperature falls below a predetermined reference temperature, and the bed temperature of the reforming catalyst is raised to the fuel reforming temperature. Following the first fuel addition, the second fuel addition is performed to form a fuel-rich atmosphere. When the exhaust temperature is equal to or higher than the reference temperature, the first fuel addition is stopped and the second fuel addition is performed. Only the fuel addition control is performed.

より具体的には、排気温度が所定の基準温度を下まわる時に、図3に示す如き第一の燃料添加と第二の燃料添加とを指令する制御信号11aが前記燃料添加弁7に向け出力されるようになっており、改質触媒9の床温度を昇温させることを目的とした第一の燃料添加では、排気空燃比がストイキオメトリ状態にならないように上限添加量を適切に設定し、残留O2を残しながら燃料8を添加して該燃料8の酸化反応を継続させるようにしている。 More specifically, when the exhaust gas temperature falls below a predetermined reference temperature, a control signal 11a for instructing the first fuel addition and the second fuel addition as shown in FIG. In the first fuel addition for the purpose of raising the bed temperature of the reforming catalyst 9, the upper limit addition amount is appropriately set so that the exhaust air-fuel ratio does not become the stoichiometric state. Then, the fuel 8 is added while leaving the residual O 2, and the oxidation reaction of the fuel 8 is continued.

しかも、特に本形態例においては、第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御をかけており、排気温度が基準温度を下まわる低い温度領域にある条件下で改質触媒9の処理能力を超えた過剰な量の燃料添加が行われないようにしている。   In addition, particularly in this embodiment, the gradual change control is applied so that the fuel addition amount is gradually increased at the start of the first fuel addition, and the exhaust temperature is in a low temperature range below the reference temperature. An excessive amount of fuel exceeding the processing capacity of the reforming catalyst 9 is prevented from being added.

尚、燃料リッチ雰囲気を形成することを目的とした第二の燃料添加では、排気空燃比がストイキオメトリ状態を大きく上まわるように十分な量で燃料添加が行われるようになっており、ストイキオメトリ状態を上まわる燃料分がH2とCOに分解されることになる。 Note that in the second fuel addition for the purpose of creating a fuel-rich atmosphere, the fuel addition is performed in a sufficient amount so that the exhaust air-fuel ratio greatly exceeds the stoichiometric state. The fuel that exceeds the Ichiometric state will be decomposed into H 2 and CO.

また、排気温度が前記基準温度以上の時には、図4に示す如き第二の燃料添加のみを指令する制御信号11aが前記燃料添加弁7に向け出力されるようになっており、この時に添加された燃料8の大半は、HCのままNOx吸蔵還元触媒5へ供給されることになるが、この際に排気温度は既に基準温度以上の高い温度領域となっているため、微量のH2、CO、高活性のHCが改質触媒9にて生成されることになる。 Further, when the exhaust gas temperature is equal to or higher than the reference temperature, a control signal 11a for commanding only the second fuel addition as shown in FIG. 4 is outputted to the fuel addition valve 7, and is added at this time. Most of the fuel 8 is supplied to the NOx occlusion reduction catalyst 5 in the form of HC. At this time, the exhaust gas temperature is already in a high temperature range higher than the reference temperature, so a very small amount of H 2 , CO Highly active HC is produced by the reforming catalyst 9.

尚、燃料添加制御を切り替えるための排気温度の基準温度は、例えば、HCを還元剤とした場合に少なくとも80%のNOx低減率が得られる排気温度として設定することが好ましく、本形態例においては、先の図5のグラフに基づきHCを還元剤とした場合に80%のNOx低減率が得られる350℃を基準温度として設定している。   Note that the reference temperature of the exhaust temperature for switching the fuel addition control is preferably set, for example, as an exhaust temperature at which a NOx reduction rate of at least 80% is obtained when HC is used as a reducing agent. Based on the previous graph of FIG. 5, 350 ° C. at which an NOx reduction rate of 80% is obtained when HC is used as the reducing agent is set as the reference temperature.

而して、このような制御方式で排気浄化装置を運転すれば、温度センサ10により検出される排気温度が基準温度を下まわる時に第一の燃料添加が実施され、その添加された燃料8が改質触媒9にて周囲に共存するO2と反応して改質触媒9の床温度が燃料改質温度まで昇温されると共に、この第一の燃料添加に続き第二の燃料添加が実施され、改質触媒9の周囲にO2濃度が零の燃料リッチ雰囲気が形成されるので、雰囲気中に残存する燃料8が改質触媒9にてH2とCOに分解されてNOx吸蔵還元触媒5に供給され、その供給直後から雰囲気中のO2濃度が零となってNOxの分解放出が直ちに開始され、そのままNOx吸蔵還元触媒5の表面上で反応性の高いH2及びCOにより、HCを還元剤とした場合よりも低い温度からNOxが効率良くN2に還元処理されることになる。 Thus, when the exhaust gas purification apparatus is operated in such a control system, the first fuel addition is performed when the exhaust gas temperature detected by the temperature sensor 10 falls below the reference temperature, and the added fuel 8 The reforming catalyst 9 reacts with surrounding O 2 to raise the temperature of the reforming catalyst 9 to the fuel reforming temperature, and the second fuel addition is carried out following the first fuel addition. As a result, a fuel-rich atmosphere having a zero O 2 concentration is formed around the reforming catalyst 9, so that the fuel 8 remaining in the atmosphere is decomposed into H 2 and CO by the reforming catalyst 9, and the NOx storage reduction catalyst. 5 immediately after the supply, the decomposition and release of NOx is started immediately after the O 2 concentration in the atmosphere becomes zero, and as it is, H 2 and CO having a high reactivity on the surface of the NO x storage reduction catalyst 5 NOx is more efficient at lower temperatures than when used as a reducing agent It will be reduction treatment N 2.

この際、本形態例においては、第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御をかけているので、改質触媒9の床温度が低くて触媒活性が落ちている状態で処理能力を超えた過剰な量の燃料添加が行われることが防止され、このような処理能力を超えた燃料添加による床温度の低下(燃料冷却)が回避されて極めて効率の良い反応熱の発生が促され、改質触媒9の床温度を燃料の添加開始から早期に温度上昇させることが可能となる。   At this time, in this embodiment, since the gradual change control is applied so as to gradually increase the fuel addition amount at the start of the first fuel addition, the bed temperature of the reforming catalyst 9 is low and the catalytic activity is lowered. In this state, it is possible to prevent an excessive amount of fuel addition exceeding the processing capacity from being performed, and to avoid a decrease in the bed temperature (fuel cooling) due to the fuel addition exceeding the processing capacity. Heat generation is promoted, and the bed temperature of the reforming catalyst 9 can be raised at an early stage from the start of fuel addition.

一方、温度センサ10により検出される排気温度が基準温度以上の時には、前記第一の燃料添加が中止されて第二の燃料添加のみが実施されるが、基準温度以上に排気温度が高まっていれば、HCを還元剤としても所定以上の十分に効果的なNOx低減率を得ることが可能であり、第一の燃料添加の中止による性能低下を招かなくて済む。   On the other hand, when the exhaust temperature detected by the temperature sensor 10 is equal to or higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed, but the exhaust temperature is increased above the reference temperature. For example, even if HC is used as the reducing agent, it is possible to obtain a sufficiently effective NOx reduction rate of a predetermined value or more, and it is not necessary to cause a performance deterioration due to the stop of the first fuel addition.

寧ろ基準温度以上の排気温度の高い温度領域で第二の燃料添加により燃料リッチ雰囲気が形成されることで、燃料改質温度まで昇温させなくても微量のH2、CO、高活性のHCを改質触媒9にて生成することが可能であり、改質触媒9なしでHCを還元剤とした場合よりも高いNOx低減率が得られる。 On the contrary, a fuel-rich atmosphere is formed by the addition of the second fuel in a temperature range where the exhaust temperature is higher than the reference temperature, so that a small amount of H 2 , CO, and highly active HC can be obtained without raising the temperature to the fuel reforming temperature. Can be produced by the reforming catalyst 9, and a higher NOx reduction rate than that obtained when HC is used as the reducing agent without the reforming catalyst 9 can be obtained.

しかも、これまで改質触媒9の昇温に用いていた第一の燃料添加の分が削減されることで燃費悪化の大幅な改善が図られると共に、第一の燃料添加による改質触媒9の昇温が行われないことでNOx吸蔵還元触媒5の床温度の上昇が抑えられて飽和吸蔵量の低下が抑制され、NOx吸蔵還元触媒5の吸蔵能力の大幅な低下が防止される。   In addition, since the amount of the first fuel addition that has been used to raise the temperature of the reforming catalyst 9 is reduced so far, the fuel consumption can be greatly improved, and the reforming catalyst 9 by the first fuel addition can be improved. By not raising the temperature, the rise in the bed temperature of the NOx storage reduction catalyst 5 is suppressed, the decrease in the saturated storage amount is suppressed, and the significant reduction in the storage capacity of the NOx storage reduction catalyst 5 is prevented.

従って、上記形態例によれば、排気温度が基準温度を下まわる時に第一の燃料添加により改質触媒9の床温度を燃料改質温度まで昇温させ、これに続く第二の燃料添加により改質触媒9の周囲にO2濃度が零の燃料リッチ雰囲気を形成し、添加燃料をH2とCOに分解してNOx吸蔵還元触媒5に供給することで、HCを還元剤とした場合よりも低い温度からNOxを効率良くN2に還元処理することができ、しかも、排気温度が基準温度以上の時に前記第一の燃料添加を中止して第二の燃料添加のみを実施し、基準温度以上の排気温度の高い温度領域で燃料リッチ雰囲気を形成することで燃料改質温度まで昇温させなくても微量のH2、CO、高活性のHCを改質触媒9にて生成し、改質触媒9なしでHCを還元剤とした場合よりも高いNOx低減率を得ることができ、更には、第一の燃料添加による改質触媒9の昇温を実施しないことでNOx吸蔵還元触媒5の床温度の上昇を抑え、飽和吸蔵量の低下を抑制してNOx吸蔵還元触媒5の吸蔵能力の大幅な低下を防ぐことができるので、これまで改質触媒9の昇温に用いていた第一の燃料添加の分を排気温度が基準温度以上の時に削減することで従来より燃費悪化を改善しながらも、性能低下を招くことなく高いNOx低減率を維持することができる。 Therefore, according to the above embodiment, when the exhaust gas temperature falls below the reference temperature, the bed temperature of the reforming catalyst 9 is raised to the fuel reforming temperature by the first fuel addition, and the second fuel addition is performed subsequently. Compared to the case where HC is used as a reducing agent, a fuel-rich atmosphere having a zero O 2 concentration is formed around the reforming catalyst 9 and the added fuel is decomposed into H 2 and CO and supplied to the NOx storage reduction catalyst 5. NOx can be efficiently reduced to N 2 from a lower temperature, and when the exhaust temperature is equal to or higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed. By forming a fuel-rich atmosphere in the high exhaust gas temperature range, a small amount of H 2 , CO, and highly active HC are generated by the reforming catalyst 9 without raising the temperature to the fuel reforming temperature. NOx lower than when HC is used as the reducing agent without the catalyst 9 Further, by not raising the temperature of the reforming catalyst 9 due to the addition of the first fuel, the rise in the bed temperature of the NOx occlusion reduction catalyst 5 is suppressed, and the decrease in the saturated occlusion amount is suppressed. Since a significant decrease in the storage capacity of the NOx storage reduction catalyst 5 can be prevented, the amount of the first fuel added that has been used to increase the temperature of the reforming catalyst 9 is reduced when the exhaust temperature is equal to or higher than the reference temperature. Thus, while improving the deterioration of fuel consumption as compared with the prior art, it is possible to maintain a high NOx reduction rate without causing performance degradation.

また、第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御を行うようにしているので、処理能力を超えた過剰な量の燃料添加による床温度の低下(燃料冷却)を確実に回避して極めて効率の良い反応熱の発生を促すことができ、これにより改質触媒9の床温度を燃料の添加開始から早期に温度上昇させることができるので、無駄な燃料添加を回避して燃費悪化の更なる改善を図ることができる。   In addition, since the gradual change control is performed so that the fuel addition amount is gradually increased at the start of the first fuel addition, the bed temperature is lowered due to an excessive amount of fuel addition exceeding the processing capacity (fuel cooling). Can be avoided and the generation of extremely efficient reaction heat can be promoted. As a result, the bed temperature of the reforming catalyst 9 can be raised at an early stage from the start of fuel addition. By avoiding this, it is possible to further improve fuel consumption.

尚、本発明の排気浄化装置の制御方法は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the method for controlling the exhaust purification apparatus of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.

3 排気ガス
4 排気管
5 NOx吸蔵還元触媒
8 燃料
9 改質触媒
10 温度センサ
10a 検出信号
11 制御装置
11a 制御信号
Reference Signs List 3 exhaust gas 4 exhaust pipe 5 NOx storage reduction catalyst 8 fuel 9 reforming catalyst 10 temperature sensor 10a detection signal 11 control device 11a control signal

Claims (3)

排気管の途中にNOx吸蔵還元触媒を装備し、該NOx吸蔵還元触媒の入側に燃料を添加し且つその添加燃料を改質触媒によりH2とCOに分解して前記NOx吸蔵還元触媒に導き得るようにした排気浄化装置の制御方法であって、NOx吸蔵還元触媒にてHCを還元剤として所定以上のNOx低減率が得られる排気温度を基準温度とし、排気温度が基準温度を下まわる時に燃料リッチ雰囲気にまで到らない範囲内で第一の燃料添加を実施して改質触媒の床温度を燃料改質温度まで昇温せしめ且つこの第一の燃料添加に続いて燃料リッチ雰囲気を形成するための第二の燃料添加を実施する一方、排気温度が基準温度以上の時には前記第一の燃料添加を中止して第二の燃料添加のみを実施するように燃料添加制御を行うことを特徴とする排気浄化装置の制御方法。 A NOx occlusion reduction catalyst is provided in the middle of the exhaust pipe, fuel is added to the inlet side of the NOx occlusion reduction catalyst, and the added fuel is decomposed into H 2 and CO by the reforming catalyst, leading to the NOx occlusion reduction catalyst. A control method for an exhaust emission control device, wherein the exhaust gas temperature at which a NOx reduction rate equal to or higher than a predetermined value is obtained using HC as a reducing agent in a NOx occlusion reduction catalyst is a reference temperature, and the exhaust gas temperature falls below the reference temperature. The first fuel addition is performed within a range not reaching the fuel rich atmosphere to raise the reforming catalyst bed temperature to the fuel reforming temperature, and the fuel rich atmosphere is formed following the first fuel addition. The fuel addition control is performed so that when the exhaust temperature is equal to or higher than the reference temperature, the first fuel addition is stopped and only the second fuel addition is performed. Of exhaust purification equipment Control method. 第一の燃料添加の開始時に燃料添加量を徐々に増やすように徐変制御を行うことを特徴とする請求項1に記載の排気浄化装置の制御方法。   The method of controlling an exhaust emission control device according to claim 1, wherein gradual change control is performed so that the fuel addition amount is gradually increased at the start of the first fuel addition. HCを還元剤とした場合に少なくとも80%のNOx低減率が得られる排気温度を基準温度として設定することを特徴とする請求項1又は2に記載の排気浄化装置の制御方法。   The exhaust gas purification apparatus control method according to claim 1 or 2, wherein an exhaust gas temperature at which an NOx reduction rate of at least 80% is obtained when HC is used as a reducing agent is set as a reference temperature.
JP2010202876A 2010-09-10 2010-09-10 Exhaust purification device control method Expired - Fee Related JP5713612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202876A JP5713612B2 (en) 2010-09-10 2010-09-10 Exhaust purification device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202876A JP5713612B2 (en) 2010-09-10 2010-09-10 Exhaust purification device control method

Publications (2)

Publication Number Publication Date
JP2012057567A true JP2012057567A (en) 2012-03-22
JP5713612B2 JP5713612B2 (en) 2015-05-07

Family

ID=46054954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202876A Expired - Fee Related JP5713612B2 (en) 2010-09-10 2010-09-10 Exhaust purification device control method

Country Status (1)

Country Link
JP (1) JP5713612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504620A (en) * 2017-11-24 2021-02-15 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Methods for operating catalytic evaporators and their use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127257A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156167A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156168A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010059886A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127257A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156167A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156168A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010059886A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504620A (en) * 2017-11-24 2021-02-15 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Methods for operating catalytic evaporators and their use

Also Published As

Publication number Publication date
JP5713612B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
US9702286B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2006242020A (en) Exhaust emission control device
JP2009079540A (en) Exhaust emission control system and method
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP5664801B2 (en) Exhaust gas purification device for spark ignition type internal combustion engine
JP4539758B2 (en) Exhaust gas purification device for internal combustion engine
JP2007002697A (en) Exhaust emission control device
JP5983438B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264320A (en) Exhaust emission control device for internal combustion engine
JP5610083B1 (en) Exhaust gas purification device for internal combustion engine
JP5713612B2 (en) Exhaust purification device control method
KR20130008881A (en) System for purifying exhaust gas and method for controlling the same
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
JP4233393B2 (en) Exhaust purification equipment
JP2012087703A (en) Exhaust gas treating device of internal combustion engine
JP2009264284A (en) Exhaust emission control device of internal combustion engine
JP5053134B2 (en) Exhaust purification device
JP2003222018A (en) Exhaust emissions purification apparatus for internal combustion engine
KR101305187B1 (en) System for purifying exhaust gas and method for controlling the same
JPWO2014167650A1 (en) Exhaust gas purification device for internal combustion engine
JP5557560B2 (en) Exhaust purification device control method
JP6500636B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5713612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees