JP2012057227A - Heat-resistant magnesium alloy excellent in high temperature fatigue strength characteristic, method for manufacturing the heat-resistant magnesium alloy, and heat-resistant parts for engine - Google Patents

Heat-resistant magnesium alloy excellent in high temperature fatigue strength characteristic, method for manufacturing the heat-resistant magnesium alloy, and heat-resistant parts for engine Download PDF

Info

Publication number
JP2012057227A
JP2012057227A JP2010202897A JP2010202897A JP2012057227A JP 2012057227 A JP2012057227 A JP 2012057227A JP 2010202897 A JP2010202897 A JP 2010202897A JP 2010202897 A JP2010202897 A JP 2010202897A JP 2012057227 A JP2012057227 A JP 2012057227A
Authority
JP
Japan
Prior art keywords
magnesium alloy
heat
resistant
fatigue strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202897A
Other languages
Japanese (ja)
Other versions
JP5530317B2 (en
Inventor
Mamoru Nagao
護 長尾
Yasuhiro Ariga
康博 有賀
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010202897A priority Critical patent/JP5530317B2/en
Publication of JP2012057227A publication Critical patent/JP2012057227A/en
Application granted granted Critical
Publication of JP5530317B2 publication Critical patent/JP5530317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant magnesium alloy excellent in high temperature fatigue strength characteristics, a method of manufacturing the heat-resistant magnesium alloy and heat-resistant parts for an engine manufactured by using the heat-resistant magnesium alloy.SOLUTION: The magnesium alloy includes, in mass%, Y of 1.8 to 8% and Sm and/or Nd of 1.4 to 8% in total amounts with the remainder consisting of Mg and inevitable impurities. The mean crystal grain size of the crystal grains of a magnesium alloy structure falls within the range of 10 to 50 μm, and 10 or more pieces of plate-like precipitates each having a major axis of 5 μm or more and an aspect ratio of 10 or more are precipitated in the crystal grains. Further, preferably, Ho of 0.5 to 2% is contained.

Description

本発明は、自動車または自動二輪車用のエンジン、レジャー船舶用途、芝刈り機等の小型エンジン、或いはターボチャージャーなどその周辺機器に用いることができる高温疲労強度特性に優れた耐熱マグネシウム合金、およびその高温疲労強度特性に優れた耐熱マグネシウム合金の製造方法、並びにその高温疲労強度特性に優れた耐熱マグネシウム合金を用いて作製したエンジン用耐熱部品に関するものである。   The present invention relates to a heat-resistant magnesium alloy excellent in high-temperature fatigue strength characteristics that can be used for engines for automobiles or motorcycles, leisure engines, small engines such as lawn mowers, and peripheral devices such as turbochargers, and high temperatures thereof. The present invention relates to a method for producing a heat-resistant magnesium alloy having excellent fatigue strength characteristics, and a heat-resistant component for an engine produced using the heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics.

マグネシウムは比重が1.8で、機械用部品等の構造材として用いることができる金属の中では、実質的に最も比重が軽く(アルミニウムの約2/3、鉄の約1/4)、また、比強度、比剛性、熱伝導性等にも優れるという特性を有している。   Magnesium has a specific gravity of 1.8, and is the lightest specific gravity among metals that can be used as structural materials for machine parts (about 2/3 of aluminum and about 1/4 of iron). In addition, it has characteristics such as excellent specific strength, specific rigidity, thermal conductivity and the like.

また、近年、地球温暖化防止等の地球環境保護という観点からも、マグネシウムが、自動車、自動二輪車、航空機等のエンジン或いはターボチャージャーなどその周辺機器、電気・電子機器の筐体等の構成材料として適用されることが増加している。特に、自動車、自動二輪車等の車両に適用した場合は燃費の向上を図れるため、その傾向は顕著である。   In recent years, from the viewpoint of global environmental protection such as prevention of global warming, magnesium has been used as a constituent material for peripheral devices such as engines, turbochargers, etc. for automobiles, motorcycles, aircraft, etc., and casings for electrical and electronic devices. The application is increasing. In particular, when applied to vehicles such as automobiles and motorcycles, fuel consumption can be improved, and this tendency is remarkable.

しかしながら、マグネシウムを、高温雰囲気下で使用される車両の構造材として用いる場合、特にエンジン或いはターボチャージャーなどのその周辺機器等に用いる場合には、200〜300℃の高温に曝されるため、少なくとも300℃付近までの温度領域での耐熱性(高温強度)、更に300℃付近までの温度領域での高温疲労強度の安定性が要求される。   However, when magnesium is used as a structural material for a vehicle used in a high temperature atmosphere, particularly when used in peripheral equipment such as an engine or a turbocharger, it is exposed to a high temperature of 200 to 300 ° C., so at least Heat resistance (high temperature strength) in the temperature range up to about 300 ° C. and stability of high temperature fatigue strength in the temperature range up to about 300 ° C. are required.

そのため、従来から耐熱性(高温強度)を向上した様々な耐熱マグネシウム合金やその耐熱マグネシウム合金の製造方法が提案されている。その一例を挙げると、特許文献1には、Si、Cu、Ni、Be、Fe、Ti、V、Mn、Cr、Zr、Nb、Mo、Hf、Ta、W、Ndの1種または2種以上を1〜80重量%含有したマグネシウム基合金を溶解して製造する弾性率に優れたマグネシウム合金押出材の製造方法が記載されている。しかしながら、この特許文献1記載の製造方法で得られるマグネシウム合金は、確かに耐熱性(高温強度)は優れたものであるが、高温での疲労強度を改善したものではない。   Therefore, various heat-resistant magnesium alloys having improved heat resistance (high-temperature strength) and methods for producing the heat-resistant magnesium alloys have been proposed. For example, Patent Document 1 includes one or more of Si, Cu, Ni, Be, Fe, Ti, V, Mn, Cr, Zr, Nb, Mo, Hf, Ta, W, and Nd. Describes a method for producing a magnesium alloy extruded material excellent in elastic modulus, which is produced by melting a magnesium-based alloy containing 1 to 80% by weight. However, although the magnesium alloy obtained by the manufacturing method described in Patent Document 1 is certainly excellent in heat resistance (high temperature strength), it does not improve fatigue strength at high temperatures.

また、特許文献2には、Y:60重量%と残部が希土類元素からなるY成分を1.5〜10重量%、Nd:60重量%とLa:25重量%以下と残部がPrよりなるNd成分を1〜10重量%含有し、残部がMgよりなるマグネシウム合金が記載されている。しかしながら、この特許文献2記載のマグネシウム合金は、高温での引張り特性に優れるとの記載はあるものの、高温での疲労強度を改善したものではない。   Patent Document 2 discloses that Y: 60% by weight and the balance of Y component consisting of rare earth elements is 1.5 to 10% by weight, Nd: 60% by weight and La: 25% by weight or less, and balance of Nd consisting of Pr. A magnesium alloy containing 1 to 10% by weight of components with the balance being Mg is described. However, although the magnesium alloy described in Patent Document 2 is described as having excellent tensile properties at high temperatures, it does not improve fatigue strength at high temperatures.

また、特許文献3には、周期律表3a族希土類元素を0.2〜12重量%含有し、残部がMgおよび不可避的不純物である耐熱性に優れた粒子強化型Mg合金が記載されている。確かにこの特許文献3に記載された粒子強化型Mg合金は、高温での強度に優れたものであるということができるものの、150℃程度での高温強度の確保を想定して開発されたMg合金であり、300℃という高温での疲労強度を改善したものではない。   Patent Document 3 describes a particle-reinforced Mg alloy having excellent heat resistance, containing 0.2 to 12% by weight of a rare earth element in Group 3a of the periodic table, with the balance being Mg and inevitable impurities. . Certainly, the particle-reinforced Mg alloy described in Patent Document 3 is excellent in strength at high temperatures, but was developed assuming high-temperature strength at about 150 ° C. It is an alloy and does not improve fatigue strength at a high temperature of 300 ° C.

