JP2012054565A - 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置 - Google Patents

固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置 Download PDF

Info

Publication number
JP2012054565A
JP2012054565A JP2011204159A JP2011204159A JP2012054565A JP 2012054565 A JP2012054565 A JP 2012054565A JP 2011204159 A JP2011204159 A JP 2011204159A JP 2011204159 A JP2011204159 A JP 2011204159A JP 2012054565 A JP2012054565 A JP 2012054565A
Authority
JP
Japan
Prior art keywords
layer
microlens
center
light receiving
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011204159A
Other languages
English (en)
Other versions
JP5408215B2 (ja
Inventor
Hiroyuki Matsui
博之 松井
Masaaki Kurihara
栗原  正彰
Makoto Abe
真 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011204159A priority Critical patent/JP5408215B2/ja
Publication of JP2012054565A publication Critical patent/JP2012054565A/ja
Application granted granted Critical
Publication of JP5408215B2 publication Critical patent/JP5408215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】導波路構造を有しシェーディングが抑制された固体撮像素子とその製造方法を提供する。
【解決手段】各マイクロレンズ12の中心位置、あるいは、各マイクロレンズの中心位置と各カラーフィルタ10の中心位置が、対応する受光素子3の中心よりも有効撮像領域の中央部方向にシフトしたものとし、このシフト量を、境界両側の材質の屈折率の違いに対応して屈折し導波路15の入口中心に至る光路をとるものと想定して求められる光線の光路上の位置と、受光素子の中心に対応する位置との差から得られる想定シフト量に収差補正係数aを乗じて設定し、この収差補正係数aを、各マイクロレンズの中心位置のみがシフトしているときは0.46≦a≦0.81の範囲とし、各マイクロレンズの中心位置と各カラーフィルタの中心位置とがシフトしているときは0.59≦a≦1.34の範囲とする。
【選択図】図9

Description

本発明は、固体撮像素子と撮像装置に係り、特に複数の受光素子と微小な集光レンズ(マイクロレンズ)を配設した固体撮像素子とその製造方法、および、この固体撮像素子を使用した撮像装置に関する。
近年、静止画像、動画像を撮像するデジタルカメラ、ビデオカメラが様々な分野で普及してきている。これらのカメラには、被写体光を光電信号に変換して画像を記録するCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子が組み込まれている。固体撮像素子の構造は、例えば、被写体光を受けて光電信号に変換する受光素子と、この受光素子上に形成されたカラーフィルタ層と、受光素子への集光率を向上させるためのマイクロレンズとを備えたものである。
このような固体撮像素子においては、有効撮像領域の中央部に比べて周辺部での信号出力が減衰(感度低下)するシェーディングという現象が生じる。このシェーディングは、有効撮像領域の周辺部へ入射光が斜めに入射して光利用効率が低下することに起因している。従来、シェーディングを防止するために、カメラレンズからの主光線入射角度を考慮して、有効撮像領域の中心ではマイクロレンズを受光素子の位置に配列し、有効撮像領域の周辺部では、マイクロレンズを受光素子より有効撮像領域の中央部側にシフトさせて配列することが行われている。このシフト量の設定に関しては、カメラレンズの射出瞳中心からマイクロレンズ中心に入射される光線について、スネルの法則に基づいた光線追跡を行い、その光線が受光素子の中心に入射するようにマイクロレンズのシフト量を決定する方法が開示されている(特許文献1、2)。
一方、近年の多画素化に伴う画素寸法の微細化により、受光素子の寸法縮小、感度低下という別の問題が生じている。これらに対応して、マイクロレンズで集光した光線を有効に受光素子に導く手段として、透明な高屈折率物質と低屈折率物質の界面での全反射を応用した導波路構造を受光素子上に形成する技術が提案されている。この導波路を備えた固体撮像素子においても、上述のシェーディング現象は生じており、その対策として、マイクロレンズや導波路自体や導波路開口部を受光素子より有効撮像領域の中央部側にシフトさせて配列したり、導波路の断面形状を変化させることが提案されている(特許文献3〜6)。
特開2003−18476号公報 特開2001−160973号公報 特開2005−259824号公報 特開2006−261249号公報 特開2006−324439号公報 特開2006−295125号公報
しかし、特許文献1、2に開示されている従来のシェーディング防止技術では、マイクロレンズへ入射する光線の入射角度が大きい場合(すなわち、有効撮像領域の周辺部)に発生するコマ収差の影響が考慮されておらず、単純な光線追跡のみでシフト量が設定されているので、シェーディングの抑制が不十分であるという問題があった。また、特許文献2には、単純な光線追跡を省略した計算でシフト量を求め、これに対して±30%の範囲を許容することが開示されている。しかし、この±30%の誤差は、計算上の省略および近似と、実際の製造上の精度とを考慮して認められたものであり、積極的に−30%側に、あるいは+30%側にするという技術事項ではない。
一方、特許文献3〜6では、導波路等のシフトをどのように設定するかは示されておらず、特許文献1、2と同様にしてシフト量が設定されるとした場合、導波路がシェーディング防止にどのように影響しているかは考慮されていない。また、CMOSデバイスの導波路の周辺には金属配線層、金属遮光層が配設されているが、導波路をシフトさせるためには、これらも合わせてシフトさせる必要があり、特に金属配線層では上下の配線層間の導通部も含めてシフトさせることとなる。このため、CMOSデバイスを構成する大部分の層に何らかのシフト、設計変更が必要となるが、このことは、顧客毎、カメラレンズ毎にCMOSデバイスの専用設計が必要ということとなり、設計の工数増加、製造の小ロット化等により製造コストの増大を来すという問題があった。
本発明は、上記のような実情に鑑みてなされたものであり、導波路構造を有しシェーディングが抑制された固体撮像素子とその製造方法、この固体撮像素子を用いた撮像装置を提供することを目的とする。
このような目的を達成するために、本発明は、2次元配置された複数の受光素子と、個々の前記受光素子に対応させて2次元配置された複数の導波路と、該導波路間に位置するとともに導波路よりも屈折率が低い絶縁層と、個々の前記受光素子に対応させて複数の開口部が2次元配置された遮光層と、個々の前記受光素子に対応させて赤色フィルタ、緑色フィルタ、青色フィルタが配列されてなるカラーフィルタと、個々の前記受光素子に対応させて複数のマイクロレンズが2次元配置されてなるマイクロレンズアレイとを少なくとも備え、これらが光入射側からマイクロレンズアレイ、カラーフィルタ、絶縁層と導波路、受光素子の順に配設され、遮光層は開口部のマイクロレンズ側の表面が導波路の入口と同一平面、あるいは、導波路の入口よりマイクロレンズ側、あるいは、導波路の入口より受光素子側となるように配設され、前記マイクロレンズはマイクロレンズの光軸側にコマ収差を生じる特性を有している固体撮像素子であり、各マイクロレンズの中心位置、あるいは、各マイクロレンズの中心位置と各カラーフィルタの中心位置は、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしており、該シフト量は、カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が、マイクロレンズへ入射する境界、および、マイクロレンズから受光素子に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路の入口中心に至る光路をとるものと想定して求められる前記光線の光路上の位置と、受光素子の中心に対応する位置との差から得られる想定シフト量に収差補正係数aを乗じて設定されており、各マイクロレンズの中心位置のみが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしているときの前記収差補正係数aは0.46≦a≦0.81の範囲であり、各マイクロレンズの中心位置と各カラーフィルタの中心位置とが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしているときの前記収差補正係数aは0.59≦a≦1.34の範囲であるような構成とした。
本発明の他の態様として、受光素子から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズを1層目とし、導波路入口をM′層目(M′≦M)としたときに、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siは下記の式(3)
Si=Σj=i M'-1jtanθj … 式(3)
ただし、dj=i層目からM′−1層目までの間に位置するj層目の厚み、
θj=i層目からM′−1層目までの間に位置するj層目の光線角度
であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である
で設定され、
i層目(i=1、2、・・・、N)のシフト量Si actualは下記の式(4)
Si actual=a×Si … 式(4)
ただし、aは収差補正係数
で表されるような構成とした。
また、本発明は、各マイクロレンズの中心位置と各カラーフィルタの中心位置とが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしている上記の固体撮像素子の製造方法において、カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が、マイクロレンズへ入射する境界、および、マイクロレンズから受光素子に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路の入口中心に至る光路をとるものと想定して求められる前記光線の光路上の位置と、受光素子の中心に対応する位置との差から得られる想定シフト量に、収差補正係数a1を乗じた値と収差補正係数a2を乗じた値を求め、各画素についての該2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットしたグラフ上にて、収差補正係数a1を乗じた値がなす曲線と収差補正係数a2を乗じた値がなす曲線で挟まれた領域の任意の一直線に乗るように前記シフト量を設定し、前記収差補正係数a1と前記収差補正係数a2は0.59〜1.34の範囲内であるとともに、a1<a2の関係にあるような構成とした。
本発明の他の態様として、受光素子から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズを1層目とし、導波路入口をM′層目(M′≦M)としたときに、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siは下記の式(6)から求めるような構成とした。
Si=Σj=i M'-1jtanθj … 式(6)
ただし、dj=i層目からM′−1層目までの間に位置するj層目の厚み、
θj=i層目からM′−1層目までの間に位置するj層目の光線角度
であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である。
本発明の撮像装置は、上述の本発明の固体撮像素子を備えるような構成とした。
このような本発明の固体撮像素子は、カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が受光素子の中心に至る光路を想定してマイクロレンズ、カラーフィルタ、導波路をシフトさせた従来の固体撮像素子では考慮されていないマイクロレンズのコマ収差に配慮して、想定シフト量に収差補正係数aを乗じてシフト量が設定されているので、有効撮像領域の周辺部でのシェーディングが効果的に抑制されたものである。
本発明の固体撮像素子の製造方法は、像高と主光線入射角度の関係が非線形であるカメラレンズを使用する場合であっても、マイクロレンズ、カラーフィルタ、導波路のシフト量を有効撮像領域の中心から周辺部に向って非線形に変化させる必要がなく、有効撮像領域の周辺部でのシェーディングが効果的に抑制された固体撮像素子の製造を簡便なものとすることができる。
本発明の撮像装置は、斜め入射に起因するケラレ等のロスが少なく、入射光量に対しての効率分布の少ない高品位のものであり、小型化、薄型化が可能である。
本発明の固体撮像素子の一実施形態を示す概略構成図である。 マイクロレンズに入射した光線が受光素子に至るまでの光路を説明するための図である。 入射角度20°でマイクロレンズに入射した平行光が受光素子上に集光する状態を示す図である。 図3に示されるコマ収差が生じる状態で、F値=2.8のカメラレンズから入射する光束(主光線入射角度20°)が受光素子上に集光した場合の相対的強度レベルを示す図である。 図3に示されるコマ収差が生じる状態で、F値=2.8のカメラレンズから入射する光束(主光線入射角度30°)が受光素子上に集光した場合の相対的強度レベルを示す図である。 各マイクロレンズの中心位置と各カラーフィルタの中心位置と各遮光層の開口中心位置をシフトさせた場合の層構造の概略を示す図である。 図6に示されるシフトを行った場合に、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズに入射し光束が受光素子上に到達するエネルギーヒット率(相対値)を示す図である。 シミュレーションにおける入射光の設定を説明する図である。 各マイクロレンズの中心位置と各カラーフィルタの中心位置をシフトさせた場合の層構造の概略を示す図である。 図9に示されるシフトを行った場合に、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズに入射し光束が受光素子上に到達するエネルギーヒット率(相対値)を示す図である。 各マイクロレンズの中心位置をシフトさせた場合の層構造の概略を示す図である。 図11に示されるシフトを行った場合に、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズに入射し光束が受光素子上に到達するエネルギーヒット率(相対値)を示す図である。 像高と主光線入射角度の関係が非線形となるカメラレンズ特性を示す図である。 本発明の製造方法にて線形シフトのシフト量の設定を説明するための図である。 本発明の製造方法にて線形シフトのシフト量の設定を説明するための図である。 導波路シフトの場合の製造方法の一例を説明するための工程図である。 導波路シフトの場合の製造方法の一例を説明するための工程図である。 本発明の撮像装置の一例を説明するための図である。 本発明の撮像装置の他の例を説明するための図である。 遮光層のシフトを行なう場合を説明するための層構造の概略を示す図である。 遮光層のシフトを行なう場合を説明するための層構造の概略を示す図である。
以下、本発明の実施の形態について図面を参照して説明する。
[固体撮像素子]
図1は本発明の固体撮像素子の一実施形態を示す概略構成図である。図1において、固体撮像素子1は、基板2に一定の配置ピッチで2次元配置された複数の受光素子3と、配線層4、5と遮光層6を有する絶縁層7と、この絶縁層7上に順次設けられたパッシベーション層8、下平坦化層9、カラーフィルタ10、上平坦化層11、および、マイクロレンズ12を有している。また、絶縁層7には各受光素子3に対応して導波路15が配設されている。
基板2はシリコン基板であり、受光素子3はpn接合が形成された公知のフォトダイオードであってよく、通常、正方格子状に配置される。配線層4、5はフォトダイオードである受光素子3で発生した信号電荷を転送するものである。遮光層6は、個々の受光素子3に対応して配置された複数の開口部を有するものであり、遮光性の金属層(例えば、Al、Al/Si/Cu合金等)で形成することができる。尚、本発明にて、遮光層6は、固体撮像素子のカラーフィルタ10と受光素子3の間に設けられた金属等の遮光性物質によるパターン層の内、最もカラーフィルタ10側に設けられたパターンを言う。通常、遮光層6は、平面視上で受光素子3に対応する開口を有する格子状である場合が多いが、閉じた開口形状を有さないストライプ状である場合も含める。また、遮光層6は配線層を兼ねるものであってもよい。
絶縁層7は、例えば、CVD法で成膜した酸化珪素等の透明膜からなり、受光素子3を被覆するように形成されている。この絶縁層7は、配線層4、5と遮光層6が内部に配設された多層構造となっており、最もマイクロレンズ12寄りの絶縁層7aがパッシベーション層8と導波路15との間に位置している。また、図1の例では、遮光層6と導波路15の位置関係は、遮光層6の開口部のマイクロレンズ側の表面が、導波路15の入口と同一平面にあるが、このような構成に限るものではない。したがって、遮光層6の開口部のマイクロレンズ側表面は、導波路15の入口よりマイクロレンズ12側であってもよく、また、受光素子3側であってもよい。また、パッシベーション層8は窒化珪素、二酸化珪素等で形成することができ、下平坦化層9は樹脂材料で形成することができる。
カラーフィルタ10は、赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10Bが配列されたものであり、これらの各色のフィルタは各受光素子3に対応している。
上平坦化層11は、カラーフィルタ10を被覆して平坦面を形成し、同等の集光性を有する均質なマイクロレンズ12からなるマイクロレンズアレイ13の形成を可能にするものである。このような上平坦化層11は、樹脂材料で形成することができる。
マイクロレンズアレイ13は、各受光素子3、カラーフィルタ10の各色フィルタに対応して形成された複数のマイクロレンズ12からなっている。このマイクロレンズ12は、上平坦化層11上に形成されているため、光入射側に凸となっており、光軸側にコマ収差を生じる特性を有している。マイクロレンズ12の形状は、例えば、回転楕円体の一部を切り取った形状とし、隣接するマイクロレンズとの境界に隙間のない形状であってよいが、これに限定されるものではない。
マイクロレンズ12からなるマイクロレンズアレイ13の形成方法としては特に制限はなく、例えば、マイクロレンズ材料としてポジ型フォトレジストを用い、塗布、露光、現像のフォトリソグラフィー工程の後、フォトレジストをポストベークして溶融し凸レンズ状に成形する方法を挙げることができる。このように溶融して凸レンズ状に成形するマイクロレンズ形成方法は、マイクロレンズ間に必ず隙間を必要とする形成方法である。また、露光波長では解像しないような微細なドットパターンで、マイクロレンズの三次元形状を階調表現した階調フォトマスクを介して露光、現像することにより、微細ドットで階調表現された形状をフォトレジスト層に形成してマイクロレンズ12とすることができる。この方法では、マイクロレンズ間に隙間の無い効率的なマイクロレンズの形成が可能である。
導波路15は、マイクロレンズ12で集光した光線を有効に受光素子3に導く手段であり、各導波路15は各受光素子3に対応している。この導波路15は、絶縁層7よりも屈折率が高い透明材料、例えば、窒化珪素で構成されている。
この固体撮像素子1は、光入射側からマイクロレンズアレイ13、カラーフィルタ10、遮光層6、導波路15、受光素子3の順に配設されており、遮光層6の開口部のマイクロレンズ側の表面は導波路15の入口と同一平面にある。しかし、上述のように、遮光層6と導波路15の入口との関係はこれに限定されるものではない。そして、マイクロレンズ12は、その光軸側にコマ収差を生じる特性を有している。このような本発明の固体撮像素子1では、各マイクロレンズ12の中心位置、あるいは、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置、あるいは、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各遮光層6の開口中心位置と各導波路15の入口中心位置とは、対応する受光素子3の中心よりも有効撮像領域の中央部方向にシフトしたものである。このシフト量の設定について、以下に説明する。
まず、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各導波路15の入口中心位置とが、対応する受光素子3の中心よりも有効撮像領域の中央部方向にシフトしたものである場合について説明する。この場合、カメラレンズの射出瞳中心から各マイクロレンズ12の中心位置に入射した主光線が、マイクロレンズ12へ入射する境界、および、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し受光素子3の中心に至る光路をとるものと想定する。そして、シフト量は、この想定から求められる光線の光路上の位置と、受光素子3の中心に対応する位置との差から得られる想定シフト量に収差補正係数aを乗じて設定される。尚、本発明における導波路のシフトは、光入射側(導波路入口部)をシフトさせ、受光素子3側はシフトさせないものである。
ここで、想定シフト量について説明する。図2は、マイクロレンズに入射した光線が受光素子に至るまでの光路を説明するための図である。図2に示されるように、光入射側からマイクロレンズ12、上平坦化層11、カラーフィルタ10、下平坦化層9、パッシベーション層8、絶縁層7a、導波路15、受光素子3の順に配設されている。尚、配線層4、5は光路外側に配設されており、光路説明に不要なため省略している。ここでは、マイクロレンズ12および機能層(受光素子3とマイクロレンズ12との間に位置している各層)をまとめてM層積層部材とし、最も光入射側に位置するマイクロレンズ12を1層目とする。さらに、n0を大気の屈折率(n0=1.0)とし、n1をマイクロレンズの屈折率とし、θ0をカメラレンズの射出瞳中心からマイクロレンズの中心位置に入射した主光線入射角度とし、θ1をマイクロレンズから出射する主光線の出射角度とする。また、上記のように、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し受光素子3の中心に至る光路をとるものと想定すると、スネルの法則により、n0、n1、θ0、θ1は以下の関係を有する。この図2では、カメラレンズの光軸(撮像領域の中心)は、受光素子3の中心に対して、図中で左側(有効撮像領域の中心部方向)に位置している。
0sinθ0=n1sinθ1
よって、θ1=sin-1((n0/n1)sinθ0)となる。
同様に、j−1層およびj層の界面におけるθj(j層から出射する主光線の出射角度)は、θj=sin-1((nj-1/nj)sinθj-1)となる。
また、マイクロレンズ12のシフト量dS1(2層目である上平坦化層11に対するマイクロレンズ12のシフト量)について、dS1/d1=tanθ1であるから、dS1=d1tanθ1となる。
同様に、j層のj+1層に対するシフト量dSjは、dSj=djtanθjとなる。
そして、i層目(i=1、2、・・・、M)からM層目までのシフト量dSjの累積が、1層目からN層目(1≦N≦M)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siとなり、下記の式(1)で表される。
Si=Σj=i Mjtanθj … 式(1)
ただし、dj=i層目からM層目までの間に位置するj層目の厚み、
θj=i層目からM層目までの間に位置するj層目の光線角度であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である。
尚、屈折率の測定は分光エリプソメータを用いて行う。以下の本発明においても同様である。
図示例では、M=N=7であり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 7jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 7jtanθjとなる。さらに、i=7の導波路15の想定シフト量S7は、S7=d7tanθ7となる。ここで、図1に示した構成のように、導波路15の入口と同一平面に遮光層6の開口部のマイクロレンズ側表面が存在すれば、遮光層6の開口中心位置と導波路15の入口中心位置の想定シフト量は、i=7としたときに得られる想定シフト量S7となる。また、導波路15では、高屈折率材料部と低屈折率材料部が存在するが、主光線の通過する領域は高屈折率材料部であるので、屈折率としては高屈折率材料部の屈折率を考慮する。
そして、本発明では、シフト量が、このように求めた想定シフト量に収差補正係数aを乗じて設定され、i層目(i=1、2、・・・、N)のシフト量Si actualは下記の式(2)で表される。ただし、aは収差補正係数である。
Si actual=a×Si … 式(2)
ここで、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口と同一平面にない場合の想定シフト量について説明する。まず、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口よりマイクロレンズ側にある場合は、例えば、図20に示すように、図2に比べて1層増した構成を考慮して、上記式(1)、式(2)を組み立てればよい。図20の例では、M=N=8となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 8jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 8jtanθjとなる。また、i=7の遮光層6の想定シフト量S7は、S7=Σj=7 8jtanθjとなる。さらに、i=8の導波路15の想定シフト量S8は、S8=d8tanθ8となる。次いで、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口より受光素子側にある場合は、例えば、図21に示すようになる。この例では、M=N=9となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 9jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 9jtanθjとなる。また、i=7の導波路15(入口部)の想定シフト量S7は、S7=Σj=7 9jtanθjとなる。さらに、i=8の遮光層6の想定シフト量S8は、S8=Σj=8 9jtanθjとなる。尚、このとき、導波路15はi=7〜9の3層に跨るが、実質的には連続している。また、導波路15の入口部および遮光層6のシフトでは、導波路15の高屈折率材料部の屈折率を考慮すればよい。
次に、各マイクロレンズ12の中心位置、あるいは、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置とが、対応する受光素子3の中心よりも有効撮像領域の中央部方向にシフトしたものである場合について説明する。この場合、カメラレンズの射出瞳中心から各マイクロレンズ12の中心位置に入射した主光線が、マイクロレンズ12へ入射する境界、および、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路15の入口中心に至る光路をとるものと想定する。このような想定では、主光線は受光素子3の中心に集光されないが、受光素子3の中心から外れる光路であっても、導波路15が機能して受光素子3のいずれかの部位に導かれる。
この場合も、上記の場合と同様に、j層のj+1層に対するシフト量dSjは、dSj=djtanθjとなる。
そして、受光素子3から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズ12を1層目とし、導波路15の入口をM′層目(M′≦M)とし、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)からN層目までのシフト量dSjの累積が、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siとなり、下記の式(3)で表される。
Si=Σj=i M'-1jtanθj … 式(3)
ただし、dj=i層目からM′ー1層目までの間に位置するj層目の厚み、
θj=i層目からM′ー1層目までの間に位置するj層目の光線角度
であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である。
図2に示される層構成では、M=M′=7、N=6であり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 6jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 6jtanθjとなる。
このとき、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口と同一平面である場合、あるいは、同一平面より受光素子3側にある場合は、遮光層6の開口部はシフトされない。一方、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口よりマイクロレンズ側にある場合は、例えば、図20に示すように、図2に比べて1層増した構成を考慮して、上記式(3)を組み立てればよい。図20の層数では、M=M′=8、N=7となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 7jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 7jtanθjとなる。また、i=7の遮光層6の想定シフト量S7は、S7=d7tanθ7となる。
そして、本発明では、シフト量が、このように求めた想定シフト量に収差補正係数aを乗じて設定され、i層目(i=1、2、・・・、N)のシフト量Si actualは下記の式(4)で表される。ただし、aは収差補正係数である。
Si actual=a×Si … 式(4)
次に、上記の収差補正係数aについて説明する。
図3は、入射角度20°でマイクロレンズに入射した平行光が受光素子上に集光する状態を示す図である。図3に示されるように、光入射側からマイクロレンズ12、上平坦化層11、カラーフィルタ10、下平坦化層9、パッシベーション層8、絶縁層7a、導波路15、受光素子3の順に配設されている。そして、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各導波路15の入口中心位置を、上記の式(1)から得られる想定シフト量に基づいてシフトさせている。また、隣接画素間で実質的に連続している上平坦化層11、下平坦化層9、パッシベーション層8、絶縁層7aも上記の式(1)から得られる想定シフト量に基づいてシフトしたものとみなしている。勿論、これら各層の厚み、屈折率、マイクロレンズ12の曲率は、マイクロレンズ12に入射する主光線の入射角度が0°のときに、受光素子3の一点に集光するように設計されている。そして、図3に示すように、マイクロレンズ12への入射角度が大きくなると、受光素子3の1点に集光せず、マイクロレンズ12の中心に入射した主光線の到達点よりも下側(図3において矢印で示す方向)、すなわち、有効撮像領域の中心方向へ光線がずれて到達し、コマ収差が生じる。
尚、図3には遮光層6の開口部が示されていないが、図2の説明で述べたように、遮光層6の開口部のマイクロレンズ側表面が導波路15の入口よりマイクロレンズ12側にあるか、受光素子3側にあるかに応じて想定シフト量を算出し、それに基づいてシフトされている。
図4は、図3に示されるようにコマ収差が生じる状態で、F値=2.8のカメラレンズから入射する光束(主光線入射角度20°)が導波路15の入口に到達した場合の、導波路15の入口表面での相対的な入射光強度レベルを示す図であり、図中で下側は、図3の下側に対応する。また、図5は、図3に示されるようにコマ収差が生じる状態で、F値=2.8のカメラレンズから入射する光束(主光線入射角度30°)が導波路15の入口に到達した場合の、導波路15の入口表面での相対的な入射光強度レベルを示す図であり、図中で下側は、図3の下側に対応する。このような図4および図5に示される入射光強度レベルは、上記の式(1)から得られる想定シフト量に基づいて各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置と各導波路15の入口中心位置をシフトさせた場合の相対的な入射光強度レベルであり、カメラレンズから入射する光束の拡がりが上下方向でいびつになり、光束の広がりは、マイクロレンズ12の中心を通過する光線が到達する点(図中に十字で示す)よりも図中で下側、すなわち、有効撮像領域の中央部方向へ広がっている。
ここで、相対的な入射光強度レベルの高い領域の中心は、図中において上側にあり、相対的な入射光強度レベルの低い領域の中心は、図中において下側にある。したがって、入射する光束を効率よく導波路15の入口に入射させるためには、導波路15の入口中心は、マイクロレンズ中心を通る主光線の通過点よりも図4、図5にて上側にシフトさせるべきか、下側にシフトさせるべきかを検討する必要がある。本発明での検討結果によれば、各マイクロレンズの中心位置と各カラーフィルタの中心位置と各導波路の入口中心位置とが、あるいは、各マイクロレンズの中心位置と各カラーフィルタの中心位置とが、対応する受光素子の中心よりも有効撮像領域の中央部方向へシフトしているときは、導波路の入口中心の位置は、マイクロレンズ中心を通る主光線の通過点よりも図4、図5にて上下方向ともある程度のズレが許容される冗長性があることが判明した。
