TW201217496A - β type SiAlON and light emitting device - Google Patents

β type SiAlON and light emitting device Download PDF

Info

Publication number
TW201217496A
TW201217496A TW100132517A TW100132517A TW201217496A TW 201217496 A TW201217496 A TW 201217496A TW 100132517 A TW100132517 A TW 100132517A TW 100132517 A TW100132517 A TW 100132517A TW 201217496 A TW201217496 A TW 201217496A
Authority
TW
Taiwan
Prior art keywords
light
type
formula
aluminum oxynitride
lanthanum aluminum
Prior art date
Application number
TW100132517A
Other languages
Chinese (zh)
Other versions
TWI458806B (en
Inventor
Suzuya Yamada
Hideyuki Emoto
Hironori Nagasaki
Tomohiro Nomiyama
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201217496A publication Critical patent/TW201217496A/en
Application granted granted Critical
Publication of TWI458806B publication Critical patent/TWI458806B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention provides a β type sialon represented by general formula: Si6-zAlzOzN8-z and containing Eu wherein the a-axis lattice constant and chromaticity X of CIE chromaticity satisfy the relationship of formula 1. a-axis lattice constant( Å ) ≤ 0.1075 * chromaticity x + 7.5742 (formula 1) The average particle diameter D50 ( μ m)/BET diameter( μ m) calculated from formula 2 and formula 3 of the β type sialon is preferably smaller than 1.9. BET diameter ( μ m) = 6 ÷ (3.22 x BET value(m<SP>2</SP>/g))(formula 2) D50 diameter ( μ m)/BET diameter ( μ m) < l.9 (formula 3)

Description

201217496 六、發明說明: 【發明所屬之技術領域】 本發明係關於可利用在使用發光二極體晶片的發光 裝置的β型矽鋁氮氧化物及發光裝置。 【先前技術】 關於β型矽鋁氮氡化物,已揭示有專利文獻!至4。 在專利文獻1中係記載一種將在第一加熱步驟中所生成 的β型矽鋁氮氧化物在第二加熱步驟後進行酸處理,藉 此使結晶性提升而獲得高亮度的螢光體的技術。在專利 文獻2至4中係揭示一種LED、螢光體燈等使用ρ型矽 在呂氮氧化物的發光裝置。 先前技術文獻 專利文獻 專利文獻1國際公開第2008/06278 1號小冊 專利文獻2曰本特開平5-1 52609號公報 專利文獻3曰本特開平7 - 9 9 3 4 5號公報 專利文獻4日本專利第2927279號公報 非專利文獻 非專利文獻1大久保和明等著,「ΝΒS標準螢光體的 里子政率的測定」,照明學會誌,第83卷,第2號, ΡΡ87-93,平成 U 年(2〇〇〇 年) 【發明内容】 [發明所欲解決之課題] 、使用習知之Ρ型矽鋁氮氧化物的螢光體若在進行短 波長化或窄波段化時,*光效率明顯變低,欠缺發先特 -4- 201217496 I·生的重現it。因此’使用習知之β型矽鋁氮氧化物的白 色LED等發光裝置並無法安定獲得充分的亮度。 本發明係鑑於上述課題’目的在提供一種可實現高 發光效率之β型石夕4¾ € g υ m 、氮氧化物及使用β型矽鋁氮氧化物 的發光裝置。 [解決課題之手段] 本發明之Ρ型石夕紹氮氧化物係以通式:si6.zAlz〇zN8.. 所不’a軸晶格常數與CIE色度的色度χ的關係滿足式】 a軸晶格常數(A)S 0.1 075x色度χ+ 7 5742 (式υ。 a軸晶格常數係利用使用銅的Κα線的粉末χ光繞射 測定(以下稱為XRD測定)來測定ρ型矽鋁氮氧化物者。 β型矽鋁氮氧化物中較佳為,由ρ型矽鋁氮氧化物 的Brunaure Emmett Te丨ler(以下稱為Βετ)値利用式2所 計算的BET徑、及利用雷射繞射散射法來測定β型矽鋁 氮氧化物而得的平均粒子徑D5〇(以下料D5〇)的關係 為以式3所示之範圍者: BET 徑6 + (3·22χΒΕ丁値(m2/g))(式 2) ϋ50(μπι)/ΒΕΤ 徑(μιη)&lt;1.9 (式 3)。 本發明之發光裝置係具備有前述Ρ型石夕紹氮氧化物 與發光光源者。 [發明之效果] 本發明之β型矽鋁氮氧化物係在紫外線至可見光之 範圍寬廣的波長範圍内予以激發,以520nm以上550ηη 以下的範圍内為主波長而高效率發出綠色光 綠色螢光體極為優異。 因此作為 -5- 201217496 本發明之發光裝置係將前述β㈣Μ氧化物 螢光體加以使用,因此可實現發光裝置的言友201217496 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a β-type lanthanum aluminum oxynitride and a light-emitting device which can be utilized in a light-emitting device using a light-emitting diode wafer. [Prior Art] Patent literature has been disclosed regarding β-type lanthanum aluminide. To 4. Patent Document 1 describes a method in which a β-type lanthanum aluminum oxynitride produced in a first heating step is subjected to an acid treatment after a second heating step, whereby crystallinity is improved to obtain a high-luminance phosphor. technology. Patent Documents 2 to 4 disclose a light-emitting device using a p-type yttrium oxide for an LED, a phosphor lamp or the like. PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document 1 International Publication No. 2008/06278 No. 1 vol. Patent Document 2 曰 特 5-1 5-1 52 609 Patent Document 3 曰本特开平 7 - 9 9 3 4 5 Patent Document 4 Japanese Patent No. 2927279, Non-Patent Document Non-Patent Document 1 Okubo and Akira et al., "Measurement of the neutron rate of the ΝΒS standard phosphor", Journal of Illumination Society, Vol. 83, No. 2, ΡΡ87-93, Heisei U (2 〇〇〇) [Explanation] [Problems to be Solved by the Invention] When a phosphor of a conventional yttrium-type lanthanum oxynitride is used for short wavelength or narrow band, *light The efficiency is obviously lower, and the lack of the first -4-201217496 I·sheng reproduces it. Therefore, a light-emitting device such as a white LED using a conventional β-type yttrium aluminum oxynitride is not stable enough to obtain sufficient brightness. The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting device which can realize a high luminous efficiency of β-type 夕 43 43⁄4 € g υ m , nitrogen oxides and β-type lanthanum aluminum oxynitride. [Means for Solving the Problem] The 石-type Shi Xishao nitrogen oxide of the present invention has the formula: si6.zAlz〇zN8.. The relationship between the 'a-axis lattice constant and the color χ of the CIE chromaticity is satisfied. A-axis lattice constant (A)S 0.1 075x chromaticity χ+ 7 5742 (Formula υ. The a-axis lattice constant is measured by powder calender diffraction measurement (hereinafter referred to as XRD measurement) using copper Κα line. Among the β-type lanthanum oxynitrides, the BET diameter calculated by the formula 2 is the Brunaure Emmett Te丨ler (hereinafter referred to as Βετ) of the p-type lanthanum aluminum oxynitride. And the relationship between the average particle diameter D5〇 (hereinafter referred to as D5〇) obtained by measuring the β-type lanthanum aluminum oxynitride by the laser diffraction scattering method is in the range shown by Formula 3: BET diameter 6 + (3· 22χΒΕ丁値(m2/g)) (Formula 2) ϋ50 (μπι)/ΒΕΤ diameter (μιη) &lt;1.9 (Formula 3). The light-emitting device of the present invention is provided with the above-mentioned Ρ-type Shi Xishao oxynitride and luminescence [Effects of the Invention] The β-type lanthanum aluminum oxynitride of the present invention is excited in a wide wavelength range from ultraviolet to visible light, and is 550 nm or more at 550 nm or more. Within the dominant wavelength range with high efficiency emitting green light, a green phosphor is extremely excellent. Thus -5-201217496-based light-emitting device of the present invention will be the use β㈣Μ oxide phosphor, the light-emitting device thus made friends

【實施方式】 Θ E 以下使用圖式’詳加說明本發明之實施形熊 [β型矽鋁氮氧化物] / 本發明之實施形態之β型矽鋁氮氧化物係以通式:[Embodiment] Θ E Hereinafter, the embodiment of the present invention will be described in detail using the following drawings. [β-type yttrium aluminum oxynitride] / The β-type lanthanum aluminum oxynitride of the embodiment of the present invention is of the general formula:

SipAUOzNp所示之β型矽鋁氮氧化物作為發光;心 而在主結晶中固溶Eu2+所成者。β型石夕叙 _ μ y銘氮氧化物亦標 a己為通式· Si6-zAlz〇zN8.z: Eu(0&lt;zg4 2)。 本發明人等針對β型#氮氧化物中的結晶構造及 粉體物性與發光效率的關係加以調查’結果發現滿足式 1至式3關係的β型矽鋁氮氧化物呈現高發光Χ效率。工 a軸晶格常數(Α)$〇.1075χ色度χ+7 574^ (式^ BET#hm)=6 + (3.22xBETM(m2/g))(s2) D50(pm)/BET 徑(μπι) &lt; 1 9 (式 3) 在此’ a軸晶格常數倍、β型矽鋁氮氧化物的&amp;軸的 晶格常數。BET値係利用屬於比表面積測定法之一的 BET法所求出的β型石夕铭氮氧化物的比表面積。〇5〇係 體積基準的累計分率中的50%粒徑。 滿足式1關係的β型石夕紹氮氧化物係電子阱減少或 消失而使激發電子的能量被有效轉換成綠色發光,結果 使發光效率提升。 明顯可知若未滿足式3關係且β型矽鋁氮氧化物的 D50/BET徑大於19時,粒子表面並非平滑而激發光在β 型石夕紹氮氧化物榮光體粒子表面被散射,未有效發出榮 光,因此發光效率低。 -6 - 201217496 P型矽鋁氮氧化物中的Eu含量較佳&amp; (Μ質量%以 上3質量%以下。在該範圍外,會有發光強度變低的傾 向。 [β型矽鋁氮氧化物之製造方法] 使用第1圖的流程圖,說明含有Eu的ρ型矽鋁氮氧 化物之製造方法。 如第1圖所示,β型矽鋁氮氧化物之製造方法係由 以下步驟所構成:將原料粉末混合而形成為原料混合粉 末的混合步驟;將混合步驟後的原料混合粉束進=蜱 製’而生成固溶有Eu&quot;型石夕紹氮氧化物的燒製步驟: 對燒製步驟後的β型矽鋁氮氧化物進行退火處理的退火 步驟;及對退火步驟後的&quot;石夕銘氣氧化物進行酸處理 的酸處理步驟。 处 下, 莫耳 理想 關於原料粉末的摻合組成,若Α1/0莫耳比為13以 則加熱中的粒成長容易進行,故較為理想。若 比為1.1以下’由於D5〇接近於ΒΕΤ徑,因此較為 ’為了控制BET値及d5〇,較 施分級處理。 的加熱溫度、處理時間、瓦分 物的分解,不會有產生Si的情 的關係成立。 佳 壓 形 在第1圖中雖未記戴 為在酸處理步驟之後實 藉由調整退火步驟中 ’抑制β型矽鋁氮氧化 ’而使前述式1至式3 D50較佳為5 μηι以上)Λ 上以下,更佳為ΙΟμηι以_ 以下。若D5〇太小時嗜光效率會變低,若太大時 右使用在發光裝置,則會有分散狀態變差的傾向。 201217496 [發光裝置] -面參照第2圖,一面說明使用本發明之β型矽鋁 氮氧化物的發光裝置。 發光裝置係使用發光光源及上述β型仰氮氧化物 者,第2圖係以模式顯示發光裝置的剖面者。 如第2圖所不’本發明之發朵获罢 分月 &lt; 货尤裝置1 〇係由作為發光 光源12的LED晶片、裝載發光光源12的第i引線架13、 第2引線架14、被覆發光光源12與第ι引線架13 長轉換構件15、將發光光源12與第2引線架14作電性 連接的接合線16、及覆蓋該等的合成樹脂製帽蓋19所 形成。波長轉換構件15係&quot;型矽鋁氮氧化物18、及 一面將β型碎铭氮氧化物18分散一面摻合而成的密封樹 脂17所構成。在第丄引線架13的上部&amp;設有led晶 片裝載用的凹告&quot;3b。凹&quot;b係具有孔徑由其底面朝 向上方慢慢擴大的大致漏斗形狀’並且凹部nb的内面 形成為反射面。LED晶4 12的下面側的電極被晶粒接合 在該反射面的底面。形成在LED晶片12的上面的另一 電極係透過接合線16而與第2引線架14的表面相連接。 以發光光源12而言’係可使用各種lEd晶片,特 佳為產生35〇11111至50〇11111的光作為近紫外至藍色光的波 長的LED晶片。以發光光源12而言,係有由GaN或 等氮化物半導體所構成者,成為藉由調整組成而發出預 定波長的光的發光光源1 2。 在發光裝置10的波長轉換構件5所使用的β型矽鋁 氮氧化物亦可使發出其他顏色光的螢光體混合存在。以 201217496 而言,係有α型矽鋁氮氧化物、 溶在該等的元素而言,係有銪、 發出其他顏色的螢光體 CaAlSiN3、YAG,以固 鈽、錄、約。 本發明之發光裝置1 〇係藉由將發光光源1 2與β型 矽鋁氮氧化物1 8、其他螢光體加以組合,而可發出各種 顏色的光。右發出在52〇nm以上550nm以下的範圍的波 長具有峰值的綠色光時,以p型矽鋁氮氧化物丨8單體與 發光光源12而言’若照射具有35〇nm以上5〇〇nm以下 的波長的近务、外光或可見光即可。此夕卜,藉由將波長 600nm以上700nm以下的紅色發光螢光體藍色發光螢 光體、只色發光榮光體或橙色發光螢光體的單體或混合 物加以組合,可使白色光或所謂的電燈泡顏色等適當發 光0 本發明之發光裝置10由於β型矽鋁氮氧化物1 8的 發光強度问,因此具有高發光強度。此外,反映出ρ型 石夕紹氮氧化物1 8所具有之無論在熱方面或化學方面均 為安定的特徵,本發明之發光裝置1〇即使在高溫下使 用’亦為亮度降低小、且為長壽命。 [實施例1 ] 以下更進一步詳加說明本發明之實施例。 &lt;混合步驟&gt; 使用cc型氮化矽粉末(宇部興產公司製SN_E1〇級, 氧含罝1.1 7質量%、β相含量4·5質量%)、氮化鋁粉末 (T〇kUyama公司製F級,氧含量〇 84質量%广氧化鋁粉 末(大明化學公司製TM_DAR級)、氧化銪粉末(信越化學 201217496 工業公司.製RU級)作為# + ' q项枓杨末。由原料粉末中的A1 量所計算出的z値為0.25,士条 由氧化銪粉末以外的氧量所 計算出的Ζ値為〇.25,摻合氧化銪粉末成為0.29莫耳%, 而獲得ikg的原料混合物粉末。此時續莫耳比為 接著,將上述原料粉末使用搖擺式混合機(愛知電機 公司製,RM-10) ’以6〇分鐘乾式進行混合,另外全部通 過筛孔15〇_的不錄鋼製篩,而獲得螢光體燒製用的原 料混合粉末。 &lt;燒製步驟&gt; 將原料混合粉末填充在容積〇 7公升的氮化蝴製容 器(電氣化學工業公司製級),以碳加熱器的電氣爐, 在0.9MPa的加壓氮氣環境中,以2〇〇〇。〇進行1 5小時的 燒製。所得的合成物係稀薄凝聚的塊狀,因此在進行輕 度裂解後,通過篩孔1 50μηι的篩,而得粉末狀的β型矽 鋁氮氧化物。 &lt;分級步驟&gt; 將所得的β型矽鋁氮氧化物以音速噴射粉碎機(日本 空壓工業公司(Nippon Pneumatic Mfg. Co,.Ltd)製 PJM-80SP)進行粒度的調整,另外藉由水中分級處理將 5 μιη以下的微粉去除後,進行乾燥。 &lt;退火步驟&gt; 將维由分級步驟的β型矽鋁氮氧化物填充在圓筒型 氣化棚製容器(電氣化學工業公司製Ν-1級),以碳加熱 器的電氣爐’在大氣壓的氬氣環境中,以1450。(:進行8 小時的加熱處理。所得粉末並不會發生伴隨燒結所造成 201217496 的收縮,與加熱前為大致相同的性狀,全部通過篩孔 4 5 μιη的篩。對已通過篩的β型矽鋁氮氧化物,藉由XRD 測定進行結晶相的鑑定。XRD測定結果,獲得實施例1 的β型矽鋁氮氧化物係包含單相的結果,但是檢測出微 量的Si。 &lt;酸處理步驟&gt; 將經由退火步驟的β型矽鋁氮氧化物浸潰在5 0 %氫 氟酸與70%硝酸的1 : 1混酸中之後,進行水洗及乾燥而 得實施例1的β型矽鋁氮氧化物。 &lt;評估&gt; 關於實施例1的β型矽鋁氮氧化物的評估,一面參 照表1,一面詳加說明。 表1 實施例 比較例 1 2 3 1 2 組成 Z(A1) 0.25 0.25 0.25 0.25 0.25 Z(O) 0.25 0.25 0.25 0.25 0.22 燒製溫度 ro 2000 2000 2000 2000 2000 燒製時間 (h) 15 15 15 15 15 分級步驟 有 有 有 有 無 退火步驟 有 有 有 無 有 發光強度 (%) 201 228 233 123 199 色度 X 0.353 0.363 0.365 0.338 0.336 y 0.625 0.618 0.615 0.637 0.618 式1右邊的值 7.6121 7.6132 7.6134 7.6105 7.6103 a值晶格常數 7.6103 7.61208 7.6119 7.612 7.6105 c值晶格常數 7.9121 2.91273 2.9135 2.9127 2.9122 D10 (ym) 4.8 7.98 8.4 8.2 7.56 D50 〇m) 8.5 14.7 14.8 15.2 20.25 D90 〇m) 13.4 26.69 25.5 27 40.36 BET值 (m2/g) 0.25 0.193 0.235 0.19 0.25 BET徑 (Mm) 7.5 9.7 7.9 9.8 7.5 D50(//m)/BET 徑(//m) 1.14 1.52 1.87 1.55 2.72 201217496 實施例1的β型矽鋁氮氧化物經XRD測定結果,a 軸晶格常數為7.6103 A,c軸晶格常數為2.9121 A,並未 被檢測出來自β型矽鋁氮氧化物以外的結晶的峰值。 使用分光營光光度計(Hitachi High-Technologies公 司製’ F4500)來測定實施例1的β型矽鋁氮氧化物的螢 光頻譜。將455nm的藍色光作為激發光而測定出螢光頻 讀的峰值波長的高度。將相對以相同條件所測定出的The β-type lanthanum aluminum oxynitride shown by SipAUOzNp acts as a luminescent; the core is formed by solid solution of Eu2+ in the main crystal. β型石夕叙 _ μ y Ming oxynitride is also labeled as a formula · Si6-zAlz〇zN8.z: Eu (0&lt;zg4 2). The inventors of the present invention have investigated the relationship between the crystal structure of the β-type nitrogen oxide and the relationship between the physical properties of the powder and the luminous efficiency. As a result, it has been found that the β-type lanthanum aluminum oxynitride satisfying the relationship of Formulas 1 to 3 exhibits high luminescence efficiency. A-axis lattice constant (Α)$〇.1075χ色χ+7 574^ (式^ BET#hm)=6 + (3.22xBETM(m2/g))(s2) D50(pm)/BET diameter ( Μπι) &lt; 1 9 (Formula 3) Here, the 'a-axis lattice constant multiple, the lattice constant of the β-type yttrium aluminum oxynitride &amp; The BET is a specific surface area of the β-type Shi Ximing oxynitride obtained by the BET method which is one of the specific surface area measuring methods. 〇5〇 is the 50% particle size of the cumulative fraction of the volume basis. The β-type Shixishao nitrogen oxide electron trap that satisfies the relationship of Formula 1 is reduced or disappeared, so that the energy of the excited electrons is efficiently converted into green light, and as a result, the luminous efficiency is improved. Obviously, if the D50/BET diameter of the β-type lanthanum oxynitride is not satisfied when the relationship of Formula 3 is not satisfied, the surface of the particles is not smooth and the excitation light is scattered on the surface of the β-type Shi Xishao NOx glory particles, which is not effective. Glowing light, so the luminous efficiency is low. -6 - 201217496 The Eu content in P-type lanthanum aluminum oxynitride is preferably & (Μ% by mass or more and 3% by mass or less. Outside this range, the luminescence intensity tends to be low. [β-type yttrium aluminum oxynitride Method for producing a material] A method for producing a p-type lanthanum aluminum oxynitride containing Eu is described using a flow chart of Fig. 1. As shown in Fig. 1, a method for producing a β-type lanthanum aluminum oxynitride is as follows. And a mixing step of mixing the raw material powders to form a raw material mixed powder; and mixing the raw material mixed powder after the mixing step into a tanning process to form a firing step of solid-solving Eu&quot; An annealing step of annealing the β-type lanthanum aluminum oxynitride after the firing step; and an acid treatment step of acid-treating the &quot;Shi Ximing gas oxide after the annealing step. The blending composition, if the Α1/0 molar ratio is 13, the grain growth during heating is easy to carry out, so it is preferable. If the ratio is 1.1 or less, 'because D5〇 is close to the diameter, it is more 'in order to control BET値 and D5〇, more graded treatment The heating temperature, the treatment time, and the decomposition of the wattage are not related to the occurrence of Si. The good profile is not recorded in Figure 1 after the acid treatment step. It is preferable that the above-mentioned Formula 1 to Formula D D50 is 5 μηι or more) 以下 or less, and more preferably ΙΟμηι is _ or less. If the D5 is too small, the light-efficiency efficiency will be low, and if it is too large, the light-emitting device will be used, and the dispersion state tends to be deteriorated. 201217496 [Light-emitting device] - A light-emitting device using the ?-type lanthanum aluminum oxynitride of the present invention will be described with reference to Fig. 2 . The light-emitting device uses an illuminating light source and the above-described β-type oxynitride, and the second figure shows a cross-section of the illuminating device in a mode. As shown in Fig. 2, the present invention is not limited to the present invention. The cargo device 1 is an LED chip as the light-emitting source 12, an i-th lead frame 13 on which the light-emitting source 12 is mounted, and a second lead frame 14. The coated light source 12 is formed of a first lead frame 13 long conversion member 15, a bonding wire 16 for electrically connecting the light source 12 and the second lead frame 14, and a synthetic resin cap 19 covering the same. The wavelength converting member 15 is composed of a type of yttrium aluminum oxynitride 18 and a sealing resin 17 obtained by dispersing and dispersing the ? type sulphide oxynitride 18 on one side. In the upper portion of the second lead frame 13, &lt;3&gt; is provided for the mounting of the led wafer. The concave &quot;b has a substantially funnel shape in which the aperture is gradually enlarged upward from the bottom surface thereof, and the inner surface of the concave portion nb is formed as a reflecting surface. The electrode on the lower side of the LED crystal 4 12 is bonded to the bottom surface of the reflecting surface by a die. The other electrode formed on the upper surface of the LED wafer 12 is connected to the surface of the second lead frame 14 through the bonding wire 16. In the case of the illuminating light source 12, various lEd wafers can be used, and it is particularly preferable to produce light of 35 〇 11111 to 50 〇 11111 as an LED chip of a wavelength of near ultraviolet to blue light. The illuminating light source 12 is composed of GaN or a nitride semiconductor, and is an illuminating light source 12 that emits light of a predetermined wavelength by adjusting the composition. The β-type lanthanum aluminum oxynitride used in the wavelength conversion member 5 of the light-emitting device 10 can also be mixed with a phosphor that emits light of other colors. In the case of 201217496, the α-type lanthanum aluminum oxynitride and the elements dissolved in these are contained, and the phosphors CaAlSiN3 and YAG of other colors are emitted to fix, record, and approximate. The light-emitting device 1 of the present invention can emit light of various colors by combining the light-emitting source 12 with the ?-type lanthanum aluminum oxide 18 and other phosphors. When the right side emits green light having a peak in a wavelength range of 52 〇 nm or more and 550 nm or less, the p-type lanthanum aluminum oxynitride 丨 8 monomer and the illuminating light source 12 have an emission of 35 〇 nm or more and 5 〇〇 nm. The following wavelengths of close, external or visible light may be used. Further, white light or so-called white light or so-called combination of a red light-emitting phosphor blue light-emitting phosphor having a wavelength of 600 nm or more and 700 nm or less, a color-only light-emitting phosphor or an orange light-emitting phosphor can be combined. The light-emitting device 10 of the present invention emits light appropriately. The light-emitting device 10 of the present invention has high luminous intensity due to the luminous intensity of the ?-type lanthanum aluminum oxynitride 18. In addition, it is reflected that the light-emitting device 1 of the present invention has a small reduction in brightness even when it is used at a high temperature, and has a characteristic that it is stable both thermally and chemically. For long life. [Embodiment 1] Hereinafter, embodiments of the invention will be further described in detail. &lt;Mixing step&gt; Using cc type tantalum nitride powder (SN_E1 grade manufactured by Ube Industries, Ltd., oxygen containing 罝1.17% by mass, β phase content of 4.5% by mass), aluminum nitride powder (T〇kUyama Co., Ltd. Grade F, oxygen content 〇 84% by mass of alumina powder (TM_DAR grade manufactured by Daming Chemical Co., Ltd.), yttrium oxide powder (Shin-Etsu Chemical 201217496 Industrial Co., Ltd. RU grade) as # + ' q item 枓 Yang end. From raw material powder The z 计算 calculated by the amount of A1 is 0.25, the enthalpy calculated from the amount of oxygen other than the cerium oxide powder is 〇.25, and the cerium oxide powder is 0.29 mol%, and the raw material of ikg is obtained. Mixing powder. At this time, the molar ratio was continued, and the raw material powder was mixed by a swing type mixer (RM-10, manufactured by Aichi Electric Co., Ltd.) in a dry manner for 6 minutes, and all of them were passed through a sieve hole of 15 〇. A steel-made sieve is used to obtain a raw material mixed powder for firing a phosphor. <Finishing step> The raw material mixed powder is filled in a nitriding butterfly container (manufactured by Electric Chemical Industry Co., Ltd.) having a volume of 7 liters. Electric furnace with carbon heater, pressurized nitrogen at 0.9 MPa In the air environment, the crucible is fired for 15 hours. The resulting composition is a thin, agglomerated block. Therefore, after mild cracking, it is passed through a sieve of 1 50 μm in a sieve to obtain a powder. Β-type yttrium aluminum oxynitride. &lt;Classification step&gt; The obtained β-type lanthanum aluminum oxynitride was used as a sonic jet pulverizer (PJM-80SP manufactured by Nippon Pneumatic Mfg. Co., Ltd.) The particle size is adjusted, and the fine powder of 5 μm or less is removed by water classification treatment, and then dried. &lt; Annealing step&gt; The quartz gasification is filled with the β-type lanthanum aluminum oxynitride of the classification step. The shed container (manufactured by the Electric Chemical Industry Co., Ltd. - Class-1), the electric furnace of the carbon heater's in an argon atmosphere at atmospheric pressure, at 1450. (: 8 hours of heat treatment. The resulting powder does not accompany The shrinkage of 201217496 caused by sintering was almost the same as that before heating, and all passed through a sieve of 45 μm mesh. The crystal phase was identified by XRD measurement on the β-type lanthanum aluminum oxynitride that had passed through the sieve. Determination result The β-type lanthanum aluminum oxynitride of Example 1 contained a single phase, but a trace amount of Si was detected. &lt;Acid treatment step&gt; The β-type lanthanum aluminum oxynitride via the annealing step was impregnated at 50% After mixing hydrofluoric acid with 1:1 of 70% nitric acid, the mixture was washed with water and dried to obtain β-type lanthanum aluminum oxynitride of Example 1. <Evaluation> Regarding the β-type lanthanum aluminum oxynitride of Example 1. The evaluation is detailed with reference to Table 1. Table 1 Example Comparative Example 1 2 3 1 2 Composition Z(A1) 0.25 0.25 0.25 0.25 0.25 Z(O) 0.25 0.25 0.25 0.25 0.22 firing temperature ro 2000 2000 2000 2000 2000 firing time (h) 15 15 15 15 15 Classification step with or without annealing step with or without luminous intensity (%) 201 228 233 123 199 Color X 0.353 0.363 0.365 0.338 0.336 y 0.625 0.618 0.615 0.637 0.618 1Right value 7.6121 7.6132 7.6134 7.6105 7.6103 a value lattice constant 7.6103 7.61208 7.6119 7.612 7.6105 c value lattice constant 7.9121 2.91273 2.9135 2.9127 2.9122 D10 (ym) 4.8 7.98 8.4 8.2 7.56 D50 〇m) 8.5 14.7 14.8 15.2 20.25 D90 m) 13.4 26.69 25.5 27 40.36 BET value (m2/g) 0.25 0.193 0.235 0.19 0.25 BET diameter (Mm) 7.5 9.7 7.9 9.8 7.5 D50(//m)/BET diameter (//m) 1.14 1.52 1.87 1.55 2.72 201217496 Implementation The β-type lanthanum aluminum oxynitride of Example 1 was measured by XRD, the a-axis lattice constant was 7.6103 A, and the c-axis lattice constant was 2.9121 A. No crystals other than β-type lanthanum oxynitride were detected. Peak. The fluorescence spectrum of the ?-type lanthanum aluminum oxynitride of Example 1 was measured using a spectrophotometer (Hitachi High-Technologies Co., Ltd. F4500). The blue light of 455 nm was used as the excitation light to measure the height of the peak wavelength of the fluorescence read. Will be measured relative to the same conditions

Kasei 〇pt〇nix公司製Yag : Ce螢光體(P46-Y3)的峰值波 長的兩度的相對値求出作為發光峰值強度。在激發光係 使用經分光的氙燈光源。實施例1的β型矽鋁氮氧化物 的發光峰值強度為20 1 %。 貫施例1的β型矽鋁氮氧化物的CIE色度係以瞬間 多測光系統(大塚電子公司製MCPd-7000)使用積分球, 進行將對455nm的激發的螢光聚光後的全光束的螢光頻 譜測定而求出。測定方法係依據非專利文獻1進行。實 施例1的β型矽鋁氮氧化物的CIE色度係色度χ = 0.353 ’ 色度 y= 〇 625。 由色度x=〇.353’式1的右邊値為76121。實施例 1的β型矽鋁氮氧化物的a軸晶格常數為7 6丨〇3,滿足 式1的關係。 a 軸晶格常數(人)S 0.1075x0.353 + 7.5742 (式 1) 由藉由雷射散射法所為之粒度分布測定所得之β型 矽鋁氮氧化物的平均粒徑D5〇為8 5,,4 —, D9〇為13·4μη^ Dl〇、D9〇係體積基準的累計分率下的 1 0 %粒徑、9 〇粒徑。 -12- 201217496 藉由氣體吸附法來測定實施例1的β型矽鋁氮氧化 物的BET ’藉由bet多點解析所求出的BET値為 0.2 5m /g。若由該bet値利用前述式2來計算BET徑時 為 7.5μιη ’ 式 3 的 ϋ5 0(μιη)/ΒΕΤ 徑(μπι)為 1.14。 [實施例2 ] 貫施例2的β型矽鋁氮氧化物係除了將實施例1中 的分級步驟_的水中分級處理設為去除ΙΟμηι以下之微 粉的水中分級處理以外,係與實施例1為相同地製造者。 XRD測定結果,實施例2的β型矽鋁氮氧化物的&amp; 軸晶格常數為7.61208A’ c軸晶格常數為2.91273A,並 未檢測出β型矽鋁氮氧化物以外的繞射峰值,發光峰值 強度為228%’CIE色度係色度χ=〇363,色度y=〇.618。 由色度χ=〇·363,式1的右邊値為76132,實施例 2的β型石夕紹氮氧化物的a軸晶格常數的値為7.612〇8, 因此滿足式1的關係。 貫施例2的β型石夕銘氮氧化物的平均粒徑〇 5 〇為 14_7μιη,D10 為 7.98μιη,D90 為 14 7μηι,ΒΕΤ 値為 〇.193m2/g’BET 徑為 9々m,D50(nm)/BET 徑(叫)為 i 52。 [實施例3] 實施例3的β型矽鋁氮氧化物係除了將實施例丨的 分級步驟中的水中分級處理設為將15μιη以下的微粉去 除的水中分級處理以外,係與實施例丨同樣地進行製造 者。 XRD測定結果,實施例3的ρ型砂叙氮氧化物的a 抽晶格常數為7.6119A,c軸晶格常數為2 9135a,並未 -13- 201217496 被檢測出β型矽鋁氮氧化物以外的繞射峰值。發光峰值 強度為233%,CIE色度係色度χ=〇.365,色度y=〇_615。 由色度x=〇.365,式1的右邊値為7.6134,實施例 3的β型矽銘氮氧化物的a軸晶格常數的値為7 6丨丨9, 因此滿足式1的關係。 實施例3的β型矽鋁氮氧化物的平均粒徑D50為 14.8μιη,D10 為 8·4μηι,D90 為 25.5μπι,BET 値為 0.235m2/g’BET 徑為 7·9μιη’ϋ50(μιη)/ΒΕΤ 徑(μιη)為 1.87。 [比較例1 ] 比較例1係未經由退火步驟而製造者。除此以外, 係與實施例1相同地製造。 在比較例1的β型矽鋁氮氧化物中’ XRD測定結果, 在P型矽鋁氮氧化物與作為第二相的2Θ=33。至38。附近The relative enthalpy of the peak wavelength of the Yag: Ce phosphor (P46-Y3) manufactured by Kasei 〇pt〇nix Co., Ltd. was obtained as the luminescence peak intensity. In the excitation light system, a split xenon light source is used. The β-type lanthanum aluminum oxynitride of Example 1 had an emission peak intensity of 20 1%. The CIE chromaticity of the β-type lanthanum aluminum oxynitride of Example 1 was carried out using an integrating sphere using an instantaneous multi-photometric system (MCPd-7000 manufactured by Otsuka Electronics Co., Ltd.) to perform a full beam of light condensed by excitation of 455 nm. The fluorescence spectrum was measured and determined. The measurement method is carried out in accordance with Non-Patent Document 1. The CIE chromaticity β of the β-type lanthanum aluminum oxynitride of Example 1 was 0.3 = 0.353 ′ chromaticity y = 625 625. The right side 式 of the formula 1 from the chromaticity x = 〇. 353' is 76121. The β-type lanthanum aluminum oxynitride of Example 1 has an a-axis lattice constant of 76 丨〇 3 and satisfies the relationship of Formula 1. A-axis lattice constant (human) S 0.1075x0.353 + 7.5742 (Formula 1) The average particle diameter D5〇 of the β-type lanthanum aluminum oxynitride obtained by the particle size distribution determined by the laser scattering method is 8 5, 4,, D9〇 is 13·4μη^ Dl〇, D9 is the volume fraction of 10% particle size and 9 〇 particle size under the cumulative fraction. -12-201217496 The BET of the β-type yttrium aluminum oxynitride of Example 1 was measured by gas adsorption method and the BET 求出 determined by bet multipoint analysis was 0.2 5 m / g. When BET is calculated by the above formula 2, ϋ5 0 (μιη) / ΒΕΤ diameter (μπι) of the formula 7.5 is 1.14. [Example 2] The β-type lanthanum aluminum oxynitride according to Example 2 is the same as Example 1 except that the water classification treatment in the classification step in Example 1 is performed in the water classification treatment of removing the fine powder of ΙΟμηι or less. For the same manufacturer. As a result of XRD measurement, the &amp; axis lattice constant of the β-type lanthanum aluminum oxynitride of Example 2 was 7.61208 A'. The c-axis lattice constant was 2.91273 A, and diffraction other than the ?-type lanthanum oxynitride was not detected. The peak value, the luminescence peak intensity is 228% 'CIE chromaticity system χ χ = 〇 363, and the chromaticity y = 〇 .618. From the chromaticity χ = 〇 · 363, the right side 式 of the formula 1 is 76132, and the 値 of the a-axis lattice constant of the β type Shi Xishao oxynitride of the second embodiment is 7.612 〇 8, so that the relationship of the formula 1 is satisfied. The average particle size of β-type Shi Ximing oxynitride in Example 2 is _5 〇 is 14_7μιη, D10 is 7.98μιη, D90 is 14 7μηι, ΒΕΤ 値 is 〇.193m2/g'BET diameter is 9々m, D50 The (nm)/BET diameter (called) is i 52. [Example 3] The β-type lanthanum aluminum oxynitride of the example 3 is the same as the example 丨 except that the water classification treatment in the classification step of the example 设为 is performed by classifying the water in which the fine powder of 15 μm or less is removed. Conduct the manufacturer. As a result of XRD measurement, the p-lattice lattice constant of the p-type sand nitriding oxide of Example 3 was 7.6119 A, and the c-axis lattice constant was 2 9135 a, and no β-type lanthanum oxynitride was detected by -13-201217496. The diffraction peak. The luminescence peak intensity was 233%, the CIE chromaticity system χ = 〇.365, and the chromaticity y = 〇 _615. From the chromaticity x = 〇.365, the right side 式 of the formula 1 is 7.6134, and the a of the a-axis lattice constant of the β type 矽 氮 oxynitride of the third embodiment is 76 丨丨9, and thus the relationship of the formula 1 is satisfied. The β-type lanthanum aluminum oxynitride of Example 3 has an average particle diameter D50 of 14.8 μm, D10 of 8·4 μηι, D90 of 25.5 μm, and BET 値 of 0.235 m 2 /g 'BET diameter of 7.9 μιη 'ϋ50 (μιη). The /ΒΕΤ diameter (μιη) is 1.87. [Comparative Example 1] Comparative Example 1 was produced without passing through an annealing step. Other than that, it was produced in the same manner as in Example 1. In the β-type lanthanum aluminum oxynitride of Comparative Example 1, the result of XRD measurement was as follows: PP-type aluminum oxynitride and 2Θ=33 as the second phase. To 38. nearby

其他値如表1所示。 [比較例2 ]Others are shown in Table 1. [Comparative Example 2]

將實施例 • 2 9莫耳。/。的方式進行摻 實施例1的水中分級處 *14- 201217496 理設為去除20μηι以下之微粉的水中分級處理以外,係 與實施例1相同地進行處理而得β型矽鋁氮氧化物。 在比較例2的β型矽鋁氮氧化物中,XRD測定結果, 並未檢測出矽鋁氮氧化物以外的峰值^ a軸晶格常數為 7·6105Α ’ c軸晶格常數為 2.9122A。發光峰值強度為 199%,CIE色度係色度χ=〇_36,色度y=〇.618,其他 値係如表1所示。若由色度x=〇.36來計算式1的右邊 時’成為7.6 1 0 3,未滿足式1的關係。 如表1所示,實施例1至3的β型矽鋁氮氧化物均 滿足式1、式2及式3的關係,與比較例1及2的β型 矽鋁氮氧化物相比,顯示較高的發光峰值強度。 [實施例4] 實施例4係使用實施例1的β型矽鋁氮氧化物的發 光裝置。以下參照第2圖詳加說明。 發光裝置1 0係具有:作為發光光源1 2的LED晶片; 在該發光光源12所被導通的第1引線架13 ;被安裝在 第1引線架13附近的第2引線架14 ;及使發光光源12 與第2引線架14導通的接合線16,發光光源12係被配 置在第1引線架13的凹部13b之中,被填充於該四部 1 3b内的波長轉換構件1 5所覆蓋。波長轉換構件1 5係 具有摻合有β型矽鋁氮氧化物1 8而成的密封樹脂1 7, 發光裝置1 〇的上面係被合成樹脂製帽蓋1 9所覆蓋。第 2圖的元件符號1 3 a係第1引線架1 3的上部。 波長轉換構件 15係將預先個別以矽烷偶合劑 (Shin-Etsu Silicone公司製KBE402)進行石夕院偶合處理 201217496 後的β型石夕!呂氮氧化物18混揉在作為密封樹月旨i7的環 氧樹脂(Sanyu-rec公司製NLD_SL_21〇1)而進行製作。發 光光源12係使用發光波長45〇nm的藍色led晶片。β 型石夕銘氮氧化物18係將實施例i的ρ型㈣氮氧化物與 具有 Ca0.66EU0.04Si9.9Al2 1〇〇 7Nl5 3 的組成的 Ca_a 型矽鋁 氮氧化物:Eu螢光體的混合物。Ca_q矽鋁氮氧化物: Eu的發光峰值波長為585nm。 [實施例5] 實施例5係除了將實施例4的「實施例丨的p型矽 鋁氮氧化物」變更為「實施例3的β型矽鋁氮氧化物」 以外’係與實施例4為相同者。 [比較例3 ] 比較例3的發光裝置係除了將實施例4的「實施例 1的β型矽鋁氮氧化物」變更為「比較例丨的ρ型矽鋁 氮氧化物」以外,係與實施例4為相同者。 [比較例4] 比較例4的發光裝置係除了將實施例4的「實施例 1的β型石夕紹氮氧化物」變更為「比較例2的β型石夕在呂 氮氧化物」以外,係與實施例4為相同者。 以同一通電條件使實施例4、5及比較例3、4的發 光裝置1 0發光’藉由亮度計來測定出在同一條件下的中 心照度及CIE色度(CIE1931.)。以色度座標(x、y)為(〇·3卜 0 · 3 2)的白色發光裝置來比較中心照度。實施例4、5、比 較例1、2的發光裝置1 〇的明亮度係若將比較例3的發 光裝置的明亮度設為基準(1 00%)時,分別在實施例4為 201217496 125%,在實施例5為136%,在比較例3為1〇〇% , 較例4為1 17%。 本發明之實施例的β型矽鋁氮氧化物係將發出Example will be 2 9 m. /. In the same manner as in Example 1, the β-type lanthanum aluminum oxynitride was obtained in the same manner as in Example 1 except that the water classification of the fine powder of 20 μm or less was carried out. In the β-type lanthanum aluminum oxynitride of Comparative Example 2, the peak value of the peak a-axis other than yttrium aluminum oxynitride was not found to be 7.6122 A. The c-axis lattice constant was 2.9122 A. The luminescence peak intensity was 199%, the CIE chromaticity system χ=χ_36, and the chromaticity y=〇.618. The other lanthanides are shown in Table 1. If the right side of Equation 1 is calculated from the chromaticity x = 〇.36, it becomes 7.6 1 0 3, and the relationship of Equation 1 is not satisfied. As shown in Table 1, the β-type lanthanum aluminum oxynitrides of Examples 1 to 3 all satisfy the relationship of Formula 1, Formula 2, and Formula 3, and are displayed in comparison with the β-type lanthanum aluminum oxynitrides of Comparative Examples 1 and 2. Higher luminescence peak intensity. [Example 4] Example 4 was a light-emitting device using the ?-type lanthanum aluminum oxynitride of Example 1. The following is a detailed description with reference to FIG. The light-emitting device 10 has an LED chip as the light-emitting source 12; a first lead frame 13 that is electrically connected to the light-emitting source 12; a second lead frame 14 that is mounted near the first lead frame 13; The light-emitting source 12 is placed on the bonding wire 16 that is electrically connected to the second lead frame 14, and the light-emitting source 12 is disposed in the concave portion 13b of the first lead frame 13, and is covered by the wavelength conversion member 15 filled in the four portions 13b. The wavelength conversion member 15 is a sealing resin 17 having a β-type lanthanum aluminum oxynitride 18, and the upper surface of the light-emitting device 1 is covered with a synthetic resin cap 19. The component symbol 1 3 a of Fig. 2 is the upper portion of the first lead frame 13 . In the wavelength conversion member 15 , the β-type shi ! 吕 氮 氧化物 氧化物 18 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Epoxy resin (NLD_SL_21〇1 manufactured by Sanyu-rec Co., Ltd.) was produced. The light source 12 is a blue LED wafer having an emission wavelength of 45 Å. Β-type Shi Ximing oxynitride 18 series The p-type (tetra) oxynitride of Example i and the Ca_a-type lanthanum aluminum oxynitride having the composition of Ca0.66EU0.04Si9.9Al2 1〇〇7Nl5 3 : Eu phosphor mixture. Ca_q矽 aluminum oxynitride: Eu has an emission peak wavelength of 585 nm. [Example 5] Example 5 except that the "p-type lanthanum aluminum oxynitride of Example 丨" of Example 4 was changed to "β-type yttrium aluminum oxynitride of Example 3" For the same person. [Comparative Example 3] The light-emitting device of Comparative Example 3 was changed from "β-type lanthanum aluminum oxynitride of Example 1" to "p-type yttrium aluminum oxynitride of Comparative Example" in the fourth embodiment. Example 4 is the same. [Comparative Example 4] The light-emitting device of Comparative Example 4 was changed from "the β-type Shi Xishao nitrogen oxide of Example 1" to "the β-type Shi Xi Lu in the comparative example 2". The same as in the fourth embodiment. The light-emitting devices 10 of Examples 4 and 5 and Comparative Examples 3 and 4 were caused to emit light under the same energization conditions. The center illuminance under the same conditions and the CIE chromaticity (CIE 1931.) were measured by a luminance meter. The center illuminance is compared with a white light-emitting device in which the chromaticity coordinates (x, y) are (〇·3 Bu 0 · 3 2). In the light-emitting devices 1 of Examples 4 and 5 and Comparative Examples 1 and 2, the brightness of the light-emitting device of Comparative Example 3 is assumed to be the reference (100%) in the light-emitting device of Comparative Example 3, and is respectively 201217496 125% in Example 4. It is 136% in Example 5, 1% in Comparative Example 3, and 1 17% in Comparative Example 4. The β-type lanthanum aluminum oxynitride system of the embodiment of the present invention will emit

至500nm之波長的光的紫外LED晶片或藍色LED 作為激發光,可發出強度高的綠色光。因此,除了 實施例的β型矽紹氮氧化物以外,藉由組合使用發 他顏色光的其他螢光體,可實現發光特性良好的 LED。 【圖式簡單說明】 第1圖係說明本發明之β型矽鋁氤氧化物之製 法的流程圖。 第2圖係以模式顯示使用本發明之第2實施形 β型矽鋁氮氧化物的發光裝置之構造的剖面圖。 【主要元件符號說明】 在比 350 晶片 上述 出其 白色 造方 態之 10 發光裝置 12 發光光源 13 第1引線架 13a 第1引線架的上部 13b 第1引線架的凹部 14 第2引線架 15 波長轉換構件 16 接合線 17 密封樹脂 18 β型矽鋁氮氧化物 19 帽蓋 -17-An ultraviolet LED chip or a blue LED of light having a wavelength of 500 nm is used as excitation light to emit green light of high intensity. Therefore, in addition to the β-type sulfonium oxide of the embodiment, an LED having excellent light-emitting characteristics can be realized by combining other phosphors using a color light. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the process of the β-type lanthanum aluminum cerium oxide of the present invention. Fig. 2 is a cross-sectional view showing the structure of a light-emitting device using a β-type yttrium aluminum oxynitride according to a second embodiment of the present invention in a mode. [Main component symbol description] 10 light-emitting device 12 light-emitting light source 13 in comparison with 350 wafers. Light-emitting source 13 first lead frame 13a upper portion 13b of first lead frame concave portion 14 of first lead frame second lead frame 15 wavelength Conversion member 16 bonding wire 17 sealing resin 18 β-type yttrium aluminum oxynitride 19 cap -17-

Claims (1)

201217496 七、申請專利範圍: 1. 一種β型矽鋁氮氧化物,其係以通式. 一 〇16.2Αΐ2〇 jsj 所示且固溶有Eu的P型矽鋁氮氧化物,发 8·Ζ T 3l争由曰 4女 常數與CIE色度的色度χ的關係係以式^表示. a軸晶格常數(A)s 〇 1〇75χ色度χ+ 7 2. 如申請專利範圍第i項之ρ型石夕铭氬氧化物;二)由 前述β型矽鋁氮氧化物的BET値利用式2所計曾= BET徑、及利用雷射繞射散射法來測定前述p型矽鋁 氮氧化物的平均粒子徑D50的關係係以式3表示: BET 徑(㈣卜 6 + (3·22χΒΕΤ 値(m2/g)) (式 2) 平均粒子徑 D50(pm)/BET 徑(μιη)&lt; 1·9 (式 3)。 3. —種發光裝置,其係具備有:如申請專利範圍第丨或2 項之β型妙結氮氧化物、及發光光源。 -18-201217496 VII. Patent application scope: 1. A β-type lanthanum aluminum oxynitride, which is a P-type lanthanum aluminum oxynitride represented by the formula: 〇16.2Αΐ2〇jsj and solid-dissolved with Eu, 8·Ζ The relationship between T 3l and the color χ of the CIE chromaticity is expressed by the formula ^. The a-axis lattice constant (A) s 〇 1 〇 75 χ chromaticity χ + 7 2. As claimed in the i之 ρ 石 铭 铭 氩 氩 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The relationship of the average particle diameter D50 of nitrogen oxides is expressed by Formula 3: BET diameter ((4) Bu 6 + (3·22χΒΕΤ 値 (m2/g)) (Formula 2) Average particle diameter D50 (pm) / BET diameter (μιη &lt; 1·9 (Formula 3) 3. A light-emitting device comprising: a β-type oxynitride as in the second or second aspect of the patent application, and an illuminating light source.
TW100132517A 2010-09-09 2011-09-09 Method for manufacturing β type sialon, β type sialon and light emitting device TWI458806B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202513A JP2012056804A (en) 2010-09-09 2010-09-09 β-SIALON AND LIGHT EMITTING DEVICE

Publications (2)

Publication Number Publication Date
TW201217496A true TW201217496A (en) 2012-05-01
TWI458806B TWI458806B (en) 2014-11-01

Family

ID=45810753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132517A TWI458806B (en) 2010-09-09 2011-09-09 Method for manufacturing β type sialon, β type sialon and light emitting device

Country Status (3)

Country Link
JP (1) JP2012056804A (en)
TW (1) TWI458806B (en)
WO (1) WO2012033157A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589035B (en) * 2016-07-25 2017-06-21 林孝正 Organism cultivation apparatus and light emitting module modification method
TWI589036B (en) * 2016-07-25 2017-06-21 林孝正 Fluorescent lens used for covering a light emitting device, light emitting module with the fluorescent lens, organism cultivation apparatus with the fluorescent lens and light emitting module modification method
TWI821389B (en) * 2018-09-12 2023-11-11 日商電化股份有限公司 Phosphors and light-emitting devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024849B1 (en) 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor
KR20180101489A (en) * 2016-01-15 2018-09-12 덴카 주식회사 Phosphor and light emitting device
JP6536622B2 (en) * 2016-05-30 2019-07-03 日亜化学工業株式会社 Method for producing beta sialon phosphor
CN107446575B (en) 2016-05-30 2021-08-31 日亚化学工业株式会社 Method for producing beta sialon phosphor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934792B2 (en) * 2005-08-04 2012-05-16 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light emitting device using the phosphor
US8404152B2 (en) * 2006-11-20 2013-03-26 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP4813577B2 (en) * 2009-04-08 2011-11-09 電気化学工業株式会社 Method for producing β-sialon phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589035B (en) * 2016-07-25 2017-06-21 林孝正 Organism cultivation apparatus and light emitting module modification method
TWI589036B (en) * 2016-07-25 2017-06-21 林孝正 Fluorescent lens used for covering a light emitting device, light emitting module with the fluorescent lens, organism cultivation apparatus with the fluorescent lens and light emitting module modification method
TWI821389B (en) * 2018-09-12 2023-11-11 日商電化股份有限公司 Phosphors and light-emitting devices

Also Published As

Publication number Publication date
TWI458806B (en) 2014-11-01
JP2012056804A (en) 2012-03-22
WO2012033157A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
TWI411660B (en) A phosphor and a method for manufacturing the same, and a light-emitting element using the same
TWI450946B (en) Method for producing β-type yttrium aluminum oxynitride and β-type yttrium aluminum oxynitride and illuminating device
TW201217496A (en) β type SiAlON and light emitting device
JP5791034B2 (en) Light emitting device
JP5777032B2 (en) Light emitting device
KR20130106394A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
JP5758903B2 (en) β-type sialon, manufacturing method thereof, and light-emitting device
KR102706154B1 (en) β-type sialon phosphor and light-emitting device
KR101451016B1 (en) Luminescent material
KR101603007B1 (en) Phosphor
JP5783512B2 (en) Light emitting device
JP6028858B2 (en) Oxynitride phosphor powder
JP2018150433A (en) Orange phosphor and light-emitting device
JP6546304B2 (en) Phosphor and light emitting device
TWI833035B (en) β-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE
TW202231834A (en) Phosphor particle, luminescence device, image displaying apparatus and method for manufacturing phosphor particle
JPWO2014002722A1 (en) Phosphor, light emitting device and lighting device
WO2014002723A1 (en) Fluorescent material, light-emitting device, and lighting device
JP2012025956A (en) METHOD FOR PRODUCING β-SIALON