現在、このように耐熱マグネシウム合金の疲労強度を改善した先行技術は殆どない状況であるが、疲労強度を改善することを課題として掲げた先行技術としては、特許文献4記載のマグネシウム基合金を挙げることができる。このマグネシウム基合金は、重量%で、1〜8%の希土類元素および1〜6%のカルシウムを含み、素地を構成するマグネシウムの最大結晶粒径が30%以下であるマグネシウム基合金である。   At present, there is almost no prior art that has improved the fatigue strength of the heat-resistant magnesium alloy as described above, but as the prior art that has been aimed at improving the fatigue strength, there is a magnesium-based alloy described in Patent Document 4. be able to. This magnesium-based alloy is a magnesium-based alloy containing 1 to 8% rare earth element and 1 to 6% calcium by weight%, and the maximum crystal grain size of magnesium constituting the substrate is 30% or less.

この特許文献4記載のマグネシウム基合金は、耐熱性を付与するためにCaを添加した耐熱マグネシウム基合金であるが、疲労強度の観点では、Caを添加すると逆に疲労強度の向上に悪影響を及ぼすことが考えられる。また、粉末を固化するプロセスを含んで製造されるため、製造コストが高くなるという問題があると考えられる。更には、特許文献4の実施例には、強度、延性が向上することが示されているが、疲労強度が改善することは具体的には全く示されておらず、実際に疲労強度が改善できるか否かは不明であるといえる。   The magnesium-based alloy described in Patent Document 4 is a heat-resistant magnesium-based alloy to which Ca is added in order to impart heat resistance. However, from the viewpoint of fatigue strength, the addition of Ca adversely affects the improvement of fatigue strength. It is possible. Moreover, since it is manufactured including the process of solidifying the powder, it is considered that there is a problem that the manufacturing cost increases. Furthermore, although the Example of patent document 4 is shown that an intensity | strength and ductility improve, it is not shown at all that the fatigue strength improves concretely, and fatigue strength actually improves. It can be said that it is unclear whether it can be done.

また、本発明者らは、高温でのクリープ特性に優れたマグネシウム合金およびその製造方法を特許文献5として提案している。この特許文献5記載のマグネシウム合金は、質量%で、Y:1.8〜8.0%、Sm:1.4〜8.0%を各々含有し、残部Mgおよび不可避的不純物からなるマグネシウム合金であって、マグネシウムマトリックスへの固溶量が、質量%で、Y:0.8〜4.0%、Sm:0.6〜3.2%であり、マグネシウム合金組織の平均結晶粒径が3〜30μmの範囲であり、これら結晶粒内に300000倍のTEMにより観察される直径が2nm以上のサイズを有する析出物が平均で160個/μm以上存在する高温でのクリープ特性に優れたマグネシウム合金である。 In addition, the present inventors have proposed, as Patent Document 5, a magnesium alloy having excellent creep characteristics at high temperatures and a method for producing the same. The magnesium alloy described in Patent Document 5 contains, by mass%, Y: 1.8 to 8.0% and Sm: 1.4 to 8.0%, respectively, and the remaining Mg and inevitable impurities. The solid solution amount in the magnesium matrix is, by mass%, Y: 0.8 to 4.0%, Sm: 0.6 to 3.2%, and the average crystal grain size of the magnesium alloy structure is Excellent in creep characteristics at high temperature, in which the average number of precipitates having a diameter of 2 nm or more observed in a 300,000-fold TEM is present in these crystal grains is 160 / μm 2 or more. Magnesium alloy.

この特許文献5記載のマグネシウム合金は、含有するYとSmの一部を、マグネシウムマトリックスへ固溶させることを特徴とするものであって、それにより、250℃程度での強度と伸びを向上させ、また、YとSmの残りの部分を、析出物として結晶粒内に析出させることで、250℃程度でのクリープ特性を向上させようというものであるが、300℃付近での高温疲労強度特性については全く検討されていない。   The magnesium alloy described in Patent Document 5 is characterized in that a part of contained Y and Sm are dissolved in a magnesium matrix, thereby improving strength and elongation at about 250 ° C. In addition, it is intended to improve the creep characteristics at about 250 ° C. by depositing the remaining portions of Y and Sm in the crystal grains as precipitates, but the high temperature fatigue strength characteristics at around 300 ° C. Has not been studied at all.

特開昭62−218527号公報JP-A-62-218527 特開昭57−210946号公報Japanese Patent Laid-Open No. 57-210946 特開平5−202443号公報JP-A-5-202443 特開2006−2184号公報JP 2006-2184 A 特開2009−249647号公報JP 2009-249647 A

本発明は、上記従来の問題を解決せんとしてなされたもので、少なくとも300℃付近までの温度領域において優れた高温疲労強度特性を備えた耐熱マグネシウム合金と、その耐熱マグネシウム合金の製造方法、並びにその耐熱マグネシウム合金を用いて作製したエンジン用耐熱部品を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and includes a heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics in a temperature range up to at least about 300 ° C., a method for producing the heat-resistant magnesium alloy, and its An object of the present invention is to provide a heat-resistant component for an engine manufactured using a heat-resistant magnesium alloy.

請求項1記載の発明は、質量%で、Yを1.8〜8%、Smおよび/またはNdを合計量で1.4〜8%含有し、残部がMgおよび不可避的不純物からなるマグネシウム合金であって、マグネシウム合金組織の結晶粒の平均結晶粒径が10〜50μmの範囲であると共に、前記結晶粒内に、長径が5μm以上、アスペクト比が10以上の板状析出物が、10個以上析出していることを特徴とする高温疲労強度特性に優れた耐熱マグネシウム合金である。   The invention according to claim 1 is a magnesium alloy containing, by mass%, Y in an amount of 1.8 to 8%, Sm and / or Nd in a total amount of 1.4 to 8%, with the balance being Mg and inevitable impurities The average grain size of the crystal grains of the magnesium alloy structure is in the range of 10 to 50 μm, and 10 plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more are contained in the crystal grains. This is a heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics characterized by precipitation.

請求項2記載の発明は、更に、質量%で、Hoを0.5〜2%含有する請求項1記載の高温疲労強度特性に優れた耐熱マグネシウム合金である。   The invention described in claim 2 is a heat-resistant magnesium alloy excellent in high temperature fatigue strength characteristics according to claim 1 further containing 0.5 to 2% by mass of Ho.

請求項3記載の発明は、Sm、Nd、Hoのうち少なくとも1種の希土類元素がミッシュメタルとして添加されている請求項1または2記載の高温疲労強度特性に優れた耐熱マグネシウム合金である。   The invention according to claim 3 is the heat-resistant magnesium alloy having excellent high temperature fatigue strength characteristics according to claim 1 or 2, wherein at least one rare earth element of Sm, Nd, and Ho is added as misch metal.

請求項4記載の発明は、請求項1または2に記載の成分組成のマグネシウム合金溶湯を鋳造後、処理温度が330〜550℃の条件で溶体化処理を施した後に、加工温度が330〜550℃の条件で、真ひずみが1.1〜2.1のひずみを、ひずみ速度:0.1/s〜1.7/sで付与する熱間加工により成形加工を施し、更に、その加工終了後5秒以内に300℃以下にまで冷却し、その後、処理温度が300〜330℃の条件で、40時間以上の時効処理を施す工程を有することを特徴とする高温疲労強度特性に優れた耐熱マグネシウム合金の製造方法である。   The invention according to claim 4 is a processing temperature of 330 to 550 after casting the magnesium alloy melt having the component composition according to claim 1 or 2 and performing a solution treatment at a treatment temperature of 330 to 550 ° C. Under the condition of ° C., a forming process is performed by hot working which gives a strain having a true strain of 1.1 to 2.1 at a strain rate of 0.1 / s to 1.7 / s, and the processing is completed. Heat resistance excellent in high temperature fatigue strength characteristics characterized by having a process of cooling to 300 ° C. or less within 5 seconds and then performing an aging treatment for 40 hours or more under the condition of a treatment temperature of 300 to 330 ° C. It is a manufacturing method of a magnesium alloy.

請求項5記載の発明は、請求項1乃至3のいずれかに記載の耐熱マグネシウム合金を用いて作製してなるエンジン用耐熱部品である。   A fifth aspect of the present invention is a heat-resistant component for an engine produced by using the heat-resistant magnesium alloy according to any one of the first to third aspects.

本発明の耐熱マグネシウム合金によると、少なくとも300℃付近までの温度領域において、優れた疲労特性を確保することができる。特に自動車、自動二輪車、航空機等のエンジン或いはターボチャージャーなどその周辺機器は、200〜300℃の高温に曝されるため、好適な金属材料として用いることができる。   According to the heat-resistant magnesium alloy of the present invention, excellent fatigue characteristics can be ensured in a temperature range up to at least about 300 ° C. In particular, peripheral devices such as engines or turbochargers of automobiles, motorcycles, airplanes and the like can be used as suitable metal materials because they are exposed to high temperatures of 200 to 300 ° C.

また、本発明の耐熱マグネシウム合金の製造方法によると、高温疲労強度特性に優れた耐熱マグネシウム合金を製造することができる。   Moreover, according to the manufacturing method of the heat-resistant magnesium alloy of this invention, the heat-resistant magnesium alloy excellent in the high temperature fatigue strength characteristic can be manufactured.

更には、本発明のエンジン用耐熱部品によると、高温疲労強度特性を備えたエンジン用耐熱部品とすることができる。   Furthermore, according to the heat-resistant component for engines of the present invention, the heat-resistant component for engines having high-temperature fatigue strength characteristics can be obtained.

本発明のマグネシウム合金の切断面をFE−SEMで観察した顕微鏡写真(2次電子像)である。It is the microscope picture (secondary electron image) which observed the cut surface of the magnesium alloy of this invention by FE-SEM.

エンジン或いはターボチャージャーなどは200〜300℃の高温に曝されるため、少なくとも300℃付近までの温度領域において、疲労強度特性に優れた耐熱マグネシウム合金を得るために、発明者らは、鋭意、実験、研究を進めた。   Since the engine or turbocharger is exposed to a high temperature of 200 to 300 ° C., the inventors have conducted diligent experiments to obtain a heat-resistant magnesium alloy having excellent fatigue strength characteristics in a temperature range up to at least 300 ° C. , Advanced research.

まず発明者らは、高温疲労強度を確保するためには、マグネシウム合金が繰り返し荷重を受ける中でマグネシウム合金に導入される転位セルの集積を均一分散化することが重要であることを見出した。転位セルの集積サイトは通常は結晶粒界であるため、結晶粒の均一微細化が高温疲労強度を確保するために有効であると考えられるが、圧延、鍛造等によって結晶粒を均一微細化するにも限界があり、現実的に平均結晶粒径を5μmより小さくすることは困難である。   First, the inventors have found that in order to ensure high temperature fatigue strength, it is important to uniformly disperse the dislocation cells introduced into the magnesium alloy while the magnesium alloy is repeatedly loaded. Since the dislocation cell accumulation site is usually a crystal grain boundary, uniform refinement of crystal grains is considered to be effective for ensuring high-temperature fatigue strength, but uniform refinement of crystal grains by rolling, forging, etc. However, it is difficult to make the average crystal grain size smaller than 5 μm in practice.

そこで発明者らは、マグネシウム合金が繰り返し荷重を受ける中で転位セルが集積するサイトとして、結晶粒内に析出する析出物を分散させる手法に着目し、その析出物の形態について検討したところ、高温疲労強度特性に優れた耐熱マグネシウム合金を得るためには、析出物の形態が次の3つの条件を満たすことが有効であるとの結論に達した。1点目は、析出物が球体状ではなく、板状であることである。また2点目は、析出物のサイズはナノメーターサイズの微細なサイズではなく、μmオーダの比較的粗大なサイズとすることである。最後に3点目は、析出物に適切な厚みを持たせて繰り返し荷重を受ける中で割れることのない形態とすることである。   Therefore, the inventors focused on a technique for dispersing precipitates precipitated in crystal grains as sites where dislocation cells accumulate while the magnesium alloy is subjected to repeated loads, and examined the form of the precipitates. In order to obtain a heat-resistant magnesium alloy having excellent fatigue strength characteristics, it has been concluded that it is effective that the form of precipitates satisfies the following three conditions. The first point is that the precipitate is not spherical but plate-like. The second point is that the size of the precipitate is not a fine size of nanometer size but a relatively coarse size of the order of μm. Finally, the third point is to give the precipitate an appropriate thickness so that it does not crack during repeated loading.

更に発明者らは、300℃付近での温度領域における疲労特性を確保することに有効な析出物の組成を検討したところ、マグネシウム合金に添加する合金元素を、Yと、Smおよび/またはNdとすることが有効であることを見出した。   Furthermore, the inventors examined the composition of precipitates effective for ensuring fatigue characteristics in the temperature region near 300 ° C., and found that the alloy elements added to the magnesium alloy were Y, Sm and / or Nd. I found it effective.

以上で結晶粒内に析出する析出物についての検討は終了したが、単に析出物の形態や組成を制御するだけでは不十分であるため、結晶粒そのものについても検討したところ、結晶粒の平均結晶粒径を適当な範囲に規定することも有効であることを見出した。   This is the end of the study on the precipitates precipitated in the crystal grains, but it is not sufficient to simply control the morphology and composition of the precipitates. It has been found that it is also effective to define the particle size within an appropriate range.

以上の結果、マグネシウム合金に添加する合金元素を、Yと、Smおよび/またはNdとし、その合金元素の添加量を適正範囲に規定すると共に、マグネシウム合金組織の結晶粒の平均結晶粒径を規定し、更に、その結晶粒内に析出する析出物の形態および析出個数を規定することで、所望の高温疲労強度特性を備えた耐熱マグネシウム合金を得ることができることを発明者らは見出し、本発明の完成に至った。   As a result, the alloy elements to be added to the magnesium alloy are Y, Sm and / or Nd, and the addition amount of the alloy elements is specified within an appropriate range, and the average crystal grain size of the crystal grains of the magnesium alloy structure is specified. Furthermore, the inventors have found that a heat-resistant magnesium alloy having desired high-temperature fatigue strength characteristics can be obtained by defining the form and the number of precipitates precipitated in the crystal grains. It was completed.

以下、本発明を実施形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明では、マグネシウム合金の成分組成、マグネシウム合金組織の結晶粒の平均結晶粒径、その結晶粒内に析出する板状析出物の形態および析出個数を、夫々規定するが、以下その理由を詳細に説明する。   In the present invention, the component composition of the magnesium alloy, the average crystal grain size of the crystal grains of the magnesium alloy structure, the form of the plate-like precipitates precipitated in the crystal grains, and the number of precipitates are respectively defined. Explained.

(成分組成)
本発明のマグネシウム合金は、マグネシウムに合金元素として、Yと、Smおよび/またはNdを添加して構成されるが、マグネシウム合金中のYの含有量は1.8〜8%、Smおよび/またはNdの含有量は合計量で1.4〜8%とする。また、Hoを0.5〜2%含有しても良い。残部はMgおよび不可避的不純物である。尚、先に記載した%は質量%を示し、以下の明細書中に%と記載するものは全て質量%を示す。
(Component composition)
The magnesium alloy of the present invention is constituted by adding Y and Sm and / or Nd as alloy elements to magnesium, but the content of Y in the magnesium alloy is 1.8 to 8%, Sm and / or The total content of Nd is 1.4 to 8%. Moreover, you may contain 0.5 to 2% of Ho. The balance is Mg and inevitable impurities. In addition,% described above shows mass%, and what is described as% in the following specification shows mass%.

Y:1.8〜8%
YはSmおよび/またはNdと共存して耐熱性(高温強度)および高温伸びに加えて、高温での優れた耐疲労強度を確保するために必要な元素である。このYの含有量が1.8%未満であると、耐熱性(高温強度)および高温伸びに加えて、高温での優れた耐疲労強度を確保することが不可能になる。一方、Yの含有量が8%を超えると、Y系金属間化合物の粒界への析出量が増加し、却って、耐熱性(高温強度)高温伸び、および耐熱性を低下させてしまう。従って、Yの含有量は1.8〜8%とする。
Y: 1.8-8%
Y is an element necessary for ensuring excellent fatigue strength at high temperatures in addition to heat resistance (high temperature strength) and high temperature elongation in combination with Sm and / or Nd. If the Y content is less than 1.8%, it becomes impossible to ensure excellent fatigue resistance at high temperatures in addition to heat resistance (high temperature strength) and high temperature elongation. On the other hand, if the Y content exceeds 8%, the amount of precipitation of Y-based intermetallic compounds at the grain boundaries increases, and on the contrary, heat resistance (high temperature strength) high temperature elongation and heat resistance are reduced. Therefore, the Y content is set to 1.8 to 8%.

Smおよび/またはNd:1.4〜8%
Smおよび/またはNdはYと共存することで、耐熱性(高温強度)および高温伸びに加えて、高温での優れた耐疲労強度を確保するために必要な元素であり、また、高温疲労強度を確保するために必要な板状析出物の構成元素である。このSmおよび/またはNdの合計の含有量が1.4%未満であると、耐熱性(高温強度)および高温伸びに加えて、高温での優れた耐疲労強度を確保することが不可能になる。一方、Smおよび/またはNdの合計の含有量が8%を超えると、Sm系金属間化合物および/またはNd金属間化合物の粒界への晶出量が増加し、却って、耐熱性(高温強度)高温伸び、および耐熱性を低下させてしまう。従って、Smおよび/またはNdの合計の含有量は1.4〜8%とする。
Sm and / or Nd: 1.4-8%
Sm and / or Nd coexist with Y, in addition to heat resistance (high temperature strength) and high temperature elongation, it is an element necessary for ensuring excellent fatigue resistance at high temperatures, and high temperature fatigue strength. It is a constituent element of the plate-like precipitate necessary for ensuring. If the total content of Sm and / or Nd is less than 1.4%, in addition to heat resistance (high temperature strength) and high temperature elongation, it is impossible to ensure excellent fatigue strength at high temperatures. Become. On the other hand, if the total content of Sm and / or Nd exceeds 8%, the amount of Sm-based intermetallic compound and / or Nd intermetallic compound crystallized at the grain boundary increases, and on the contrary, the heat resistance (high temperature strength). ) Reduces high temperature elongation and heat resistance. Therefore, the total content of Sm and / or Nd is set to 1.4 to 8%.

尚、Yと、Smおよび/またはNdの合計の含有量は、耐熱性(高温強度)および高温での優れた耐疲労強度を確保するために、10%以上とすることが好ましい。   The total content of Y and Sm and / or Nd is preferably 10% or more in order to ensure heat resistance (high temperature strength) and excellent fatigue strength at high temperatures.

Ho:0.5〜2%
Hoはマグネシウム合金に固溶し、高温強度を高める作用を発揮する元素であり、SmまたはNdを含有する板状析出物を分散制御することに組み合わせることで、高温での耐疲労強度を底上げする効果を発揮する。このHoを含有させる場合は0.5〜2%とする。
Ho: 0.5-2%
Ho is an element that dissolves in a magnesium alloy and exhibits an effect of increasing the high-temperature strength, and is combined with the dispersion control of the plate-like precipitate containing Sm or Nd to raise the fatigue resistance strength at a high temperature. Demonstrate the effect. When this Ho is contained, the content is 0.5 to 2%.

尚、Sm、Nd、Hoは純元素として添加することができるが、希土類元素を混合したミッシュメタルとして添加することもできる。ミッシュメタルとして添加する場合は、各希土類元素ごとの分離コストが省かれるという副次的な効果を奏する。   Sm, Nd, and Ho can be added as pure elements, but can also be added as a misch metal mixed with rare earth elements. When added as misch metal, there is a secondary effect that the separation cost for each rare earth element is omitted.

(平均結晶粒径)
マグネシウム合金組織の結晶粒の平均結晶粒径は、50μm以下、望ましくは30μm以下でなければならない。平均結晶粒径が50μmを超えると、300℃付近の高温環境において、延性を確保することが不可能になる。この平均結晶粒径は小さければ小さいほど十分な延性を確保することができるようになるが、平均結晶粒径が10μm未満になると、本発明が要件としている板状析出物の析出条件を確保できなくなる。従って、マグネシウム合金組織の結晶粒の平均結晶粒径は、10〜50μmの範囲とする。
(Average crystal grain size)
The average grain size of the crystal grains of the magnesium alloy structure should be 50 μm or less, desirably 30 μm or less. When the average crystal grain size exceeds 50 μm, it becomes impossible to ensure ductility in a high temperature environment around 300 ° C. The smaller the average crystal grain size, the more sufficient ductility can be ensured. However, when the average crystal grain size is less than 10 μm, the precipitation conditions for the plate-like precipitates required by the present invention can be ensured. Disappear. Therefore, the average crystal grain size of the crystal grains of the magnesium alloy structure is in the range of 10 to 50 μm.

尚、結晶粒の平均結晶粒径は、時効処理後のマグネシウム合金材を任意の面で切断後、その表面を機械研磨、電解エッチング等で平滑に仕上げた後、光学顕微鏡を用いて観察することにより求めた。具体的には、マグネシウム合金材の表面より略垂直に1mm内側の位置を中心として、300μm×400μm視野のミクロ組織を得て、存在する結晶粒の円相当径の平均値を求めることで得た。   The average crystal grain size of the crystal grains should be observed using an optical microscope after cutting the magnesium alloy material after aging treatment on an arbitrary surface and then finishing the surface smoothly by mechanical polishing, electrolytic etching, etc. Determined by Specifically, it was obtained by obtaining a microstructure with a field of view of 300 μm × 400 μm centered on a position 1 mm inside substantially perpendicular to the surface of the magnesium alloy material, and calculating the average value of the equivalent circle diameters of the existing crystal grains. .

(板状析出物の長径)
板状析出物の長径とは、一つの板状析出物における最大の長さ(径)のことである。この板状析出物の長径は少なくとも5μmは必要である。これより長径が短い板状析出物は、高温疲労強度特性の向上に寄与することができない。一方、板状析出物の長径の上限については特に規定しないが、板状析出物を含有する結晶粒の長径よりは長くなることはない。
(Long diameter of plate-like precipitate)
The major axis of the plate-like precipitate is the maximum length (diameter) of one plate-like precipitate. The major axis of the plate-like precipitate must be at least 5 μm. A plate-like precipitate having a shorter major axis than this cannot contribute to the improvement of the high temperature fatigue strength characteristics. On the other hand, the upper limit of the major axis of the plate-like precipitate is not particularly defined, but it is not longer than the major axis of the crystal grains containing the plate-like precipitate.

(板状析出物のアスペクト比)
板状析出物のアスペクト比は少なくとも10以上は必要である。板状析出物の長径が5μm以上あっても、アスペクト比が10未満の形状では、板状析出物が繰り返し荷重を受けることで破壊して(割れて)しまい、十分な高温疲労強度特性を確保するための形態を維持できなくなる。一方、アスペクト比の上限については特に規定しないが、板状析出物の厚みを確保するための最小厚みは結晶構造上5〜15nmであるため、実際の上限は8000〜10000の範囲であると考えられる。
(Aspect ratio of plate-like precipitate)
The aspect ratio of the plate-like precipitate must be at least 10 or more. Even if the major axis of the plate-like precipitate is 5 μm or more, if the aspect ratio is less than 10, the plate-like precipitate will be broken (cracked) by repeated loading, ensuring sufficient high-temperature fatigue strength characteristics. The form for doing so cannot be maintained. On the other hand, the upper limit of the aspect ratio is not particularly defined, but the minimum thickness for securing the thickness of the plate-like precipitate is 5 to 15 nm in terms of the crystal structure, so the actual upper limit is considered to be in the range of 8000 to 10,000. It is done.

(板状析出物の析出個数)
前記した長径およびアスペクト比を満足する板状析出物の、各結晶粒あたりの析出個数は少なくとも10個は必要である。各結晶粒あたりの板状析出物の析出個数が9個以下になると十分な高温疲労強度特性を確保することができなくなる。各結晶粒に板状析出物を10個以上分散させることで、高温疲労強度特性の確保に有効な疲労ダメージにより導入される転位セル構造集積の障壁を設けることができる。
(Number of deposited plate-like precipitates)
The number of precipitates per crystal grain of the plate-like precipitates satisfying the above-mentioned major axis and aspect ratio is required to be at least 10. If the number of plate-like precipitates per crystal grain is 9 or less, sufficient high temperature fatigue strength characteristics cannot be ensured. By dispersing 10 or more plate-like precipitates in each crystal grain, it is possible to provide a barrier for dislocation cell structure integration introduced by fatigue damage effective for ensuring high temperature fatigue strength characteristics.

(製造方法)
次に、本発明の耐熱マグネシウム合金を得るまでの、好ましい製造方法、また、その製造条件について説明する。まず、本発明の耐熱マグネシウム合金の製造方法では、質量%で、Yを1.8〜8%、Smおよび/またはNdを合計量で1.4〜8%含有し、残部がMgおよび不可避的不純物からなるマグネシウム合金溶湯、或いは、それに加えて、質量%で、Hoを0.5〜2%含有するマグネシウム合金溶湯を、鋳造して鋳塊とし、その鋳塊を必要により熱間加工するためのビレットに機械加工し、その後、溶体化処理を施した後、結晶粒微細化のための鍛造、押出しなどの熱間加工を行う。尚、一般的なマグネシウム合金の製造工程では、これらの製造工程は実施せず、鋳塊の状態で製品として使用するか、この鋳塊に溶体化処理などの熱処理を施すのみである。
(Production method)
Next, a preferable production method and production conditions for obtaining the heat-resistant magnesium alloy of the present invention will be described. First, in the method for producing a heat-resistant magnesium alloy of the present invention, Y is 1.8 to 8% in mass%, Sm and / or Nd is contained in a total amount of 1.4 to 8%, and the balance is Mg and inevitable. In order to cast a magnesium alloy melt containing impurities or a magnesium alloy melt containing 0.5 to 2% by mass of Ho and 0.5% to 2%, and hot-working the ingot as necessary. The billet is machined and then subjected to a solution treatment, followed by hot working such as forging and extrusion for crystal grain refinement. In a general magnesium alloy manufacturing process, these manufacturing processes are not carried out, but are used as a product in an ingot state or only heat treatment such as solution treatment is performed on the ingot.

溶体化処理は、その後の時効処理にて板状析出物を生成するSmおよび/またはNdを固溶させるために必要である。Smおよび/またはNdを十分に固溶させるためには330℃以上での溶体化処理が必要であり、より好ましい溶体化処理温度は450℃超である。一方、この溶体化処理温度が550℃を超えると、十分なSmおよび/またはNdの固溶量を確保することができるものの、次の熱間加工工程でマグネシウム合金組織の結晶粒のサイズを制御することが困難になるため、上限を550℃とした。尚、この溶体化処理を行う時間は、5〜30時間とすることが好ましい。この溶体化処理時間が5時間未満であると、Y、Sm、Nd、Ho等の添加元素の溶体化不足となり、高温強度、疲労特性が得られなくなる。一方、溶体化処理時間が30時間を超えると、結晶粒が粗大化する可能性があり、また、後工程の条件を制御しても所望の結晶粒径に調整できなくなる。   The solution treatment is necessary for solid solution of Sm and / or Nd that forms a plate-like precipitate in the subsequent aging treatment. In order to sufficiently dissolve Sm and / or Nd, a solution treatment at 330 ° C. or higher is necessary, and a more preferable solution treatment temperature is higher than 450 ° C. On the other hand, when the solution treatment temperature exceeds 550 ° C., a sufficient amount of solid solution of Sm and / or Nd can be secured, but the crystal grain size of the magnesium alloy structure is controlled in the next hot working process. Therefore, the upper limit was set to 550 ° C. The time for performing the solution treatment is preferably 5 to 30 hours. If the solution treatment time is less than 5 hours, the solution of the additive elements such as Y, Sm, Nd, and Ho becomes insufficient, and high temperature strength and fatigue characteristics cannot be obtained. On the other hand, if the solution treatment time exceeds 30 hours, the crystal grains may be coarsened, and even if the conditions of the post-process are controlled, the desired crystal grain size cannot be adjusted.

また、鍛造、熱間静水圧押出しや通常の熱間押出しなどによる熱間加工の加工温度は、溶体化処理温度と同様に330〜550℃とする。このように、熱間加工の加工温度を溶体化処理温度と揃えることで、溶体化処理と熱間加工の材料加熱を兼ねることができるが、素材を溶体化処理後に一度冷却してから再加熱しても構わない。尚、より好ましい熱間加工温度は400〜500℃である。加工温度が330℃未満で熱間加工を施すと割れが発生する可能性があり、製造歩留まりが悪化する。一方、熱間加工温度が550℃を超えて高くなると、結晶粒を微細化することができなくなり、結晶粒が粗大化し、強度と延性のバランスが不安定となる。尚、熱間加工の手段は、熱間押出し、圧延、鍛造のいずれであっても構わない。   Moreover, the processing temperature of the hot working by forging, hot isostatic pressing, normal hot extrusion, or the like is set to 330 to 550 ° C. similarly to the solution treatment temperature. In this way, by aligning the hot working temperature with the solution treatment temperature, it is possible to serve both as a solution heat treatment and a hot work material heating, but after reheating the material once cooled after the solution treatment. It doesn't matter. A more preferable hot working temperature is 400 to 500 ° C. When hot working is performed at a processing temperature of less than 330 ° C., cracks may occur, and the manufacturing yield deteriorates. On the other hand, if the hot working temperature exceeds 550 ° C., the crystal grains cannot be refined, the crystal grains become coarse, and the balance between strength and ductility becomes unstable. The hot working means may be any of hot extrusion, rolling and forging.

また、熱間加工で付与されるひずみは、真ひずみで1.1以上、望ましくは1.3以上であることが必要である。ひずみ量が1.1未満では、結晶粒を微細化するための再結晶駆動力を確保することができなくなり、結晶粒の平均結晶粒径が上限の50μmを超えてしまうことになる。尚、鍛造部材等の場合は、部位によって導入されるひずみ量が違ってくるので、最小ひずみ導入部のひずみ量が1.1以上であることが必要である。尚、ひずみ量を1.3以上とすることで結晶粒の平均結晶粒径を30μm以下にすることができる。一方、ひずみ量が2.1を超えるひずみを付与することは、熱間加工時に鍛造割れ等が発生してしまうために不可能である。よって、熱間加工で付与されるひずみは、真ひずみで1.1〜2.1、望ましくは1.3〜2.1とした。   Further, the strain applied by hot working needs to be 1.1 or more, preferably 1.3 or more in terms of true strain. If the strain amount is less than 1.1, the recrystallization driving force for refining the crystal grains cannot be ensured, and the average crystal grain size of the crystal grains exceeds the upper limit of 50 μm. In the case of a forged member or the like, the amount of strain introduced varies depending on the site, so the strain amount of the minimum strain introduction portion needs to be 1.1 or more. In addition, the average crystal grain diameter of a crystal grain can be 30 micrometers or less by making distortion amount 1.3 or more. On the other hand, it is impossible to apply a strain with a strain amount exceeding 2.1 because forging cracks and the like occur during hot working. Therefore, the strain applied by hot working is 1.1 to 2.1, preferably 1.3 to 2.1 in terms of true strain.

このひずみを付与する際の熱間加工におけるひずみ速度は0.1/s〜1.7/sとする。このひずみ速度が小さすぎる場合は、一度付与したひずみが連続的に回復し、結晶粒の微細化のための駆動力を蓄積することができなくなってしまい、結晶粒の平均結晶粒径が上限の50μmを超えてしまう。また、より大きなひずみ速度とすることが望ましいが、熱間加工時に鍛造割れ等が発生してしまう可能性があるため、ひずみ速度の上限も設定し、本発明では熱間加工におけるひずみ速度は0.1/s〜1.7/sの範囲とした。   The strain rate in hot working at the time of applying this strain is 0.1 / s to 1.7 / s. If this strain rate is too low, the strain once applied recovers continuously, and it becomes impossible to accumulate driving force for crystal grain refinement, and the average crystal grain size of the crystal grain is the upper limit. It exceeds 50 μm. Although it is desirable to set a larger strain rate, forging cracks or the like may occur during hot working. Therefore, an upper limit of the strain rate is set, and in the present invention, the strain rate in hot working is 0. The range was from 1 / s to 1.7 / s.

次に、熱間加工による成形加工終了後5秒以内に300℃以下にまで急激に冷却する。この冷却を施すことによって、マグネシウム合金組織の結晶粒径を小さくすることができ、平均結晶粒径を10〜50μmとすることができる。その結果、優れた疲労強度特性を耐熱マグネシウム合金に付与することができる。尚、冷却は、空冷、ガス冷却、水冷の何れによって実施しても構わないが、部材の中心まで確実に冷却するためには、水中に投入して冷却する水冷を採用することが好ましい。   Next, it cools rapidly to 300 degrees C or less within 5 second after completion | finish of the shaping | molding process by a hot process. By applying this cooling, the crystal grain size of the magnesium alloy structure can be reduced, and the average crystal grain size can be 10 to 50 μm. As a result, excellent fatigue strength characteristics can be imparted to the heat-resistant magnesium alloy. The cooling may be performed by any of air cooling, gas cooling, and water cooling. However, in order to reliably cool to the center of the member, it is preferable to employ water cooling that is performed by cooling in the water.

以上の工程で、耐熱マグネシウム合金に優れた疲労強度特性を付与することができるが、300℃付近の高温での優れた疲労強度特性は付与できていない。従って、本発明の製造方法では優れた高温疲労強度特性を付与するために、前記冷却処理を施した後に、処理温度が300〜330℃の条件で、40時間以上の時効処理を施す。   Although the fatigue strength characteristic excellent in the heat-resistant magnesium alloy can be imparted by the above process, the excellent fatigue strength characteristic at a high temperature around 300 ° C. cannot be imparted. Therefore, in the manufacturing method of the present invention, in order to give excellent high temperature fatigue strength characteristics, after the cooling treatment, an aging treatment for 40 hours or more is performed under the treatment temperature of 300 to 330 ° C.

時効処理の温度が300℃未満の場合は、析出物の成長が実質的に停止するため、析出物の形態が本発明で規定する形態とならず、その結果、高温疲労強度特性を確保できなくなる。一方、時効処理の温度が330℃を上回ると、析出元素であるSmおよび/またはNdを固溶させる溶体化処理温度に近くなり、その結果、析出物の再固溶が始まることで必要な析出物の個数、形態を確保することができなくなり、高温疲労強度特性を得ることができなくなる。   When the temperature of the aging treatment is less than 300 ° C., the growth of the precipitate is substantially stopped, so the form of the precipitate does not become the form defined in the present invention, and as a result, the high temperature fatigue strength characteristics cannot be secured. . On the other hand, when the temperature of the aging treatment exceeds 330 ° C., the temperature becomes close to the solution treatment temperature at which the precipitation elements Sm and / or Nd are dissolved, and as a result, the reprecipitation of the precipitate starts and the necessary precipitation occurs. The number and shape of the objects cannot be ensured, and high temperature fatigue strength characteristics cannot be obtained.

また、時効処理は40時間以上施すことが必要である。この時効処理時間が40時間未満の場合は、必要な析出物の個数、形態を確保することができなくなり、高温疲労強度特性を得ることができなくなる。より安定して析出物の個数、形態を確保するという観点からは、100時間以上の時効処理を施すことが好ましい。尚、本発明では時効処理時間の上限は特に定めないが、工業的合理性、析出形態の変化挙動から考えると、200時間以上の時効処理を行ってもそれ以上高温疲労強度特性の向上は図れない。   The aging treatment needs to be performed for 40 hours or more. When the aging treatment time is less than 40 hours, the necessary number and form of precipitates cannot be ensured, and high temperature fatigue strength characteristics cannot be obtained. From the viewpoint of securing the number and form of precipitates more stably, it is preferable to perform an aging treatment for 100 hours or more. In the present invention, the upper limit of the aging treatment time is not particularly defined, but considering the industrial rationality and the change behavior of the precipitation form, the high temperature fatigue strength characteristics can be further improved even after aging treatment for 200 hours or more. Absent.

尚、成形加工終了後(急冷後)、時効処理を施す前に再溶体化処理を加えても良い。具体的には、330〜450℃にて1〜2時間の再溶体化処理を加えるが、このような条件で再溶体化処理を施すことにより、マグネシウム合金組織の結晶粒の平均結晶粒径を10〜50μmの範囲に維持することができる。   In addition, after completion | finish of a shaping | molding process (after rapid cooling), you may add a re-solution treatment before performing an aging treatment. Specifically, a re-solution treatment is performed at 330 to 450 ° C. for 1 to 2 hours. By performing the re-solution treatment under such conditions, the average grain size of the crystal grains of the magnesium alloy structure is reduced. It can be maintained in the range of 10 to 50 μm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

以下、本発明の実施例について説明する。本実施例では、マグネシウム合金の成分組成と製造方法に係る条件を種々変えて、結晶粒の平均結晶粒径、並びに長径が5μm以上でアスペクト比が10以上の板状析出物の析出個数を測定すると共に、300℃での高温疲労強度特性を測定、評価した。表1および表2にこれらの試験条件と試験結果を示す。 尚、表1には、マグネシウム合金にYとSmを添加した事例を、表2には、No.31〜34としてマグネシウム合金にYとNdを添加した事例を、No.35〜38としてマグネシウム合金にYとSmとNdを添加した事例を、No.39〜42としてこれら添加元素に加えて更にHoを添加した事例を、夫々示す。   Examples of the present invention will be described below. In this example, the component composition of the magnesium alloy and the conditions relating to the manufacturing method were changed in various ways to measure the average crystal grain size of the crystal grains and the number of plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more. In addition, high temperature fatigue strength characteristics at 300 ° C. were measured and evaluated. Tables 1 and 2 show these test conditions and test results. Table 1 shows an example of adding Y and Sm to a magnesium alloy, and Table 2 shows No. Nos. 31 to 34 are examples in which Y and Nd are added to magnesium alloys. Nos. 35 to 38 are examples in which Y, Sm and Nd are added to a magnesium alloy. Examples of addition of Ho in addition to these additional elements are shown as 39 to 42, respectively.

具体的には、まず、表1および表2に示す成分組成のマグネシウム合金を、夫々アルゴン不活性雰囲気下の電気溶解炉において溶解し、鋳鉄製モールドに750℃の温度で鋳込み、φ950mm×長さ100mmのマグネシウム合金鋳塊を得た。続いて、そのマグネシウム合金鋳塊の表面を機械加工により面削して、各々φ68mm×長さ100mmのマグネシウム合金ビレットとした。   Specifically, first, magnesium alloys having the component compositions shown in Table 1 and Table 2 were melted in an electric melting furnace under an argon inert atmosphere, and cast into a cast iron mold at a temperature of 750 ° C., φ950 mm × length A 100 mm magnesium alloy ingot was obtained. Subsequently, the surface of the magnesium alloy ingot was chamfered by machining to obtain magnesium alloy billets each having a diameter of 68 mm and a length of 100 mm.

このマグネシウム合金ビレットに対し、表1および表2に示す温度条件で20時間の溶体化処理を施した後、平板鍛造による熱間加工を、表1および表2に示す温度条件で施した。また、この熱間加工における、真ひずみ、ひずみ速度も併せて示す。続いて、水冷にて熱間加工終了後5秒以内に300℃以下にまで冷却し、その後、表1および表2に示す温度条件で時効処理を施して試験材とした。   The magnesium alloy billet was subjected to a solution treatment for 20 hours under the temperature conditions shown in Tables 1 and 2, and then hot-worked by flat plate forging under the temperature conditions shown in Tables 1 and 2. In addition, the true strain and strain rate in this hot working are also shown. Then, it cooled to 300 degrees C or less within 5 second after completion | finish of hot processing by water cooling, Then, the aging treatment was performed on the temperature conditions shown in Table 1 and Table 2, and it was set as the test material.

以上に示す方法で製造した試験材から切り出した試料を用いて、結晶粒の平均結晶粒径、長径が5μm以上でアスペクト比が10以上の板状析出物の析出個数のほか、300℃での高温疲労強度特性を、測定、評価した。測定結果を表1および表2に示す。   Using the sample cut out from the test material manufactured by the method described above, the average grain size of the crystal grains, the number of plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more, and at 300 ° C. High temperature fatigue strength characteristics were measured and evaluated. The measurement results are shown in Tables 1 and 2.

(結晶粒の平均結晶粒径の測定)
結晶粒の平均結晶粒径は、時効処理後のマグネシウム合金組織を光学顕微鏡で観察することにより、前記した方法により求めた。
(Measurement of average grain size of crystal grains)
The average crystal grain size of the crystal grains was determined by the method described above by observing the magnesium alloy structure after the aging treatment with an optical microscope.

(長径が5μm以上、アスペクト比が10以上の板状析出物の析出個数)
長径が5μm以上、アスペクト比が10以上の板状析出物の析出個数は、時効処理後のマグネシウム合金を切断して樹脂板にはめ込み、その表面を鏡面研磨して平滑に仕上げた後、導電性を持たせるためその表面にオスミウムコーティングを施し、その後、FE−SEM(日本電子製、JSM−7001F)で2次電子像を観察することにより求めた。
(Number of plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more)
The number of plate-like precipitates with a major axis of 5 μm or more and an aspect ratio of 10 or more is determined by cutting the magnesium alloy after aging treatment and fitting it into a resin plate, then mirror-polishing the surface and finishing the surface smoothly. Was obtained by observing a secondary electron image with FE-SEM (manufactured by JEOL, JSM-7001F).

具体的には、観察倍率を2000倍、加速電圧を10kVとし、マグネシウム合金材の表面より略垂直に1mm内側の位置を中心として、300μm×400μm視野のミクロ組織を得て、その視野内に存在する結晶粒のうち、長径が5μm以上でアスペクト比が10以上の板状析出物の析出個数を求め、表1および表2に表示した。アスペクト比は、観察された板状析出物の長径/厚さより求めた。尚、板状析出物はマグネシウムマトリクスと一定の方位関係をもって析出するため、観察視野内で析出物が板状であることが明瞭に観察される結晶粒([0001]面が略観察できる結晶粒)を選択して以上の観察を実施した。図1にFE−SEMで観察した2次電子像の事例を示す。   Specifically, the observation magnification is 2000 times, the acceleration voltage is 10 kV, and a microstructure of a 300 μm × 400 μm visual field is obtained centering on a position 1 mm inside substantially perpendicular to the surface of the magnesium alloy material, and exists in the visual field. Among the crystal grains to be produced, the number of plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more was determined and displayed in Tables 1 and 2. The aspect ratio was determined from the major axis / thickness of the observed plate-like precipitate. In addition, since the plate-like precipitate is precipitated with a certain orientation relationship with the magnesium matrix, the crystal grains (the crystal grains in which the [0001] plane can be substantially observed can be clearly observed within the observation field). ) Was selected and the above observations were made. FIG. 1 shows an example of a secondary electron image observed with an FE-SEM.

(疲労試験)
高温疲労破断寿命については、小野式回転曲げ疲労試験機を用い回転曲げ疲労試験を実施することにより確認、評価した。試験片は、直径(D0):12.0mm、長さ(L):90mm、最細部径(d):8.0mm、平滑部曲率半径(R):48.0mmの、JIS Z2274の2号試験片とし、赤外線ヒータで加熱してその試験片の温度を300℃に保った状態で、回転数:3000rpmの条件で疲労試験を実施した。10回疲労試験を繰返し、試験片の10回疲労強度を測定した。この疲労試験で10回疲労強度が40MPaを超えたものを高温疲労強度特性に優れた耐熱マグネシウム合金と判断した。
(Fatigue test)
The high temperature fatigue rupture life was confirmed and evaluated by carrying out a rotating bending fatigue test using an Ono type rotating bending fatigue tester. The test piece has a diameter (D0): 12.0 mm, a length (L): 90 mm, a maximum detail diameter (d): 8.0 mm, and a smooth part curvature radius (R): 48.0 mm, JIS Z2274 No. 2 A fatigue test was carried out under the condition of a rotational speed of 3000 rpm with the test piece heated with an infrared heater and kept at a temperature of 300 ° C. Repeated 10 7 times fatigue test were measured 10 7 times fatigue strength of the test piece. The 10 7 times fatigue strength fatigue test is determined to excellent heat magnesium alloy that exceed 40MPa in high temperature fatigue strength properties.

表1に示すNo.1〜16、並びに表2に示すNo.31,32,35,36,39〜41は、マグネシウム合金の成分組成と製造方法に係る条件が本発明の要件を満足している。その結果、結晶粒の平均結晶粒径、結晶粒内に析出する本発明で規定した要件を満足する板状析出物の形態および析出個数も、本発明で規定した要件を満足した。   No. shown in Table 1. 1-16 and No. 2 shown in Table 2. Nos. 31, 32, 35, 36, and 39 to 41 satisfy the requirements of the present invention in terms of the magnesium alloy component composition and the manufacturing method. As a result, the average crystal grain size of the crystal grains, the form of the plate-like precipitate that satisfies the requirements specified in the present invention and the number of precipitates satisfying the requirements specified in the present invention also satisfied the requirements specified in the present invention.

これらNo.1〜16並びにNo.29,30について、300℃での疲労試験を実施した結果、10回疲労強度は全て40MPaを超え、これらは全て、高温疲労強度特性に優れた耐熱マグネシウム合金であるということができる。特に、Y、SmおよびNdに加えHoを添加したNo.39〜41は、10回疲労強度が全て49MPaと高かった。 These No. 1-16 and No.1. For 29 and 30, result of the fatigue test at 300 ° C., 10 7 times fatigue strength beyond all 40 MPa, all of which can be said to be excellent thermal magnesium alloy in high-temperature fatigue strength characteristics. In particular, No. 1 which added Ho in addition to Y, Sm and Nd. In 39 to 41, the 10 7 times fatigue strength was as high as 49 MPa.

これに対し、No.17はYの含有量が少なすぎる比較例、No.18はYの含有量が多すぎる比較例、No.19はSmの含有量が少なすぎる比較例、No.20はSmの含有量が多すぎる比較例、No.21は溶体化処理温度が低すぎる比較例、No.22は溶体化処理温度が高すぎる比較例、No.23は真ひずみが小さすぎる比較例、No.24は真ひずみが大きすぎる比較例、No.25はひずみ速度が遅すぎる比較例、No.26はひずみ速度が速すぎる比較例、No.27は時効処理温度が低すぎる比較例、No.28は時効処理温度が高すぎる比較例、No.29は時効処理時間が短すぎる比較例、No.30は時効処理温度が低すぎると共に時効処理時間が短すぎる比較例である。   In contrast, no. No. 17 is a comparative example in which the Y content is too low, No. 17 No. 18 is a comparative example in which the Y content is too high, No. 18 No. 19 is a comparative example in which the Sm content is too low, No. 19 No. 20 is a comparative example in which the Sm content is too high, No. 20 No. 21 is a comparative example in which the solution treatment temperature is too low, No. 21. No. 22 is a comparative example in which the solution treatment temperature is too high. No. 23 is a comparative example in which the true strain is too small, No. 23. No. 24 is a comparative example in which the true strain is too large, No. 24. No. 25 is a comparative example in which the strain rate is too slow. No. 26 is a comparative example in which the strain rate is too high, No. 26. No. 27 is a comparative example in which the aging treatment temperature is too low, No. 27. No. 28 is a comparative example in which the aging treatment temperature is too high, No. 28. No. 29 is a comparative example in which the aging treatment time is too short. 30 is a comparative example in which the aging treatment temperature is too low and the aging treatment time is too short.

また、No.33はNdの含有量が少なすぎる比較例、No.34はNdの含有量が多すぎる比較例、No.37はミッシュメタルの添加量が少なくSmとNdの合計含有量が少なすぎる比較例、No.38はミッシュメタルの添加量が多くSmとNdの合計含有量が多すぎる比較例、No.42はHoの含有量が多すぎる比較例である。   No. No. 33 is a comparative example in which the Nd content is too low, No. 33. No. 34 is a comparative example in which the content of Nd is too high, No. 34. No. 37 is a comparative example in which the amount of misch metal added is small and the total content of Sm and Nd is too small. No. 38 is a comparative example in which the amount of misch metal added is large and the total content of Sm and Nd is too large. 42 is a comparative example in which the Ho content is too high.