また、各マイクロレンズの中心位置のみが、対応する受光素子の中心よりも有効撮像領域の中央部方向へシフトしているときは、導波路の入口中心の位置が、マイクロレンズ中心を通る主光線の通過点よりも図4、図5にて下側にシフトさせることが好ましいことが判明した。これは、後述する図12に示されるように、高いヒット率を維持できる収差補正係数aの値の領域の中心は、1未満(100%未満)であることによる。このことは、入射角度が大きくなると、マイクロレンズ中心を通る主光線が導波路の入口中心を通るようにシフト量を設定すると、シフト量が大き過ぎて、入射する光束を効率よく導波路の入口に入射させ得ないことを示している。
尚、主光線入射角度は、有効撮像領域の中心で0°となり、有効撮像領域の周辺部に向うにつれて大きくなる。一般に、有効撮像領域の最外周部での主光線入射角度は20°程度であるが、カメラの小型薄型化により、有効撮像領域の最外周部での主光線入射角度が更に大きくなり、例えば、30°近くの主光線入射角度を有するカメラレンズを用いたカメラも本発明では考慮する必要がある。
ここで、図3に示される積層構造に、上記の式(1)、(2)を当てはめて、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各導波路15の入口中心位置を、図6に示すようにシフトさせる場合のシフト量を算出する。この図6は、入射角度20°でマイクロレンズの中心位置に入射した主光線が受光素子上に到達する状態を示す図である。図6に示されるように、光入射側からマイクロレンズ12、上平坦化層11、カラーフィルタ10、下平坦化層9、パッシベーション層8、絶縁層7a、導波路15、受光素子3の順に配設されている。そして、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各導波路15の入口中心位置を、上記の式(1)から得られる想定シフト量に基づいてシフトさせている。また、隣接画素間で実質的に連続している上平坦化層11、下平坦化層9、パッシベーション層8、絶縁層7aも上記の式(1)から得られる想定シフト量に基づいてシフトさせたものとみなしている。この場合、主光線光路は、導波路15の入口中心を通り、かつ、導波路15の出口中心(受光素子3の中心)に至る光路を想定する。シフト量は、各々の層で求められた想定シフト量に共通して同じ値の収差補正係数aを乗じて算出しており、収差補正係数aの値を変化させることにより種々のシフト量を算出している。そして、算出したシフト量に基づいてシフトさせ、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズ12に入射した光束が受光素子3上に到達したエネルギーを求め、入力エネルギーとの相対比を光学シミュレーションにより求めた値をエネルギーヒット率として図7に示した。尚、入力エネルギーは、主光線入射角度によらず、マイクロレンズ12の表面に主光線入射角度0°で入射した際のエネルギーとした。
図7に示されるように、収差補正係数aの値が39%〜126%の範囲において、収差補正係数aの値を変えたときの最大エネルギーヒット率の95%以上のエネルギーヒット率を維持することができる。さらに、収差補正係数aの値が44%〜116%の範囲において、最大エネルギーヒット率の99%以上を維持することができる。この結果から、各マイクロレンズ12の中心位置のシフト量(S1 actual)と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置のシフト量(S3 actual)と各導波路15の入口中心位置のシフト量(S7 actual)とを、上記の式(1)、(2)から求めるときの収差補正係数aは、0.39≦a≦1.26となる。ここで、図1に示す遮光層6の開口部のシフトについては、図2の説明で述べたように、遮光層6の開口部のマイクロレンズ側表面が導波路15の入口よりマイクロレンズ12側にあるか、受光素子3側にあるかを考慮して、その開口中心の想定シフト量を算出し、それに収差補正係数aを乗ずればよい。尚、上記の各シフト量(S1 actual、S3 actual、S7 actual)の算出に使用するaの値は、上記の範囲にあればよく、シフトする層全てに共通の同じ値を使用する必要はない。
ここで、本発明では、光学シミュレーションを行うソフトウェアとして、ZEMAX Development Corpotation社製 ZEMAX-EE(Version April 2, 2004 rev.b)を使用する。ソフトウェア(ZEMAX)上の計算結果(efficiency)は、単純に入力光線の本数と、受光素子に到達した光線の本数の比ではなく、受光素子への入射角度を加味してエネルギーとして処理している。すなわち、受光素子に到達した光線の一本一本に、cosθ(θは入射角)を乗じて、エネルギーとして扱える形とし、入力光のエネルギーと比較してefficiencyとして表している。また、エネルギーヒット率は、主光線入射角度0°のときにマイクロレンズ表面に入力されるエネルギー(efficiency)E1と、所定の条件で受光素子に達するエネルギー(efficiency)E2の比E2/E1で表される。また、入力光については、図8に示すように、ZEMAX上のOBJECT面がマイクロレンズ表面(ZEMAX上の第1層)に接して設定される。これを均一な明るさをもつ光源(サイズはマイクロレンズが2μm×2μm□のとき、これに外接する半径√2μmの円)と見立て、OBJECT面からの光線の角度は、0°からカメラレンズのF値から求められる見込み角度までの範囲でランダムであり、OBJECT面の全面からランダムに光線を発生させる(但し、OBJECT面周辺の光線の処理は、図8のaに示すように系外へ出る光線は考慮されない)ものとする。尚、ZEMAX上の各層のパラメータを下記の表1に示す。
Figure 2012054565
また、図3に示される積層構造に、上記の式(3)、(4)を当てはめて、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置を、図9に示すようにシフトさせる場合のシフト量を算出する。この図9は、図6と同様に、入射角度20°でマイクロレンズの中心位置に入射した主光線が受光素子上に到達する状態を示す図であり、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置を、上記の式(3)から得られる想定シフト量に基づいてシフトさせている。また、隣接画素間で実質的に連続している上平坦化層11、下平坦化層9、パッシベーション層8、絶縁層7aも上記の式(3)から得られる想定シフト量に基づいてシフトさせたものとみなしている。この場合、各導波路15の入口中心位置はシフトさせず、主光線光路は、導波路15の入口中心を通る光路を想定する。このような想定では、主光線は受光素子3の中心に集光されないが、受光素子3の中心から外れる光路であっても、導波路15が機能して受光素子3のいずれかの部位に導かれる。シフト量は、各々の層で求められた想定シフト量に共通して同じ値の収差補正係数aを乗じて算出しており、収差補正係数aの値を変化させることにより、各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置について、種々のシフト量を得る。そして、算出したシフト量に基づいてシフトさせ、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズ12に入射した光束が受光素子3上に到達したエネルギーを求め、入力エネルギーとの相対比を上記のように光学シミュレーションにより求めた値をエネルギーヒット率として図10に示した。図10に示されるように、収差補正係数aの値が59%〜134%の範囲において、最大エネルギーヒット率の95%以上を維持することができ、収差補正係数aの値が75%〜119%の範囲において、最大エネルギーヒット率の99%以上を維持することができる。この結果から、各マイクロレンズ12の中心位置のシフト量(S1 actual)と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置のシフト量(S3 actual)を、上記の式(3)、(4)から求めるときの収差補正係数aは、0.59≦a≦1.34となる。尚、上記の各シフト量(S1 actual、S3 actual)の算出に使用するaの値は、上記の範囲にあればよく、シフトする層全てに共通の同じ値を使用する必要はない。
さらに、図3に示される積層構造に、上記の式(3)、(4)を当てはめて、各マイクロレンズ12の中心位置を、図11に示すようにシフトさせる場合のシフト量を算出する。この図11は、図6と同様に、入射角度20°でマイクロレンズの中心位置に入射した主光線が受光素子上に到達する状態を示す図であり、各マイクロレンズ12の中心位置を、上記の式(3)から得られる想定シフト量に基づいてシフトさせている。また、隣接画素間で実質的に連続している上平坦化層11も上記の式(3)から得られる想定シフト量に基づいてシフトさせたものとみなしている。この場合、各カラーフィルタ10の中心位置と各導波路15の入口中心位置はシフトさせず、主光線光路は、導波路15の入口中心を通る光路を想定する。このような想定では、主光線は受光素子3の中心に集光されないが、受光素子3の中心から外れる光路であっても、導波路15が機能して受光素子3のいずれかの部位に導かれる。シフト量は、各々の層で求められた想定シフト量に共通して同じ値の収差補正係数aを乗じて算出しており、収差補正係数aの値を変化させることにより、各マイクロレンズ12の中心位置のみについて、種々のシフト量を得る。そして、算出したシフト量に基づいてシフトさせ、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズ12に入射した光束が受光素子3上に到達したエネルギーを求め、入力エネルギーとの相対比を上記のように光学シミュレーションにより求めた値をエネルギーヒット率として図12に示した。図12に示されるように、収差補正係数aの値が35%〜100%の範囲において、a=1(100%)に比してエネルギーヒット率が改善される。さらに、収差補正係数aの値が46%〜81%の範囲において、最大エネルギーヒット率の95%以上を維持することができ、収差補正係数aの値が55%〜72%の範囲において、最大エネルギーヒット率の99%以上を維持することができる。この結果から、各マイクロレンズ12の中心位置のシフト量(S1 actual)を、上記の式(3)、(4)から求めるときの収差補正係数aは、0.46≦a≦0.81となる。
上述のような本発明の固体撮像素子は、カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が受光素子の中心に至る光路を想定してマイクロレンズ、カラーフィルタ、導波路をシフトさせた従来の固体撮像素子では考慮されていないマイクロレンズのコマ収差に配慮して、想定シフト量に収差補正係数aを乗じてシフト量が設定されているので、有効撮像領域の周辺部でのシェーディングが効果的に抑制されたものである。
上述の固体撮像素子の実施形態は例示であり、本発明はこの実施形態に限定されるものではない。
[固体撮像素子の製造方法]
次に、本発明の固体撮像素子の製造方法について、上述の固体撮像素子1を例として説明する。
上述にように、導波路15を有する固体撮像素子1は、斜め入射光が導波路15の側壁に入射しても全反射するため、マイクロレンズの集光中心が少し受光素子3の中心からずれても問題が生じにくい構造となっている。すなわち、上述の本発明の検討結果が示すように、シフト量にある程度幅が許容される。本発明では、この観点から、図13に示されるような像高と主光線入射角度の関係が非線形であるカメラレンズを用いた場合であっても、シェーディングを効率的に抑制できるシフト量の設定を検討した。図13に示されるような非線形な特性のカメラレンズは、カメラの小型薄型化を進めるにあたって近年採用されてきている非球面レンズである。しかし、このようなカメラレンズでは、従来行われてきた線形のシフト、例えば、マイクロレンズをシフトさせる場合において、マイクロレンズ用のフォトマスクに縮率99.99%等の微小スケーリングを行うシフトでは、非線形なカメラレンズ特性に適合したマイクロレンズのシフトを行うことが困難である。すなわち、一定の縮率でスケーリングを行う線形のシフトに対し、非線形のシフトでは、一定の縮率を用いることができず、画素位置に応じて微妙に変化する配置ピッチを全画素に亘って設計し直す必要があるため、その設計工数は膨大となる。また、隣接する画素間の配置ピッチの変化量は極めて僅かであるため、フォトマスクデータ上で必要な寸法変化量が、フォトマスク作成上の最小寸法単位である1nm未満となる場合が往々にして発生し、その僅かな変化量をフォトマスク上で表現することができない等の問題が発生する。
本発明の製造方法は、各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置と各遮光層6の開口中心位置と各導波路15の入口中心位置とを、対応する受光素子3の中心よりも有効撮像領域の中央部方向に所定のシフト量でシフトさせるものである。そして、シフト量を以下のように設定する。
すなわち、カメラレンズの射出瞳中心から各マイクロレンズ12の中心位置に入射した主光線が、マイクロレンズ12へ入射する境界、および、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し受光素子3の中心に至る光路をとるものと想定する。そして、この想定から得られる光線の光路上の位置と、受光素子3の中心に対応する位置との差から得られる想定シフト量に、収差補正係数a1を乗じた値と収差補正係数a2を乗じた値を求める。次いで、各画素についてのこれら2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットしたグラフ上にて、収差補正係数a1を乗じた値がなす曲線と収差補正係数a2を乗じた値がなす曲線で挟まれた領域の任意の一直線に乗るようにシフト量を設定する。
まず、想定シフト量を上述の図2を参照して説明する。図2に示されるように、光入射側からマイクロレンズ12、上平坦化層11、カラーフィルタ10、下平坦化層9、パッシベーション層8、絶縁層7a、導波路15、受光素子3の順に配設されている。そして、最も光入射側に位置するマイクロレンズ12を1層目とし、上記のように、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し受光素子3の中心に至る光路をとるものと想定し、1層目からN層目(1≦N≦M)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siを下記の式(5)から求める。尚、この式(5)は、上述の式(1)と同様にして導かれる。
Si=Σj=i Mjtanθj … 式(5)
ただし、dj=i層目からM層目までの間に位置するj層目の厚み、
θj=i層目からM層目までの間に位置するj層目の光線角度であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である。
図示例では、M=N=7であり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 7jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 7jtanθjとなる。さらに、i=7の導波路15の想定シフト量S7は、S7=d7tanθ7となる。ここで、図1と同じく、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口と同一平面に存在すれば、遮光層6の開口中心位置と導波路15の入口中心位置の想定シフト量は、i=7としたときに得られる想定シフト量S7となる。また、導波路15では、高屈折率材料部と低屈折率材料部が存在するが、主光線の通過する領域は高屈折率材料部であるので、屈折率としては高屈折率材料部の屈折率を考慮する。一方、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口と同一平面にない場合は、次のようになる。まず、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口よりマイクロレンズ側にある場合の遮光層6の開口部のシフトは、例えば、図20に示すように、図2に比べて1層増した構成を考慮して、上記式(5)を組み立てればよい。図20の例では、M=N=8となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 8jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 8jtanθjとなる。また、i=7の遮光層6の想定シフト量S7は、S7=Σj=7 8jtanθjとなる。さらに、i=8の導波路15の想定シフト量S8は、S8=d8tanθ8となる。次いで、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口より受光素子側にある場合の遮光層6の開口部のシフトは、例えば、図21に示すようになる。すなわち、M=N=9となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 9jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 9jtanθjとなる。また、i=7の導波路15(入口部)の想定シフト量S7は、S7=Σj=7 9jtanθjとなる。さらに、i=8の遮光層6の想定シフト量S8は、S8=Σj=8 9jtanθjとなる。尚、このとき、導波路15はi=7〜9の3層に跨るが、実質的には連続している。また、導波路15の入口部および遮光層6のシフトでは、導波路15の高屈折率材料部の屈折率を考慮すればよい。
また、本発明の製造方法は、各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置とを、対応する受光素子3の中心よりも有効撮像領域の中央部方向に所定のシフト量でシフトさせるものである。そして、シフト量を以下のように設定する。
すなわち、カメラレンズの射出瞳中心から各マイクロレンズ12の中心位置に入射した主光線が、マイクロレンズ12へ入射する境界、および、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路15の入口中心に至る光路をとるものと想定する。そして、この想定から得られる光線の光路上の位置と、受光素子3の中心に対応する位置との差から得られる想定シフト量に、収差補正係数a1を乗じた値と収差補正係数a2を乗じた値を求める。次いで、各画素についてのこれら2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットしたグラフ上にて、収差補正係数a1を乗じた値がなす曲線と収差補正係数a2を乗じた値がなす曲線で挟まれた領域の任意の一直線に乗るようにシフト量を設定する。
まず、想定シフト量を上述の図9を参照して説明する。図9に示されるように、光入射側からマイクロレンズ12、上平坦化層11、カラーフィルタ10、下平坦化層9、パッシベーション層8、絶縁層7a、導波路15、受光素子3の順に配設されている。そして、最も光入射側に位置するマイクロレンズ12を1層目とし、上記のように、マイクロレンズ12から受光素子3に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路15の入口中心に至る光路をとるものと想定し、受光素子から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズを1層目とし、導波路入口がM′層目(M′≦M)としたときに、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siを下記の式(6)から求める。尚、この式(6)は、上述の式(3)と同様にして導かれる。
Si=Σj=i M'-1jtanθj … 式(6)
ただし、dj=i層目からM′−1層目までの間に位置するj層目の厚み、
θj=i層目からM′−1層目までの間に位置するj層目の光線角度
であり、
θj=sin-1((nj-1/nj)sinθj-1)で示され、
0=1.0(0層目は大気)であり、
jはj層目の屈折率であり、
θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
に入射した主光線入射角度である。
図示例では、M=M′=7、N=6であり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 6jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 6jtanθjとなる。
このとき、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口と同一平面である場合、あるいは、同一平面より受光素子3側にある場合は、遮光層6の開口部はシフトされない。一方、遮光層6の開口部のマイクロレンズ側表面が、導波路15の入口よりマイクロレンズ側にある場合は、例えば、図20に示すように、図2に比べて1層増した構成を考慮して、上記式(6)を組み立てればよい。図20の層数では、M=M′=8、N=7となり、i=1のマイクロレンズ12の想定シフト量S1は、S1=Σj=1 7jtanθjとなる。また、i=3のカラーフィルタ10の想定シフト量S3は、S3=Σj=3 7jtanθjとなる。また、i=7の遮光層6の想定シフト量S7は、S7=d7tanθ7となる。
次に、上記の収差補正係数a1と収差補正係数a2について説明する。
まず、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置と各導波路15の入口中心位置のシフト量を設定する場合、収差補正係数a1と前記収差補正係数a2は0.39〜1.26の範囲内とし、かつ、a1<a2の関係とする。すなわち、上記の式(5)から算出した想定シフト量に種々の収差補正係数aを乗じてえられるシフト量に基づいて、各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置と各導波路の入口中心位置をシフトさせ、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズ12に入射した光束が受光素子3上に到達したエネルギーを求め、入力エネルギーとの相対比を上記のように光学シミュレーションにより求めた値をエネルギーヒット率として算出すると、上述の図7のような曲線が得られる。そして、図7に示されるように、収差補正係数aの値が39%〜126%の範囲において、収差補正係数aの値を変えたときの最大エネルギーヒット率の95%以上のエネルギーヒット率を維持することができる。ここで、例えば、カメラレンズの特性が図13に示すような像高と主光線入射角度の関係が非線形の場合であっても、収差補正係数aの値が39%〜126%の範囲で一定のシェーディング補正効果が奏されるのであるから、シフト量を非線形に変化させることに拘る必要はない。そこで、上記の範囲(0.39〜1.26)内にて、例えば、収差補正係数a1を0.50とし、収差補正係数a2を1.1として、各画素についてのこれら2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットすると、図14に示すように、収差補正係数a1を乗じた値がなす曲線Aと収差補正係数a2を乗じた値がなす曲線Bで挟まれた領域が得られる。そして、この曲線Aと曲線Bで挟まれた領域の任意の一直線に乗るように線形シフトを行うことができる。ここで、曲線Aと曲線Bで挟まれた領域の任意の一直線とは、有効撮像領域の中心から最外周部の画素(図示例では1246番目の画素)まで、曲線Aと曲線Bで挟まれた領域から外れない直線である。したがって、図14では、原点(有効撮像領域の中心)付近で曲線Aに接する直線L1と、1246番目の画素における曲線B上の点と原点(有効撮像領域の中心)とを結ぶ直線L2とで囲まれた領域(斜線を付している)内の任意の直線となる。尚、ここでは遮光層6のシフトに関して説明を省略したが、上記の固体撮像素子についての説明で述べた想定シフト量を遮光層6についても算出し、上記と同様の値の収差補正係数a1と収差補正係数a2を用いて、同じ手順で遮光層6の開口中心部のシフト量を求めることができる。
図14の例では、有効撮像領域の長軸方向での最外周部の画素が中心から1246番目の画素であるが、同じカメラレンズを用い、同じ画素ピッチでありながら、画素数が、例えば、有効撮像領域の長軸方向で1000画素であるときは、図14のグラフで0画素から1000画素の区間で曲線Aと曲線Bで挟まれた領域に位置する直線に乗るように線形シフトを行うことができる。この場合、図14にて斜線を付した領域の下側の境界線L1は同じであるが、上側の境界線L2は図14に一点鎖線で示すように広がりを見せる。
次に、各マイクロレンズ12の中心位置と各カラーフィルタ10(赤色フィルタ10R、緑色フィルタ10G、青色フィルタ10B)の中心位置のシフト量を設定する場合、収差補正係数a1と前記収差補正係数a2は0.59〜1.34の範囲内とし、かつ、a1<a2の関係とする。すなわち、上記の式(6)から算出した想定シフト量に種々の収差補正係数aを乗じてえられるシフト量に基づいて、各マイクロレンズ12の中心位置と各カラーフィルタ10の中心位置をシフトさせ、主光線入射角度30°の条件でF値=2.8のカメラレンズからマイクロレンズ12に入射した光束が受光素子3上に到達したエネルギーを求め、入力エネルギーとの相対比を上記のように光学シミュレーションにより求めた値をエネルギーヒット率として算出すると、上述の図10のような曲線が得られる。そして、図10に示されるように、収差補正係数aの値が59%〜134%の範囲において、収差補正係数aの値を変えたときの最大エネルギーヒット率の95%以上のエネルギーヒット率を維持することができ、一定のシェーディング補正効果が奏されるのであるから、シフト量を非線形に変化させることに拘る必要はない。そこで、上記の範囲(0.59〜1.34)内にて、例えば、収差補正係数a1を0.6とし、収差補正係数a2を1.3として、各画素についてのこれら2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットすると、図15に示すように、収差補正係数a1を乗じた値がなす曲線Aと収差補正係数a2を乗じた値がなす曲線Bで挟まれた領域が得られる。そして、この曲線Aと曲線Bで挟まれた領域に位置する直線(図15にて2本の直線L1、L2で囲まれ斜線を付した領域内の任意の直線)に乗るように線形シフトを行うことができる。
このような本発明の固体撮像素子の製造方法は、像高と主光線入射角度の関係が非線形であるカメラレンズを使用する場合であっても、マイクロレンズ、カラーフィルタのシフト量を有効撮像領域の中心から周辺部に向って非線形に変化させる必要がない。したがって、有効撮像領域の周辺部でのシェーディングが効果的に抑制された固体撮像素子を簡便に製造することができる。尚、本発明の固体撮像素子の製造方法は、カメラレンズ特性が線形な像高/主光線入射角度である場合にも有効であることは勿論である。例えば、線形のシフトを行う場合であっても、シフト量から求めるマイクロレンズの縮率が99.978%であるとしたとき、画素ピッチ2μmに対して、縮率を乗じた後の画素ピッチは1.99956μmとなる。このとき、マイクロレンズ形成に5倍体のフォトマスクを用いるとすると、フォトマスク上のピッチは9.9978μmとなり、フォトマスクの電子線描画時の最小グリッド(1nm)未満の端数が発生する。これを9.998μmに丸める(すなわち、縮率99.98%とする)ことができれば、マイクロレンズ用フォトマスクの描画データの作成は容易となる。この例では、5倍体フォトマスク上の1画素あたりのシフト量が、2.2nmから2nmへ変化させているが、収差補正係数a1、a2の範囲内の変化であれば、問題ないということとなる。
ここで、導波路をシフトさせる場合の製造方法の一例を図16、図17を参照しながら説明する。
まず、基板2に、一定の配置ピッチで複数の受光素子3を2次元配置して形成し、さらに、配線層4、5と遮光層6を有する絶縁層7を形成する(図16(A))。
次に、絶縁層7の表面にポジ型の感光性レジスト層41を形成し(図16(B))、露光波長の解像度以下のドットパターンにて階調を付与したフォトマスクを介して感光性レジスト層41を露光、現像(露光部のレジスト除去)して、抜き部42を形成する(図16(C))。このとき、図16(C)右図にて、抜き部42の右側エッジは、略垂直であるが、左側エッジは傾斜を有する。右側エッジに対応するフォトマスクパターンは、階調を有さず、遮光部、非遮光部の2階調(通常の白と黒のパターン)として、略垂直のエッジを形成する。これに対して、左側エッジに対応するフォトマスクパターンは、傾斜部の幅に対応して階調を有する領域を設け、ドットパターンの密度を階調領域内で段階的または略連続的に変化させるパターンとすれば、傾斜を有するエッジが形成できる。
次いで、抜き部42を有するレジスト層41をマスクとして、絶縁層7を異方性ドライエッチングして、導波路形成用の穴部43を穿設する(図17(A))。次に、窒化珪素等の高屈折率物質をCVD法等により絶縁層7上に成膜して高屈折率物質層15′を形成する(図17(B))。その後、高屈折率物質層15′の表面凹凸をCMP(Chemical Mechanical Polish)にて平坦化することにより、導波路15を形成する(図17(C))。
[撮像装置]
図18は、本発明の撮像装置の一実施形態を示す概略断面図である。図18において、本発明の撮像装置21は、本発明の固体撮像素子22を備えた基板23と、固体撮像素子22の外側に配した封止用部材24と、この封止用部材24を介して固体撮像素子22と所望の間隙を設けて対向するように配設された透明な保護材25とを備えている。また、固体撮像素子22は配線26、表裏導通ビア27を介して外部端子28に接続されている。このようなセラミックパッケージ型の撮像装置21は、種々のデジタルカメラ、ビデオカメラ等に使用することができ、カメラの高感度化、小型化、薄型化が可能である。
また、図19は、本発明の撮像装置の他の実施形態を示す概略断面図である。図19に示される本発明の撮像装置31は、携帯電話用カメラモジュールの例であり、本発明の固体撮像素子32を備えた基板33と、固体撮像素子32の外側に配した封止用部材34と、固体撮像素子32と所望の間隙を設けて対向するように配設された赤外カットフィルタ35と、赤外カットフィルタ35上に配設された鏡筒36と、この鏡筒36内に装着されたレンズユニット37を備えている。このような撮像装置31は、本発明の固体撮像素子32がシェーディング補正されていて高感度のものであるため、小型化、薄型化が可能である。
本発明の撮像装置は上述の実施形態に限定されるものではなく、固体撮像素子として本発明の固体撮像素子を備えるものであればよく、従来の種々の撮像装置の構成をそのまま採用することができる。
次に、実施例を示して本発明を更に詳細に説明する。
[実施例1]
まず、画素受光部ピッチ2.0μm、画素数2592個(X軸方向)×1944個(Y軸方向)のフォトダイオード(受光部サイズ1.0μm×1.0μm)からなり、図1に示されるように、基板2に一定の配置ピッチで2次元配置された複数の受光素子3と、Alからなる配線層4、5と遮光層6を有する絶縁層7(酸化珪素)と、パッシベーション層8(窒化珪素)と、導波路15(窒化珪素)とを備えたCMOSセンサーを形成したウェハを用意した。このCMOSセンサーでは、パッシベーション層の厚みが0.3μm、パッシベーション層と導波路との間に介在する絶縁層の厚みが0.3μm、導波路の厚みが2.1μmであり、遮光層の開口中心と導波路の入口中心は、後述するシフト量(S7 actual)に基づいてシフトさせたものとした。導波路の入口平面寸法は1.5μm×1.5μm、出口平面寸法はフォトダイオード寸法と同じく1.0μm×1.0μmとした。また、パッシベーション層、絶縁層、導波路の屈折率を分光エリプソメータにより測定した結果、パッシベーション層の屈折率は2.0、絶縁層の屈折率は1.46、導波路の屈折率は1.88、導波路の外側の絶縁層の屈折率は1.46であった。尚、屈折率の値は、以降も含めて、特に波長に指定のない限り、波長550nmでの値である。
(下平坦化層の形成)
パッシベーション層上に、光硬化型アクリル系透明樹脂材料(富士マイクロエレクトロニクスマテリアルズ(株)製 CT−2020L)をスピン塗布し、次いで、プリベーク、紫外線全面露光、ポストベークを行って下平坦化層(厚み0.3μm)を形成した。この下平坦化層について、上記と同様に屈折率を測定した結果、1.56であった。
(カラーフィルタの形成)
ネガ型感光性の赤色材料(R用材料)、緑色材料(G用材料)、青色材料(B用材料)として以下の材料を用意した。
R用材料:富士マイクロエレクトロニクスマテリアルズ(株)製 SR−4000L
G用材料:富士マイクロエレクトロニクスマテリアルズ(株)製 SG−4000L
B用材料:富士マイクロエレクトロニクスマテリアルズ(株)製 SB−4000L
G、R、Bの形成順序に、上記材料をスピン塗布し、プリベーク、1/5縮小型のi線ステッパーによる露光、現像、ポストベークを行って、カラーフィルタ(膜厚0.8μm)を形成した。すなわち、まず、下平坦化層上にG用材料を塗布し、露光、現像した後、ポストベーク(220℃、10分間)を行って、市松状に緑色フィルタを形成した。次に、この緑色フィルタを被覆するようにR用材料を塗布し、フォトマスクを用いて露光、現像した後、ポストベーク(220℃、10分間)を行って赤色フィルタを形成した。次いで、赤色フィルタ、緑色フィルタを被覆するようにB用材料を塗布し、フォトマスクを用いて露光、現像した後、ポストベーク(220℃、10分間)を行って、青色フィルタを形成した。
上記の露光において使用したフォトマスクは、後述するシフト量(S3 actual)に基づいてシフトさせたカラーフィルタパターンとした。
尚、現像液として、富士マイクロエレクトロニクスマテリアルズ(株)製 CD−2000の50%希釈液を使用した。
形成したカラーフィルタの各色フィルタについて、上記と同様に屈折率を測定した結果、赤色フィルタの屈折率は1.59(波長620nm)、緑色フィルタの屈折率は1.60(波長550nm)、青色フィルタの屈折率は1.61(波長450nm)であった。
(上平坦化層の形成)
カラーフィルタ上に、光硬化型アクリル系透明樹脂材料(富士マイクロエレクトロニクスマテリアルズ(株)製 CT−2020L)をスピン塗布し、次いで、プリベーク、紫外線全面露光、ポストベークを行って上平坦化層を形成した。形成した上平坦化層の厚みは0.3μmであり、上記と同様に測定した屈折率は1.56であった。
(マイクロレンズの形成)
上平坦化層に、マイクロレンズ材料としてJSR(株)製 MFR401Lをスピン塗布し、プリベーク、1/5縮小型のi線ステッパーによる露光、現像、後露光、ポストベークによるメルトフローを行って、マイクロレンズ(高さ0.675μm)を形成した。形成したマイクロレンズの屈折率を上記と同様に測定した結果、1.61であった。尚、現像液として、TMAH(テトラメチルアンモニウムハイドロオキサイド)の1.19%液を使用した。
上記の露光において使用したフォトマスクは、上述の階調フォトマスクであり、後述するシフト量(S1 actual)に基づいてシフトさせたマイクロレンズパターンとした。
次に、ボンディングパッド部の窓開けを行った。すなわち、ポジレジスト(住友化学(株)製 i線用ポジレジスト PFI−27)をスピン塗布し、次いで、プリベーク後、ボンディングパッド部およびスクライブ部に対応するパターンを有するフォトマスク用いて露光、現像を行った。これにより、ボンディングパッド部およびスクライブ部に開口を有するレジストパターンが形成され、このレジストパターンをマスクとして酸素アッシングを行って、当該箇所上の平坦化層をエッチング除去した。次いで、レジスト剥離液を用いてポジレジストを除去した。
次いで、ウェハのダイシングを行い、パッケージ組立を行って、本発明の固体撮像素子を作製した。
このように作製した固体撮像素子にF2.8で図13に示す特性のカメラレンズを組み合わせ(このカメラレンズと本実施例のCMOSセンサーの組み合わせにて、有効撮像領域の最外周付近(対角方向の四隅)で主光線入射角度が30°となる)、有効撮像領域の中(主光線入射角度0°)での感度を100%としたときの、主光線入射角度が5°、10°、15°、20°、25°、30°の各グリーン画素での相対感度を測定し、その結果を下記の表2に示した。表2に示される結果から、シェーディングが抑制されていることが確認された。
ここで、遮光層の開口中心と導波路の入口中心のシフト量(S7 actual)、カラーフィルタのシフト量(S3 actual)、およびマイクロレンズのシフト量(S1 actual)の設定について説明する。図2において、d1=0.675μm、d2=0.3μm、d3=0.8μm、d4=0.3μm、d5=0.3μm、d6=0.3μm、d7=2.1μmとし、また、n0=1、n1=1.61、n2=1.56、n3=1.60、n4=1.56、n5=2.0、n6=1.46、n7=1.88、導波路の外側の絶縁層の屈折率=1.46とした。また、有効撮像領域の中心からX軸方向に1296個目でY方向に972個目の画素において主光線入射角度θ0が30°となり、有効撮像領域の中心では主光線入射角度θ0が0°となるようにθ0が変化するものとした。
そして、i=7の遮光層の開口中心と導波路の入口中心の想定シフト量S7は、主光線入射角度θ0を0°から30°(有効撮像領域の中心部から最外周部の画素までに相当)まで変化させて、上記の式(5)を基に、S7=Σj=7 7jtanθj=d7tanθ7ら算出した。このように算出したS7に、収差補正係数aとして0.5を乗じた値をXY軸にプロットして、図14に示すように、曲線Aを得た。また、式(5)から算出したS7に、収差補正係数aとして1.1を乗じた値をXY軸にプロットして、図14に示すように、曲線Bを得た。この曲線Aと曲線Bで挟まれた領域の任意の一直線として、最外周部の画素(X軸方向に1296個目でY軸方向に972個目の画素)のシフト量が0.520μm(X軸方向0.416μm、Y軸方向0.312μm)となる直線を設定し、この直線に乗るように、遮光層の開口中心と導波路の入口中心のシフト量(S7 actual)を設定した。
また、i=3のカラーフィルタの想定シフト量S3は、主光線入射角度θ0を0°から30°(有効撮像領域の中心部から最外周部の画素までに相当)まで変化させて、上記の式(5)を基に、S3=Σj=3 7jtanθjから算出した。このように算出したS3に、収差補正係数aとして0.5を乗じた値をXY軸にプロットして、図14に示すように、曲線Aを得た。また、式(5)から算出したS3に、収差補正係数aとして1.1を乗じた値をXY軸にプロットして、図14に示すように、曲線Bを得た。この曲線Aと曲線Bで挟まれた領域の任意の一直線として、最外周部の画素(X軸方向に1296個目でY軸方向に972個目の画素)のシフト量が1.016μm(X軸方向0.813μm、Y軸方向0.610μm)となる直線を設定し、この直線に乗るように、カラーフィルタのシフト量(S3 actual)を設定した。
また、i=1のマイクロレンズの想定シフト量S1は、主光線入射角度θ0を0°から30°(有効撮像領域の中心部から最外周部の画素までに相当)まで変化させて、上記の式(1)を基に、S1=Σj=1 7jtanθjから算出した。このように算出したS1に、上記の式(2)を基に、収差補正係数aとして0.5を乗じた値をXY軸にプロットして、図14に示すように、曲線Aを得た。また、式(1)から算出したS1に、上記の式(2)を基に、収差補正係数aとして1.1を乗じた値をXY軸にプロットして、図14に示すように、曲線Bを得た。この曲線Aと曲線Bで挟まれた領域の任意の一直線として、最外周部の画素(X軸方向に1296個目でY軸方向に972個目の画素)のシフト量が1.306μm(X軸方向1.045μm、Y軸方向0.784μm)となる直線を設定し、この直線に乗るように、マイクロレンズのシフト量(S1 actual)を設定した。
[実施例2]
カラーフィルタのシフト量(S3 actual)、および、マイクロレンズのシフト量(S1 actual)の設定を下記のように行い、遮光層の開口中心と導波路の入口中心はシフトさせない他は、実施例1と同様にして、本発明の固体撮像素子を作製した。
このように作製した固体撮像素子にF2.8で図13に示す特性のカメラレンズを組み合わせ(このカメラレンズと本実施例のCMOSセンサーの組み合わせにて、有効撮像領域の最外周付近(対角方向の四隅)で主光線入射角度が30°となる)、有効撮像領域の中(主光線入射角度0°)での感度を100%としたときの、主光線入射角度が5°、10°、15°、20°、25°、30°の各グリーン画素での相対感度を測定し、その結果を下記の表2に示した。表2に示される結果から、シェーディングが抑制されていることが確認された。
ここで、カラーフィルタのシフト量(S3 actual)、およびマイクロレンズのシフト量(S1 actual)の設定について説明する。図2において、d1=0.675μm、d2=0.3μm、d3=0.8μm、d4=0.3μm、d5=0.3μm、d6=0.3μm、d7=2.1μmとし、また、n0=1、n1=1.61、n2=1.56、n3=1.60、n4=1.56、n5=2.0、n6=1.46、n7=1.88、導波路の外側の絶縁層の屈折率=1.46とした。また、有効撮像領域の中心からX軸方向に1296個目でY方向に972個目の画素において主光線入射角度θ0が30°となり、有効撮像領域の中心では主光線入射角度θ0が0°となるようにθ0が変化するものとした。
そして、i=3のカラーフィルタの想定シフト量S3は、主光線入射角度θ0を0°から30°(有効撮像領域の中心部から最外周部の画素までに相当)まで変化させて、上記の式(6)を基に、S3=Σj=3 6jtanθjから算出した。このように算出したS3に、収差補正係数aとして0.6を乗じた値をXY軸にプロットして、図15に示すように、曲線Aを得た。また、式(6)から算出したS3に、収差補正係数aとして1.3を乗じた値をXY軸にプロットして、図15に示すように、曲線Bを得た。この曲線Aと曲線Bで挟まれた領域の任意の一直線として、最外周部の画素(X軸方向に1296個目でY軸方向に972個目の画素)のシフト量が0.717μm(X軸方向0.574μm、Y軸方向0.430μm)となる直線を設定し、この直線に乗るように、カラーフィルタのシフト量(S3 actual)を設定した。
また、i=1のマイクロレンズの想定シフト量S1は、主光線入射角度θ0を0°から30°(有効撮像領域の中心部から最外周部の画素までに相当)まで変化させて、上記の式(6)を基に、S1=Σj=1 6jtanθjから算出した。このように算出したS1に、収差補正係数aとして0.6を乗じた値をXY軸にプロットして、図15に示すように、曲線Aを得た。また、式(6)から算出したS1に、収差補正係数aとして1.3を乗じた値をXY軸にプロットして、図15に示すように、曲線Bを得た。この曲線Aと曲線Bで挟まれた領域の任意の一直線として、最外周部の画素(X軸方向に1296個目でY軸方向に972個目の画素)のシフト量が1.135μm(X軸方向0.908μm、Y軸方向0.681μm)となる直線を設定し、この直線に乗るように、マイクロレンズのシフト量(S1 actual)を設定した。
[実施例3]
マイクロレンズのシフト量(S1 actual)の設定を下記のように行い、遮光層の開口中心と導波路の入口中心、カラーフィルタはシフトさせない他は、実施例1と同様にして、本発明の固体撮像素子を作製した。
このように作製した固体撮像素子にF2.8で図13に示す特性のカメラレンズを組み合わせ(このカメラレンズと本実施例のCMOSセンサーの組み合わせにて、有効撮像領域の最外周付近(対角方向の四隅)で主光線入射角度が30°となる)、有効撮像領域の中(主光線入射角度0°)での感度を100%としたときの、主光線入射角度が5°、10°、15°、20°、25°、30°の各グリーン画素での相対感度を測定し、その結果を下記の表2に示した。表2に示される結果から、シェーディングが抑制されていることが確認された。
ここで、マイクロレンズのシフト量(S1 actual)の設定について説明する。図2において、d1=0.675μm、d2=0.3μm、d3=0.8μm、d4=0.3μm、d5=0.3μm、d6=0.3μm、d7=2.1μmとし、また、n0=1、n1=1.61、n2=1.56、n3=1.60、n4=1.56、n5=2.0、n6=1.46、n7=1.88、導波路の外側の絶縁層の屈折率=1.46とした。また、有効撮像領域の中心からX軸方向に1296個目でY方向に972個目の画素において主光線入射角度θ0が30°となり、有効撮像領域の中心では主光線入射角度θ0が0°となるようにθ0が変化するものとした。
そして、i=1のマイクロレンズの想定シフト量S1は、上記の式(3)を基に、S1=Σj=1 6jtanθjから算出し、上記の式(4)を基に、S1に収差補正係数aとして0.6を乗じて、マイクロレンズのシフト量(S1 actual)を設定した。
[比較例1]
遮光層の開口中心と導波路の入口中心、マイクロレンズおよびカラーフィルタはシフトさせない他は、実施例1と同様にして、固体撮像素子を作製した。
このように作製した固体撮像素子にF2.8で図13に示す特性のカメラレンズを組み合わせ(このカメラレンズと本実施例のCMOSセンサーの組み合わせにて、有効撮像領域の最外周付近(対角方向の四隅)で主光線入射角度が30°となる)、有効撮像領域の中(主光線入射角度0°)での感度を100%としたときの、主光線入射角度が5°、10°、15°、20°、25°、30°の各グリーン画素での相対感度を測定し、その結果を下記の表2に示した。表2に示される結果から、実施例1〜3に比べてシェーディング現象が顕著であった。
[比較例2]
カラーフィルタのシフト量を実施例2で説明した想定シフト量S3に設定し、マイクロレンズのシフト量を実施例2で説明した想定シフト量S1に設定して非線形シフトを行った他は、実施例1と同様にして、固体撮像素子を作製した。
このように作製した固体撮像素子にF2.8で図13に示す特性のカメラレンズを組み合わせ(このカメラレンズと本実施例のCMOSセンサーの組み合わせにて、有効撮像領域の最外周付近(対角方向の四隅)で主光線入射角度が30°となる)、有効撮像領域の中(主光線入射角度0°)での感度を100%としたときの、主光線入射角度が5°、10°、15°、20°、25°、30°の各グリーン画素での相対感度を測定し、その結果を下記の表2に示した。
表2に示される結果から、シェーディングの抑制効果は、実施例1とほぼ同等で、実施例2に比べて若干良好である。このことから、線形シフトを行う実施例1にて、非線形シフトと同程度のシェーディング抑制効果が可能であることが確認され、したがって、非線形シフトを用いる製造方法に比べて大幅に容易、安価に固体撮像素子の製造が可能であることが確認された。
Figure 2012054565
小型で高信頼性の固体撮像素子、撮像装置が要求される種々の分野において適用できる。
1…固体撮像素子
2…基板
3…受光素子
4,5…配線層
6…遮光層
7,7a…絶縁層
8…パッシベーション層
9…下平坦化層
10…カラーフィルタ
11…上平坦化層
12…マイクロレンズ
13…マイクロレンズアレイ
15…導波路
21,31…撮像装置

Claims (5)

  1. 2次元配置された複数の受光素子と、個々の前記受光素子に対応させて2次元配置された複数の導波路と、該導波路間に位置するとともに導波路よりも屈折率が低い絶縁層と、個々の前記受光素子に対応させて複数の開口部が2次元配置された遮光層と、個々の前記受光素子に対応させて赤色フィルタ、緑色フィルタ、青色フィルタが配列されてなるカラーフィルタと、個々の前記受光素子に対応させて複数のマイクロレンズが2次元配置されてなるマイクロレンズアレイとを少なくとも備え、これらが光入射側からマイクロレンズアレイ、カラーフィルタ、絶縁層と導波路、受光素子の順に配設され、遮光層は開口部のマイクロレンズ側の表面が導波路の入口と同一平面、あるいは、導波路の入口よりマイクロレンズ側、あるいは、導波路の入口より受光素子側となるように配設され、前記マイクロレンズはマイクロレンズの光軸側にコマ収差を生じる特性を有している固体撮像素子であり、
    各マイクロレンズの中心位置、あるいは、各マイクロレンズの中心位置と各カラーフィルタの中心位置は、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしており、該シフト量は、カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が、マイクロレンズへ入射する境界、および、マイクロレンズから受光素子に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路の入口中心に至る光路をとるものと想定して求められる前記光線の光路上の位置と、受光素子の中心に対応する位置との差から得られる想定シフト量に収差補正係数aを乗じて設定されており、
    各マイクロレンズの中心位置のみが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしているときの前記収差補正係数aは0.46≦a≦0.81の範囲であり、
    各マイクロレンズの中心位置と各カラーフィルタの中心位置とが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしているときの前記収差補正係数aは0.59≦a≦1.34の範囲であることを特徴とする固体撮像素子。
  2. 受光素子から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズを1層目とし、導波路入口をM′層目(M′≦M)としたときに、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siは下記の式(3)
    Si=Σj=i M'-1jtanθj … 式(3)
    ただし、dj=i層目からM′−1層目までの間に位置するj層目の厚み、
    θj=i層目からM′−1層目までの間に位置するj層目の光線角度
    であり、
    θj=sin-1((nj-1/nj)sinθj-1)で示され、
    0=1.0(0層目は大気)であり、
    jはj層目の屈折率であり、
    θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
    に入射した主光線入射角度である
    で設定され、
    i層目(i=1、2、・・・、N)のシフト量Si actualは下記の式(4)
    Si actual=a×Si … 式(4)
    ただし、aは収差補正係数
    で表されることを特徴とする請求項1に記載の固体撮像素子。
  3. 各マイクロレンズの中心位置と各カラーフィルタの中心位置とが、対応する受光素子の中心よりも有効撮像領域の中央部方向にシフトしている請求項1に記載の固体撮像素子の製造方法において、
    カメラレンズの射出瞳中心から各マイクロレンズの中心位置に入射した主光線が、マイクロレンズへ入射する境界、および、マイクロレンズから受光素子に到達するまでの光路上の各材料層の各境界において、境界両側の材質の屈折率の違いに対応して屈折し導波路の入口中心に至る光路をとるものと想定して求められる前記光線の光路上の位置と、受光素子の中心に対応する位置との差から得られる想定シフト量に、収差補正係数a1を乗じた値と収差補正係数a2を乗じた値を求め、各画素についての該2種の値をY軸に、有効撮像領域の中心を0番目とした画素数をX軸にプロットしたグラフ上にて、収差補正係数a1を乗じた値がなす曲線と収差補正係数a2を乗じた値がなす曲線で挟まれた領域の任意の一直線に乗るように前記シフト量を設定し、
    前記収差補正係数a1と前記収差補正係数a2は0.59〜1.34の範囲内であるとともに、a1<a2の関係にあることを特徴とする固体撮像素子の製造方法。
  4. 受光素子から光入射側に位置する積層構造がM層構造であり、最も光入射側に位置するマイクロレンズを1層目とし、導波路入口をM′層目(M′≦M)としたときに、1層目からN層目(1≦N<M′)までをシフトするときのi層目(i=1、2、・・・、N)の想定シフト量Siは下記の式(6)から求めることを特徴とする請求項3に記載の固体撮像素子の製造方法。
    Si=Σj=i M'-1jtanθj … 式(6)
    ただし、dj=i層目からM′−1層目までの間に位置するj層目の厚み、
    θj=i層目からM′−1層目までの間に位置するj層目の光線角度
    であり、
    θj=sin-1((nj-1/nj)sinθj-1)で示され、
    0=1.0(0層目は大気)であり、
    jはj層目の屈折率であり、
    θ0はカメラレンズの射出瞳中心からマイクロレンズの中心位置
    に入射した主光線入射角度である。
  5. 請求項1または請求項2に記載の固体撮像素子を備えることを特徴とする撮像装置。
JP2011204159A 2011-09-20 2011-09-20 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置 Expired - Fee Related JP5408215B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204159A JP5408215B2 (ja) 2011-09-20 2011-09-20 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204159A JP5408215B2 (ja) 2011-09-20 2011-09-20 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008236025A Division JP2010074218A (ja) 2008-09-16 2008-09-16 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置

Publications (2)

Publication Number Publication Date
JP2012054565A true JP2012054565A (ja) 2012-03-15
JP5408215B2 JP5408215B2 (ja) 2014-02-05

Family

ID=45907512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204159A Expired - Fee Related JP5408215B2 (ja) 2011-09-20 2011-09-20 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置

Country Status (1)

Country Link
JP (1) JP5408215B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904178A (zh) * 2017-12-07 2019-06-18 晶相光电股份有限公司 影像感测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160973A (ja) * 1999-12-02 2001-06-12 Nikon Corp 固体撮像素子及び電子カメラ
JP2003017476A (ja) * 2001-03-30 2003-01-17 Komatsu Ltd 半導体製造装置用の冷却装置と同冷却装置を備えたプラズマエッチング装置
JP2003258220A (ja) * 2002-02-28 2003-09-12 Canon Inc 撮像素子及び撮像装置
JP2003273342A (ja) * 2002-03-13 2003-09-26 Sony Corp 固体撮像素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160973A (ja) * 1999-12-02 2001-06-12 Nikon Corp 固体撮像素子及び電子カメラ
JP2003017476A (ja) * 2001-03-30 2003-01-17 Komatsu Ltd 半導体製造装置用の冷却装置と同冷却装置を備えたプラズマエッチング装置
JP2003258220A (ja) * 2002-02-28 2003-09-12 Canon Inc 撮像素子及び撮像装置
JP2003273342A (ja) * 2002-03-13 2003-09-26 Sony Corp 固体撮像素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904178A (zh) * 2017-12-07 2019-06-18 晶相光电股份有限公司 影像感测装置

Also Published As

Publication number Publication date
JP5408215B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
KR101117391B1 (ko) 광전 변환 장치 및 촬상 시스템
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
WO2013080872A1 (ja) 固体撮像装置および電子機器
TWI588981B (zh) 影像感測器
US10170516B2 (en) Image sensing device and method for fabricating the same
JP2006245101A (ja) カラーフィルタを有する撮像装置
WO2019215986A1 (ja) 撮像素子および撮像素子の製造方法
TW201104856A (en) Solid-state imaging device, camera, electronic apparatus, and method for manufacturing solid-state imaging device
JP6613648B2 (ja) 固体撮像素子および電子機器
JP5408216B2 (ja) 固体撮像素子の製造方法
JP4998310B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP2010074218A (ja) 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置
JP4957564B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP5408215B2 (ja) 固体撮像素子とその製造方法および固体撮像素子を用いた撮像装置
JP5326390B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP2008210904A (ja) 固体撮像装置とその製造方法
JP6801230B2 (ja) 固体撮像素子および電子機器
JP4998334B2 (ja) 固体撮像素子とそれを用いた撮像装置
JP5440649B2 (ja) 固体撮像素子の製造方法
JP4877215B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP5029640B2 (ja) 固体撮像装置、電子機器、固体撮像装置の製造方法
JP2019204932A (ja) 固体撮像装置
JP4998227B2 (ja) 固体撮像素子とその製造方法およびこの固体撮像素子を用いた撮像装置
JP2012186271A (ja) 固体撮像装置とその製造方法、および撮像モジュール
US20160268323A1 (en) Solid-state imaging device and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5408215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees