JP2012057222A - Pretreatment method for plating - Google Patents

Pretreatment method for plating Download PDF

Info

Publication number
JP2012057222A
JP2012057222A JP2010202551A JP2010202551A JP2012057222A JP 2012057222 A JP2012057222 A JP 2012057222A JP 2010202551 A JP2010202551 A JP 2010202551A JP 2010202551 A JP2010202551 A JP 2010202551A JP 2012057222 A JP2012057222 A JP 2012057222A
Authority
JP
Japan
Prior art keywords
concentration
aluminum alloy
vol
removal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010202551A
Other languages
Japanese (ja)
Inventor
Nobuhiko Yoshimoto
信彦 吉本
Hitoshi Karasawa
均 唐澤
Yuki Furukawa
雄貴 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010202551A priority Critical patent/JP2012057222A/en
Publication of JP2012057222A publication Critical patent/JP2012057222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pretreatment method for plating, by which the number of steps in a pretreatment for plating, that is applied to an aluminum alloy, is reduced.SOLUTION: As a treatment solution for removing a deteriorated layer and aluminum alloy components, a mixed solution comprising sulfuric acid having a concentration of 10-50 vol% and acidic ammonium fluoride having a concentration of 10-100 g/L or potassium fluoride having a concentration of 10-70 g/L or a mixed solution comprising phosphoric acid having a concentration of 50-85 vol% and acidic ammonium fluoride having a concentration of 10-100 g/L or a mixed solution comprising phosphoric acid having a concentration of 10-40 vol%, nitric acid having a concentration of 3-12 vol% and acidic ammonium fluoride having a concentration of 10-100 g/L is used.

Description

本発明は、シリンダブロックなどのアルミニウム合金製部材の表面のメッキ前処理方法に関する。   The present invention relates to a pretreatment method for plating a surface of an aluminum alloy member such as a cylinder block.

アルミニウム合金製シリンダブロックのピストン摺動面にはNi−SiCメッキが施される。このメッキ前処理として亜鉛下地被膜が一般に形成される。この亜鉛下地被膜を形成するには、図2に示すように、シリンダブロック表面に付着している油膜を脱脂処理して除去し、次いで、シリンダブロック表面のAl酸化膜、加工流動層或いは含油相などの変質層をアルカリ溶液でエッチングして除去し、更にシリンダブロック表面に残った合金成分を酸洗で除去し、この後、粗い亜鉛皮膜を形成し、この亜鉛皮膜を硝酸などで溶解させて亜鉛を含む不動態被膜とし、この不動態被膜をZn−O−Alからなる緻密な下地膜に置換するダブル亜鉛置換法が知られている。   Ni-SiC plating is applied to the piston sliding surface of the aluminum alloy cylinder block. As this pretreatment for plating, a zinc undercoat is generally formed. In order to form this zinc undercoat, as shown in FIG. 2, the oil film adhering to the cylinder block surface is removed by degreasing, and then the Al oxide film, processed fluidized layer or oil-containing phase on the cylinder block surface is removed. Etch the denatured layer with an alkaline solution, and remove the alloy components remaining on the cylinder block surface by pickling. There is known a double zinc replacement method in which a passive film containing zinc is used, and this passive film is replaced with a dense base film made of Zn—O—Al.

特許文献1には、上記のエッチングと酸洗に用いる処理液として、硝酸と硫酸と酸性フッ化アンモン(酸性フッ化アンモニウム)を混合した酸性エッチング液を用いることで、2工程を1工程で済ます提案がなされている。   In Patent Document 1, two processes can be completed in one process by using an acid etchant that is a mixture of nitric acid, sulfuric acid, and ammonium ammonium fluoride (acidic ammonium fluoride) as the treatment liquid used for the above etching and pickling. Proposals have been made.

特許文献2には、銀または銀合金からなる金属膜とITOなどの透明導電膜とを同時にエッチングする処理液として、銅イオン、硝酸及び酸性フッ化アンモニウム(NHF・HF)などのフッ素化合物を含有する処理液が提案されている。 Patent Document 2 discloses a fluorine compound such as copper ion, nitric acid, and acidic ammonium fluoride (NH 4 F · HF) as a processing solution for simultaneously etching a metal film made of silver or a silver alloy and a transparent conductive film such as ITO. Has been proposed.

特開平11−193481号公報Japanese Patent Laid-Open No. 11-193481 特開2009−206462号公報JP 2009-206462 A

特許文献1に開示される酸性エッチング液は硝酸と硫酸を混合しており、酸性フッ化アンモニウムが含まれていても、酸化力が過度に強くアルミニウム合金表面に不動態膜が形成されエッチングが進行しにくくなる。 The acidic etching solution disclosed in Patent Document 1 is a mixture of nitric acid and sulfuric acid, and even when acidic ammonium fluoride is contained, the oxidizing power is excessively strong and a passive film is formed on the surface of the aluminum alloy and etching proceeds. It becomes difficult to do.

特許文献2に開示されるエッチング液は、硝酸と酸性フッ化アンモニウムを含んでいるが、アルミニウム合金の表面に前記同様に不動態膜を形成してしまう。   The etching solution disclosed in Patent Document 2 contains nitric acid and acidic ammonium fluoride, but forms a passive film on the surface of the aluminum alloy as described above.

上記課題を解決すべく本願の第1発明は、アルミニウム合金表面を脱脂した後、表面の変質層の除去とアルミニウム合金成分の除去を行い、この後表面に下地皮膜を形成するメッキ前処理方法において、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が10vol%以上50vol%以下の硫酸と濃度が10g/l(リットル)以上100g/l以下の酸性フッ化アンモニウムまたは濃度が10g/l以上70g/l以下のフッ化カリウムの混合液を用いることで、1工程で前記変質層の除去とアルミニウム合金の除去を行うようにした。
本発明において、硫酸(リン酸)の濃度(vol%)は98%の硫酸(リン酸)を水で希釈したもので、例えば10vol%とは、98%硫酸100mlに対し水900mlを加えたことを示す。また濃度が10g/lの酸性フッ化アンモニウムとは、上記の硫酸100ml+水900ml%の硫酸水1000mlに対し酸性フッ化アンモニウムが10g溶解していることを示す。
In order to solve the above-mentioned problems, the first invention of the present application is a pretreatment method for plating in which the surface of the aluminum alloy is degreased, the altered layer on the surface is removed and the aluminum alloy component is removed, and then a base film is formed on the surface. As a treatment liquid for removing the deteriorated layer and the aluminum alloy component, sulfuric acid having a concentration of 10 vol% to 50 vol% and acidic ammonium fluoride having a concentration of 10 g / l (liter) to 100 g / l or a concentration of 10 g By using a mixed solution of potassium fluoride of / l or more and 70 g / l or less, the deteriorated layer and the aluminum alloy are removed in one step.
In the present invention, the concentration (vol%) of sulfuric acid (phosphoric acid) is 98% sulfuric acid (phosphoric acid) diluted with water. For example, 10 vol% means that 900 ml of water is added to 100 ml of 98% sulfuric acid. Indicates. The acidic ammonium fluoride having a concentration of 10 g / l indicates that 10 g of acidic ammonium fluoride is dissolved in 100 ml of sulfuric acid and 1000 ml of sulfuric acid with 900 ml of water.

また本願の第2発明に係るメッキ前処理方法は、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が50vol%以上85vol%以下のリン酸と濃度が10g/l以上100g/l以下の酸性フッ化アンモニウムの混合液を用いる。 The plating pretreatment method according to the second invention of the present application is a treatment liquid for removing the deteriorated layer and removing the aluminum alloy component, and phosphoric acid having a concentration of 50 vol% to 85 vol% and a concentration of 10 g / l to 100 g / l. 1 or less of a mixed solution of acidic ammonium fluoride is used.

また本願の第3発明に係るメッキ前処理方法は、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が10vol%以上40vol%以下のリン酸と濃度が3vol%以上12vol%以下の硝酸と濃度が10g/l以上100g/l以下の酸性フッ化アンモニウムの混合液を用いる。 Moreover, the plating pretreatment method according to the third invention of the present application provides phosphoric acid having a concentration of 10 vol% or more and 40 vol% or less and a concentration of 3 vol% or more and 12 vol% or less as the treatment liquid for removing the deteriorated layer and removing the aluminum alloy component. A mixed solution of nitric acid and ammonium acid fluoride having a concentration of 10 g / l or more and 100 g / l or less is used.

本発明によれば、従来アルカリエッチング液による変質層除去とアルミニウム合金成分の除去を2つの工程に分けて行っていたが、これを1工程で行うことが可能になった。その結果、メッキ前処理のサイクルタイムが短縮され効率が大幅に向上する。また、工程数削減に伴って専用及び汎用設備の投資削減ができる。 According to the present invention, the removal of the deteriorated layer and the removal of the aluminum alloy component by the alkali etching solution are conventionally performed in two steps, but this can be performed in one step. As a result, the cycle time of the plating pretreatment is shortened and the efficiency is greatly improved. In addition, investment in dedicated and general-purpose facilities can be reduced with the reduction in the number of processes.

本発明に係るメッキ前処理工程の概略図Schematic of plating pretreatment process according to the present invention 従来のメッキ前処理工程の概略図Schematic diagram of conventional plating pretreatment process 密着性の試験方法を説明した図Illustration explaining the adhesion test method

以下に本発明の実施の形態を添付図面に基づいて説明する。図1に示すように本実施例にあっては、変質層の除去とアルミニウム合金成分の除去を1工程で行うとともに、亜鉛下地皮膜の形成も1工程で行うようにしている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, in this embodiment, the removal of the deteriorated layer and the removal of the aluminum alloy component are performed in one step, and the formation of the zinc undercoat is also performed in one step.

またこの実施例にあっては、前記亜鉛下地皮膜の形成は同一溶液内での電解、即ち、粗い亜鉛皮膜を陽極電解し、電解で発生した活性な酸素によって、緻密なZn−O−Al膜を形成するようにしている。 In this embodiment, the formation of the zinc undercoat is performed by electrolysis in the same solution, that is, by anodic electrolysis of a rough zinc coat, and by the active oxygen generated by the electrolysis, a dense Zn-O-Al film is formed. To form.

変質層の除去とアルミニウム合金成分の除去を1工程で行う処理液としては、硫酸、リン酸、硝酸、酸性フッ化アンモニウムまたはフッ化カリウムに着目し、これらを組み合わせて好適な範囲を検証した。 Focusing on sulfuric acid, phosphoric acid, nitric acid, acidic ammonium fluoride or potassium fluoride as a treatment liquid for removing the altered layer and removing the aluminum alloy component in one step, a suitable range was verified by combining these.

好適か否かの判断はNi−SiCメッキ膜の密着性を基準として判断した。また、検証は図3に示すJIS−H8504−11(押出し試験方法)によって行った。
押出し試験方法は、先ずめっき面に対し裏側から底厚1.5mmを残しφ6.5mmの平底の穴をあけ、次いで、φ25mmの穴があいた受台の上に試料を乗せ、φ6.3mmのピンを前記平底の穴に刺し込み、打ち抜く。
打ち抜かれた破片部のめっきの状態変化を調べ密着性◎○×の判定を行った。
◎はめっきの剥がれが全く観られない、○は一部にめっきの剥がれが観られる、×は全周にめっきの剥がれが観られる、を表す。
以下の表に検証の結果を示す。
The determination as to whether or not it was suitable was made based on the adhesion of the Ni—SiC plating film. Moreover, verification was performed by JIS-H8504-11 (extrusion test method) shown in FIG.
For the extrusion test method, a flat bottom hole with a diameter of φ6.5 mm was left from the back side with respect to the plated surface, and then a sample was placed on a cradle with a hole with a diameter of φ25 mm, and a pin with a diameter of φ6.3 mm Is inserted into the hole in the flat bottom and punched out.
A change in the state of plating on the punched piece part was examined, and adhesion ◎ ○ × was determined.
◎ indicates that no peeling of the plating is observed, ○ indicates that peeling of the plating is partially observed, and × indicates that peeling of the plating is observed on the entire circumference.
The following table shows the results of verification.

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

上記した(表1)〜(表6)から明らかなように、硫酸と酸性フッ化アンモニウムの混合液を使用る場合、硫酸については濃度を10〜50vol%、酸性フッ化アンモニウムについては濃度を10〜100g/lとするのが好ましい。また(表7)〜(表12)からは酸性フッ化アンモニウムの代わりにフッ化カリウムを用いてもよいことが分かる。   As is clear from the above (Table 1) to (Table 6), when a mixed solution of sulfuric acid and acidic ammonium fluoride is used, the concentration of sulfuric acid is 10 to 50 vol%, and the concentration of acidic ammonium fluoride is 10 It is preferable to set it to -100 g / l. Also, from Table 7 to Table 12, it can be seen that potassium fluoride may be used instead of acidic ammonium fluoride.

次に、エッチング液として硫酸と酸性フッ化アンモニウムの混合液を用いた場合の結果を(表13)〜(表18)に示す。   Next, the results when a mixed solution of sulfuric acid and ammonium acid fluoride is used as the etching solution are shown in (Table 13) to (Table 18).

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

上記した(表13)〜(表18)から明らかなように、リン酸と酸性フッ化アンモニウムの混合液を使用する場合、リン酸については濃度を50〜85vol%、酸性フッ化アンモニウムについては濃度を10〜100g/lとするのが好ましい。 As apparent from the above (Table 13) to (Table 18), when a mixed solution of phosphoric acid and acidic ammonium fluoride is used, the concentration of phosphoric acid is 50 to 85 vol%, and the concentration of acidic ammonium fluoride is the concentration. Is preferably 10 to 100 g / l.

次に、エッチング液としてリン酸と硝酸と酸性フッ化アンモニウムの混合液を用いた場合の結果を(表19)〜(表24)に示す。ここで、リン酸と硝酸の割合は10:3となるようにし、表中の酸濃度はリン酸と硝酸を合わせたvol%である。 Next, the results when using a mixed solution of phosphoric acid, nitric acid, and acidic ammonium fluoride as an etching solution are shown in (Table 19) to (Table 24). Here, the ratio of phosphoric acid and nitric acid is set to 10: 3, and the acid concentration in the table is vol% of phosphoric acid and nitric acid combined.

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

Figure 2012057222
Figure 2012057222

上記した(表19)〜(表24)から明らかなように、リン酸と硝酸と酸性フッ化アンモニウムの混合液を使用る場合、リン酸と硝酸(10:3)については合計で13〜52vol%、酸性フッ化アンモニウムについては10〜100g/lの濃度とするのが好ましい。 As is clear from the above (Table 19) to (Table 24), when a mixed solution of phosphoric acid, nitric acid and acidic ammonium fluoride is used, the total amount of phosphoric acid and nitric acid (10: 3) is 13 to 52 vol. %, And the concentration of acidic ammonium fluoride is preferably 10 to 100 g / l.

尚、検証において液温については70℃、処理時間は60秒としたが、液温については50℃まで下げ、処理時間については30まで短縮しても同様の結果が得られた。   In the verification, the liquid temperature was set to 70 ° C. and the processing time was set to 60 seconds. However, the same result was obtained even when the liquid temperature was reduced to 50 ° C. and the processing time was reduced to 30.

本発明に係るメッキ前処理工程は、例えばエンジンのシリンダブロックなどのアルミニウム合金製部材に施すメッキの前処理として利用することができる。
The plating pretreatment process according to the present invention can be used as a pretreatment for plating applied to an aluminum alloy member such as an engine cylinder block.

Claims (3)

アルミニウム合金表面を脱脂した後、表面の変質層の除去とアルミニウム合金成分の除去を行い、この後表面に下地皮膜を形成するメッキ前処理方法において、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が10vol%以上50vol%以下の硫酸と濃度が10g/l以上100g/l以下の酸性フッ化アンモニウムまたは濃度が10g/l以上70g/l以下のフッ化カリウムの混合液を用いることで、1工程で前記変質層の除去とアルミニウム合金成分の除去を行うことを特徴とするメッキ前処理方法。 After degreasing the surface of the aluminum alloy, removal of the altered layer on the surface and removal of the aluminum alloy component are carried out. Thereafter, in the pre-plating treatment method for forming a base film on the surface, the removal of the altered layer and the removal of the aluminum alloy component are performed. As the treatment liquid, a mixed liquid of sulfuric acid having a concentration of 10 vol% to 50 vol% and acidic ammonium fluoride having a concentration of 10 g / l to 100 g / l or potassium fluoride having a concentration of 10 g / l to 70 g / l is used. Thus, the plating pretreatment method is characterized in that the deteriorated layer and the aluminum alloy component are removed in one step. アルミニウム合金表面を脱脂した後、表面の変質層の除去とアルミニウム合金成分の除去を行い、この後表面に下地皮膜を形成するメッキ前処理方法において、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が50vol%以上85vol%以下のリン酸と濃度が10g/l以上100g/l以下の酸性フッ化アンモニウムの混合液を用いることで、1工程で前記変質層の除去とアルミニウム合金成分の除去を行うことを特徴とするメッキ前処理方法。 After degreasing the surface of the aluminum alloy, removal of the altered layer on the surface and removal of the aluminum alloy component are carried out. Thereafter, in the pre-plating treatment method for forming a base film on the surface, the removal of the altered layer and the removal of the aluminum alloy component are performed. By using a mixed solution of phosphoric acid having a concentration of 50 vol% or more and 85 vol% or less and ammonium acid fluoride having a concentration of 10 g / l or more and 100 g / l or less as the treatment liquid, the alteration layer is removed and the aluminum alloy in one step. A plating pretreatment method comprising removing a component. アルミニウム合金表面を脱脂した後、表面の変質層の除去とアルミニウム合金成分の除去を行い、この後表面に下地皮膜を形成するようにしたメッキ前処理方法において、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が10vol%以上40vol%以下のリン酸と濃度が3vol%以上12vol%以下の硝酸と濃度が10g/l以上100g/l以下の酸性フッ化アンモニウムの混合液を用いることで、1工程で前記変質層の除去とアルミニウム合金成分の除去を行うことを特徴とするメッキ前処理方法。




After degreasing the surface of the aluminum alloy, removal of the deteriorated layer on the surface and removal of the aluminum alloy component are performed, and thereafter, in the pretreatment method for plating, the removal of the deteriorated layer and the aluminum alloy component are performed. As a treatment liquid for removing water, a mixed liquid of phosphoric acid having a concentration of 10 vol% to 40 vol%, nitric acid having a concentration of 3 vol% to 12 vol%, and acidic ammonium fluoride having a concentration of 10 g / l to 100 g / l is used. Thus, the plating pretreatment method is characterized in that the deteriorated layer and the aluminum alloy component are removed in one step.




JP2010202551A 2010-09-10 2010-09-10 Pretreatment method for plating Pending JP2012057222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202551A JP2012057222A (en) 2010-09-10 2010-09-10 Pretreatment method for plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202551A JP2012057222A (en) 2010-09-10 2010-09-10 Pretreatment method for plating

Publications (1)

Publication Number Publication Date
JP2012057222A true JP2012057222A (en) 2012-03-22

Family

ID=46054666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202551A Pending JP2012057222A (en) 2010-09-10 2010-09-10 Pretreatment method for plating

Country Status (1)

Country Link
JP (1) JP2012057222A (en)

Similar Documents

Publication Publication Date Title
CN1252320C (en) Composition for removing aluminium surface stain
US8778163B2 (en) Protection of magnesium alloys by aluminum plating from ionic liquids
CN106884191B (en) Electrolyte for micro-arc oxidation, micro-arc oxidation method and application
US20110253169A1 (en) Solution for removing titanium-containing coatings and method for same
US20110253556A1 (en) Solution system for electrolytically removing titanium carbide coating and method for same
CN106282881A (en) Phosphatization or anodic oxidation are to improve the bonding of thermal spraying figure layer in electromotor cylinder bore
US20140034514A1 (en) Electrolyte for removing metal-carbide/nitride coatings or metal-carbide-nitride coatings and removing method using same
JPWO2014203919A1 (en) Manufacturing method of magnesium alloy products
JP4054813B2 (en) Plating method for aluminum alloy material
JP2011137206A (en) Plating pretreatment method of aluminum alloy
JP2011162850A (en) Plating pretreatment method for aluminum alloy
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP2012057225A (en) Plating pretreatment method
JP2012062528A (en) Method for pretreatment of plating
JP2012057222A (en) Pretreatment method for plating
JP2008150644A (en) Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same
JP2012057223A (en) Plating pretreatment method
JP2012057224A (en) Method for pre-plating treatment
KR20160100343A (en) Method for performing electropolishing treatment on aluminum material
JP3426800B2 (en) Pretreatment method for plating aluminum alloy material
RU2467098C1 (en) Method of plasma-electrolytic removal of coatings from titanium nitrides or those of compounds of titanium with metals
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
CN110685000B (en) High-corrosion-resistance coating, preparation method, electrolyte and application thereof
KR101502915B1 (en) The eco-friendly chemical conversion method for magnesium cast material and magnesium cast material manufactured by the same
JP6123116B2 (en) Manufacturing method of magnesium alloy products