その結果、No.18,20,34,38,42では熱間加工で鍛造割れが発生してしまった。また、熱間加工で割れが発生しなかったNo.17,19,21〜30,33,37では、結晶粒の平均結晶粒径、長径が5μm以上でアスペクト比が10以上の板状析出物の析出個数のうち、少なくとも1項目以上で本発明で規定した要件を満足することができなかった。尚、No.30では板状析出物自体が確認できなかった。   As a result, no. For 18, 20, 34, 38 and 42, forging cracks occurred during hot working. In addition, No. in which cracking did not occur during hot working. In 17, 19, 21 to 30, 33, and 37, the average grain size of crystal grains, the major axis is 5 μm or more, and the number of plate-like precipitates having an aspect ratio of 10 or more is at least one item. The specified requirements could not be satisfied. No. In 30, the plate-like precipitate itself could not be confirmed.

また、熱間加工で割れが発生しなかったNo.17,19,21〜30,33,37についてのみ、300℃での疲労試験を実施した結果、10回疲労強度は全て40MPa以下であり、これらは全て、高温疲労強度特性に優れた耐熱マグネシウム合金に該当するものではない。 In addition, No. in which cracking did not occur during hot working. As a result of carrying out a fatigue test at 300 ° C. only for 17 , 19, 21 to 30, 33, 37, the 107 times fatigue strength is all 40 MPa or less, and these are all heat-resistant magnesium excellent in high temperature fatigue strength characteristics. Not applicable to alloys.

Claims (5)

質量%で、Yを1.8〜8%、Smおよび/またはNdを合計量で1.4〜8%含有し、残部がMgおよび不可避的不純物からなるマグネシウム合金であって、
マグネシウム合金組織の結晶粒の平均結晶粒径が10〜50μmの範囲であると共に、
前記結晶粒内に、長径が5μm以上、アスペクト比が10以上の板状析出物が、10個以上析出していることを特徴とする高温疲労強度特性に優れた耐熱マグネシウム合金。
A magnesium alloy containing 1.8 to 8%, Y and Sm and / or Nd in a total amount of 1.4 to 8% by mass, with the balance being Mg and inevitable impurities,
The average grain size of the crystal grains of the magnesium alloy structure is in the range of 10-50 μm,
A heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, wherein 10 or more plate-like precipitates having a major axis of 5 μm or more and an aspect ratio of 10 or more are precipitated in the crystal grains.
更に、質量%で、Hoを0.5〜2%含有する請求項1記載の高温疲労強度特性に優れた耐熱マグネシウム合金。   Furthermore, the heat-resistant magnesium alloy excellent in the high temperature fatigue strength characteristic of Claim 1 which contains 0.5 to 2% of Ho by mass%. Sm、Nd、Hoのうち少なくとも1種の希土類元素がミッシュメタルとして添加されている請求項1または2記載の高温疲労強度特性に優れた耐熱マグネシウム合金。   The heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics according to claim 1 or 2, wherein at least one rare earth element of Sm, Nd, and Ho is added as a misch metal. 請求項1または2に記載の成分組成のマグネシウム合金溶湯を鋳造後、
処理温度が330〜550℃の条件で溶体化処理を施した後に、
加工温度が330〜550℃の条件で、真ひずみが1.1〜2.1のひずみを、ひずみ速度:0.1/s〜1.7/sで付与する熱間加工により成形加工を施し、
更に、その加工終了後5秒以内に300℃以下にまで冷却し、
その後、処理温度が300〜330℃の条件で、40時間以上の時効処理を施す工程を有することを特徴とする高温疲労強度特性に優れた耐熱マグネシウム合金の製造方法。
After casting the magnesium alloy melt having the component composition according to claim 1 or 2,
After performing the solution treatment under conditions where the treatment temperature is 330 to 550 ° C.,
Forming is performed by hot working which gives a strain of true strain of 1.1 to 2.1 at a strain rate of 0.1 / s to 1.7 / s under a processing temperature of 330 to 550 ° C. ,
Furthermore, it is cooled to 300 ° C. or less within 5 seconds after the processing is completed.
Then, the manufacturing method of the heat-resistant magnesium alloy excellent in the high temperature fatigue strength characteristic characterized by having the process of performing the aging treatment for 40 hours or more on the conditions whose process temperature is 300-330 degreeC.
請求項1乃至3のいずれかに記載の耐熱マグネシウム合金を用いて作製してなるエンジン用耐熱部品。   A heat-resistant component for an engine produced by using the heat-resistant magnesium alloy according to any one of claims 1 to 3.
JP2010202897A 2010-09-10 2010-09-10 Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines Expired - Fee Related JP5530317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202897A JP5530317B2 (en) 2010-09-10 2010-09-10 Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202897A JP5530317B2 (en) 2010-09-10 2010-09-10 Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines

Publications (2)

Publication Number Publication Date
JP2012057227A true JP2012057227A (en) 2012-03-22
JP5530317B2 JP5530317B2 (en) 2014-06-25

Family

ID=46054671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202897A Expired - Fee Related JP5530317B2 (en) 2010-09-10 2010-09-10 Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines

Country Status (1)

Country Link
JP (1) JP5530317B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074530A (en) * 2012-09-18 2013-05-01 南昌大学 Preparation method of high-strength heat-resistant magnesium alloy
EP3072989A1 (en) 2015-03-23 2016-09-28 Fuji Jukogyo Kabushiki Kaisha Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
US10851442B2 (en) 2015-03-25 2020-12-01 Subaru Corporation Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material
CN115449685A (en) * 2022-09-28 2022-12-09 洛阳理工学院 Wrought magnesium alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129074A1 (en) * 2002-01-10 2003-07-10 Boris Bronfin High temperature resistant magnesium alloys
CN1814837A (en) * 2006-02-23 2006-08-09 上海交通大学 High-strength heat-resisting magnesium alloy and preparing method
JP2008075176A (en) * 2006-08-22 2008-04-03 Kobe Steel Ltd Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP2009249647A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129074A1 (en) * 2002-01-10 2003-07-10 Boris Bronfin High temperature resistant magnesium alloys
CN1814837A (en) * 2006-02-23 2006-08-09 上海交通大学 High-strength heat-resisting magnesium alloy and preparing method
JP2008075176A (en) * 2006-08-22 2008-04-03 Kobe Steel Ltd Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP2009249647A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074530A (en) * 2012-09-18 2013-05-01 南昌大学 Preparation method of high-strength heat-resistant magnesium alloy
EP3072989A1 (en) 2015-03-23 2016-09-28 Fuji Jukogyo Kabushiki Kaisha Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
US10752981B2 (en) 2015-03-23 2020-08-25 Subaru Corporation Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
US10851442B2 (en) 2015-03-25 2020-12-01 Subaru Corporation Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material
CN115449685A (en) * 2022-09-28 2022-12-09 洛阳理工学院 Wrought magnesium alloy and preparation method thereof
CN115449685B (en) * 2022-09-28 2024-04-05 洛阳理工学院 Deformable magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP5530317B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5658609B2 (en) Magnesium alloy materials and engine parts
JP5180496B2 (en) Aluminum alloy forging and method for producing the same
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP2000119786A (en) Aluminum alloy forging material for high speed motion part
WO2009113335A1 (en) Tial-based alloy, process for production of the same, and rotor blade comprising the same
EP2719784A1 (en) Aluminum alloy having excellent high-temperature characteristics
WO2010056130A1 (en) Magnesium based alloys and processes for preparation thereof
CN109280829B (en) High-strength cast Mg-Zn-Cu-Zr alloy and preparation method thereof
JP5530317B2 (en) Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
CN111212923B (en) Casting die material and copper alloy material
JP2007070686A (en) Highly workable magnesium alloy, and method for producing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2011052239A (en) Heat resistant orthorhombic titanium alloy and method for producing the same
WO2009123084A1 (en) Magnesium alloy and process for producing the same
JP5416795B2 (en) Aluminum alloy sheet for forming
JP6736869B2 (en) Copper alloy material
JP4955969B2 (en) Manufacturing method of forming aluminum alloy sheet
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2000199025A (en) TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
CN109161767B (en) Creep-resistant magnesium alloy containing W phase and preparation method thereof
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP5607960B2 (en) Heat-resistant magnesium alloy with excellent fatigue strength characteristics and heat-resistant parts for engines
WO2015182454A1 (en) TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees