JP2012055071A - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP2012055071A
JP2012055071A JP2010194934A JP2010194934A JP2012055071A JP 2012055071 A JP2012055071 A JP 2012055071A JP 2010194934 A JP2010194934 A JP 2010194934A JP 2010194934 A JP2010194934 A JP 2010194934A JP 2012055071 A JP2012055071 A JP 2012055071A
Authority
JP
Japan
Prior art keywords
mover
gap
electromagnetic
stator
movable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010194934A
Other languages
Japanese (ja)
Other versions
JP5644276B2 (en
Inventor
Yosuke Muraguchi
洋介 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2010194934A priority Critical patent/JP5644276B2/en
Publication of JP2012055071A publication Critical patent/JP2012055071A/en
Application granted granted Critical
Publication of JP5644276B2 publication Critical patent/JP5644276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a linear actuator capable of extending the lifetime of a support mechanism for supporting a movable element and improving positioning accuracy of the movable element, in the structure in which the movable element is movably cantilever-supported.SOLUTION: A linear actuator includes: a movable element 2 that is movably cantilever-supported at a support base along a predetermined reciprocation direction; a stator core 10 that has stator-side opposing parts 10b so as to form a first gap gp1 and a second gap gp2 between the stator-side opposing parts and the portions displaced from the support base of the movable element 2; and permanent magnets 12a, 12b, 12c, and 12d that are oppositely disposed so as to reverse each magnetic pole of a surface on the opposing part of the other permanent magnet, and the movable element 2 is reciprocally moved by applying power to a coil 11. Electromagnetic attraction forces F3 and F4, mutually attracting the movable element 2 in opposite directions, are generated in the first gap gp1 and the second gap gp2, respectively. Different strength is set to the electromagnetic attraction forces F3 and F4, and thereby providing a electromagnetic supporting unit 3 electromagnetically supporting the movable element 2 by a biasing force obtained by the difference between the electromagnetic attraction forces F3 and F4.

Description

本発明は、片持ち支持される可動子を往復移動させるリニアアクチュエータに係り、特に可動子に加わる荷重に善処したリニアアクチュエータに関するものである。   The present invention relates to a linear actuator that reciprocally moves a mover supported in a cantilever manner, and particularly relates to a linear actuator that is well treated for a load applied to the mover.

レシプロモータ等のリニアアクチュエータは、例えば特許文献1に例示されるように、通電がなされることにより可動子を往復移動させる磁気回路を主体としている。磁気回路は、磁性体からなる可動子コア及び固定子コアと、固定子コアのうち可動子コアに対向する固定子側対向部に往復動方向に沿って配列され、各々の可動子コアに面する側の面の磁極を反転させた対をなす永久磁石と、固定子コアに巻回されるコイルとを含む複数の要素部品で構成されており、コイルへの通電により生じる磁束が対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を往復移動させるものである。   A linear actuator such as a reciprocating motor mainly includes a magnetic circuit that reciprocates a movable element when energized, as exemplified in Patent Document 1. The magnetic circuit is arranged along the reciprocating direction in a stator-side facing portion facing the mover core of the stator core and the mover core and the stator core made of a magnetic material, and faces each mover core. Consists of a plurality of element parts including a pair of permanent magnets with reversed magnetic poles on the surface to be wound and a coil wound around the stator core, and the magnetic flux generated by energizing the coils forms a pair. The mover is reciprocated by weakening the magnetic flux generated by a magnet located in a required direction among the permanent magnets and strengthening the magnetic flux generated by the other magnet.

特開2003−339147号公報JP 2003-339147 A

ところで、可動子を移動可能に支持する軸受等の支持機構を可動子の一方に配置できない制約や要求などがあり、可動子を片持ち支持する構成を採用する場合がある。このような可動子を片持ち支持する構成では、重力や可動子に加わる外力等が偏荷重として支持機構に作用するので支持機構の寿命が短命となってしまう。   By the way, there is a restriction or a requirement that a support mechanism such as a bearing for movably supporting the mover cannot be disposed on one of the movers, and a configuration in which the mover is cantilevered may be employed. In such a configuration in which the mover is cantilevered, gravity, an external force applied to the mover, and the like act on the support mechanism as an unbalanced load, so the life of the support mechanism is shortened.

また、外部から受ける荷重や重力によって可動子が撓んでしまい、可動子の位置決め精度が低減してしまう。特に、可動子にワークを取り付ける場合には、ワークの荷重が可動子に加わることによって可動子が撓みやすく、ワーク及び可動子の位置決め精度が著しく損なわれる。   In addition, the mover bends due to external load or gravity, and the positioning accuracy of the mover is reduced. In particular, when a workpiece is attached to the mover, the load of the workpiece is applied to the mover, so that the mover is easily bent, and the positioning accuracy of the workpiece and the mover is significantly impaired.

このような課題は、上述のような磁気回路を構成する要素部品のうち可動子を構成する要素部品が鉄心のみである可動鉄心型のものに限らず、可動子を構成する要素部品が永久磁石を含む可動磁石型の場合でも同様のことがいえる。   Such a problem is not limited to the movable iron core type in which the mover is composed only of the iron core among the component parts constituting the magnetic circuit as described above, and the mover constituting the mover is a permanent magnet. The same can be said for a movable magnet type including

本発明は、このような課題に着目してなされたものであって、その目的は、可動子を移動可能に片持ち支持する構成において、可動子を支持する支持機構の寿命や可動子の位置決め精度を向上させたリニアアクチュエータを提供することである。   The present invention has been made paying attention to such problems, and its purpose is to determine the life of the support mechanism that supports the mover and the positioning of the mover in a configuration in which the mover is movably cantilevered. To provide a linear actuator with improved accuracy.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明のリニアアクチュエータは、所定の往復動方向に沿って移動可能に支持基端で片持ち支持される可動子と、可動子のうち前記支持基端から変位した部位との間に第一のギャップ及び第二のギャップを形成する対をなす固定子側対向部を有する固定子コアと、固定子コアに巻回されるコイルと、可動子のうち固定子側対向部に対向する可動子側対向部又は固定子コアの固定子側対向部のいずれか一方に往復動方向に沿って配列され各々の相手側の対向部に臨む側の面の磁極を反転させた対をなす永久磁石とを備え、コイルへの通電により生じる磁束が対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を往復移動させるように構成されており、コイルへの通電又は永久磁石で生じる磁束によって第一のギャップ及び第二のギャップにそれぞれ発現する、可動子を互いに逆方向に引き寄せる電磁吸引力の強さに差異を設定して、各々の電磁吸引力の差によって得られる付勢力で可動子のうち支持基端から変位した部位を電磁的に支持する電磁支持部を設けたことを特徴とする。   In other words, the linear actuator of the present invention is provided between the mover that is cantilevered at the support base end so as to be movable along a predetermined reciprocating direction, and a portion of the mover that is displaced from the support base end. A stator core having a pair of stator-side facing parts forming a gap and a second gap, a coil wound around the stator core, and a movable part facing the stator-side facing part of the mover Permanent magnets that are paired with either the child-side facing portion or the stator-side facing portion of the stator core along the reciprocating direction, and are paired by reversing the magnetic poles of the surfaces facing the opposite-side facing portions. The magnetic flux generated by energizing the coil is weakened by the magnet located in the required direction among the paired permanent magnets, and the magnetic flux generated by the other magnet is strengthened to reciprocate the mover. To the coil Set the difference in the strength of the electromagnetic attraction force that pulls the mover in the opposite direction to each other, which is expressed in the first gap and the second gap by the magnetic flux generated by the energization or the permanent magnet, respectively. The electromagnetic support part which electromagnetically supports the site | part displaced from the support base end among the needle | mover with the urging | biasing force obtained by is provided.

このように、第一及び第二のギャップにそれぞれ発現する、可動子を互いに逆方向に引き寄せる電磁吸引力の強さに差異を設定して、各々の電磁吸引力の差によって得られる付勢力で可動子のうち支持基端から変位した部位を電磁的に支持する電磁支持部を設けたので、可動子を少なくとも二点で支持することになり、可動子を支持する支持機構にかかる偏荷重を低減して支持機構の寿命を向上させることができる。しかも、可動子を少なくとも二点で支持するので、可動子に作用する荷重により可動子が撓むことを低減又は無くして可動子や可動子に設けたワークの位置決め精度を向上させることも可能となる。   In this way, by setting the difference in the strength of the electromagnetic attracting force that pulls the mover in the opposite direction to each other, expressed in the first and second gaps, the biasing force obtained by the difference in each electromagnetic attracting force Since the electromagnetic support part that electromagnetically supports the part of the mover displaced from the support base end is provided, the mover is supported at at least two points, and the unbalanced load applied to the support mechanism that supports the mover is reduced. This can reduce the life of the support mechanism. Moreover, since the mover is supported at at least two points, it is possible to reduce or eliminate the bending of the mover due to the load acting on the mover, and to improve the positioning accuracy of the mover and the workpiece provided on the mover. Become.

可動子や可動子に設けたワークに作用する重力に起因する上記不具合に適切に対応するためには、前記第一のギャップ及び第二のギャップに作用する電磁吸引力のうち、反重力方向側に向けて可動子を引き寄せる一方の電磁吸引力を、重力方向側に向けて可動子を引き寄せる他方の電磁吸引力よりも強く設定していることが好ましい。   In order to appropriately cope with the above-mentioned problem caused by the gravity acting on the movable element and the workpiece provided on the movable element, out of the electromagnetic attraction force acting on the first gap and the second gap, the anti-gravity direction side It is preferable that one electromagnetic attraction force that pulls the mover toward the side is set to be stronger than the other electromagnetic attraction force that pulls the mover toward the gravity direction.

本発明は、以上説明したように、第一及び第二のギャップにそれぞれ発現する、可動子を互いに逆方向に引き寄せる電磁吸引力の強さに差異を設定して、各々の電磁吸引力の差によって得られる付勢力で可動子のうち支持基端から変位した部位を電磁的に支持する電磁支持部を設けたので、可動子を少なくとも二点で支持することになり、可動子を支持する支持機構にかかる偏荷重を低減して支持機構の寿命を向上させることが可能となる。しかも、可動子を少なくとも二点で支持するので、可動子に作用する荷重により可動子が撓むことを低減又は無くして可動子や可動子に設けたワークの位置決め精度を向上させることも可能となる。したがって、リニアアクチュエータの駆動精度や信頼性を向上させることが可能となる。   As described above, the present invention sets the difference in the strength of the electromagnetic attracting force that draws the mover in the opposite direction to each other, and expresses the difference between the respective electromagnetic attracting forces. Since the electromagnetic support part that electromagnetically supports the part of the mover displaced from the support base end by the urging force obtained by the above is provided, the mover is supported at least at two points, and the support that supports the mover is provided. It is possible to reduce the unbalanced load applied to the mechanism and improve the life of the support mechanism. Moreover, since the mover is supported at at least two points, it is possible to reduce or eliminate the bending of the mover due to the load acting on the mover, and to improve the positioning accuracy of the mover and the workpiece provided on the mover. Become. Therefore, it is possible to improve the driving accuracy and reliability of the linear actuator.

本発明の一実施形態に係るリニアアクチュエータを模式的に示す横断面図。The cross-sectional view which shows typically the linear actuator which concerns on one Embodiment of this invention. 図1に示すリニアアクチュエータのA−A断面図。FIG. 2 is a cross-sectional view of the linear actuator shown in FIG. 同アクチュエータの可動子を模式的に示す図。The figure which shows the needle | mover of the actuator typically. 同アクチュエータの動作に関する説明図。Explanatory drawing regarding operation | movement of the actuator. 第一及び第二のギャップに作用する電磁吸引力に関する説明図。Explanatory drawing regarding the electromagnetic attractive force which acts on the 1st and 2nd gap. 本発明の他の実施形態に係るリニアアクチュエータの構成を示す図。The figure which shows the structure of the linear actuator which concerns on other embodiment of this invention.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態のリニアアクチュエータは、図1及び図2に示すように、固定子1と、この固定子1に対し往復動方向(X方向)に沿って相対移動可能に構成される可動子2とを有する。可動子2は、支持機構14により支持基端2bが片持ち支持されている。本実施形態のリニアアクチュエータは、図3に示すように、可動子2に例えばワイヤボンダのノズル等を始めとするワークWを取り付けて、これら装置の駆動部を構成するために利用される。   As shown in FIGS. 1 and 2, the linear actuator of the present embodiment includes a stator 1 and a mover 2 configured to be movable relative to the stator 1 along the reciprocating direction (X direction). Have The movable base 2 is cantilevered at the support base end 2 b by the support mechanism 14. As shown in FIG. 3, the linear actuator of this embodiment is used to attach a workpiece W such as a wire bonder nozzle to the mover 2 and configure the drive unit of these devices.

固定子1は、図1及び図2に示すように、断面C字状をなし端面同士が互いに対向して対をなす固定子側対向部10b・10bを有する磁性体の固定子コア10と、この固定子コア10に巻回されるコイル11と、固定子側対向部10bに取り付けられる永久磁石12とを有する。固定子コア10は、図示しない複数の固定子コア板を軸心方向に沿って積層して固定することで構成されている。互いに対向する固定子側対向部10b・10b同士の間には、可動子2のうち支持機構14で支持される支持基端2bから変位した部位が配置され、対をなす固定子側対向部10b・10bと可動子2との間に第一のギャップgp1及び第二のギャップgp2が形成されている。可動子2のうち固定子側対向部10bに対向する部位を可動子側対向部20bと以下の説明で称することがある。   As shown in FIGS. 1 and 2, the stator 1 has a magnetic stator core 10 having a stator-side facing portion 10 b, 10 b having a C-shaped cross section and a pair of end faces facing each other, It has a coil 11 wound around the stator core 10 and a permanent magnet 12 attached to the stator side facing portion 10b. The stator core 10 is configured by stacking and fixing a plurality of stator core plates (not shown) along the axial direction. Between the stator-side facing portions 10b, 10b facing each other, a portion of the mover 2 displaced from the support base end 2b supported by the support mechanism 14 is disposed, and a pair of stator-side facing portions 10b is formed. A first gap gp1 and a second gap gp2 are formed between 10b and the mover 2. A portion of the mover 2 that faces the stator side facing portion 10b may be referred to as a mover side facing portion 20b in the following description.

固定子1を構成するコイル11は、図1及び図2に示すように、巻数が等しい対をなすコイル11・11を固定子側対向部10b・10bに取り付けたもので、各々のコイル11・11が第一のギャップgp1及び第二のギャップgp2を挟んで互いに対向する位置に配置され、第一のギャップgp1及び第二のギャップgp2に通電により可動子2を移動させるための磁束を発現させるものである。   As shown in FIGS. 1 and 2, the coils 11 constituting the stator 1 are obtained by attaching a pair of coils 11, 11 having the same number of turns to the stator side facing portions 10 b, 10 b. 11 is arranged at a position facing each other across the first gap gp1 and the second gap gp2, and a magnetic flux for moving the mover 2 by energization is generated in the first gap gp1 and the second gap gp2. Is.

固定子1を構成する永久磁石12は、図1及び図2に示すように、対をなす永久磁石12a・12b(12c・12d)を往復動方向(X方向)に沿って固定子側対向部10b・10bにそれぞれ配列したもので、各々の可動子2(可動子側対向部20b)に臨む側の面の磁極を反転させている。具体的には、可動子2の可動子側対向部20bとの間に第一のギャップgp1を形成する固定子側対向部10bには、対をなす永久磁石12a・12bが取り付けられており、可動子2の可動子側対向部20bとの間に第二のギャップgp2を形成する固定子側対向部10bには、対をなす永久磁石12c・12dが取り付けられている。   As shown in FIGS. 1 and 2, the permanent magnet 12 constituting the stator 1 is a stator-side facing portion along a reciprocating direction (X direction) of a pair of permanent magnets 12 a and 12 b (12 c and 12 d). 10b and 10b are arranged, and the magnetic poles of the surfaces facing the respective movable elements 2 (movable element side facing portions 20b) are reversed. Specifically, a pair of permanent magnets 12a and 12b is attached to the stator side facing portion 10b that forms the first gap gp1 between the mover 2 and the mover side facing portion 20b. Paired permanent magnets 12c and 12d are attached to the stator-side facing portion 10b that forms the second gap gp2 between the mover 2 and the armature-side facing portion 20b.

可動子2は、図1〜図3に示すように、略長方形状をなし自由端となる先端2a側が固定子コア10の固定子側対向部10b・10b同士に挟まれる位置に配置され、基端2b側が図3に示すボルト等の固着具boで軸受たる支持機構14に取り付けられて片持ち支持状態で往復動方向(X方向)に沿って直線移動可能に構成されている。具体的には、可動子2は、図3に示すように、対をなす固定子側対向部10b・10bとそれぞれ対向する部位を可動子側対向部20b・20bとした磁性体の可動子コア20と、この可動子コア20と支持機構14とを関連づける(連結)ための樹脂等の非磁性体からなる連結部材21とを有する。この可動子コア20は、図1に示すように、上記固定子1を構成する固定子コア10、コイル11及び永久磁石12とともに磁束mfを発現させて可動子2に電磁力を作用させて可動子2を往復移動させる磁気回路mcを構成する複数の要素部品の一部である。本実施形態では、磁気回路mcを構成する複数の要素部品(固定子コア10,コイル11,永久磁石12,可動子コア20)のうち可動子2を構成する要素部品を鉄心とも呼ばれる可動子コア20のみとした可動鉄心型のアクチュエータを構成している。   As shown in FIGS. 1 to 3, the mover 2 has a substantially rectangular shape and is disposed at a position where the distal end 2 a side which is a free end is sandwiched between the stator-side facing portions 10 b and 10 b of the stator core 10. The end 2b side is attached to a support mechanism 14 which is a bearing with a fixing tool bo such as a bolt shown in FIG. 3, and is configured to be linearly movable along the reciprocating direction (X direction) in a cantilevered support state. Specifically, as shown in FIG. 3, the mover 2 is a magnetic mover core in which the portions facing the stator-side facing portions 10b and 10b that make a pair are respectively movable-side facing portions 20b and 20b. 20 and a connecting member 21 made of a non-magnetic material such as a resin for associating (connecting) the mover core 20 with the support mechanism 14. As shown in FIG. 1, the mover core 20 is movable by causing an electromagnetic force to act on the mover 2 by expressing the magnetic flux mf together with the stator core 10, the coil 11, and the permanent magnet 12 constituting the stator 1. It is a part of a plurality of component parts constituting the magnetic circuit mc for reciprocating the child 2. In the present embodiment, among the plurality of element parts (stator core 10, coil 11, permanent magnet 12, mover core 20) constituting the magnetic circuit mc, the element parts constituting the mover 2 are referred to as iron cores. A movable core type actuator having only 20 is constructed.

図3に示すように、可動子2を構成する連結部材21には、可動子2のうち先端2a側(反支持機構側)の寸法w1を基端2b側(支持機構14側)の寸法w2よりも小さくするテーパ部21aを形成することで、可動子2の重心を支持機構14側に可能な限り近づけるように構成されている。このように、支持機構14が可動子2を片持ち支持する構成では、可動子2の重心が支持機構14に近づくほど加減速時の振動に対する安定度が増すので、本実施形態のように可動子2の重心を支持機構14側に近づけるように、可動子2の支持機構14側と反支持機構側とを非対称に形成すると、加速時又は減速時に可動子2に生じる振動を低減して可動子2及びワークWを効率よく駆動させることが可能となる。   As shown in FIG. 3, the connecting member 21 constituting the mover 2 has a dimension w1 on the distal end 2a side (anti-support mechanism side) of the mover 2 and a dimension w2 on the base end 2b side (support mechanism 14 side). By forming the taper portion 21a to be smaller than that, the center of gravity of the mover 2 is configured to be as close as possible to the support mechanism 14 side. As described above, in the configuration in which the support mechanism 14 cantilever-supports the mover 2, the stability with respect to vibration during acceleration / deceleration increases as the center of gravity of the mover 2 approaches the support mechanism 14. If the support mechanism 14 side and the anti-support mechanism side of the mover 2 are formed asymmetrically so that the center of gravity of the child 2 is brought closer to the support mechanism 14 side, the vibration generated in the mover 2 during acceleration or deceleration can be reduced and moved. The child 2 and the work W can be driven efficiently.

上記構成のアクチュエータの動作は特許文献1のものと同様であるので詳細な説明を省略するが、コイル11に通電されていない場合は、図4(a)に示すように、第一及び第二のギャップgp1・gp2において各々の対をなす永久磁石12a・12b(12c・12d)により互いに向きの異なる磁束mf1・mf2を発現させる。図4(b)に示すように、コイル11に対し或る方向(正方向)に通電を行うと、コイル11への通電により図1に示す磁束mfが生じ、各々の対をなす永久磁石12で生じる二つの磁束mf1・mf2のうちコイル11への通電で生じる磁束mfと同方向である磁束mf1が強まり、他方の磁束mf2が弱まり、電磁力F1が可動子2(可動子コア20)に作用して可動子2が磁束の強まる方向(X1方向)へ移動する。一方、図4(c)に示すように、上記の正方向とは反対である逆方向にコイル11への通電を行うと、その逆方向(X2方向)に電磁力F2が作用して可動子2がX2方向に移動する。すなわち、磁気回路mcは、コイル11への通電により生じる磁束mfが、対をなす永久磁石12a・12b[12c・12d]のうち所要の方向に位置する磁石12a(12b)[12c(12d)]で生じる磁束mf2(mf1)を弱め、他方の磁石12b(12a)[12d(12c)]で生じる磁束mf1(mf2)を強めることにより可動子2に電磁力F1(F2)を作用させて可動子2を往復移動させるものである。   Since the operation of the actuator having the above-described configuration is the same as that of Patent Document 1, detailed description thereof is omitted. However, when the coil 11 is not energized, as shown in FIG. Magnetic fluxes mf1 and mf2 having different directions are expressed by the permanent magnets 12a and 12b (12c and 12d) that make a pair in the gaps gp1 and gp2. As shown in FIG. 4B, when the coil 11 is energized in a certain direction (positive direction), the energization of the coil 11 generates the magnetic flux mf shown in FIG. 1, and the permanent magnets 12 forming each pair. The magnetic flux mf1 in the same direction as the magnetic flux mf generated by energizing the coil 11 is increased, the other magnetic flux mf2 is weakened, and the electromagnetic force F1 is applied to the mover 2 (movable core 20). By acting, the mover 2 moves in the direction of increasing magnetic flux (X1 direction). On the other hand, as shown in FIG. 4 (c), when the coil 11 is energized in the reverse direction opposite to the normal direction, the electromagnetic force F2 acts in the reverse direction (X2 direction), and the mover 2 moves in the X2 direction. That is, in the magnetic circuit mc, the magnet 12a (12b) [12c (12d)] in which the magnetic flux mf generated by energizing the coil 11 is positioned in a required direction among the pair of permanent magnets 12a and 12b [12c and 12d]. The magnetic force mf2 (mf1) generated by the second magnet 12 is weakened, and the magnetic flux mf1 (mf2) generated by the other magnet 12b (12a) [12d (12c)] is strengthened, so that the electromagnetic force F1 (F2) is applied to the mover 2 2 is reciprocated.

また、磁気回路mcは、図5(a)に示すように、コイル11への通電を行っていない状態では、永久磁石12で生じる磁束によって第一のギャップgp1及び第二のギャップgp2に往復双方向(X方向)に直交する方向であって互いに逆方向に向かう電磁吸引力F3・F4を発現させる。すなわち、可動子コア20の反重力方向側に位置する固定子側対向部10bに配列された一対の永久磁石12a・12bによって第一のギャップgp1に磁束mfa・mfbが発現し、この磁束mfa・mfbによって反重力方向側に向けて可動子2を引き寄せる電磁吸引力F3が発生するする。一方で、可動子コア20の重力方向側に位置する固定子側対向部10bに配列された一対の永久磁石12c・12dによって第二のギャップgp2に磁束mfc・mfdが発現し、この磁束mfc・mfdによって重力方向側に向けて可動子2を引き寄せる電磁吸引力F4が発生する。第一のギャップgp1及び第二のギャップgp2に作用する電磁吸引力F3・F4は、それぞれ往復動方向(X方向)に直交する方向である鉛直方向に沿って働き、各々の電磁吸引力F3・F4は互いに逆方向に可動子2を引き寄せる。図5(a)に示すように、4つの永久磁石12a・12b・12c・12dの強さが全て等しい場合には、これらの永久磁石12で生じる二つの電磁吸引力F3・F4の強さが等しく差異がないので、これら二つの電磁吸引力F3・F4は互いに釣り合い状態となる。   Further, as shown in FIG. 5A, the magnetic circuit mc reciprocates back and forth between the first gap gp1 and the second gap gp2 by the magnetic flux generated by the permanent magnet 12 when the coil 11 is not energized. Electromagnetic attractive forces F3 and F4 that are perpendicular to the direction (X direction) and in opposite directions are developed. That is, the magnetic flux mfa · mfb is generated in the first gap gp1 by the pair of permanent magnets 12a and 12b arranged in the stator-side facing portion 10b positioned on the anti-gravity direction side of the mover core 20, and the magnetic flux mfa · An electromagnetic attractive force F3 that draws the mover 2 toward the anti-gravity direction side is generated by mfb. On the other hand, the magnetic flux mfc · mfd is generated in the second gap gp2 by the pair of permanent magnets 12c and 12d arranged in the stator side facing portion 10b located on the gravity direction side of the mover core 20, and the magnetic flux mfc · An electromagnetic attractive force F4 that draws the mover 2 toward the gravitational direction side is generated by mfd. The electromagnetic attractive forces F3 and F4 acting on the first gap gp1 and the second gap gp2 work along the vertical direction that is orthogonal to the reciprocating direction (X direction). F4 pulls the mover 2 in opposite directions. As shown in FIG. 5A, when the strengths of the four permanent magnets 12a, 12b, 12c, and 12d are all equal, the strengths of the two electromagnetic attractive forces F3 and F4 generated by these permanent magnets 12 are Since there is no difference, these two electromagnetic attractive forces F3 and F4 are in balance with each other.

ところで、図1に示すように、可動子2を支持機構14で片持ち支持する構成では、重力や可動子2に加わる外力等が偏荷重gとして支持機構14にかかるので支持機構14の寿命が短命となる不具合がある。また、外部から受ける加重や重力によって可動子2が撓んでしまい、可動子2の自由端(先端2a)側が垂れて可動子2の位置決め精度が低減してしまう。特に、可動子2の自由端(先端2a)側にワークWを取り付ける場合には、ワークWの荷重によって可動子2が撓みやすくなり、ワークW及び可動子2の位置決め精度が著しく損なわれる。   Incidentally, as shown in FIG. 1, in the configuration in which the mover 2 is cantilevered by the support mechanism 14, gravity, an external force applied to the mover 2, etc., is applied to the support mechanism 14 as an unbalanced load g. There is a short-lived defect. In addition, the mover 2 is bent by a load or gravity received from the outside, and the free end (tip 2a) side of the mover 2 is dropped, and the positioning accuracy of the mover 2 is reduced. In particular, when the work W is attached to the free end (tip 2a) side of the mover 2, the mover 2 is easily bent by the load of the work W, and the positioning accuracy of the work W and the mover 2 is significantly impaired.

そこで、本実施形態では、図1及び図5(b)に示すように、第一のギャップgp1及び第二のギャップgp2にそれぞれ発現する電磁吸引力F3・F4の強さに差異を設定して、各々の電磁吸引力F3・F4の差によって得られる付勢力(F3−F4)で可動子2のうち支持基端2bから変位した部位を電磁的に支持する電磁支持部3を設けている。すなわち、電磁支持部3は、第一のギャップgp1及び第二のギャップgp2に作用する電磁吸引力F3・F4のうち、反重力方向側に向けて可動子2を付勢する一方の電磁吸引力F3を、重力方向側に向けて可動子2を付勢する他方の電磁吸引力F4よりも強く設定することで、これら電磁吸引力F3・F4の差によって反重力方向側に向けて可動子2を付勢する付勢力(F3−F4)で可動子2を電磁的に支持するものである。具体的には、第一のギャップgp1に電磁吸引力F3を発現させる対をなす永久磁石12a・12bの磁石の強さを、第二のギャップgp2に電磁吸引力F4を発現させる対をなす永久磁石12c・12dよりも強くすることで、第一及び第二のギャップgp1・gp2に作用する電磁吸引力F3・F4の強さに差異を設けている。付勢力(F3−F4)の強さは、図1に示すように、可動子2やワークWに作用する重力、可動子2に加わる外力等の荷重gと釣り合う大きさとなるように設定されている。   Therefore, in this embodiment, as shown in FIG. 1 and FIG. 5B, a difference is set in the strengths of the electromagnetic attractive forces F3 and F4 expressed in the first gap gp1 and the second gap gp2, respectively. The electromagnetic support portion 3 is provided that electromagnetically supports a portion of the mover 2 displaced from the support base end 2b by an urging force (F3-F4) obtained by the difference between the electromagnetic attractive forces F3 and F4. That is, the electromagnetic support portion 3 is one of the electromagnetic attractive forces that urge the mover 2 toward the antigravity direction of the electromagnetic attractive forces F3 and F4 acting on the first gap gp1 and the second gap gp2. By setting F3 stronger than the other electromagnetic attraction force F4 that urges the mover 2 toward the gravity direction, the mover 2 moves toward the antigravity direction due to the difference between the electromagnetic attraction forces F3 and F4. The mover 2 is electromagnetically supported by the urging force (F3-F4) that urges the. Specifically, the strength of the permanent magnets 12a and 12b forming a pair that develops the electromagnetic attractive force F3 in the first gap gp1 is set to be permanent, and the permanent strength that forms a pair that develops the electromagnetic attractive force F4 in the second gap gp2. By making it stronger than the magnets 12c and 12d, a difference is provided in the strength of the electromagnetic attractive forces F3 and F4 acting on the first and second gaps gp1 and gp2. The strength of the urging force (F3-F4) is set so as to balance with the load g such as gravity acting on the movable element 2 or the workpiece W, external force applied to the movable element 2, as shown in FIG. Yes.

以上のように本実施形態のリニアアクチュエータは、所定の往復動方向に沿って移動可能に支持基端2bで片持ち支持される可動子2と、可動子2のうち支持基端2bから変位した部位との間に第一のギャップgp1及び第二のギャップgp2を形成する対をなす固定子側対向部10b・10bを有する固定子コア10と、固定子コア10に巻回されるコイル11と、固定子コア10の固定子側対向部10bに往復動方向に沿って配列され各々の相手側の対向部(可動子側対向部20b)に臨む側の面の磁極を反転させた対をなす永久磁石12a・12b(12c・12d)とを備え、コイル11への通電により生じる磁束mfが対をなす永久磁石12a・12b[12c・12d]のうち所要の方向に位置する磁石12a(12b)[12c(12d)]で生じる磁束mf2(mf1)を弱め、他方の磁石12b(12a)[12d(12c)]で生じる磁束mf1(mf2)を強めることにより可動子2を往復移動させるように構成されており、永久磁石12で生じる磁束mfa・mfb・mfc・mfdによって第一のギャップgp1及び第二のギャップgp2にそれぞれ発現する、可動子2を互いに逆方向に引き寄せる電磁吸引力F3・F4の強さに差異を設定して、各々の電磁吸引力F3・F4の差によって得られる付勢力(F3−F4)で可動子2のうち支持基端2bから変位した部位を電磁的に支持する電磁支持部3を設けている。   As described above, the linear actuator of the present embodiment is displaced from the support base end 2b of the mover 2 that is cantilevered by the support base end 2b so as to be movable along a predetermined reciprocating direction. A stator core 10 having a pair of stator-side facing portions 10b and 10b forming a first gap gp1 and a second gap gp2 between the portion and a coil 11 wound around the stator core 10; The stator core 10 has a pair of inverted magnetic poles on the side facing the opposite side (movable side facing part 20b) arranged in the stator side facing part 10b along the reciprocating direction. Permanent magnets 12a and 12b (12c and 12d), and a magnet 12a (12b) positioned in a required direction among permanent magnets 12a and 12b [12c and 12d] paired with a magnetic flux mf generated by energizing the coil 11. [12 (12d)] is weakened in magnetic flux mf2 (mf1), and magnetic flux mf1 (mf2) generated in the other magnet 12b (12a) [12d (12c)] is strengthened to move the mover 2 back and forth. The strength of the electromagnetic attractive forces F3 and F4 that attract the mover 2 in the opposite directions, which are expressed in the first gap gp1 and the second gap gp2 by the magnetic fluxes mfa, mfb, mfc, and mfd generated by the permanent magnet 12, respectively. The electromagnetic support part which electromagnetically supports the part displaced from the support base end 2b of the mover 2 by the biasing force (F3-F4) obtained by the difference between the electromagnetic attraction forces F3 and F4. 3 is provided.

このように、第一のギャップgp1及び第二のギャップgp2にそれぞれ発現する、可動子2を互いに逆方向に引き寄せる電磁吸引力F3・F4の強さに差異を設定して、各々の電磁吸引力F3・F4の差によって得られる付勢力(F3−F4)で可動子2のうち支持基端2bから変位した部位を電磁的に支持する電磁支持部3を設けているので、可動子2を少なくとも二点で支持することになり、可動子2を支持する支持機構14にかかる偏荷重gを低減又は無くして支持機構14の寿命を向上させることができ、また、可動子2を少なくとも二点で支持するので、可動子2に作用する荷重gにより可動子2が撓むことを低減又は無くして可動子2や可動子2に設けたワークWの位置決め精度を向上させることが可能となる。   In this way, a difference is set in the strength of the electromagnetic attraction forces F3 and F4 that draw the mover 2 in the opposite directions, which are expressed in the first gap gp1 and the second gap gp2, respectively. Since the electromagnetic support portion 3 that electromagnetically supports a portion of the mover 2 displaced from the support base end 2b by the biasing force (F3-F4) obtained by the difference between F3 and F4 is provided. The support mechanism 14 is supported at two points, and the life of the support mechanism 14 can be improved by reducing or eliminating the offset load g applied to the support mechanism 14 that supports the mover 2, and the mover 2 is at least at two points. Since the support is supported, it is possible to reduce or eliminate the bending of the mover 2 due to the load g acting on the mover 2 and improve the positioning accuracy of the mover 2 and the workpiece W provided on the mover 2.

特に、本実施形態では、第一のギャップgp1及び第二のギャップgp2に作用する電磁吸引力F3・F4のうち、反重力方向側に向けて可動子2を引き寄せる一方の電磁吸引力F3を、重力方向側に向けて可動子2を引き寄せる他方の電磁吸引力F4よりも強く設定しているので、可動子2やワークWに作用する重力に起因する上記不具合に適切に対応することが可能となる。   In particular, in the present embodiment, of the electromagnetic attractive force F3 and F4 acting on the first gap gp1 and the second gap gp2, one electromagnetic attractive force F3 that pulls the mover 2 toward the antigravity direction side is obtained. Since it is set to be stronger than the other electromagnetic attraction force F4 that pulls the mover 2 toward the direction of gravity, it is possible to appropriately cope with the above-described problems caused by gravity acting on the mover 2 and the workpiece W. Become.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific structure of each part is not limited only to embodiment mentioned above.

例えば、本実施形態では、固定子コア10は、断面C字状をなし端面同士が互いに対向するC型コアであるが、可動子2との間に第一及び第二のギャップを形成する対をなす対向部があれば、このC型コアに限定されるものではない。   For example, in the present embodiment, the stator core 10 is a C-shaped core having a C-shaped cross section and having end faces facing each other, but a pair that forms first and second gaps with the mover 2. As long as there is a facing portion that forms the following, it is not limited to this C-type core.

さらに、第一のギャップgp1及び第二のギャップgp2に発生する電磁吸引力F3・F4の強さに差異を設定した構成としては、本実施形態の構成以外に次の構成が挙げられる。すなわち、第一のギャップgp1及び第二のギャップgp2を介して可動子2に作用する電磁吸引力F3・F4は、コイル11への通電により生じる磁束によっても発生するので、第一のギャップgp1に電磁吸引力F3を発現させるコイル11(可動子コア20の上方にあるコイル11)の巻数を、第二のギャップgp2に電磁吸引力F4を発現させるコイル11(可動子コア20の下方にあるコイル11)の巻数よりも多くすることで、第一のギャップgp1に作用する電磁吸引力F3を第二のギャップgp2に作用する電磁吸引力F4よりも強く設定することが挙げられる。   Furthermore, as a configuration in which a difference is set in the strengths of the electromagnetic attractive forces F3 and F4 generated in the first gap gp1 and the second gap gp2, the following configuration is exemplified in addition to the configuration of the present embodiment. That is, the electromagnetic attractive force F3 and F4 acting on the mover 2 via the first gap gp1 and the second gap gp2 is also generated by the magnetic flux generated by energization of the coil 11, so that the first gap gp1 The number of turns of the coil 11 that develops the electromagnetic attractive force F3 (the coil 11 above the mover core 20) is the same as that of the coil 11 that expresses the electromagnetic attractive force F4 in the second gap gp2 (the coil below the mover core 20). It can be mentioned that the electromagnetic attractive force F3 acting on the first gap gp1 is set stronger than the electromagnetic attractive force F4 acting on the second gap gp2 by increasing the number of turns in 11).

また、第一のギャップgpに電磁吸引力F3を発現させるコイル11(可動子コア20の上方にあるコイル11)に流す電流に対し、例えば直流分(オフセット電流)を重畳し、第一のギャップgp1に電磁吸引力F3を発現させるコイル11(可動子コア20の上方にあるコイル11)の通電量を、第二のギャップgp2に電磁吸引力F4を発現させるコイル11(可動子コア20の下方にあるコイル11)の通電量よりも多くすることで、第一のギャップgp1に作用する電磁吸引力F3を第二のギャップgp2に作用する電磁吸引力F4よりも強く設定することが挙げられる。その他には、第一のギャップgp1と第二のギャップgp2とのギャップ寸法(間隔)をアンバランスにすることによっても、第一のギャップgp1及び第二のギャップgp2に発生する電磁吸引力F3・F4の強さに差異を設定することが可能である。   In addition, for example, a direct current component (offset current) is superimposed on the current flowing in the coil 11 (the coil 11 above the mover core 20) that causes the electromagnetic attractive force F3 to appear in the first gap gp, so that the first gap The energization amount of the coil 11 (the coil 11 above the mover core 20) that causes the electromagnetic attraction force F3 to develop in gp1, and the coil 11 (the lower part of the mover core 20 that causes the electromagnetic attraction force F4 to appear in the second gap gp2). The electromagnetic attraction force F3 acting on the first gap gp1 is set to be stronger than the electromagnetic attraction force F4 acting on the second gap gp2. In addition, the electromagnetic attractive force F3 · generated in the first gap gp1 and the second gap gp2 can also be obtained by making the gap dimension (interval) between the first gap gp1 and the second gap gp2 unbalanced. It is possible to set a difference in the strength of F4.

その他、本実施形態では、対をなす永久磁石12を固定子コア10の固定子側対向部10b・10bに取り付けて、磁気回路mcを構成する要素部品のうち可動子2を構成する要素部材が鉄心とも呼ばれる可動子コア20のみである可動鉄心型のアクチュエータであるが、図6に示すように、可動子102の可動子側対向部120bに対をなす永久磁石112a・112b(112c・112d)を取り付けて、可動子102を構成する要素部材に永久磁石112が含まれる可動磁石型のアクチュエータに適用するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。なお、図6において、符号101は固定子、符号110は固定子コア、符号120は可動子コアである。   In addition, in this embodiment, the element member which comprises the mover 2 among the component parts which comprise the magnetic circuit mc by attaching the permanent magnet 12 which makes a pair to the stator side opposing part 10b * 10b of the stator core 10 is provided. This is a movable core type actuator which is only a mover core 20 also called an iron core, but as shown in FIG. 6, permanent magnets 112a and 112b (112c and 112d) paired with the mover side facing portion 120b of the mover 102. Can be applied to a movable magnet type actuator in which a permanent magnet 112 is included in an element member constituting the mover 102, and various modifications can be made without departing from the spirit of the present invention. In FIG. 6, reference numeral 101 denotes a stator, reference numeral 110 denotes a stator core, and reference numeral 120 denotes a mover core.

10…固定子コア
10b…固定子側対向部
11…コイル
12,12a,12b,12c,12d…永久磁石
2…可動子
2b…支持基端
20b…可動子側対向部
3…電磁支持部
gp1…第一のギャップ
gp2…第二のギャップ
F3,F4…電磁吸引力
(F3−F4)…付勢力
DESCRIPTION OF SYMBOLS 10 ... Stator core 10b ... Stator side facing part 11 ... Coils 12, 12a, 12b, 12c, 12d ... Permanent magnet 2 ... Movable element 2b ... Support base end 20b ... Movable element side facing part 3 ... Electromagnetic support part gp1 ... 1st gap gp2 ... 2nd gap F3, F4 ... Electromagnetic attractive force (F3-F4) ... Energizing force

Claims (2)

所定の往復動方向に沿って移動可能に支持基端で片持ち支持される可動子と、可動子のうち前記支持基端から変位した部位との間に第一のギャップ及び第二のギャップを形成する対をなす固定子側対向部を有する固定子コアと、固定子コアに巻回されるコイルと、可動子のうち固定子側対向部に対向する可動子側対向部又は固定子コアの固定子側対向部のいずれか一方に往復動方向に沿って配列され各々の相手側の対向部に臨む側の面の磁極を反転させた対をなす永久磁石とを備え、コイルへの通電により生じる磁束が対をなす永久磁石のうち所要の方向に位置する磁石で生じる磁束を弱め、他方の磁石で生じる磁束を強めることにより可動子を往復移動させるように構成されており、
コイルへの通電又は永久磁石で生じる磁束によって第一のギャップ及び第二のギャップにそれぞれ発現する、可動子を互いに逆方向に引き寄せる電磁吸引力の強さに差異を設定して、各々の電磁吸引力の差によって得られる付勢力で可動子のうち支持基端から変位した部位を電磁的に支持する電磁支持部を設けたことを特徴とするリニアアクチュエータ。
A first gap and a second gap are provided between a mover that is cantilevered at the support base end so as to be movable along a predetermined reciprocating direction, and a portion of the mover that is displaced from the support base end. A stator core having a pair of stator-side facing portions to be formed, a coil wound around the stator core, and a mover-side facing portion or stator core facing the stator-side facing portion of the mover A pair of permanent magnets arranged in the reciprocating direction on one side of the stator side facing portion and having a pair of reversed magnetic poles on the side facing the facing portion on the other side, and by energizing the coil It is configured to reciprocate the mover by weakening the magnetic flux generated by the magnet located in the required direction among the permanent magnets paired with the generated magnetic flux, and strengthening the magnetic flux generated by the other magnet,
Each electromagnetic attraction is set with a difference in the strength of the electromagnetic attraction force that pulls the mover in the opposite direction, which is expressed in the first gap and the second gap, respectively, by energization of the coil or magnetic flux generated by the permanent magnet. A linear actuator comprising an electromagnetic support portion that electromagnetically supports a portion of a mover displaced from a support base end by an urging force obtained by a difference in force.
前記第一のギャップ及び第二のギャップに作用する電磁吸引力のうち、反重力方向側に向けて可動子を引き寄せる一方の電磁吸引力を、重力方向側に向けて可動子を引き寄せる他方の電磁吸引力よりも強く設定している請求項1に記載のリニアアクチュエータ。
Of the electromagnetic attractive forces acting on the first gap and the second gap, one electromagnetic attractive force that pulls the mover toward the anti-gravity direction side and the other electromagnetic force that pulls the mover toward the gravity direction side. The linear actuator according to claim 1, wherein the linear actuator is set stronger than the suction force.
JP2010194934A 2010-08-31 2010-08-31 Linear actuator Expired - Fee Related JP5644276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194934A JP5644276B2 (en) 2010-08-31 2010-08-31 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194934A JP5644276B2 (en) 2010-08-31 2010-08-31 Linear actuator

Publications (2)

Publication Number Publication Date
JP2012055071A true JP2012055071A (en) 2012-03-15
JP5644276B2 JP5644276B2 (en) 2014-12-24

Family

ID=45907807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194934A Expired - Fee Related JP5644276B2 (en) 2010-08-31 2010-08-31 Linear actuator

Country Status (1)

Country Link
JP (1) JP5644276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018125070A1 (en) * 2016-12-28 2018-07-05 Halliburton Energy Services, Inc. Magnetic coupler with force balancing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034231A (en) * 2000-07-19 2002-01-31 Yaskawa Electric Corp Linear slider
JP2005328685A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP2009296874A (en) * 2008-06-04 2009-12-17 Korea Inst Of Science & Technology Linear stepping motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034231A (en) * 2000-07-19 2002-01-31 Yaskawa Electric Corp Linear slider
JP2005328685A (en) * 2004-05-17 2005-11-24 Shinko Electric Co Ltd Linear actuator
JP2009296874A (en) * 2008-06-04 2009-12-17 Korea Inst Of Science & Technology Linear stepping motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018125070A1 (en) * 2016-12-28 2018-07-05 Halliburton Energy Services, Inc. Magnetic coupler with force balancing
GB2569517A (en) * 2016-12-28 2019-06-19 Halliburton Energy Services Inc Magnetic coupler with force balancing
US11374480B2 (en) 2016-12-28 2022-06-28 Halliburton Energy Services, Inc. Magnetic coupler with force balancing
GB2569517B (en) * 2016-12-28 2023-03-15 Halliburton Energy Services Inc Magnetic coupler with force balancing

Also Published As

Publication number Publication date
JP5644276B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6692242B2 (en) Vibration motor
JP2007037273A (en) Vibratory linear actuator
WO2017088359A1 (en) Linear vibration motor
JP5648873B2 (en) Linear motor
JP2007089382A (en) Cylinder type linear actuator
JP2009240046A (en) Electromagnetic actuator
JP5644276B2 (en) Linear actuator
JP3744437B2 (en) Drive device
EP3324526A1 (en) Magnetic field generating member and motor including same
JP2001016837A (en) Oscillation type linear actuator
WO2017025998A1 (en) Linear motor and device provided with linear motor
JP5696403B2 (en) Linear actuator
JP2002112519A (en) Electromagnetially reciprocating driver
JP2017085698A (en) Direct-acting electric motor
JP5696402B2 (en) Actuator
JP5527066B2 (en) Moving magnet type linear actuator
JP5851210B2 (en) Inertial drive actuator
JP2010003754A (en) Polarized electromagnet
KR100518780B1 (en) Mover for linear oscillatory actuator
JP5003992B2 (en) Cylindrical linear motor
CN110621417A (en) Reciprocating motion device
JP2013225985A (en) Linear slider
JP4556930B2 (en) Linear actuator
JP6786108B2 (en) AC solenoid
JP2016019315A (en) Linear motor, and drive system employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees