JP2012056804A - β-SIALON AND LIGHT EMITTING DEVICE - Google Patents

β-SIALON AND LIGHT EMITTING DEVICE Download PDF

Info

Publication number
JP2012056804A
JP2012056804A JP2010202513A JP2010202513A JP2012056804A JP 2012056804 A JP2012056804 A JP 2012056804A JP 2010202513 A JP2010202513 A JP 2010202513A JP 2010202513 A JP2010202513 A JP 2010202513A JP 2012056804 A JP2012056804 A JP 2012056804A
Authority
JP
Japan
Prior art keywords
sialon
light
chromaticity
light emitting
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010202513A
Other languages
Japanese (ja)
Inventor
Suzuya Yamada
鈴弥 山田
Hideyuki Emoto
秀幸 江本
Hironori Nagasaki
浩徳 長崎
Tomohiro Nomiyama
智宏 野見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010202513A priority Critical patent/JP2012056804A/en
Priority to PCT/JP2011/070445 priority patent/WO2012033157A1/en
Priority to TW100132517A priority patent/TWI458806B/en
Publication of JP2012056804A publication Critical patent/JP2012056804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Eu-activated β-sialon and a light emitting device achieving a high emission efficiency.SOLUTION: The Eu-containing β-sialon is represented by formula: SiAlON, and the relationship between the (a) axis lattice constant and the chromaticity x of CIE chromaticity is represented by formula (1): (a) axis lattice constant (Å)≤0.1075×chromaticity x+7.5742. The β-sialon preferably has an average particle diameter D50(μm)/BET diameter (μm) of <1.9, as calculated by the following formula (2): BET diameter (μm)=6/(3.22×BET value (m/g)) and formula (3): D50 (μm)/BET diameter (μm)<1.9.

Description

本発明は、青や紫外の発光ダイオードチップを用いた白色発光ダイオード等の発光装置に利用可能なβ型サイアロン及び発光装置に関する。   The present invention relates to a β-type sialon and a light emitting device that can be used for a light emitting device such as a white light emitting diode using a blue or ultraviolet light emitting diode chip.

β型サイアロンに関して、特許文献1乃至4が開示されている。特許文献1には、第一の加熱工程で生成したβ型サイアロンが記載され、第二の加熱工程を経て酸処理することにより、結晶性を向上させて高輝度の蛍光体を得る技術が記載されている。特許文献2乃至4には、LED、蛍光体ランプなどのβ型サイアロンを用いた発光装置が開示されている。   Patent documents 1 to 4 are disclosed regarding β-type sialon. Patent Document 1 describes β-sialon produced in the first heating step, and describes a technique for obtaining a high-luminance phosphor by improving the crystallinity by acid treatment through the second heating step. Has been. Patent Documents 2 to 4 disclose light-emitting devices using β-sialon such as LEDs and phosphor lamps.

国際公開第2008/062781号パンフレットInternational Publication No. 2008/062781 Pamphlet 特開平5−152609号公報JP-A-5-152609 特開平7−99345号公報JP-A-7-99345 特許第2927279号公報Japanese Patent No. 2927279

大久保和明、他著、「NBS標準蛍光体の量子効率の測定」、照明学会誌、第83巻、第2号、pp87−93、平成11年Kazuaki Okubo, et al., “Measurement of Quantum Efficiency of NBS Standard Phosphor”, Journal of the Illuminating Society of Japan, Vol.83, No.2, pp87-93, 1999

従来のβ型サイアロンを用いた蛍光体は、短波長化や狭帯域化を行った場合、発光効率が著しく低くなり、発光特性の再現性が乏しかった。このため、従来のβ型サイアロンを用いた白色LED等の発光装置は十分な輝度を安定して得ることができなかった。   Conventional phosphors using β-sialon have a significantly low luminous efficiency and poor reproducibility of luminous characteristics when the wavelength is reduced or the band is narrowed. For this reason, a conventional light emitting device such as a white LED using β-sialon cannot stably obtain sufficient luminance.

本発明は、上記課題に鑑み、高発光効率を実現できるβ型サイアロン及びβ型サイアロンを用いた発光装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a β-sialon and a light-emitting device using the β-sialon that can realize high luminous efficiency.

本発明は、一般式:Si6−zAl8−zで示され、Euを含有するβ型サイアロンであって、a軸格子定数とCIE色度の色度xとの関係が、次の式1を満たす。
a軸格子定数(Å)≦0.1075×色度x+7.5742 (式1)
The present invention is a β-type sialon represented by the general formula: Si 6−z Al z O z N 8−z and containing Eu, wherein the relationship between the a-axis lattice constant and the chromaticity x of CIE chromaticity is The following formula 1 is satisfied.
a-axis lattice constant (Å) ≦ 0.1075 × chromaticity x + 7.5742 (formula 1)

a軸格子定数は、β型サイアロンを銅のKα線を用いた粉末X線回折測定(以下、XRD測定という。)で測定されるものである。   The a-axis lattice constant is measured by powder X-ray diffraction measurement (hereinafter referred to as XRD measurement) of β-type sialon using copper Kα rays.

β型サイアロンは、β型サイアロンのBET値から次の式2で計算されるBET径とβ型サイアロンをレーザー回折散乱法にて測定した平均粒子径D50との関係が、次の式3で表される範囲のものが好ましい。
BET径(μm)=6÷(3.22×BET値(m/g)) (式2)
平均粒子径D50(μm)/BET径(μm)<1.9 (式3)
In β-sialon, the relationship between the BET diameter calculated by the following equation 2 from the BET value of β-sialon and the average particle size D50 obtained by measuring the β-sialon by the laser diffraction scattering method is expressed by the following equation 3. Those within the range are preferred.
BET diameter (μm) = 6 ÷ (3.22 × BET value (m 2 / g)) (Formula 2)
Average particle diameter D50 (μm) / BET diameter (μm) <1.9 (Formula 3)

本発明に係る発光装置は、前記β型サイアロンと発光光源とを備えたものである。   A light-emitting device according to the present invention includes the β-sialon and a light-emitting light source.

本発明のβ型サイアロンは、紫外線から可視光の幅広い波長域で励起され、高効率で520nm以上550nm以下の範囲内を主波長として緑色発光するため、緑色の蛍光体として優れている。   The β-sialon of the present invention is excellent as a green phosphor because it is excited in a wide wavelength range from ultraviolet to visible light and emits green light with a high wavelength within a range of 520 nm or more and 550 nm or less with high efficiency.

本発明の発光装置は、前記β型サイアロンを蛍光体として用いるため、発光装置の高輝度化を実現できる。   Since the light emitting device of the present invention uses the β-sialon as a phosphor, the light emitting device can have high luminance.

本発明のβ型サイアロンの製造方法を説明するフロー図である。It is a flow figure explaining the manufacturing method of beta type sialon of the present invention. 本発明の第2の実施形態に係るβ型サイアロンを用いた発光装置の構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the light-emitting device using the beta sialon concerning the 2nd Embodiment of this invention.

以下、本発明の実施の形態について図面を用いて詳細に説明する。
(β型サイアロン)
本発明の実施形態に係るβ型サイアロンは、一般式:Si6−ZAl8−Zで示されるβ型サイアロンをホスト結晶に、発光中心としてEu2+が固溶されたものである。β型サイアロンは、一般式:Si6−zAl8−z:Eu(0<z≦4.2)とも表記される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Β-sialon)
The β-type sialon according to the embodiment of the present invention is obtained by solid-dissolving Eu 2+ as a light emission center in a β-type sialon represented by the general formula: Si 6-Z Al Z O Z N 8-Z. is there. The β-type sialon is also expressed as a general formula: Si 6−z Al z O z N 8−z : Eu (0 <z ≦ 4.2).

本発明者等は、β型サイアロンにおける結晶構造及び粉体物性と発光効率の関係を調べた結果、次の式1乃至式3の関係を満たすβ型サイアロンが高い発光効率を示すことを見出した。
a軸格子定数(Å)≦0.1075×色度x+7.5742 (式1)
BET径(μm)=6÷(3.22×BET値(m/g)) (式2)
D50(μm)/BET径(μm)<1.9 (式3)
ここで、a軸格子定数は、β型サイアロンのa軸の格子定数である。BET値は、比表面積測定法の一つであるBET法で求められるβ型サイアロンの比表面積である。D50は、体積基準の積算分率における50%粒径であり、本明細書では、平均粒子径D50ともいう。
As a result of investigating the relationship between the crystal structure and powder physical properties of β-sialon and the luminous efficiency, the present inventors have found that β-sialon satisfying the relationship of the following formulas 1 to 3 exhibits high luminous efficiency. .
a-axis lattice constant (Å) ≦ 0.1075 × chromaticity x + 7.5742 (formula 1)
BET diameter (μm) = 6 ÷ (3.22 × BET value (m 2 / g)) (Formula 2)
D50 (μm) / BET diameter (μm) <1.9 (Formula 3)
Here, the a-axis lattice constant is the a-axis lattice constant of β-type sialon. The BET value is the specific surface area of β-sialon determined by the BET method which is one of the specific surface area measurement methods. D50 is a 50% particle size in the volume-based integrated fraction, and is also referred to as an average particle size D50 in this specification.

式1の関係を満たすβ型サイアロンは、電子トラップが減少又は消失して励起電子のエネルギーが有効的に緑色発光に変換され、その結果、発光効率が向上する。   In β-sialon satisfying the relationship of Equation 1, the number of electron traps is reduced or eliminated, and the energy of excited electrons is effectively converted into green light emission. As a result, the light emission efficiency is improved.

式2及び式3の関係を満たさずβ型サイアロンの平均粒子径D50/BET径が1.9よりも大きい場合、粒子表面が平滑ではなく励起光がβ型サイアロン蛍光体粒子表面で散乱され、効果的に蛍光を発しないため発光効率が低いことが判明した。   When the average particle diameter D50 / BET diameter of β-type sialon is not larger than 1.9 without satisfying the relationship of Equation 2 and Equation 3, the particle surface is not smooth and the excitation light is scattered on the surface of the β-type sialon phosphor particle, It has been found that the luminous efficiency is low because it does not emit fluorescence effectively.

β型サイアロンにおけるEu含有量は、0.1質量%以上3質量%以下が好ましい。この範囲外では発光強度が低くなる傾向がある。   The Eu content in β-sialon is preferably 0.1% by mass or more and 3% by mass or less. Outside this range, the emission intensity tends to be low.

(β型サイアロンの製造方法)
Euを含有するβ型サイアロンの製造方法を、図1のフロー図を用いて説明する。
図1に示すように、β型サイアロンの製造方法は、原料粉末を混合して原料混合粉末にする混合工程と、混合工程後の原料混合粉末を焼成してEuを固溶したβ型サイアロンを生成する焼成工程と、焼成工程後のβ型サイアロンにアニール処理を行うアニール工程と、アニール工程後のβ型サイアロンに酸処理を行う酸処理工程と、から構成されている。
(Method for producing β-sialon)
A method for producing β-sialon containing Eu will be described with reference to the flowchart of FIG.
As shown in FIG. 1, a β-sialon manufacturing method includes a mixing step in which raw material powders are mixed to form a raw material mixed powder, and a β-sialon in which Eu is solid-solved by firing the raw material mixed powder after the mixing step. It comprises a firing step to be generated, an annealing step for annealing the β-sialon after the firing step, and an acid treatment step for acid-treating the β-sialon after the annealing step.

原料粉末の配合組成に関しては、Al/Oモル比が1.3以下であれば加熱中の粒成長が進行し易く好ましい。Al/Oモル比が1.1以下であるとBET径に平均粒子径D50が近づくので好ましい。   As for the composition of the raw material powder, it is preferable that the Al / O molar ratio is 1.3 or less because the grain growth during heating is likely to proceed. An Al / O molar ratio of 1.1 or less is preferable because the average particle diameter D50 approaches the BET diameter.

図1には記載しなかったが、BET値及び平均粒子径D50の制御のために、酸処理工程の後に、分級処理を実施するのが好ましい。   Although not shown in FIG. 1, in order to control the BET value and the average particle diameter D50, it is preferable to carry out a classification treatment after the acid treatment step.

アニール工程における加熱温度、処理時間、窒素分圧を調整することで、β型サイアロンの分解を押さえ、Siが発生することなく、前記式1乃至式3の関係を成り立たせる。   By adjusting the heating temperature, processing time, and nitrogen partial pressure in the annealing step, the decomposition of β-sialon is suppressed, and the relations of the expressions 1 to 3 are established without generation of Si.

平均粒子径D50は、5μm以上30μm以下が好ましく、さらに好ましくは10μm以上20μm以下である。平均粒子径D50があまりに小さいと発光効率が低くなり、あまりに大きいと発光装置に用いた場合に分散状態が悪くなる傾向にある。   The average particle diameter D50 is preferably 5 μm or more and 30 μm or less, more preferably 10 μm or more and 20 μm or less. If the average particle diameter D50 is too small, the light emission efficiency is low, and if it is too large, the dispersion state tends to deteriorate when used in a light emitting device.

(発光装置)
本発明のβ型サイアロンを用いた発光装置について、図2を参照しつつ説明する。
発光装置は、発光光源と上述のβ型サイアロンを用いたものであり、図2は発光装置の断面を模式的に示したものである。
図2に示すように、本発明の発光装置10は、発光光源12としてのLEDチップと、発光光源12を搭載する第1のリードフレーム13と、第2のリードフレーム14と、発光光源12と第1のリードフレーム13とを被覆する波長変換部材15と、発光光源12と第2のリードフレーム14を電気的につなぐボンディングワイヤ16と、これらを覆う合成樹脂製のキャップ19で形成されている。波長変換部材15は、β型サイアロン18と、β型サイアロン18を分散しつつ配合した封止樹脂17とからなる。第1のリードフレーム13の上部13aにはLEDチップ搭載用の凹部13bが設けられている。凹部13bは、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状を有していると共に、凹部13bの内面が反射面となっている。この反射面の底面にLEDチップ12の下面側の電極がダイボンディングされている。LEDチップ12の上面に形成されている他方の電極は、ボンディングワイヤ16を介して第2のリードフレーム14の表面と接続されている。
(Light emitting device)
A light-emitting device using the β-sialon of the present invention will be described with reference to FIG.
The light-emitting device uses a light-emitting light source and the β-sialon described above, and FIG. 2 schematically shows a cross section of the light-emitting device.
As shown in FIG. 2, the light emitting device 10 of the present invention includes an LED chip as the light source 12, a first lead frame 13 on which the light source 12 is mounted, a second lead frame 14, and the light source 12. It is formed of a wavelength conversion member 15 that covers the first lead frame 13, a bonding wire 16 that electrically connects the light emitting light source 12 and the second lead frame 14, and a synthetic resin cap 19 that covers them. . The wavelength conversion member 15 includes a β-type sialon 18 and a sealing resin 17 in which the β-type sialon 18 is mixed and dispersed. The upper portion 13a of the first lead frame 13 is provided with a recess 13b for mounting an LED chip. The concave portion 13b has a substantially funnel shape in which the hole diameter gradually increases upward from the bottom surface, and the inner surface of the concave portion 13b is a reflecting surface. An electrode on the lower surface side of the LED chip 12 is die-bonded to the bottom surface of the reflecting surface. The other electrode formed on the upper surface of the LED chip 12 is connected to the surface of the second lead frame 14 via a bonding wire 16.

発光光源12としては、各種LEDチップを用いることができ、特に好ましくは、近紫外から青色光の波長として350nm〜500nmの光を発生するLEDチップである。これらの発光光源12としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する発光光源12となる。   Various LED chips can be used as the light source 12, and an LED chip that generates light having a wavelength of 350 nm to 500 nm as a wavelength of near ultraviolet to blue light is particularly preferable. These light emitting sources 12 include those made of nitride semiconductors such as GaN and InGaN. The light emitting light source 12 emits light having a predetermined wavelength by adjusting the composition.

発光装置10の波長変換部材5に用いるβ型サイアロンには、他の色を発光する蛍光体を混在させることもできる。他の色を発光する蛍光体としては、α型サイアロン、CaAlSiN、YAGがあり、これらに固溶される元素としては、ユーロピウム、セリウム、ストロンチウム、カルシウムがある。 The β-type sialon used for the wavelength conversion member 5 of the light emitting device 10 can be mixed with phosphors emitting other colors. Phosphors emitting other colors include α-type sialon, CaAlSiN 3 , and YAG, and elements dissolved in these include europium, cerium, strontium, and calcium.

本発明に係る発光装置10は、発光光源12とβ型サイアロン18、その他の蛍光体とを組み合わせることによって、様々の波長の光、すなわち様々な色を発光させることができる。520nm以上550nm以下の範囲の波長にピークを持つ緑色を発光させる場合には、β型サイアロン18単体と発光光源12として350nm以上500nm以下の波長を有する近紫外光や可視光を照射すれば良い。さらに波長600nm以上700nm以下の赤色発光蛍光体、青色発光蛍光体、黄色発光蛍光体又は橙発光蛍光体の単体又は混合体とを組み合わせることによって、白色光やいわゆる電球色などを、適宜発光させることができる。   The light emitting device 10 according to the present invention can emit light of various wavelengths, that is, various colors, by combining the light emitting light source 12, the β-type sialon 18 and other phosphors. In the case of emitting green light having a peak at a wavelength in the range of 520 nm to 550 nm, near ultraviolet light or visible light having a wavelength of 350 nm to 500 nm may be irradiated as the β-type sialon 18 alone and the light source 12. Further, white light or a so-called light bulb color is appropriately emitted by combining a single or mixture of a red light emitting phosphor, a blue light emitting phosphor, a yellow light emitting phosphor, or an orange light emitting phosphor having a wavelength of 600 nm to 700 nm. Can do.

本発明の発光装置10は、β型サイアロン18の発光強度が高いため、高い発光強度を有する。さらに、β型サイアロン18の有する熱的にも化学的にも安定である特徴を反映して、本発明の発光装置10は、高温で使用しても輝度低下が小さく、長寿命である。   The light emitting device 10 of the present invention has a high emission intensity because the β-sialon 18 has a high emission intensity. Further, reflecting the feature of the β-sialon 18 that is thermally and chemically stable, the light emitting device 10 of the present invention has a small luminance drop and a long life even when used at a high temperature.

以下、本発明の実施例についてさらに詳細に説明する。
<混合工程>
原料粉末として、α型窒化ケイ素粉末(宇部興産社製SN−E10グレード、酸素含有量1.17質量%、β相含有量4.5質量%)、窒化アルミニウム粉末(トクヤマ社製Fグレード、酸素含有量0.84質量%)、酸化アルミニウム粉末(大明化学社製TM−DARグレード)、酸化ユーロピウム粉末(信越化学工業社製RUグレード)を用いた。原料粉末中のAl量から計算したz値が0.25、酸化ユーロピウム粉末以外の酸素量から計算したz値が0.25、酸化ユーロピウム粉末を0.29モル%となるように配合し、1kgの原料混合物粉末を得た。この時Al/Oモル比は1.0であった。
次に、上記原料粉末をロッキングミキサー(愛知電機社製、RM−10)を用いて60分乾式で混合し、更に目開き150μmのステンレス製篩を全通させ、蛍光体焼成用の原料混合粉末を得た。
Hereinafter, examples of the present invention will be described in more detail.
<Mixing process>
As raw material powder, α-type silicon nitride powder (SN-E10 grade made by Ube Industries, oxygen content 1.17 mass%, β phase content 4.5 mass%), aluminum nitride powder (F grade, oxygen produced by Tokuyama Corporation) Content 0.84% by mass), aluminum oxide powder (TM-DAR grade, manufactured by Daimei Chemical Co., Ltd.) and europium oxide powder (RU grade, manufactured by Shin-Etsu Chemical Co., Ltd.) were used. The z value calculated from the amount of Al in the raw material powder is 0.25, the z value calculated from the amount of oxygen other than the europium oxide powder is 0.25, and the europium oxide powder is blended so as to be 0.29 mol%. The raw material mixture powder was obtained. At this time, the Al / O molar ratio was 1.0.
Next, the above raw material powder is mixed for 60 minutes using a rocking mixer (manufactured by Aichi Electric Co., Ltd., RM-10), and is further passed through a stainless steel sieve having an opening of 150 μm. Got.

<焼成工程>
原料混合粉末を、容積0.7リットルの窒化ホウ素製容器(電気化学工業社製N−1グレード)に充填し、カーボンヒーターの電気炉にて、0.9MPaの加圧窒素雰囲気中、2000℃で15時間の焼成を行った。得られた合成物は、緩く凝集した塊状であるので軽度の解砕を行った後、目開き150μmの篩を通して粉末状のβ型サイアロンを得た。
<Baking process>
The raw material mixed powder is filled in a boron nitride container (N-1 grade manufactured by Denki Kagaku Kogyo Co., Ltd.) having a volume of 0.7 liter, and is 2,000 ° C. in a pressurized nitrogen atmosphere of 0.9 MPa in an electric furnace of a carbon heater. Then, baking was performed for 15 hours. Since the obtained composite was a loosely agglomerated lump, after mild crushing, powdery β-sialon was obtained through a sieve having an opening of 150 μm.

<分級工程>
得られたβ型サイアロンを音速ジェット粉砕機(日本ニューマチック工業社製PJM−80SP)で粒度の調整を行い、さらに水中分級処理によって5μm以下の微粉を除去した後、乾燥を行った。
<Classification process>
The obtained β-sialon was adjusted in particle size with a sonic jet pulverizer (PJM-80SP manufactured by Nippon Pneumatic Kogyo Co., Ltd.), and after removing fine particles of 5 μm or less by an underwater classification treatment, drying was performed.

<アニール工程>
分級工程を経たβ型サイアロンを円筒型窒化ホウ素製容器(電気化学工業社製N−1グレード)に充填し、カーボンヒーターの電気炉で大気圧のアルゴン雰囲気中、1450℃で8時間の加熱処理を行った。得られた粉末は、焼結に伴う収縮はなく、加熱前とほとんど同じ性状であり、目開き45μmの篩を全て通過した。篩を通過したβ型サイアロンに対し、XRD測定によって結晶相の同定を行った。XRD測定の結果、実施例1のβ型サイアロンは単相からなるという結果を得たが、微量のSiが検出された。
<Annealing process>
Β-sialon after the classification process is filled into a cylindrical boron nitride container (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.), and heated at 1450 ° C. for 8 hours in an argon atmosphere at atmospheric pressure in an electric furnace of a carbon heater. Went. The obtained powder did not shrink due to sintering, had almost the same properties as before heating, and passed through a sieve having an opening of 45 μm. The crystalline phase was identified by XRD measurement for β-sialon that passed through the sieve. As a result of XRD measurement, it was obtained that the β-sialon of Example 1 was composed of a single phase, but a trace amount of Si was detected.

<酸処理工程>
アニール工程を経たβ型サイアロンを、50%フッ化水素酸と70%硝酸の1:1混酸中に浸した後、水洗及び乾燥して実施例1のβ型サイアロンを得た。
<Acid treatment process>
The β-sialon after the annealing step was immersed in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid, then washed with water and dried to obtain the β-sialon of Example 1.

<評価>
実施例1のβ型サイアロンの評価について表1を参照しつつ詳細に説明する。

Figure 2012056804
<Evaluation>
The evaluation of the β-type sialon of Example 1 will be described in detail with reference to Table 1.
Figure 2012056804

実施例1のβ型サイアロンは、XRD測定の結果、a軸格子定数は7.6103Å、c軸格子定数は2.9121Åであり、β型サイアロン以外の結晶からのピークは検出されなかった。 As a result of XRD measurement, the β-type sialon of Example 1 had an a-axis lattice constant of 7.6103 Å and a c-axis lattice constant of 2.9121 、, and no peaks from crystals other than β-type sialon were detected.

実施例1のβ型サイアロンの蛍光スペクトルを、分光蛍光光度計(日立ハイテクノロジーズ社製、F4500)を用いて測定した。455nmの青色光を励起光として蛍光スペクトルのピーク波長の高さを測定した。同一条件で測定した化成オプト社製YAG:Ce蛍光体(P46−Y3)のピーク波長の高さに対する相対値を発光ピーク強度として求めた。励起光には、分光したキセノンランプ光源を使用した。実施例1のβ型サイアロンの発光ピーク強度は201%であった。   The fluorescence spectrum of β-sialon of Example 1 was measured using a spectrofluorometer (manufactured by Hitachi High-Technologies Corporation, F4500). The height of the peak wavelength of the fluorescence spectrum was measured using 455 nm blue light as excitation light. The relative value with respect to the height of the peak wavelength of YAG: Ce phosphor (P46-Y3) manufactured by Kasei Opto Co., Ltd., measured under the same conditions, was determined as the emission peak intensity. A spectral xenon lamp light source was used as the excitation light. The emission peak intensity of the β-sialon of Example 1 was 201%.

実施例1のβ型サイアロンのCIE色度は、瞬間マルチ測光システム(大塚電子社製MCPD−7000)にて積分球を用い、455nmの励起に対する蛍光を集光した全光束の蛍光スペクトル測定を行って求めた。測定方法は、非特許文献1に準じて行った。実施例1のβ型サイアロンのCIE色度は、色度x=0.353、色度y=0.625であった。   The CIE chromaticity of the β-type sialon of Example 1 was measured using the instantaneous sphere photometry system (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) using an integrating sphere to measure the fluorescence spectrum of the total luminous flux that focused the fluorescence for excitation at 455 nm. Asked. The measurement method was performed according to Non-Patent Document 1. The CIE chromaticity of the β-sialon of Example 1 was chromaticity x = 0.353 and chromaticity y = 0.625.

色度x=0.353から、式1式の右辺は7.6121であった。実施例1のβ型サイアロンのa軸格子定数は、7.6103であり、次に示すように、式1の関係を満たしていた。
a軸格子定数(Å)≦ 0.1075×0.353+7.5742 (式1)
7.6103≦7.6121
From the chromaticity x = 0.353, the right side of Formula 1 was 7.6121. The a-axis lattice constant of the β-type sialon of Example 1 was 7.6103, and the relationship of Formula 1 was satisfied as shown below.
a-axis lattice constant (Å) ≦ 0.1075 × 0.353 + 7.5742 (Formula 1)
7.6103 ≦ 7.6121

レーザー散乱法による粒度分布測定から得られたβ型サイアロンの平均粒径D50は8.5μmであり、D10は4.8μm、D90は13.4μmであった。D10、D90は、体積基準の積算分率での10%粒径、90粒径である。
The average particle diameter D50 of β-sialon obtained from the particle size distribution measurement by the laser scattering method was 8.5 μm, D10 was 4.8 μm, and D90 was 13.4 μm. D10 and D90 are a 10% particle size and a 90 particle size at an integrated fraction based on volume.

実施例1のβ型サイアロンのBETをガス吸着法により測定し、BET多点解析により求めたBET値は、0.25m/gであった。このBET値から前記式2でBET径を計算すると7.5μmであり、式3でのD50(μm)/BET径(μm)は、1.14であった。 The BET value of β-sialon of Example 1 was measured by a gas adsorption method, and the BET value determined by BET multipoint analysis was 0.25 m 2 / g. The BET diameter calculated from the BET value according to the above formula 2 was 7.5 μm, and the D50 (μm) / BET diameter (μm) in the formula 3 was 1.14.

実施例2のβ型サイアロンは、実施例1での分級工程中の水中分級処理を、10μm以下の微粉を除去する水中分級処理とした以外は、実施例1と同様に製造したものである。
XRD測定の結果、実施例2のβ型サイアロンのa軸格子定数は7.61208Å、c軸格子定数は2.91273Åであり、β型サイアロン以外の回折ピークは検出されず、発光ピーク強度は228%であり、CIE色度は、色度x=0.363、色度y=0.618であった。
The β type sialon of Example 2 was produced in the same manner as in Example 1 except that the water classification process in the classification process in Example 1 was changed to the water classification process to remove fine particles of 10 μm or less.
As a result of the XRD measurement, the β-type sialon of Example 2 has an a-axis lattice constant of 7.61208 Å and a c-axis lattice constant of 2.9127Å, a diffraction peak other than the β-type sialon is not detected, and the emission peak intensity is 228. The CIE chromaticity was chromaticity x = 0.363 and chromaticity y = 0.618.

色度x=0.363から、式1の右辺は7.6132であり、実施例2のβ型サイアロンのa軸格子定数の値は7.61208であり、次に示すように式1の関係を満たしていた。
a軸格子定数(Å)≦0.1075×0.363+7.5742
7.61208≦7.6132
From the chromaticity x = 0.363, the right side of Equation 1 is 7.6132, the value of the a-axis lattice constant of the β-type sialon of Example 2 is 7.61208, and the relationship of Equation 1 is as follows: Was met.
a-axis lattice constant (Å) ≦ 0.1075 × 0.363 + 7.5742
7.61208 ≦ 7.6132

実施例2のβ型サイアロンの平均粒径D50は14.7μmであり、D10は7.98μm、D90は14.7μmであり、BET値は0.193m/g、BET径は9.7μm、D50(μm)/BET径(μm)は1.52であった。 The average particle diameter D50 of β-sialon of Example 2 is 14.7 μm, D10 is 7.98 μm, D90 is 14.7 μm, the BET value is 0.193 m 2 / g, the BET diameter is 9.7 μm, D50 (μm) / BET diameter (μm) was 1.52.

実施例3のβ型サイアロンは、実施例1の分級工程中の水中分級処理を、15μm以下の微粉を除去する水中分級処理にした以外は、実施例1と同様に製造したものである。
XRD測定の結果、実施例3のβ型サイアロンのa軸格子定数は7.6119Å、c軸格子定数は2.9135Åであり、β型サイアロン以外の回折ピークは検出されなかった。発光ピーク強度は233%であり、CIE色度は、色度x=0.365、色度y=0.615であった。
The β-sialon of Example 3 was produced in the same manner as in Example 1 except that the water classification process in the classification process of Example 1 was changed to an underwater classification process to remove fine powder of 15 μm or less.
As a result of the XRD measurement, the β-type sialon of Example 3 had an a-axis lattice constant of 7.6119Å and a c-axis lattice constant of 2.9135 、, and no diffraction peaks other than β-type sialon were detected. The emission peak intensity was 233%, and the CIE chromaticity was chromaticity x = 0.365 and chromaticity y = 0.615.

色度x=0.365から、式1の右辺は7.6134であり、実施例3のβ型サイアロンのa軸格子定数の値は7.6119であり、次に示すように式1の関係を満たしていた。
a軸格子定数(Å)≦0.1075×0.365+7.5742
7.6119≦7.6134
From the chromaticity x = 0.365, the right side of Equation 1 is 7.6134, and the value of the a-axis lattice constant of the β-type sialon of Example 3 is 7.6119. Was met.
a-axis lattice constant (Å) ≦ 0.1075 × 0.365 + 7.5742
7.6119 ≦ 7.6134

実施例3のβ型サイアロンの平均粒径D50は14.8μmであり、D10は8.4μm、D90は25.5μmであり、BET値は0.235m/g、BET径は7.9μm、D50(μm)/BET径(μm)は、1.87であった。 The average particle diameter D50 of β-sialon of Example 3 is 14.8 μm, D10 is 8.4 μm, D90 is 25.5 μm, the BET value is 0.235 m 2 / g, the BET diameter is 7.9 μm, D50 (μm) / BET diameter (μm) was 1.87.

(比較例1)
比較例1は、アニール工程を経ずに製造したものである。それ以外は実施例1と同様に製造した。
比較例1のβ型サイアロンでは、XRD測定の結果、β型サイアロンと第二相としての2θ=33〜38°付近に複数の微小な回折線が観察された。その中で最も高い回折線強度はβ型サイアロンの(101)面の回折線強度に対して1%以下であった。a軸格子定数は7.6120Å、c軸格子定数は2.9135Åであった。
比較例1では発光ピーク強度は123%であり、CIE色度は、色度x=0.338、色度y=0.637であり、色度x=0.338から式1の右辺を計算すると、7.6105であり、a軸格子定数の値(7.612Å)より小さかった。他の値は、表1に示すとおりである。
(Comparative Example 1)
Comparative Example 1 was manufactured without going through an annealing step. Other than that was manufactured similarly to Example 1.
In the β-type sialon of Comparative Example 1, as a result of XRD measurement, a plurality of minute diffraction lines were observed in the vicinity of 2θ = 33 to 38 ° as the β-type sialon and the second phase. Among them, the highest diffraction line intensity was 1% or less with respect to the diffraction line intensity of the (101) plane of β-sialon. The a-axis lattice constant was 7.6120 and the c-axis lattice constant was 2.9135.
In Comparative Example 1, the emission peak intensity is 123%, the CIE chromaticity is chromaticity x = 0.338, chromaticity y = 0.638, and the right side of Equation 1 is calculated from chromaticity x = 0.338. Then, it was 7.6105, which was smaller than the value of the a-axis lattice constant (7.612 Å). Other values are as shown in Table 1.

(比較例2)
比較例2は、原料粉中のAl量から計算したz値が0.25、酸化ユーロピウム粉末以外の酸素量から計算したz値が0.22、酸化ユーロピウム粉末を0.29モル%となるように配合し、実施例1の水中分級処理を、20μm以下の微粉を除去する水中分級処理とした以外は、実施例1と同様のものである。
比較例2のβ型サイアロンでは、XRD測定の結果、サイアロン以外のピークは検出されなかった。a軸格子定数は7.6105Å、c軸格子定数は2.9122Åであった。発光ピーク強度は199%であり、CIE色度は、色度x=0.36、色度y=0.618であり、他の値は、表1に示すとおりであった。色度x=0.36から、式1の右辺を計算すると、7.6103となり、式1の関係を満たしていなかった。
(Comparative Example 2)
In Comparative Example 2, the z value calculated from the amount of Al in the raw material powder is 0.25, the z value calculated from the amount of oxygen other than the europium oxide powder is 0.22, and the europium oxide powder is 0.29 mol%. The same procedure as in Example 1 is applied except that the water classification treatment in Example 1 is changed to the water classification treatment to remove fine powder of 20 μm or less.
In the β-sialon of Comparative Example 2, as a result of XRD measurement, no peak other than sialon was detected. The a-axis lattice constant was 7.6105 Å, and the c-axis lattice constant was 2.9122 Å. The emission peak intensity was 199%, the CIE chromaticity was chromaticity x = 0.36, the chromaticity y = 0.618, and the other values were as shown in Table 1. When the right side of Equation 1 was calculated from chromaticity x = 0.36, it was 7.6103, and the relationship of Equation 1 was not satisfied.

表1に示すように、実施例1〜3のβ型サイアロンは、何れも式1、式2及び式3の関係を満たし、比較例1及び2のβ型サイアロンに比べて高い発光ピーク強度を示した。   As shown in Table 1, the β-sialons of Examples 1 to 3 all satisfy the relationships of Formulas 1, 2 and 3, and have a higher emission peak intensity than the β-sialons of Comparative Examples 1 and 2. Indicated.

実施例4は、実施例1のβ型サイアロンを用いた発光装置である。以下、図2を参照して詳細に説明する。
発光装置10は、発光光源12としてのLEDチップと、この発光光源12に導通された第1のリードフレーム13と、第1のリードフレーム13の近傍に取り付けられた第2のリードフレーム14と、発光光源12と第2のリードフレーム14とを導通させるボンディングワイヤ16とを有し、発光光源12は、第1のリードフレーム13の凹部13bの中に配置され、この凹部13b内に充填された波長変換部材15に覆われている。波長変換部材15は、β型サイアロン18を配合した封止樹脂17を有し、発光装置10の上面は、合成樹脂製のキャップ19に覆われている。図2の符号13aは、第1のリードフレーム13の上部である。
Example 4 is a light emitting device using the β-sialon of Example 1. Hereinafter, this will be described in detail with reference to FIG.
The light-emitting device 10 includes an LED chip as the light-emitting light source 12, a first lead frame 13 conducted to the light-emitting light source 12, a second lead frame 14 attached in the vicinity of the first lead frame 13, It has a bonding wire 16 for conducting the light emitting light source 12 and the second lead frame 14, and the light emitting light source 12 is disposed in the concave portion 13b of the first lead frame 13 and filled in the concave portion 13b. The wavelength conversion member 15 is covered. The wavelength conversion member 15 has a sealing resin 17 in which β-sialon 18 is blended, and the upper surface of the light emitting device 10 is covered with a synthetic resin cap 19. Reference numeral 13 a in FIG. 2 is an upper portion of the first lead frame 13.

波長変換部材15は、予め個別にシランカップリング剤(信越シリコーン社製KBE402)でシランカップリング処理したβ型サイアロン18を、封止樹脂17としてのエポキシ樹脂(サンユレック社製NLD−SL−2101)に混練して作製した。発光光源12は、発光波長450nmの青色LEDチップを用いた。β型サイアロン18は、実施例1のβ型サイアロンと、Ca0.66Eu0.04Si9.9Al2.10.715.3の組成を持つCa−α型サイアロン:Eu蛍光体との混合体である。Ca−α型サイアロン:Euの発光ピーク波長は585nmである。 The wavelength converting member 15 is an epoxy resin (NLD-SL-2101 manufactured by Sanyu Rec Co., Ltd.) as a sealing resin 17 of β-sialon 18 that has been individually treated with a silane coupling agent (KBE402 manufactured by Shin-Etsu Silicone Co., Ltd.) in advance. And kneaded. As the light emission source 12, a blue LED chip having an emission wavelength of 450 nm was used. The β-type sialon 18 is composed of the β-type sialon of Example 1 and a Ca-α-type sialon having a composition of Ca 0.66 Eu 0.04 Si 9.9 Al 2.1 O 0.7 N 15.3 : Eu It is a mixture with a phosphor. Ca-α type sialon: Eu has an emission peak wavelength of 585 nm.

実施例5は、実施例4の「実施例1のβ型サイアロン」を「実施例3のβ型サイアロン」に変更した以外は、実施例4と同様のものである。   Example 5 is the same as Example 4 except that “β-sialon of Example 1” in Example 4 is changed to “β-sialon of Example 3.”

(比較例3)
比較例3の発光装置は、実施例4の「実施例1のβ型サイアロン」を「比較例1のβ型サイアロン」に変更した以外は、実施例4と同様のものである。
(Comparative Example 3)
The light emitting device of Comparative Example 3 is the same as that of Example 4 except that “β-sialon of Example 1” in Example 4 is changed to “β-sialon of Comparative Example 1”.

(比較例4)
比較例4の発光装置は、実施例4の「実施例1のβ型サイアロン」を「比較例2のβ型サイアロン」に変更した以外は、実施例4と同様のものである。
(Comparative Example 4)
The light emitting device of Comparative Example 4 is the same as that of Example 4 except that “β-sialon of Example 1” in Example 4 is changed to “β-sialon of Comparative Example 2”.

実施例4、5及び比較例3、4の発光装置10を同一通電条件で発光させ、輝度計により同一条件下での中心照度及びCIE色度(CIE1931)を測定した。色度座標(x、y)が(0.31、0.32)の白色発光装置で中心照度を比較した。実施例4、5、比較例1、2の発光装置10の明るさは、比較例3の発光装置の明るさを基準にすると、それぞれ、実施例4では125%、実施例5では136%、比較例3では100%、比較例4では117%であった。   The light emitting devices 10 of Examples 4 and 5 and Comparative Examples 3 and 4 were caused to emit light under the same energization conditions, and the central illuminance and CIE chromaticity (CIE 1931) under the same conditions were measured with a luminance meter. The central illuminance was compared with a white light emitting device having chromaticity coordinates (x, y) of (0.31, 0.32). The brightness of the light emitting devices 10 of Examples 4 and 5 and Comparative Examples 1 and 2 is 125% in Example 4 and 136% in Example 5 with respect to the brightness of the light emitting device of Comparative Example 3, respectively. In Comparative Example 3, it was 100%, and in Comparative Example 4, it was 117%.

本発明の実施例のβ型サイアロンは、350〜500nmの波長の光を発する紫外LEDチップまたは青色LEDチップを励起光として、強度の高い緑色を発光させることができる。このため、上記実施例のβ型サイアロンに加えて他色発光する別の蛍光体を組み合わせて用いることで、発光特性の良好な白色LEDを実現できる。   The β-sialon according to the embodiment of the present invention can emit high-intensity green light using an ultraviolet LED chip or a blue LED chip emitting light with a wavelength of 350 to 500 nm as excitation light. For this reason, a white LED having good light emission characteristics can be realized by using in combination with another phosphor that emits light of other colors in addition to the β-sialon of the above embodiment.

10:発光装置
12:発光光源
13:第1のリードフレーム
13a:第1のリードフレームの上部
13b:第1のリードフレームの凹部
14:第2のリードフレーム
15:波長変換部材
16:ボンディングワイヤ
17:封止樹脂
18:β型サイアロン
19:キャップ
10: light emitting device 12: light emitting light source 13: first lead frame 13a: upper portion 13b of the first lead frame: concave portion 14 of the first lead frame 14: second lead frame 15: wavelength conversion member 16: bonding wire 17 : Sealing resin 18: β-type sialon 19: Cap

Claims (3)

一般式:Si6−zAl8−zで示されEuを固溶したβ型サイアロンであって、
a軸格子定数とCIE色度の色度xとの関係が、次の式1で表されるβ型サイアロン。
a軸格子定数(Å)≦0.1075×色度x+7.5742 (式1)
A β-type sialon represented by the general formula: Si 6-z Al z O z N 8-z in which Eu is dissolved,
β-sialon in which the relationship between the a-axis lattice constant and the chromaticity x of the CIE chromaticity is expressed by the following formula 1.
a-axis lattice constant (Å) ≦ 0.1075 × chromaticity x + 7.5742 (formula 1)
前記β型サイアロンのBET値から次の式2で計算されるBET径と、前記β型サイアロンをレーザー回折散乱法にて測定した平均粒子径D50との関係が、次の式3で表される請求項1記載のβ型サイアロン。
BET径(μm)=6÷(3.22×BET値(m/g)) (式2)
D50(μm)/BET径(μm)<1.9 (式3)
The relationship between the BET diameter calculated from the BET value of the β-type sialon by the following formula 2 and the average particle size D50 obtained by measuring the β-type sialon by a laser diffraction scattering method is expressed by the following formula 3. The β-type sialon according to claim 1.
BET diameter (μm) = 6 ÷ (3.22 × BET value (m 2 / g)) (Formula 2)
D50 (μm) / BET diameter (μm) <1.9 (Formula 3)
請求項1又は2に記載のβ型サイアロンと、発光光源とを備える発光装置。   A light-emitting device comprising the β-sialon according to claim 1 or 2 and a light-emitting light source.
JP2010202513A 2010-09-09 2010-09-09 β-SIALON AND LIGHT EMITTING DEVICE Pending JP2012056804A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010202513A JP2012056804A (en) 2010-09-09 2010-09-09 β-SIALON AND LIGHT EMITTING DEVICE
PCT/JP2011/070445 WO2012033157A1 (en) 2010-09-09 2011-09-08 Β-sialon and light-emitting device
TW100132517A TWI458806B (en) 2010-09-09 2011-09-09 Method for manufacturing β type sialon, β type sialon and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202513A JP2012056804A (en) 2010-09-09 2010-09-09 β-SIALON AND LIGHT EMITTING DEVICE

Publications (1)

Publication Number Publication Date
JP2012056804A true JP2012056804A (en) 2012-03-22

Family

ID=45810753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202513A Pending JP2012056804A (en) 2010-09-09 2010-09-09 β-SIALON AND LIGHT EMITTING DEVICE

Country Status (3)

Country Link
JP (1) JP2012056804A (en)
TW (1) TWI458806B (en)
WO (1) WO2012033157A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122800A1 (en) * 2016-01-15 2017-07-20 デンカ株式会社 Phosphor and light emitting device
JP2017214551A (en) * 2016-05-30 2017-12-07 日亜化学工業株式会社 METHOD OF PRODUCING β SIALON FLUORESCENT MATERIAL
US10093855B2 (en) 2015-06-05 2018-10-09 Nichia Corporation Method for producing beta-sialon fluorescent material
WO2020054350A1 (en) * 2018-09-12 2020-03-19 デンカ株式会社 Fluorescent material and light-emitting device
US10894917B2 (en) 2016-05-30 2021-01-19 Nichia Corporation Method of producing beta-sialon fluorescent material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589036B (en) * 2016-07-25 2017-06-21 林孝正 Fluorescent lens used for covering a light emitting device, light emitting module with the fluorescent lens, organism cultivation apparatus with the fluorescent lens and light emitting module modification method
TWI589035B (en) * 2016-07-25 2017-06-21 林孝正 Organism cultivation apparatus and light emitting module modification method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934792B2 (en) * 2005-08-04 2012-05-16 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light emitting device using the phosphor
JP4891336B2 (en) * 2006-11-20 2012-03-07 電気化学工業株式会社 Phosphor, method for manufacturing the same, and light emitting device
JP4813577B2 (en) * 2009-04-08 2011-11-09 電気化学工業株式会社 Method for producing β-sialon phosphor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093855B2 (en) 2015-06-05 2018-10-09 Nichia Corporation Method for producing beta-sialon fluorescent material
JP7045192B2 (en) 2016-01-15 2022-03-31 デンカ株式会社 Fluorescent material and light emitting device
JPWO2017122800A1 (en) * 2016-01-15 2018-11-08 デンカ株式会社 Phosphor and light emitting device
WO2017122800A1 (en) * 2016-01-15 2017-07-20 デンカ株式会社 Phosphor and light emitting device
JP2017214551A (en) * 2016-05-30 2017-12-07 日亜化学工業株式会社 METHOD OF PRODUCING β SIALON FLUORESCENT MATERIAL
KR20170135716A (en) * 2016-05-30 2017-12-08 니치아 카가쿠 고교 가부시키가이샤 METHOD OF PRODUCING β-SIALON FLUORESCENT MATERIAL
JP2019135312A (en) * 2016-05-30 2019-08-15 日亜化学工業株式会社 METHOD OF PRODUCING β SIALON FLUORESCENT MATERIAL
KR102184345B1 (en) 2016-05-30 2020-11-30 니치아 카가쿠 고교 가부시키가이샤 METHOD OF PRODUCING β-SIALON FLUORESCENT MATERIAL
US10894917B2 (en) 2016-05-30 2021-01-19 Nichia Corporation Method of producing beta-sialon fluorescent material
US11512250B2 (en) 2016-05-30 2022-11-29 Nichia Corporation Method of producing β-sialon fluorescent material
WO2020054350A1 (en) * 2018-09-12 2020-03-19 デンカ株式会社 Fluorescent material and light-emitting device
US11377594B2 (en) 2018-09-12 2022-07-05 Denka Company Limited Phosphor and light-emitting device
JPWO2020054350A1 (en) * 2018-09-12 2021-08-30 デンカ株式会社 Fluorescent material and light emitting device
JP7303822B2 (en) 2018-09-12 2023-07-05 デンカ株式会社 Phosphor and light emitting device

Also Published As

Publication number Publication date
TW201217496A (en) 2012-05-01
TWI458806B (en) 2014-11-01
WO2012033157A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4521227B2 (en) Method for producing phosphor containing nitrogen
JP5676653B2 (en) Semiconductor light emitting device
KR101419626B1 (en) β―TYPE SIALON, PROCESS FOR PRODUCTION OF β―TYPE SIALON, AND LIGHT-EMITTING DEVICE
JP5129283B2 (en) Phosphor, phosphor manufacturing method, light emitting device, and light emitting module
JP5450625B2 (en) Light emitting device
JP5777032B2 (en) Light emitting device
WO2012033157A1 (en) Β-sialon and light-emitting device
WO2011105157A1 (en) Light-emitting device
JP5758903B2 (en) β-type sialon, manufacturing method thereof, and light-emitting device
KR101603007B1 (en) Phosphor
JP2022148419A (en) β-type sialon phosphor powder and light-emitting device
JP5783512B2 (en) Light emitting device
WO2020235297A1 (en) α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE
WO2020105456A1 (en) β-TYPE SIALON PHOSPHOR AND LIGHT EMITTING DEVICE
JP2020084177A (en) β-TYPE SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE
TWI833035B (en) β-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE
WO2023112507A1 (en) β-SIALON PHOSPHOR, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE
KR20220002390A (en) Phosphor powder and light emitting device
JP5646567B2 (en) Method for manufacturing phosphor
CN118256236A (en) Beta-sialon phosphor particle and light-emitting device
WO2014097802A1 (en) Fluorescent substance, light-emitting device, and illuminator
JP2012025956A (en) METHOD FOR PRODUCING β-SIALON