JP2012054492A - Semiconductor ultraviolet light-emitting element - Google Patents

Semiconductor ultraviolet light-emitting element Download PDF

Info

Publication number
JP2012054492A
JP2012054492A JP2010197651A JP2010197651A JP2012054492A JP 2012054492 A JP2012054492 A JP 2012054492A JP 2010197651 A JP2010197651 A JP 2010197651A JP 2010197651 A JP2010197651 A JP 2010197651A JP 2012054492 A JP2012054492 A JP 2012054492A
Authority
JP
Japan
Prior art keywords
ultraviolet
semiconductor light
light emitting
wavelength band
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197651A
Other languages
Japanese (ja)
Inventor
Toshihiko Aizawa
俊彦 相澤
Yoshiyuki Adachi
賀幸 足立
Hiroki Iwasaki
宏紀 岩崎
Togo Kinoshita
藤吾 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Precision Co Ltd
Original Assignee
NK Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NK Works Co Ltd filed Critical NK Works Co Ltd
Priority to JP2010197651A priority Critical patent/JP2012054492A/en
Priority to PCT/JP2010/072567 priority patent/WO2012029197A1/en
Publication of JP2012054492A publication Critical patent/JP2012054492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor ultraviolet light-emitting element in which optimal curing conditions of UV-curing resin suitable for a wide wavelength band can be obtained using a chip which emits light in the emission wavelength band of ultraviolet light.SOLUTION: Three types of semiconductor ultraviolet light-emitting chips 21 having different emission wavelength bands are provided as semiconductor ultraviolet light-emitting chip groups A, B, C in a single package. Emission wavelength bands of the semiconductor ultraviolet light-emitting chip groups are overlapped partially, and main leads 28a, 28b, 28c which supply currents independently to the respective semiconductor ultraviolet light-emitting chip groups are provided so that emission of the semiconductor ultraviolet light-emitting chips 21 included in the semiconductor ultraviolet light-emitting chip groups can be controlled.

Description

本発明は、紫外線半導体発光チップを備え、紫外線硬化樹脂の硬化、殺菌などの用途に用いる紫外線半導体発光素子に関する。   The present invention relates to an ultraviolet semiconductor light emitting device that includes an ultraviolet semiconductor light emitting chip and is used for applications such as curing and sterilization of an ultraviolet curable resin.

樹脂の硬化開始を制御することのできる紫外線硬化樹脂は、塗装分野、印刷分野、接着剤分野などで汎用されている。しかし、この紫外線硬化樹脂は、硬化を開始する波長域が異なる多数の種類が存在する。特許文献1には、基板にピーク波長が異なる複数種の紫外線発光ダイオードを備えた紫外線照射装置が開示されており、この紫外線照射装置を用いると、複数の紫外線発光ダイオードからピーク波長が異なる複数種類の紫外線が照射されることから、硬化の開始特性が異なる広汎な紫外線硬化型接着剤に対し、硬化を実現することができる。   Ultraviolet curable resins that can control the initiation of resin curing are widely used in the fields of painting, printing, adhesives, and the like. However, there are many types of ultraviolet curable resins having different wavelength ranges for starting curing. Patent Document 1 discloses an ultraviolet irradiation apparatus including a plurality of types of ultraviolet light emitting diodes having different peak wavelengths on a substrate. When this ultraviolet irradiation apparatus is used, a plurality of types having different peak wavelengths from the plurality of ultraviolet light emitting diodes are disclosed. Therefore, curing can be realized for a wide range of ultraviolet curable adhesives having different curing start characteristics.

また、特許文献2には、発光色が異なるLEDチップを1つのステムに支持した多色発光素子が記載されており、この多色発光素子では、赤色、緑色、青色に対応したチップを単一のステムに支持し、単一の共通の負電源と、赤色、緑色、青色に電圧を印加するための正電源とを備えて3つのLEDチップを独立して発光できるように構成している。   Patent Document 2 describes a multicolor light emitting device in which LED chips having different emission colors are supported on one stem. In this multicolor light emitting device, a single chip corresponding to red, green, and blue is used. And a single common negative power source and a positive power source for applying a voltage to red, green, and blue so that the three LED chips can emit light independently.

特開2008‐141038号公報JP 2008-141038 A 特開平7‐15044号公報Japanese Unexamined Patent Publication No. 7-15044

しかしながら、特許文献1の紫外線照射装置においては、異なる複数種の固有のピーク波長を有する紫外線発光ダイオードにより構成されるものであることから、照射できる紫外線は、複数の(例えば特許文献1では5種類の)波長の紫外線に限定されるため、反応が開始する最適硬化波長を数多く含む樹脂に対して、一部の波長の紫外線しか照射できず、硬化反応が充分に機能せず硬化不良を生じる恐れがある。またそのために、できる限り多くの波長に適合する紫外線照射装置を備えると、照射装置の品種が著しく増加して取り扱いが非常に煩雑となると同時に機器のコストアップを招く。   However, since the ultraviolet irradiation device of Patent Document 1 is composed of ultraviolet light-emitting diodes having a plurality of different intrinsic peak wavelengths, a plurality of ultraviolet rays (for example, five types in Patent Document 1) can be irradiated. Because the resin is limited to ultraviolet rays having a wavelength, only a part of the ultraviolet rays having the optimum curing wavelength at which the reaction starts can be irradiated, and the curing reaction may not function sufficiently, resulting in poor curing. There is. For this reason, when an ultraviolet irradiation device adapted to as many wavelengths as possible is provided, the types of irradiation devices are remarkably increased and handling becomes very complicated, and at the same time, the cost of the apparatus is increased.

更には、特許文献1の紫外線照射装置は、紫外線発光ダイオード毎に波長を異ならせて構成することから、照射光波長の分布度合いが粗くなり、従って広範囲に亘る好適な波長分布が得られないという問題がある。   Furthermore, since the ultraviolet irradiation device of Patent Document 1 is configured by changing the wavelength for each ultraviolet light-emitting diode, the degree of distribution of the irradiation light wavelength becomes coarse, and therefore a suitable wavelength distribution over a wide range cannot be obtained. There's a problem.

また、特許文献2の多色発光素子においては、3つのLEDチップから赤色、緑色、青色の発光が得られるものの、紫外線の発光はなく、紫外線硬化樹脂に対する硬化開始作用は得られない。即ちこの多色発光素子は、離れた各色のピーク波長を有する3つのLEDチップからの光が得られるに過ぎないものである。   In the multicolor light emitting element of Patent Document 2, red, green, and blue light emission can be obtained from the three LED chips, but there is no ultraviolet light emission, and no curing initiating action for the ultraviolet curable resin can be obtained. In other words, this multicolor light emitting device can only obtain light from three LED chips having peak wavelengths of different colors.

ここで、例えば接着剤や印刷用インキなどの紫外線硬化樹脂を硬化させるために紫外線を照射する処理を考えると、照射される紫外線硬化樹脂の表面における紫外線の照度(ピーク照度)と照射時間との関係である積算光量が重要となる。つまり、紫外線硬化樹脂を適正に硬化させるには、低い照度では照射時間を長くし、高い照度では照射時間を短縮する関係が成り立つ。しかしながら、この関係は、あまり低い照度では成り立たず、紫外線硬化樹脂を硬化させるためには、所定の基準値(最低照度)を超える照度を必要とすることが確認されている。また、高い照度であっても過剰な照度である場合には、たとえ照射時間を短くして所定の積算光量としても、充分な硬化が得られないことが確認されている。なお、本発明において「照度」とは、被照射物の表面における単位面積当たりに受ける照射強度を示すものであり、「ピーク照度」とは光源の直下等で得られる最大の照度の値を示すものである。   Here, for example, when considering a process of irradiating ultraviolet rays to cure an ultraviolet curable resin such as an adhesive or printing ink, the illuminance (peak illuminance) of ultraviolet rays on the surface of the irradiated ultraviolet curable resin and the irradiation time The related integrated light quantity is important. That is, in order to properly cure the ultraviolet curable resin, there is a relationship in which the irradiation time is lengthened at low illuminance and the irradiation time is shortened at high illuminance. However, this relationship does not hold at very low illuminance, and it has been confirmed that illuminance exceeding a predetermined reference value (minimum illuminance) is required to cure the ultraviolet curable resin. Further, it has been confirmed that when the illumination intensity is excessive even if the illumination intensity is high, sufficient curing cannot be obtained even if the irradiation time is shortened to obtain a predetermined integrated light amount. In the present invention, “illuminance” indicates the irradiation intensity received per unit area on the surface of the object to be irradiated, and “peak illuminance” indicates the maximum illuminance value obtained directly below the light source. Is.

一方、紫外線半導体発光素子の発光により照射される紫外線の発光量は、図12(a)に示すように、発光量が最大となるピーク波長を中央にして、このピーク波長から離れる発光波長帯域の領域ほど発光量が低下するような発光強度分布を示す。このような紫外線半導体発光素子の発光強度分布と、紫外線硬化樹脂を硬化させるために必要な最低照度(Emin)は、図12(b)に示すような関係となり、発光量が最低照度(Emin)以下となる発光波長帯域(W1,W2)において照射される紫外線は、紫外線硬化樹脂の硬化には用いられなくなり、無駄となってしまう。   On the other hand, as shown in FIG. 12A, the light emission amount of the ultraviolet light irradiated by the light emission of the ultraviolet semiconductor light-emitting element is in the light emission wavelength band away from the peak wavelength with the peak wavelength at which the light emission amount becomes maximum at the center. The light emission intensity distribution is such that the light emission amount decreases as the area increases. The light emission intensity distribution of such an ultraviolet semiconductor light emitting element and the minimum illuminance (Emin) necessary for curing the ultraviolet curable resin have a relationship as shown in FIG. 12B, and the light emission amount is the minimum illuminance (Emin). The ultraviolet rays irradiated in the emission wavelength bands (W1, W2) to be described below are not used for curing the ultraviolet curable resin and are wasted.

本発明の目的は、上述の背景に鑑みてなされたものであり、紫外線の発光波長帯域の所定の発光波長帯域で発光する半導体発光チップを用いて、広範な波長帯域で好適な紫外線硬化樹脂の最適な硬化条件が得られる紫外線半導体発光素子を提供する点にある。   The object of the present invention has been made in view of the above-mentioned background. Using a semiconductor light-emitting chip that emits light in a predetermined light emission wavelength band of the ultraviolet light emission wavelength band, an ultraviolet curable resin suitable for a wide wavelength band can be obtained. It is in the point which provides the ultraviolet-ray semiconductor light-emitting device from which optimal hardening conditions are obtained.

本発明の紫外線半導体発光素子は、電流を流すことにより紫外線の発光波長帯域の所定の発光波長で発光する半導体発光チップを複数個配置して構成される紫外線半導体発光素子であって、前記半導体発光チップを複数個配置したパッケージを備え、前記パッケージには、異なるピーク波長を有し、発光波長帯域の一部が互いに重複する複数個の前記半導体発光チップを配置しており、前記半導体発光チップは、前記発光波長帯域内で所定の発光強度分布を形成し、前記重複する発光波長帯域において前記発光強度分布の交点での発光波長における発光量が、所定の基準値の2分の1より大きく、前記所定の基準値を超えないことを特徴とするものである。   The ultraviolet semiconductor light emitting device of the present invention is an ultraviolet semiconductor light emitting device configured by arranging a plurality of semiconductor light emitting chips that emit light at a predetermined light emission wavelength in an ultraviolet light emission wavelength band by passing an electric current. A package in which a plurality of chips are arranged, and the package includes a plurality of the semiconductor light emitting chips having different peak wavelengths and overlapping a part of the emission wavelength band. Forming a predetermined emission intensity distribution within the emission wavelength band, and an emission amount at an emission wavelength at an intersection of the emission intensity distributions in the overlapping emission wavelength band is greater than a half of a predetermined reference value; The predetermined reference value is not exceeded.

上記の如く、本発明の紫外線半導体発光素子は、異なるピーク波長を有し、発光波長帯域の一部が互いに重複する複数個の半導体発光チップをパッケージに複数配置したことによって、異なる発光波長帯域の紫外線を照射することができるだけではなく、発光波長帯域の一部が重なり合っており、この重なり部分の発光波長帯域において、発光強度分布の交点の発光波長における発光量が、所定の基準値の2分の1より大きく、所定の基準値を超えないため、重なり部分の発光量の合成値を所定の基準値以上に増大させることができ、広範な波長帯域において有効な照度で紫外線を照射させることができる。   As described above, the ultraviolet semiconductor light emitting device of the present invention has a plurality of semiconductor light emitting chips having different peak wavelengths and overlapping a part of the light emission wavelength band. In addition to being able to irradiate ultraviolet rays, a part of the light emission wavelength band overlaps, and in this light emission wavelength band, the light emission quantity at the light emission wavelength at the intersection of the light emission intensity distribution is two minutes of the predetermined reference value. Therefore, it is possible to increase the combined value of the light emission amounts of the overlapping portions to a predetermined reference value or more, and to irradiate ultraviolet rays with an effective illuminance in a wide wavelength band. it can.

紫外線半導体発光チップの発光により照射される紫外線は、上述のように発光量が最大となるピーク波長を中央にして、このピーク波長から離れる発光波長帯域の領域ほど発光量が低下するような発光強度分布を示している。よって、紫外線半導体発光素子として、異なるピーク波長を有し、発光波長帯域の一部が互いに重複する複数の紫外線半導体発光チップを用いた場合には、重複している発光波長帯域における発光強度は、各半導体発光チップの発光強度分布を合成した発光強度分布を示す。つまり、単一の半導体発光チップにおけるピーク波長から離れた発光波長帯域のように、単独の半導体発光チップによる照射だけでは発光量が低く、例えば紫外線硬化樹脂の硬化が不能である発光波長帯域であっても、複数の半導体発光チップの発光波長帯域を重複させることにより、発光量の合成値を増大させることができるため、個々の半導体発光チップの発光量を増大させることなく有効な照度の紫外線の照射を可能にしているのである。   The ultraviolet light emitted by the light emitted from the ultraviolet semiconductor light-emitting chip has a light emission intensity such that the light emission amount decreases in the region of the light emission wavelength band with the peak wavelength at which the light emission amount becomes maximum at the center as described above. Distribution is shown. Therefore, when using a plurality of ultraviolet semiconductor light-emitting chips having different peak wavelengths and part of the emission wavelength band overlapping each other as the ultraviolet semiconductor light-emitting element, the emission intensity in the overlapping emission wavelength band is The emission intensity distribution obtained by synthesizing the emission intensity distribution of each semiconductor light emitting chip is shown. In other words, the light emission amount is low only by irradiation with a single semiconductor light emitting chip, such as the light emission wavelength band far from the peak wavelength in a single semiconductor light emitting chip. However, by overlapping the emission wavelength bands of a plurality of semiconductor light emitting chips, it is possible to increase the combined value of the light emission amounts. Irradiation is possible.

また、本発明の紫外線半導体発光素子は、前記重複する発光波長帯域内において、いずれか一つの前記半導体発光チップの発光量が零に到るまでの各波長における、前記いずれか一つの半導体発光チップの発光量と他の前記半導体発光チップの発光量との合成値が、前記所定の基準値を超えていることを特徴とするものである。   Also, the ultraviolet semiconductor light emitting device of the present invention is the semiconductor light emitting chip according to any one of the wavelengths until the light emission amount of any one of the semiconductor light emitting chips reaches zero within the overlapping light emission wavelength band. A combined value of the amount of emitted light and the amount of emitted light of the other semiconductor light emitting chip exceeds the predetermined reference value.

上述の如く、本発明の紫外線半導体発光素子は、重複する発光波長帯域内において、いずれか一つの半導体発光チップの発光量が零に到るまでの各波長における、前記いずれか一つの半導体発光チップの発光量及び他の半導体発光チップの発光量との合成値が、所定の基準値を超えているため、重複する発光波長帯域における全ての波長帯域において、発光量の合成値が所定の基準値を超えることになり、重複する波長帯域を含む広範な発光波長帯域において、有効な照度で紫外線を照射させることができる。   As described above, the ultraviolet semiconductor light emitting device according to the present invention includes any one of the semiconductor light emitting chips at each wavelength until the light emission amount of any one of the semiconductor light emitting chips reaches zero within the overlapping light emission wavelength band. The combined value of the light emission amount and the light emission amount of other semiconductor light emitting chips exceeds a predetermined reference value, so the combined value of the light emission amount is a predetermined reference value in all wavelength bands in the overlapping light emission wavelength band. Therefore, it is possible to irradiate ultraviolet rays with effective illuminance in a wide emission wavelength band including overlapping wavelength bands.

また、本発明の紫外線半導体発光素子は、前記パッケージに配置される複数の前記半導体発光チップが、前記発光波長帯域内で発光量が最大となるピーク波長を有しており、前記発光波長帯域の一部が互いに重複する複数個の前記半導体発光チップ間において、それぞれのピーク波長の差が5〜20nmの範囲であることを特徴とするものである。   In the ultraviolet semiconductor light-emitting device of the present invention, the plurality of semiconductor light-emitting chips arranged in the package have a peak wavelength that maximizes the amount of light emission within the emission wavelength band. The difference between the peak wavelengths of the plurality of semiconductor light emitting chips that partially overlap each other is in the range of 5 to 20 nm.

上述の如く、発光波長帯域の一部が互いに重複する複数の半導体発光チップ間において、ピーク波長の差を5〜20nmとすることにより、発光波長帯域が重なり合う領域の合成発光強度を、個々の半導体発光チップの発光量より増大させることができる。それにより、個々の半導体発光チップの発光量を増加させること無く、広範な波長帯域において有効な照度で紫外線を照射させることができる。   As described above, the difference in peak wavelength between a plurality of semiconductor light emitting chips in which a part of the light emission wavelength band overlaps with each other is set to 5 to 20 nm, whereby the combined light emission intensity of the region where the light emission wavelength bands are overlapped is determined for each semiconductor. The amount of light emitted from the light emitting chip can be increased. Thereby, it is possible to irradiate ultraviolet rays with effective illuminance in a wide wavelength band without increasing the light emission amount of each semiconductor light emitting chip.

紫外線半導体発光素子として、異なるピーク波長を有し、発光波長帯域の一部が互いに重複する複数の紫外線半導体発光チップを用いた場合であっても、各半導体発光チップのピーク波長が離れていれば、合成した発光量の発光強度分布はピーク波長の間で谷のように低下する形状となる。この発光強度分布が低下した谷の部分の発光量が、所定値以下であれば、その発光波長帯域においては、有効な照度で紫外線を照射することができない。しかし、上述の如く、発光波長帯域の一部が互いに重複する複数の半導体発光チップのピーク波長の差を5〜20nmとすることにより、発光波長帯域が重なり合う領域の合成発光量を、所定値以上とすることができ、個々の半導体発光チップの発光量より増大させることができる。なお、後述するように、複数の半導体発光チップのピーク波長の差は10〜15nmであることがより好ましい。   Even when a plurality of ultraviolet semiconductor light-emitting chips having different peak wavelengths and overlapping a part of the emission wavelength band are used as the ultraviolet semiconductor light-emitting elements, the peak wavelengths of the semiconductor light-emitting chips are separated from each other. The emission intensity distribution of the synthesized emission amount has a shape that decreases like a valley between peak wavelengths. If the light emission amount in the valley portion where the light emission intensity distribution is reduced is equal to or less than a predetermined value, it is impossible to irradiate ultraviolet rays with effective illuminance in the light emission wavelength band. However, as described above, by setting the difference between the peak wavelengths of a plurality of semiconductor light emitting chips whose light emission wavelength bands partially overlap each other to 5 to 20 nm, the combined light emission amount in the region where the light emission wavelength bands overlap is equal to or greater than a predetermined value. And the amount of light emitted from each semiconductor light emitting chip can be increased. As will be described later, the difference in peak wavelengths of the plurality of semiconductor light emitting chips is more preferably 10 to 15 nm.

更に、本発明の紫外線半導体発光素子は、前記パッケージが、配置された複数個の前記半導体発光チップを同時に制御可能な半導体発光チップ群として、この半導体発光チップ群を複数配置しており、複数の前記半導体発光チップ群は、前記発光波長帯域内において複数の発光強度分布を形成することを特徴とするものである。   Furthermore, in the ultraviolet semiconductor light emitting device of the present invention, a plurality of semiconductor light emitting chip groups are arranged as a semiconductor light emitting chip group in which the package can simultaneously control the plurality of semiconductor light emitting chips arranged, The semiconductor light emitting chip group forms a plurality of light emission intensity distributions within the light emission wavelength band.

上述の如く、本発明の紫外線半導体発光素子は、パッケージに配置された半導体発光チップが、複数個同時に制御可能な半導体発光チップ群として配置されており、複数の発光強度分布を形成しているため、様々な発光強度分布を有する紫外線を照射することができ、例えば、反応が開始する最適硬化波長を数多く含む紫外線硬化樹脂に対しても、硬化反応を充分に促進することができる。   As described above, in the ultraviolet semiconductor light emitting device of the present invention, a plurality of semiconductor light emitting chips arranged in a package are arranged as a group of semiconductor light emitting chips that can be controlled simultaneously, thereby forming a plurality of light emission intensity distributions. It is possible to irradiate ultraviolet rays having various emission intensity distributions. For example, the curing reaction can be sufficiently accelerated even for an ultraviolet curable resin including many optimum curing wavelengths at which the reaction starts.

更に、前記パッケージは、配置された前記半導体発光チップを個別に、或いは、半導体発光チップ群単位で独立に電流制御可能な配線を備えており、前記配線の接続によって、前記半導体発光チップまたは前記半導体発光チップ群を個々に電流制御することにより、前記発光波長帯域内の発光強度分布を制御可能としたことを特徴とするものである。   Further, the package includes a wiring capable of controlling the current of the arranged semiconductor light emitting chips individually or in units of semiconductor light emitting chip groups, and the semiconductor light emitting chip or the semiconductor is connected by the connection of the wirings. The light emission intensity distribution within the light emission wavelength band can be controlled by individually controlling the current of the light emitting chip group.

上述の如く、前記半導体発光チップは、個別あるいは群単位で、それぞれ独立に電流制御可能な配線を備えているため、例えば紫外線照射装置に配線接続された紫外線半導体発光素子を、半導体発光チップ個別あるいは半導体発光チップ群単位で、電流制御することにより、発せられる紫外線の発光強度を発光波長単位で細かく制御することができる。また、紫外線半導体発光素子の半導体発光チップまたは半導体発光チップ群を個々に電流制御することにより、発光波長帯域内の発光強度分布を所望の分布形状とすることができるため、複数の波長の紫外線を照射しつつ、特定波長帯域の発光強度が強い分布となるように制御することができる。それにより、被照射物の紫外線吸収特性に応じて、特定の波長帯域の発光強度を強めるなどの制御を行ったり、波長による被照射物への浸透力の違いを利用して、例えば短波長側の紫外線発光量を強めた分布とすることで、被照射物の表面への照射を強めたり、長波長側の紫外線発光量を強めた分布とすることで、被照射物の奥側への照射を強めたりすることができるようになり、目的に応じた効率的な紫外線の照射を行うことができる。   As described above, since the semiconductor light emitting chip includes wirings that can be individually controlled in current individually or in groups, for example, an ultraviolet semiconductor light emitting element that is connected to an ultraviolet irradiation device by wiring, By controlling the current in units of semiconductor light emitting chips, the intensity of emitted ultraviolet light can be finely controlled in units of emission wavelength. In addition, by individually controlling the current of the semiconductor light-emitting chip or semiconductor light-emitting chip group of the ultraviolet semiconductor light-emitting element, the light emission intensity distribution within the light emission wavelength band can be made into a desired distribution shape. While irradiating, it can be controlled so that the emission intensity in a specific wavelength band has a strong distribution. Thereby, depending on the ultraviolet absorption characteristics of the irradiated object, control such as increasing the emission intensity in a specific wavelength band, or using the difference in penetrating power to the irradiated object depending on the wavelength, for example, on the short wavelength side Irradiation to the back side of the irradiated object by strengthening the irradiation of the surface of the irradiated object by increasing the ultraviolet light emission amount of the light, or by increasing the ultraviolet light emission amount on the long wavelength side Can be strengthened, and efficient ultraviolet irradiation according to the purpose can be performed.

サテライト型の印刷装置の構成の概要を示す側面図である。It is a side view which shows the outline | summary of a structure of a satellite type printing apparatus. サテライト型の印刷装置の構成の概要を示す平面図である。1 is a plan view showing an outline of a configuration of a satellite type printing apparatus. 紫外線半導体発光素子を備える紫外線光源ユニットを示す斜視図である。It is a perspective view which shows an ultraviolet-ray light source unit provided with an ultraviolet-ray semiconductor light-emitting device. 基板に対する紫外線半導体発光素子の配置を示す図である。It is a figure which shows arrangement | positioning of the ultraviolet-ray semiconductor light-emitting device with respect to a board | substrate. 紫外線半導体発光素子の平面図である。It is a top view of an ultraviolet-ray semiconductor light-emitting device. 紫外線半導体発光素子の断面図である。It is sectional drawing of an ultraviolet-ray semiconductor light-emitting device. 3種の半導体発光チップ群を含む紫外線半導体発光素子の平面図である。It is a top view of the ultraviolet-ray semiconductor light-emitting device containing 3 types of semiconductor light-emitting chip groups. 発光波長帯域Rの発光強度分布特性曲線を示す図である。It is a figure which shows the light emission intensity distribution characteristic curve of the light emission wavelength band. 紫外線半導体発光素子の電流と発光量の特性を示す図である。It is a figure which shows the characteristic of the electric current and light emission amount of an ultraviolet-ray semiconductor light-emitting device. 発光強度分布が漸減する分布特性曲線を示す図である。It is a figure which shows the distribution characteristic curve which light emission intensity distribution reduces gradually. 発光強度分布が正規分布に近い分布特性曲線を示す図である。It is a figure which shows the distribution characteristic curve whose light emission intensity distribution is close to normal distribution. (a)は紫外線半導体発光素子の発光量の特性を示す図である。(b)は紫外線半導体発光素子の発光量の特性と最低照度との関係を示す図である。(A) is a figure which shows the characteristic of the light-emission quantity of an ultraviolet-ray semiconductor light-emitting device. (B) is a figure which shows the relationship between the characteristic of the light-emission quantity of an ultraviolet-ray semiconductor light-emitting device, and minimum illumination intensity. 紫外線半導体発光素子と被照射面との距離の関係を示す図である。It is a figure which shows the relationship of the distance of a ultraviolet-ray semiconductor light-emitting device and a to-be-irradiated surface.

以下、本発明の実施形態を図面に基づいて説明する。
〔紫外線半導体発光素子〕
本発明の紫外線半導体発光素子Dは、図5及び図6に示すように、平面視(図5に示す方向視)正方形状をなす基材22、及び、この基材22の外周縁を囲む枠体23とからなるケース本体と、このケース本体を覆蓋する石英ガラス製の保護カバー24と、複数の(本実施形態では9個の)紫外線半導体発光チップ21とを含みパッケージとして構成される。なお、前記基材22と枠体23とは、絶縁性のセラミックス材で形成され、保護カバー24で覆蓋されるケース本体内部空間は、窒素ガス等の不活性ガスが封入されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Ultraviolet semiconductor light emitting device]
As shown in FIGS. 5 and 6, the ultraviolet semiconductor light emitting device D of the present invention has a base material 22 that is square when viewed in plan (direction view shown in FIG. 5), and a frame that surrounds the outer periphery of the base material 22. A case main body constituted by the body 23, a quartz glass protective cover 24 covering the case main body, and a plurality of (in this embodiment, nine) ultraviolet semiconductor light emitting chips 21 are configured as a package. The base material 22 and the frame body 23 are formed of an insulating ceramic material, and an inert gas such as nitrogen gas is sealed in the case body internal space covered with the protective cover 24.

基材22の上面には、銅等の良導体の金属箔でなるセンター電極25とサイド電極26とが形成され、このセンター電極25に対して複数の紫外線半導体発光チップ21を導電性のダイボンディングにより固定し、それぞれの紫外線半導体発光チップ21の上面とサイド電極26とをボンディングワイヤ27で接続している。   A center electrode 25 and a side electrode 26 made of a metal foil of a good conductor such as copper are formed on the upper surface of the substrate 22, and a plurality of ultraviolet semiconductor light emitting chips 21 are bonded to the center electrode 25 by conductive die bonding. The upper surface of each ultraviolet semiconductor light emitting chip 21 and the side electrode 26 are connected by a bonding wire 27.

また、前記基材22の外周部分に環状の枠体23が接着固定され、この枠体23の開口部分に嵌め込む状態で保護カバー24が備えられている。枠体23の内周部分には、開口側ほど枠体23の外縁方向に向かう傾斜姿勢の内壁23Sを備え、この内壁23Sは紫外線半導体発光チップ21からの光線を開口側の方向に反射させるように機能する。また、基材22の上面のセンター電極25は平滑に仕上げられ、この基材22のうちセンター電極25の外周の領域は反射率が高くなる仕上げが施されている。この外周の領域の仕上げの具体例として、白色等の塗装を行うことや、平滑面に仕上げることを挙げることができ、このような表面処理によっても紫外線半導体発光チップ21からの紫外線を開口の方向に効率的に反射させることが可能となる。   An annular frame body 23 is bonded and fixed to the outer peripheral portion of the base material 22, and a protective cover 24 is provided in a state of being fitted into the opening portion of the frame body 23. The inner peripheral portion of the frame body 23 is provided with an inner wall 23S that is inclined toward the outer edge direction of the frame body 23 toward the opening side, and this inner wall 23S reflects the light beam from the ultraviolet semiconductor light emitting chip 21 in the direction of the opening side. To work. Further, the center electrode 25 on the upper surface of the base material 22 is finished smoothly, and the outer peripheral region of the center electrode 25 of the base material 22 is finished so as to increase the reflectance. As specific examples of the finishing of the outer peripheral region, it is possible to apply a white coating or finish a smooth surface, and the ultraviolet rays from the ultraviolet semiconductor light-emitting chip 21 are also directed to the opening direction by such surface treatment. Can be efficiently reflected.

この実施形態では、各紫外線半導体発光チップ21を電気的に並列に接続しており、センターリード28とサイドリード29との間に印加された電圧が各紫外線半導体発光チップ21に等しく印加され、発光が実現する。また、センターリード28と、サイドリード29と、ボンディングワイヤ27とを有した給電系(配線の一例)を備えているが、給電系の構成はこれに限るものではない。   In this embodiment, each ultraviolet semiconductor light emitting chip 21 is electrically connected in parallel, and the voltage applied between the center lead 28 and the side lead 29 is equally applied to each ultraviolet semiconductor light emitting chip 21 to emit light. Is realized. Further, although a power feeding system (an example of wiring) having the center lead 28, the side lead 29, and the bonding wire 27 is provided, the configuration of the power feeding system is not limited to this.

図5に示す如く、紫外線半導体発光素子Dでは、1つのケースに対して9個の紫外線半導体発光チップ21を備えているが、紫外線半導体発光チップ21の数は9個に限るものではない。また、枠体23の内周側面で囲まれた基材22の表面積に対して備えられる紫外線半導体発光チップ21の数は、基材22の表面積1平方センチメートルあたり9〜25個程度の密度が良く、16個程度が好ましい。本実施形態では、縦横が0.7センチメートルの基材22の表面積に対して9個の紫外線半導体発光チップ21が設けられ、これは表面積1平方センチメートルあたり18個に相当する。   As shown in FIG. 5, the ultraviolet semiconductor light emitting element D includes nine ultraviolet semiconductor light emitting chips 21 for one case, but the number of ultraviolet semiconductor light emitting chips 21 is not limited to nine. Further, the number of the ultraviolet semiconductor light emitting chips 21 provided for the surface area of the base material 22 surrounded by the inner peripheral side surface of the frame body 23 has a density of about 9 to 25 per square centimeter of the surface area of the base material 22, About 16 are preferable. In the present embodiment, nine ultraviolet semiconductor light emitting chips 21 are provided for the surface area of the base material 22 having a height and width of 0.7 centimeter, which corresponds to 18 pieces per square centimeter of surface area.

紫外線半導体発光チップ21の分布密度が1平方センチメートルあたり9個未満では、紫外線半導体発光素子Dによる紫外線発光量が不足しがちとなり、紫外線硬化樹脂の硬化に用いる場合には、樹脂の硬化が不充分或いは遅延する恐れがある。更に、複数の紫外線半導体発光素子を用いてモジュールを構成する場合には、必要照射エネルギーに応じて多数の紫外線半導体発光素子を実装する必要があり、煩雑なモジュール構成になる。逆に25個を超えると、紫外線半導体発光チップが過密な配置となり、紫外線半導体発光素子が煩雑な構造となると同時に放熱による冷却が効率的に行えなくなる。   If the distribution density of the ultraviolet semiconductor light emitting chips 21 is less than 9 per square centimeter, the amount of ultraviolet light emitted by the ultraviolet semiconductor light emitting element D tends to be insufficient, and when used for curing an ultraviolet curable resin, the resin is insufficiently cured or There is a risk of delay. Furthermore, when a module is configured using a plurality of ultraviolet semiconductor light emitting elements, it is necessary to mount a large number of ultraviolet semiconductor light emitting elements according to the required irradiation energy, resulting in a complicated module configuration. On the other hand, if the number exceeds 25, the ultraviolet semiconductor light emitting chips are arranged in an overly dense manner, and the ultraviolet semiconductor light emitting element has a complicated structure, and at the same time, cooling by heat dissipation cannot be performed efficiently.

また、複数の紫外線半導体発光チップ21を備える形態として縦方向と横方向での個数が異なっても良い。この実施形態では各紫外線半導体発光チップ21を電気的に並列に接続しているが、全てを直列に接続することや、例えば、3個を1組として並列に接続し、この3組を直列に接続する等、並列的な接続と直列的な接続とを組み合わせても良い。紫外線半導体発光素子Dには、必ずしも保護カバー24を備える必要はなく、円形や帯状の基材22に対して紫外線半導体発光チップ21を備えても良い。   Further, the number of the ultraviolet semiconductor light emitting chips 21 may be different in the number in the vertical direction and the horizontal direction. In this embodiment, the ultraviolet semiconductor light emitting chips 21 are electrically connected in parallel. However, all the ultraviolet semiconductor light emitting chips 21 are connected in series, for example, three are connected in parallel as one set, and the three sets are connected in series. You may combine parallel connection and serial connection, such as connecting. The ultraviolet semiconductor light emitting element D is not necessarily provided with the protective cover 24, and the ultraviolet semiconductor light emitting chip 21 may be provided with respect to the circular or belt-like base material 22.

基材22に備えられる9個の紫外線半導体発光チップ21の波長は、紫外線硬化樹脂の硬化に適した波長帯域(予め設定された波長帯域)でばらつきのあるものが用いられている。ここで、波長のばらつきとは、複数の紫外線半導体発光チップ21の発光波長が、偏りなく分布している状態をいう。なお、この複数の紫外線半導体発光チップ21が基材22に備えられる位置は決める必要はなくランダムに分散して配置しても良い。   The nine ultraviolet semiconductor light-emitting chips 21 provided on the base material 22 have different wavelengths in a wavelength band (a preset wavelength band) suitable for curing an ultraviolet curable resin. Here, the variation in wavelength means a state in which the emission wavelengths of the plurality of ultraviolet semiconductor light emitting chips 21 are distributed evenly. The positions where the plurality of ultraviolet semiconductor light emitting chips 21 are provided on the base material 22 do not need to be determined, and may be randomly distributed and arranged.

〔紫外線半導体発光素子の別実施形態〕
また、波長にばらつきのない複数の紫外線半導体発光チップ21を基材22に備えた紫外線半導体発光素子Dの一例を図7に示している。この紫外線半導体発光素子Dでは、所望の発光波長帯域内において異なる発光波長帯域を有する3つのチップ群A、B、Cを備えている。具体的には同図に示す如く、発光波長帯域の異なるチップ群A、チップ群B、チップ群Cそれぞれを複数の紫外線半導体発光チップ21で構成し、これらを一纏めとしてパッケージ内に配列している。このように発光波長帯域の異なるチップ群A、チップ群B、チップ群Cを並べて配置して紫外線半導体発光素子Dを構成すると、より広範囲の波長帯域の紫外線を照射することが可能となる。
[Another Embodiment of Ultraviolet Semiconductor Light Emitting Element]
FIG. 7 shows an example of an ultraviolet semiconductor light-emitting element D provided with a plurality of ultraviolet semiconductor light-emitting chips 21 having no variation in wavelength on the base material 22. The ultraviolet semiconductor light emitting device D includes three chip groups A, B, and C having different emission wavelength bands within a desired emission wavelength band. Specifically, as shown in the figure, each of chip group A, chip group B, and chip group C having different emission wavelength bands is composed of a plurality of ultraviolet semiconductor light-emitting chips 21, and these are collectively arranged in a package. . When the ultraviolet semiconductor light emitting element D is configured by arranging the chip group A, the chip group B, and the chip group C having different emission wavelength bands in this manner, it is possible to irradiate ultraviolet rays in a wider wavelength band.

各チップ群A、B、Cの紫外線半導体発光チップ21は、チップ群毎に電流制御できるように、3つの主リード28a、28b、28cと単一のサイドリード29とを備えており、3つの主リード28a、28b、28cに電気的に導通する導体に対して、対応するチップ群の紫外線半導体発光チップ21を導電性のダイボンディングにより固定し、単一のサイドリード29に電気的に導通する導体と、各紫外線半導体発光チップ21とをボンディングワイヤ27で接続している。このような構成から、後述するようにチップ群毎に供給する電流値の制御を行うことにより、照射する紫外線の発光強度分布が、均一化、傾斜化、正規分布化できるように制御可能に構成されている。   The ultraviolet semiconductor light-emitting chips 21 of the chip groups A, B, and C include three main leads 28a, 28b, and 28c and a single side lead 29 so that current control can be performed for each chip group. The ultraviolet semiconductor light emitting chip 21 of the corresponding chip group is fixed to the conductors electrically connected to the main leads 28a, 28b, 28c by conductive die bonding, and is electrically connected to the single side lead 29. The conductor and each ultraviolet semiconductor light emitting chip 21 are connected by a bonding wire 27. From such a configuration, by controlling the current value supplied to each chip group as will be described later, the configuration can be controlled so that the emission intensity distribution of the irradiated ultraviolet rays can be made uniform, inclined, and normal distribution. Has been.

このように構成される紫外線半導体発光素子Dも、先に説明した実施形態と同様に枠体23の開口部分には石英ガラス製の保護カバー24が備えられ、内部には窒素ガスなどの不活性ガスが封入されている。各紫外線半導体発光チップ21を整列配置しているが配置はこれに限るものではない。また、3つの主リード28a、28b、28cと、単一のサイドリード29と、ボンディングワイヤ27とを有した給電系(配線の一例)を備えているが、給電系の構成はこれに限るものではない。   The ultraviolet semiconductor light emitting device D configured as described above is also provided with a protective cover 24 made of quartz glass in the opening portion of the frame body 23 as in the above-described embodiment, and an inert gas such as nitrogen gas inside. Gas is sealed. The respective ultraviolet semiconductor light emitting chips 21 are arranged in alignment, but the arrangement is not limited to this. The power supply system (an example of wiring) having three main leads 28a, 28b, and 28c, a single side lead 29, and a bonding wire 27 is provided. However, the configuration of the power supply system is not limited to this. is not.

〔発光波長帯域R〕
本実施形態における各紫外線半導体発光チップ群A、B、Cの発光波長帯域における中央値(ピーク波長)の差は10〜15nmの範囲としている。具体的には、図8に示すように、印刷工程、接着工程等で用いられる紫外線硬化樹脂の硬化に適した紫外線波長帯域である350nm〜400nmを、発光波長帯域Rとして設定し、この発光波長帯域R中において、紫外線半導体発光チップ群Aの発光波長帯域として、中央値(中心波長)を365nm、中央値から30%発光強度が減少する領域を360nm〜370nmとしている(図中A群)。また、紫外線半導体発光チップ群Bの発光波長帯域として、中央値(中心波長)を375nm、中央値から30%発光強度が減少する領域を370nm〜380nmとしている(図中B群)。更に、紫外線半導体発光チップ群Cの発光波長帯域として、中央値(中心波長)を385nm、中央値から30%発光強度が減少する領域を380nm〜390nmとしている(図中C群)。このように紫外線半導体発光チップ群Aと、紫外線半導体発光チップ群Bと、紫外線半導体発光チップ群Cとからの紫外線が合成されることにより発光波長帯域Rに対応した発光強度分布Uの紫外線を得る。なお、図8における各紫外線半導体発光チップ群A、B、Cのそれぞれの発光強度分布は、各チップ群における個々の紫外線半導体発光チップ21の発光強度分布を合成した分布を示している。
[Emission wavelength band R]
The difference in the median value (peak wavelength) in the emission wavelength band of each of the ultraviolet semiconductor light emitting chip groups A, B, and C in this embodiment is in the range of 10 to 15 nm. Specifically, as shown in FIG. 8, 350 nm to 400 nm, which is an ultraviolet wavelength band suitable for curing an ultraviolet curable resin used in a printing process, an adhesion process, etc., is set as an emission wavelength band R, and this emission wavelength In the band R, as the emission wavelength band of the ultraviolet semiconductor light-emitting chip group A, the median (center wavelength) is 365 nm, and the region where the emission intensity decreases by 30% from the median is 360 nm to 370 nm (group A in the figure). Further, as the emission wavelength band of the ultraviolet semiconductor light emitting chip group B, the median (center wavelength) is 375 nm, and the region where the emission intensity is reduced by 30% from the median is 370 nm to 380 nm (group B in the figure). Furthermore, as the emission wavelength band of the ultraviolet semiconductor light-emitting chip group C, the median (center wavelength) is 385 nm, and the region where the emission intensity decreases by 30% from the median is 380 nm to 390 nm (C group in the figure). In this way, ultraviolet rays having a light emission intensity distribution U corresponding to the emission wavelength band R are obtained by synthesizing ultraviolet rays from the ultraviolet semiconductor light emitting chip group A, the ultraviolet semiconductor light emitting chip group B, and the ultraviolet semiconductor light emitting chip group C. . In addition, each light emission intensity distribution of each ultraviolet semiconductor light-emitting chip group A, B, C in FIG. 8 has shown the distribution which synthesize | combined the light emission intensity distribution of each ultraviolet semiconductor light-emitting chip 21 in each chip group.

図8に示すように、紫外線半導体発光チップ群Aと、紫外線半導体発光チップ群Bと、紫外線半導体発光チップ群Cとは、各発光波長帯域において、それぞれのピーク波長における発光量をピークとして、ピーク波長から離間する波長であるほど発光量が低下する山状の発光強度分布を呈する。また、紫外線半導体発光チップ群Aの発光波長帯域と、紫外線半導体発光チップ群B発光波長帯域と、紫外線半導体発光チップ群Cとのうち隣接する波長帯域の一部を重複させている。つまり、山状となる発光強度分布の裾野部分を重複させることにより、ピーク間の谷状となる波長帯域の紫外線の発光量の増大を図っているのである。この際、重複する波長帯域において発光強度分布の交点Qでの発光波長における発光量が最低照度Emin(所定の基準値)の2分の1より大きく、最低照度を超えないようにしているため、このように重複する波長帯域において増大する紫外線は、最低照度Emin以上となり、各紫外線半導体発光チップ群A、B、Cのそれぞれの発光量を必要以上に増大させることなく、紫外線硬化樹脂の硬化に充分な紫外線を照射することができる。   As shown in FIG. 8, the ultraviolet semiconductor light-emitting chip group A, the ultraviolet semiconductor light-emitting chip group B, and the ultraviolet semiconductor light-emitting chip group C have a peak at the emission amount at each peak wavelength in each emission wavelength band. It exhibits a mountain-shaped emission intensity distribution in which the amount of emitted light decreases as the wavelength is further away from the wavelength. Further, a part of the adjacent wavelength bands of the ultraviolet semiconductor light emitting chip group A, the ultraviolet semiconductor light emitting chip group B, and the ultraviolet semiconductor light emitting chip group C are overlapped. In other words, the amount of ultraviolet light emission in the wavelength band that forms the valley between the peaks is increased by overlapping the bases of the emission intensity distribution that forms the peaks. At this time, in the overlapping wavelength band, the amount of light emission at the emission wavelength at the intersection Q of the light emission intensity distribution is larger than one half of the minimum illuminance Emin (predetermined reference value) and does not exceed the minimum illuminance. The ultraviolet rays that increase in the overlapping wavelength bands become the minimum illuminance Emin or more, and the ultraviolet curable resin can be cured without increasing the respective light emission amounts of the respective ultraviolet semiconductor light emitting chip groups A, B, and C more than necessary. Sufficient ultraviolet rays can be irradiated.

また、図8に示されるように、重複する発光波長帯域内において、紫外線半導体発光チップ群Aの発光量が零になるまでの各波長における紫外線半導体発光チップ群のA、BおよびCの発光量の合成置が、最低照度Emin(所定の基準値)を超えているため、紫外線半導体発光チップ群Aにおける発光波長帯域の全領域の発光量が、最低照度Emin(所定の基準値)を超えることとなり、図12(b)のW2で示される波長帯域における紫外線についても、無駄なく紫外線硬化樹脂の硬化に用いられることになる。なお、本実施形態においては、紫外線半導体発光チップ群Bについては、図12(b)のW1およびW2で表される波長帯域にける発光量全てが紫外線硬化樹脂の硬化に用いられるため、より無駄なく紫外線を使用することができる。これにより、各紫外線半導体発光チップ群のそれぞれの発光量を増大させることなく、発光波長帯域Rの全領域において光量不足を招くことなく紫外線を照射することができ、紫外線硬化樹脂の効率的な硬化を実現している。   Further, as shown in FIG. 8, in the overlapping emission wavelength bands, the emission amounts of A, B and C of the ultraviolet semiconductor light-emitting chip group at each wavelength until the emission amount of the ultraviolet semiconductor light-emitting chip group A becomes zero. Therefore, the amount of light emitted in the entire emission wavelength band of the ultraviolet semiconductor light-emitting chip group A exceeds the minimum illuminance Emin (predetermined reference value). Thus, the ultraviolet light in the wavelength band indicated by W2 in FIG. 12B is also used for curing the ultraviolet curable resin without waste. In the present embodiment, for the ultraviolet semiconductor light emitting chip group B, all the light emission amounts in the wavelength bands represented by W1 and W2 in FIG. 12B are used for curing the ultraviolet curable resin. UV light can be used. As a result, it is possible to irradiate ultraviolet rays without increasing the amount of light emitted from each ultraviolet semiconductor light-emitting chip group without causing a shortage of light in the entire region of the emission wavelength band R, and efficient curing of the ultraviolet curable resin. Is realized.

特に、紫外線硬化樹脂は硬化に適した紫外線を吸収する波長領域に一定の拡がりを有するものであることから、この拡がりを有する波長領域の全領域に亘る波長の紫外線を照射することが理想である。これに対し、例えば、同じ波長の複数の紫外線半導体発光チップを備えることで光量を増大させた紫外線半導体発光素子を構成することも考えられるが、この構成では紫外線の光量は増大するものの、紫外線硬化樹脂の硬化に必要な発光量を超えた発光量の紫外線が無駄になり紫外線硬化樹脂の硬化を効果的に行えないものとなる。本発明の紫外線半導体発光素子では、紫外線硬化樹脂の硬化に適した紫外線の波長領域に対応した広い波長領域において発光量の不足を招くことなく紫外線の照射を実現できるのである。   In particular, since the ultraviolet curable resin has a certain spread in the wavelength region that absorbs the ultraviolet ray suitable for curing, it is ideal to irradiate the ultraviolet ray having the wavelength over the entire wavelength region having the spread. . On the other hand, for example, it may be possible to construct an ultraviolet semiconductor light emitting device having an increased amount of light by providing a plurality of ultraviolet semiconductor light emitting chips of the same wavelength. The ultraviolet ray having a light emission amount exceeding the light emission amount necessary for curing the resin is wasted, and the ultraviolet ray curable resin cannot be effectively cured. In the ultraviolet semiconductor light emitting device of the present invention, ultraviolet irradiation can be realized without causing a shortage of light emission in a wide wavelength region corresponding to an ultraviolet wavelength region suitable for curing an ultraviolet curable resin.

本実施形態の紫外線半導体発光素子Dでは、発光波長帯域Rにおいて波長の発光強度分布を平均化させるように、紫外線半導体発光チップ群Aに対して625mAの電流を供給し、紫外線半導体発光チップ群Bに対して550mAの電流を供給し、紫外線半導体発光チップ群C対して500mAの電流を供給している。ここで、紫外線半導体発光素子Dの発光強度分布Uは、図8に示すように発光波長帯域R内で略均一であるが、各紫外線半導体発光チップ群A、B、Cに供給する電流値が異なっているのは、波長の異なる半導体発光チップの発光特性(電流値と発光量との関係)の違いによるものである。つまり、目的の発光量に応じて適正な電流を供給するようにすればよい。   In the ultraviolet semiconductor light emitting device D of the present embodiment, a current of 625 mA is supplied to the ultraviolet semiconductor light emitting chip group A so as to average the emission intensity distribution of the wavelength in the emission wavelength band R, and the ultraviolet semiconductor light emitting chip group B is supplied. In contrast, a current of 550 mA is supplied, and a current of 500 mA is supplied to the ultraviolet semiconductor light emitting chip group C. Here, the emission intensity distribution U of the ultraviolet semiconductor light emitting element D is substantially uniform within the emission wavelength band R as shown in FIG. 8, but the current value supplied to each of the ultraviolet semiconductor light emitting chip groups A, B, and C is as follows. The difference is due to the difference in light emission characteristics (relationship between current value and light emission amount) of semiconductor light emitting chips having different wavelengths. That is, an appropriate current may be supplied according to the target light emission amount.

また、各紫外線半導体発光チップ群の発光波長帯域の中央値(中心波長)の差は、10〜15nmの範囲となっているため、異なる波長帯域を有する紫外線半導体発光チップ21を組み合わせて任意の波長帯域の紫外線を照射することができ、単一のパッケージで、広い発光波長帯域を有する紫外線を照射することができる。この実施形態では、3種のチップ群を1つのパッケージに備えていたが、2種のチップ群であっても4種以上のチップ群を1つのパッケージに備えて紫外線半導体発光素子Dを構成しても良い。   Moreover, since the difference of the median value (center wavelength) of the emission wavelength band of each ultraviolet semiconductor light-emitting chip group is in the range of 10 to 15 nm, any wavelength can be obtained by combining the ultraviolet semiconductor light-emitting chips 21 having different wavelength bands. It is possible to irradiate a band of ultraviolet rays, and it is possible to irradiate ultraviolet rays having a wide emission wavelength band with a single package. In this embodiment, three types of chip groups are provided in one package. However, even if there are two types of chip groups, four or more types of chip groups are provided in one package to constitute the ultraviolet semiconductor light emitting element D. May be.

ここで、本実施形態の紫外線半導体発光素子Dは、図8に示すように、合成された発光強度分布Uが、発光波長帯域R内で略均一となっている。これは、各紫外線半導体発光チップ群A、B、Cの電流値を制御することで、実現することが可能となる。一般的に、紫外線発光半導体チップにおける供給電流値と発光量との関係は図9に示すような特性があるため、各紫外線半導体発光チップ群A、B、Cに供給する電流値を、この関係に基づいて設定することにより各紫外線半導体発光チップ群A、B、Cにおいて必要とする発光量を設定して略均一な発光強度分布を得ている。   Here, in the ultraviolet semiconductor light emitting device D of the present embodiment, as shown in FIG. 8, the synthesized light emission intensity distribution U is substantially uniform within the light emission wavelength band R. This can be realized by controlling the current values of the respective ultraviolet semiconductor light emitting chip groups A, B, and C. In general, since the relationship between the supply current value and the light emission amount in the ultraviolet light emitting semiconductor chip has the characteristics shown in FIG. 9, the current values supplied to the respective ultraviolet semiconductor light emitting chip groups A, B, and C are related to this relationship. Thus, the light emission amount required for each of the ultraviolet semiconductor light emitting chip groups A, B, and C is set to obtain a substantially uniform light emission intensity distribution.

このように、各紫外線半導体発光チップ群による発光強度分布を略均一とすることで、広い発光波長を有しつつ、偏りの無い紫外線照射光を得ることができるため、作用する波長が被照射物によって異なっていても、適正な波長を有する紫外線を照射することができるため、効率よく紫外線を作用させることができる。   In this way, by making the emission intensity distribution by each ultraviolet semiconductor light emitting chip group substantially uniform, it is possible to obtain a non-biased ultraviolet irradiation light while having a wide emission wavelength. Even if they are different from each other, ultraviolet rays having an appropriate wavelength can be irradiated, so that the ultraviolet rays can be efficiently applied.

〔発光強度分布の別実施形態1〕
本実施形態の紫外線半導体発光素子Dは、図10に示すように、各紫外線半導体発光チップ群A、B、Cとして実装する紫外線半導体発光チップ21の発光強度分布が、発光波長帯域R内で短波長から長波長に向けて漸減するように各紫外線半導体発光チップ群A、B、Cに供給する電流値を設定している。この紫外線半導体発光素子Dも、図8において説明した紫外線半導体発光素子Dと同様に発光波長帯域R(350nm〜400nm)が設定され、中央値(中心波長)が365nmとなる紫外線半導体発光チップ群Aと、中央値(中心波長)が375nmとなる紫外線半導体発光チップ群Bと、中央値(中心波長)が385nmとなる紫外線半導体発光チップ群Cとが用いられている。このように紫外線半導体発光チップ群Aと、紫外線半導体発光チップ群Bと、紫外線半導体発光チップ群Cとからの紫外線が併せられることにより発光波長帯域Rに対応して同図に示す発光強度分布Uの紫外線を得る。
[Embodiment 1 of Luminescence Intensity Distribution]
In the ultraviolet semiconductor light emitting device D of the present embodiment, as shown in FIG. 10, the emission intensity distribution of the ultraviolet semiconductor light emitting chip 21 mounted as each of the ultraviolet semiconductor light emitting chip groups A, B, C is short within the emission wavelength band R. The current value supplied to each of the ultraviolet semiconductor light emitting chip groups A, B, and C is set so as to gradually decrease from the wavelength toward the long wavelength. Similarly to the ultraviolet semiconductor light emitting device D described with reference to FIG. 8, the ultraviolet semiconductor light emitting device D has a light emission wavelength band R (350 nm to 400 nm) and a median value (center wavelength) of 365 nm. In addition, an ultraviolet semiconductor light emitting chip group B having a median (center wavelength) of 375 nm and an ultraviolet semiconductor light emitting chip group C having a median (center wavelength) of 385 nm are used. In this way, the ultraviolet light from the ultraviolet semiconductor light emitting chip group A, the ultraviolet semiconductor light emitting chip group B, and the ultraviolet semiconductor light emitting chip group C are combined, so that the emission intensity distribution U shown in FIG. Get the UV.

この紫外線半導体発光素子Dにおいても、前述したものと同様に各紫外線半導体発光チップ群の発光波長帯域のうち隣接する波長帯域の一部を重複させている。つまり、山状となる発光強度分布の裾野部分を重複させることにより、谷状となる波長帯域の紫外線の発光量の増大を図っているのである。これにより、各紫外線半導体発光チップ群の光量を増大させることなく、発光波長帯域Rの全領域において光量不足を招くことなく紫外線を照射することができ、紫外線硬化樹脂の効率的な硬化を実現している。   Also in the ultraviolet semiconductor light emitting element D, a part of the adjacent wavelength bands among the emission wavelength bands of the respective ultraviolet semiconductor light emitting chip groups is overlapped in the same manner as described above. That is, the amount of ultraviolet light emission in the valley-shaped wavelength band is increased by overlapping the base portions of the emission intensity distribution having a mountain shape. As a result, it is possible to irradiate ultraviolet rays without increasing the amount of light of each ultraviolet semiconductor light-emitting chip group without causing a shortage of light amount in the entire light emission wavelength band R, thereby realizing efficient curing of the ultraviolet curable resin. ing.

本実施形態の紫外線半導体発光素子Dでは、発光強度分布を短波長から長波長に向けて漸減させるように、紫外線半導体発光チップ群Aに対して625mAの電流を供給し、紫外線半導体発光チップ群Bに対して550mAの電流を供給し、紫外線半導体発光チップ群Cに対して350mAの電流を供給している。   In the ultraviolet semiconductor light-emitting element D of the present embodiment, a current of 625 mA is supplied to the ultraviolet semiconductor light-emitting chip group A so as to gradually decrease the emission intensity distribution from the short wavelength to the long wavelength, and the ultraviolet semiconductor light-emitting chip group B Is supplied with a current of 550 mA, and a current of 350 mA is supplied to the ultraviolet semiconductor light emitting chip group C.

紫外線半導体発光チップ21は、一般的に波長が長いものほど紫外線照射量が多くエネルギーが大きくなるため、紫外線硬化樹脂を効率的に硬化させることができ、逆に波長が短いものは、エネルギーが小さく紫外線硬化樹脂の硬化が遅れる。このような理由から、発光波長帯域R内において、短波長から長波長に向けて発光強度分布を漸減することによって、発光波長帯域R全域に亘って均一なエネルギーを与えることができ、均一な硬化を実現することができる。   Since the ultraviolet semiconductor light emitting chip 21 generally has a larger wavelength and a larger amount of ultraviolet irradiation as the wavelength becomes longer, the ultraviolet curable resin can be cured efficiently, and conversely, a shorter wavelength has a smaller energy. Curing of UV curable resin is delayed. For this reason, in the emission wavelength band R, by gradually decreasing the emission intensity distribution from the short wavelength to the long wavelength, uniform energy can be given over the entire emission wavelength band R, and uniform curing is achieved. Can be realized.

〔発光強度分布の別実施形態2〕
本実施形態の紫外線半導体発光素子Dは、図11に示すように、各紫外線半導体発光チップ群A、B、Cとして実装する紫外線半導体発光チップ21の発光強度分布が、発光波長帯域R内で、正規分布に近似するように各紫外線半導体発光チップ群A、B、Cに供給する電流値を設定している。この紫外線半導体発光素子Dも、図8において説明した紫外線半導体発光素子Dと同様に発光波長帯域R(350nm〜400nm)が設定され、中央値(中心波長)が365nmとなる紫外線半導体発光チップ群Aと、中央値(中心波長)が375nmとなる紫外線半導体発光チップ群Bと、中央値(中心波長)が385nmとなる紫外線半導体発光チップ群Cとが用いられている。このように紫外線半導体発光チップ群Aと、紫外線半導体発光チップ群Bと、紫外線半導体発光チップ群Cとからの紫外線が併せられることにより発光波長帯域Rに対応して同図に示す発光強度分布Uの紫外線を得る。
[Embodiment 2 of Luminescence Intensity Distribution]
As shown in FIG. 11, the ultraviolet semiconductor light-emitting element D of the present embodiment has an emission intensity distribution of the ultraviolet semiconductor light-emitting chip 21 mounted as each ultraviolet semiconductor light-emitting chip group A, B, C within the emission wavelength band R. The current value supplied to each of the ultraviolet semiconductor light emitting chip groups A, B, and C is set so as to approximate a normal distribution. Similarly to the ultraviolet semiconductor light emitting device D described with reference to FIG. 8, the ultraviolet semiconductor light emitting device D has a light emission wavelength band R (350 nm to 400 nm) and a median value (center wavelength) of 365 nm. In addition, an ultraviolet semiconductor light emitting chip group B having a median (center wavelength) of 375 nm and an ultraviolet semiconductor light emitting chip group C having a median (center wavelength) of 385 nm are used. In this way, the ultraviolet light from the ultraviolet semiconductor light emitting chip group A, the ultraviolet semiconductor light emitting chip group B, and the ultraviolet semiconductor light emitting chip group C are combined, so that the emission intensity distribution U shown in FIG. Get the UV.

この紫外線半導体発光素子Dにおいても、前述したものと同様に各紫外線半導体発光チップ群の発光波長帯域のうち隣接する波長帯域の一部を重複させている。つまり、山状となる発光強度分布の裾野部分を重複させることにより、谷状となる波長帯域の紫外線の発光量の増大を図っているのである。これにより、各紫外線半導体発光チップ群の光量を増大させることなく、発光波長帯域Rの全領域において光量不足を招くことなく紫外線を照射することができ、紫外線硬化樹脂の効率的な硬化を実現している。   Also in the ultraviolet semiconductor light emitting element D, a part of the adjacent wavelength bands among the emission wavelength bands of the respective ultraviolet semiconductor light emitting chip groups is overlapped in the same manner as described above. That is, the amount of ultraviolet light emission in the valley-shaped wavelength band is increased by overlapping the base portions of the emission intensity distribution having a mountain shape. As a result, it is possible to irradiate ultraviolet rays without increasing the amount of light of each ultraviolet semiconductor light-emitting chip group without causing a shortage of light amount in the entire light emission wavelength band R, thereby realizing efficient curing of the ultraviolet curable resin. ing.

本実施形態の紫外線半導体発光素子Dでは、発光波長帯域における発光強度分布を正規分布に近似させるように、紫外線半導体発光チップ群Aに対して440mAの電流を供給し、紫外線半導体発光チップ群Bに対して550mAの電流を供給し、紫外線半導体発光チップ群Cに対して350mAの電流を供給している。   In the ultraviolet semiconductor light emitting device D of the present embodiment, a current of 440 mA is supplied to the ultraviolet semiconductor light emitting chip group A so as to approximate the emission intensity distribution in the light emission wavelength band to a normal distribution, and the ultraviolet semiconductor light emitting chip group B is supplied. On the other hand, a current of 550 mA is supplied, and a current of 350 mA is supplied to the ultraviolet semiconductor light emitting chip group C.

このように発光強度分布を、中央値(本実施形態では、中心波長375nm)を中心に正規分布させると、エネルギー量が当該中央値をピークとしてバランスがとれた分布の紫外線照射が得られることから、中央値に一致する波長を中心として硬化波長帯域に幅を有するような紫外線硬化樹脂であっても、樹脂の硬化に好適に採用できる。   In this way, when the emission intensity distribution is normally distributed centered on the median value (in this embodiment, the central wavelength is 375 nm), the amount of energy can be irradiated with ultraviolet rays having a balanced distribution with the median value at the peak. Even an ultraviolet curable resin having a width in the curing wavelength band centering on the wavelength that matches the median value can be suitably used for curing the resin.

〔波長の違いによる紫外線硬化型インキの硬化合いを確認するための実験〕
上記の各実施形態においては、紫外線の発光波長帯域における発光強度分布は、略均一な分布形状、短波長から長波長に向けて漸減させる分布形状、そして中央値を中心に正規分布をなす分布形状の例を示したが、これらに限定されるのではなく、紫外線半導体発光素子Dを、紫外線半導体発光チップ21個別あるいは紫外線半導体発光チップ群A、B、Cの群単位で電流制御することにより、発せられる紫外線の発光強度を発光波長単位で細かく制御するようにしても良い。それにより、発光波長帯域内の発光強度分布を所望の分布形状とすることができるため、複数の波長の紫外線を照射しつつ、特定波長帯域の発光強度が強い分布となるように制御することができる。例えば、照射する紫外線の波長による被照射物への浸透力の違いを利用して、例えば短波長側の紫外線発光量を強めた分布とすることで、被照射物の表面への照射を強めたり、長波長側の紫外線発光量を強めた分布とすることで、被照射物の奥側への照射を強めたりすることができるようになる。
[Experiment to confirm curing degree of UV curable ink by wavelength difference]
In each of the embodiments described above, the emission intensity distribution in the emission wavelength band of ultraviolet rays has a substantially uniform distribution shape, a distribution shape that gradually decreases from a short wavelength to a long wavelength, and a distribution shape that forms a normal distribution around the median. However, the present invention is not limited thereto, and by controlling the current of the ultraviolet semiconductor light-emitting element D individually for the ultraviolet semiconductor light-emitting chip 21 or for each group of the ultraviolet semiconductor light-emitting chip groups A, B, and C, The emission intensity of the emitted ultraviolet light may be finely controlled in units of emission wavelength. As a result, the emission intensity distribution within the emission wavelength band can be made into a desired distribution shape, so that it is possible to control the emission intensity in a specific wavelength band to be a strong distribution while irradiating ultraviolet rays of a plurality of wavelengths. it can. For example, by utilizing the difference in penetrating power to the irradiated object depending on the wavelength of the irradiated ultraviolet light, for example, by increasing the ultraviolet light emission amount on the short wavelength side, the irradiation on the surface of the irradiated object can be strengthened. By setting the distribution to increase the amount of ultraviolet light emission on the long wavelength side, it becomes possible to increase the irradiation of the back side of the irradiated object.

紫外線を例えば紫外線硬化樹脂などの被照射物に照射する際に、波長が長くなるほど浸透性が良いことが知られている。つまり、短波長の紫外線は表面で吸収されやすいため、紫外線硬化樹脂の表面を硬化しやすく、長波長の紫外線は浸透性が良いため、紫外線硬化樹脂の深部まで硬化させることができるのである。ここで、波長が短波長(中心波長365nm)と長波長(中心波長385nm)の紫外線を照射した場合の紫外線硬化樹脂の硬化度合いを確認するための実験の一例を以下に説明する。   When irradiating an irradiation object such as an ultraviolet curable resin with ultraviolet rays, it is known that the longer the wavelength, the better the permeability. That is, since the short wavelength ultraviolet rays are easily absorbed by the surface, the surface of the ultraviolet curable resin is easily cured, and the long wavelength ultraviolet rays have good penetrability, and therefore can be cured to the deep part of the ultraviolet curable resin. Here, an example of an experiment for confirming the degree of curing of the ultraviolet curable resin when irradiated with ultraviolet rays having a short wavelength (center wavelength 365 nm) and a long wavelength (center wavelength 385 nm) will be described below.

本実験では、紫外線硬化樹脂として、紫外線硬化型インキを用いて印刷媒体に印刷を行い、紫外線を照射することにより紫外線硬化型インキを硬化させ、照射する紫外線の波長の違いによる紫外線硬化型インキの硬化度合いを評価した。具体的には、実験用の紫外線照射部の紫外線半導体発光素子Dとして、まず、中心波長385nmの紫外線を照射するLEDを使用して500mAの電流で駆動した。印刷媒体Pは、コート紙を用い、紫外線照射部と印刷媒体Pとの距離を5mmとした。また、紫外線硬化型インキは墨色の単色のラジカル系紫外線硬化型インキを用い、印刷媒体Pに対して全面印刷を行った。一方、中心波長365nmの紫外線を照射するLEDを使用して、700mAの電流で駆動した。印刷媒体P、紫外線照射部と印刷媒体Pとの距離、紫外線硬化型インキ等の条件は、中心波長385nmの印刷条件と同じとした。なお、印刷媒体Pの印刷面の濃度を測定することにより、各条件において印刷された紫外線硬化型インキの量が一定であることを確認した。   In this experiment, UV curable ink is used as UV curable resin, printed on printing media using UV curable ink, UV curable ink is cured by irradiating UV light, The degree of cure was evaluated. Specifically, as the ultraviolet semiconductor light-emitting element D of the experimental ultraviolet irradiation section, first, an LED that irradiates ultraviolet light having a central wavelength of 385 nm was used and driven with a current of 500 mA. The print medium P was coated paper, and the distance between the ultraviolet irradiation unit and the print medium P was 5 mm. In addition, as the ultraviolet curable ink, a black monochromatic radical ultraviolet curable ink was used, and the entire surface of the print medium P was printed. On the other hand, it was driven by a current of 700 mA using an LED that irradiates ultraviolet rays having a central wavelength of 365 nm. The conditions of the printing medium P, the distance between the ultraviolet irradiation part and the printing medium P, the ultraviolet curable ink, and the like were the same as the printing conditions of the central wavelength 385 nm. In addition, by measuring the density of the printing surface of the printing medium P, it was confirmed that the amount of ultraviolet curable ink printed under each condition was constant.

このような実験環境において、印刷媒体Pに紫外線硬化型インキを印刷し、紫外線照射部から紫外線を照射し、紫外線硬化型インキの硬化の程度を評価し、紫外線の波長の違いにおける紫外線硬化型インキの硬化度合いを確認した。なお、紫外線硬化型インキの硬化の程度の評価は、押圧性、擦過性、密着性、タック感について行った。押圧性の評価は、印刷された紫外線硬化型インキを指で押した状態で指を回転させ、印刷面の変形の有無を「○」と「×」で評価したものである。擦過性の評価は、印刷された紫外線硬化型インキを爪で擦った際の印刷面の傷や紫外線硬化型インキの剥がれの状態を「○」「△」「▲」「×」で評価したものである。「△」は印刷表面に僅かな傷が見られるが紫外線硬化型インキの剥がれは見られない状態で、「▲」は紫外線硬化型インキの剥がれが僅かに見られる状態である。密着性の評価は、印刷面に対してテープを貼り付けた後に剥がした際のテープへの印刷媒体の繊維の付着の有無を「○」と「×」で評価したものである。テープに印刷媒体の繊維が付着するということは紫外線硬化型インキが印刷媒体にしっかり密着しているということであり、評価結果は「○」となる。そして、タック感とは、印刷表面の粘着性のことであり、印刷表面が充分硬化している状態ではタック感を「無」として、粘着感が残っている場合はタック感を「有」とした。つまり、タック感は印刷表面の硬化度合いを評価する項目である。   In such an experimental environment, ultraviolet curable ink is printed on the printing medium P, ultraviolet rays are irradiated from the ultraviolet irradiation portion, the degree of curing of the ultraviolet curable ink is evaluated, and the ultraviolet curable ink in the difference in the wavelength of the ultraviolet rays. The degree of curing was confirmed. The degree of curing of the ultraviolet curable ink was evaluated with respect to pressability, scratching, adhesion, and tackiness. The evaluation of the pressability is evaluated by rotating the finger in a state where the printed ultraviolet curable ink is pressed with the finger, and evaluating the presence or absence of deformation of the printed surface by “◯” and “×”. Scratch evaluation is based on the evaluation of scratches on the printed surface and peeling of UV curable ink when the printed UV curable ink is rubbed with a nail, using “○”, “△”, “▲”, and “×”. It is. “Δ” indicates a state in which slight scratches are observed on the printing surface, but no peeling of the ultraviolet curable ink is observed, and “▲” indicates a state in which the ultraviolet curable ink is slightly peeled. The evaluation of adhesion is based on the evaluation of “◯” and “X” indicating whether or not the fibers of the printing medium adhere to the tape when the tape is peeled off after being applied to the printing surface. The fact that the fibers of the printing medium adhere to the tape means that the ultraviolet curable ink is firmly attached to the printing medium, and the evaluation result is “◯”. The tackiness is the tackiness of the printing surface. When the printing surface is sufficiently cured, the tackiness is set to “No”, and when the tackiness remains, the tackiness is set to “Yes”. did. That is, tackiness is an item for evaluating the degree of curing of the printed surface.

また、上記のそれぞれの波長による紫外線照射時には、紫外線半導体発光素子Dのピーク照度が略同じになるように調整したが、参照実験として、積算光量が略同じになるような条件で紫外線を照射することで、更に紫外線硬化型インキの硬化度合いを確認した。なお、中心波長385nmの紫外線照射時と積算光量が略同じになるようにするために、紫外線照射部と印刷媒体との距離を10mmとして照射時間を長くした。

Figure 2012054492
Moreover, at the time of the ultraviolet irradiation by each of the above wavelengths, the peak illuminance of the ultraviolet semiconductor light-emitting element D was adjusted to be substantially the same. Thus, the degree of curing of the ultraviolet curable ink was further confirmed. In addition, in order to make the integrated light quantity substantially the same as when irradiating ultraviolet rays with a central wavelength of 385 nm, the irradiation time was lengthened by setting the distance between the ultraviolet irradiation portion and the printing medium to 10 mm.
Figure 2012054492

表1は、照射する紫外線の波長を異ならせた場合の紫外線硬化型インキの硬化度合いの評価結果である。表1から明らかなように、擦過性について着目すると、長波長(中心波長385nm)の紫外線を照射した場合(評価結果:擦過性「▲」)は、短波長(中心波長365nm)の紫外線を照射した場合(評価結果:擦過性「×」)よりも、重点的に硬化が進んでいることがわかる。つまり、長波長である中心波長385nmの紫外線を照射した場合には、紫外線硬化型インキの深部まで紫外線が浸透していることが確認された。また、タック感について着目すると、短波長(中心波長365nm)の紫外線を照射した場合(評価結果:タック感「無」)は、長波長(中心波長385nm)の紫外線を照射した場合(評価結果:タック感「有」)よりも、重点的に硬化が進んでいることがわかる。つまり、短波長である中心波長365nmの紫外線を照射した場合には、紫外線硬化型インキの表面で紫外線がより吸収されていることが確認された。なお、両方の条件の評価結果においては、押圧性及び密着性の評価結果は○であり、実際の印刷には支障がないことがわかった。   Table 1 shows the evaluation results of the degree of curing of the ultraviolet curable ink when the wavelength of ultraviolet rays to be irradiated is varied. As is clear from Table 1, when attention is given to scratching, when ultraviolet light having a long wavelength (center wavelength 385 nm) is irradiated (evaluation result: scratching “▲”), ultraviolet light having a short wavelength (center wavelength 365 nm) is irradiated. It can be seen that the curing proceeds more intensively than in the case (evaluation result: scratching “x”). That is, it was confirmed that when ultraviolet rays having a central wavelength of 385 nm, which is a long wavelength, were irradiated, the ultraviolet rays penetrated deep into the ultraviolet curable ink. Further, when attention is paid to tackiness, when ultraviolet rays having a short wavelength (center wavelength 365 nm) are irradiated (evaluation result: tackiness “none”), ultraviolet rays having a long wavelength (center wavelength 385 nm) are irradiated (evaluation results: It can be seen that curing is proceeding more intensively than the “feeling of tack”. That is, it was confirmed that ultraviolet rays were absorbed more on the surface of the ultraviolet curable ink when ultraviolet rays having a short wavelength of 365 nm center wavelength were irradiated. In addition, in the evaluation result of both conditions, the evaluation result of pressability and adhesiveness is (circle), and it turned out that there is no trouble in actual printing.

以上の結果より、紫外線硬化型インキに照射する紫外線の中心波長が385nmと365nmのような20nmの差であっても、長波長の紫外線の照射により紫外線硬化型インキの深部を重点的に硬化することができること、短波長の紫外線を照射により紫外線硬化型インキの表面を重点的に硬化すること、更に、両波長ともに紫外線硬化型インキを充分に硬化させることができることがわかった。   From the above results, even if the center wavelength of the ultraviolet rays irradiated to the ultraviolet curable ink is a difference of 20 nm such as 385 nm and 365 nm, the deep part of the ultraviolet curable ink is intensively cured by the irradiation of the long wavelength ultraviolet rays. It was found that the surface of the ultraviolet curable ink can be intensively cured by irradiation with ultraviolet rays having a short wavelength, and the ultraviolet curable ink can be sufficiently cured at both wavelengths.

また、上述したように、本実験においては、紫外線半導体発光素子Dのピーク照度を略同じにしているため、積算光量が異なっている。そこで、中心波長365nmの紫外線を照射する際の照射条件を、積算光量が略同じになるようにして参照実験を行った。その結果、表3に示すように、ピーク照度を略同じにした場合の紫外線硬化型インキの硬化度合いと大差なく、同様の結果を得ることができた。   Further, as described above, in this experiment, since the peak illuminance of the ultraviolet semiconductor light emitting element D is made substantially the same, the integrated light amount is different. Therefore, a reference experiment was performed under the irradiation conditions when irradiating ultraviolet rays having a center wavelength of 365 nm so that the integrated light amounts were substantially the same. As a result, as shown in Table 3, the same result could be obtained without much difference from the degree of curing of the ultraviolet curable ink when the peak illuminance was substantially the same.

なお、ここで、上記各実施形態において、図8、10、11に示すような発光強度分布Uを示すためには、光源である紫外線半導体発光チップ21と被照射物である紫外線硬化樹脂との距離がある程度離れている必要がある。これは、異なるピーク波長を有する各紫外線半導体発光チップ21と被照射物との距離が近いと、各紫外線半導体発光チップ21から照射される紫外線が、隣接する紫外線半導体発光チップ21から照射される紫外線と合成されることなく被照射物に照射されるため、照射される紫外線の波長が不均一となり、照射される紫外線に波長のムラが発生してしまうためである。照射される紫外線に波長のムラを発生させないようにするためには、紫外線半導体発光チップ21から照射する紫外線は、異なる波長を照射する紫外線半導体発光チップ21から照射される異なる波長の紫外線と必ず合成される必要がある。   Here, in each of the above embodiments, in order to show the light emission intensity distribution U as shown in FIGS. 8, 10, and 11, the ultraviolet semiconductor light emitting chip 21 that is a light source and the ultraviolet curable resin that is an irradiated object are used. The distance must be some distance away. This is because the ultraviolet light emitted from each ultraviolet semiconductor light-emitting chip 21 is irradiated from the adjacent ultraviolet semiconductor light-emitting chip 21 when the distance between each ultraviolet semiconductor light-emitting chip 21 having a different peak wavelength and the irradiated object is short. Because the irradiated object is irradiated without being synthesized, the wavelength of the irradiated ultraviolet light becomes non-uniform, and wavelength unevenness occurs in the irradiated ultraviolet light. In order to prevent the occurrence of wavelength unevenness in the irradiated ultraviolet light, the ultraviolet light emitted from the ultraviolet semiconductor light emitting chip 21 is necessarily combined with the ultraviolet light of different wavelengths irradiated from the ultraviolet semiconductor light emitting chip 21 that emits different wavelengths. Need to be done.

紫外線半導体発光チップ21から照射される紫外線は、所定の照射角度を有して照射されるため、異なる波長を有する紫外線半導体発光チップ21から照射される紫外線と合成するためには、広い範囲に渡って照射する必要があり、紫外線半導体発光チップ21と被照射物との距離を長くすることで達成することができる。ここで、3種類の波長の紫外線を照射する場合に、各紫外線半導体発光チップ21から照射される異なる波長の紫外線がそれぞれ合成されるためには、図13に示すように、隣接する紫外線半導体発光チップ21との距離以上の範囲を照射する必要がある。具体的には、紫外線半導体発光素子Dにおける紫外線半導体発光チップ21の間隔をδとして、紫外線半導体発光チップ21から照射される紫外線の照射角度を2θとすると、紫外線半導体発光チップ21と被照射物(一例として印刷媒体P)との距離Hは、H≧δ/tanθの関係を満たす必要がある。この条件を満たすように紫外線半導体発光チップ21と被照射物との距離Hを設定することで、異なる波長を有する紫外線半導体発光チップ21から照射される紫外線は、確実に合成され、図8、10、11に示すような発光強度分布Uを示すことができるようになる。   Since ultraviolet rays irradiated from the ultraviolet semiconductor light emitting chip 21 are irradiated with a predetermined irradiation angle, in order to synthesize with ultraviolet rays irradiated from the ultraviolet semiconductor light emitting chip 21 having different wavelengths, a wide range is required. This can be achieved by increasing the distance between the ultraviolet semiconductor light emitting chip 21 and the irradiated object. Here, in order to synthesize ultraviolet rays of different wavelengths irradiated from the respective ultraviolet semiconductor light emitting chips 21 when irradiating ultraviolet rays of three types of wavelengths, as shown in FIG. It is necessary to irradiate a range greater than the distance from the chip 21. Specifically, when the interval between the ultraviolet semiconductor light emitting chips 21 in the ultraviolet semiconductor light emitting element D is δ and the irradiation angle of the ultraviolet light emitted from the ultraviolet semiconductor light emitting chip 21 is 2θ, the ultraviolet semiconductor light emitting chip 21 and the irradiated object ( As an example, the distance H to the print medium P) needs to satisfy the relationship of H ≧ δ / tan θ. By setting the distance H between the ultraviolet semiconductor light-emitting chip 21 and the irradiated object so as to satisfy this condition, the ultraviolet light irradiated from the ultraviolet semiconductor light-emitting chip 21 having different wavelengths is reliably synthesized. , 11 can be obtained.

〔その他の実施形態〕
上記各実施形態においては、紫外線の波長帯域が350nm〜400nmである場合を例示したが、カチオン系の紫外線硬化樹脂を効率的に硬化できる紫外線の波長帯域である250nm〜300nmを発光波長帯域Rとして設定しても良い。その場合、紫外線半導体発光チップ群Aの発光波長帯域として、中央値を265nm、中央値から30%発光強度が減少する領域を260nm〜270nmとし、紫外線半導体発光チップ群Bの発光波長帯域として、中央値を275nm、中央値から30%発光強度が減少する領域を270nm〜280nmとし、更に、紫外線半導体発光チップ群Cの発光波長帯域として、中央値を285nm、中央値から30%発光強度が減少する領域を280nm〜290nmとすることができる。
[Other Embodiments]
In each of the above embodiments, the case where the wavelength band of ultraviolet rays is 350 nm to 400 nm is exemplified, but the wavelength band of ultraviolet rays that can efficiently cure the cationic ultraviolet curable resin is 250 nm to 300 nm as the emission wavelength band R. May be set. In that case, as the emission wavelength band of the ultraviolet semiconductor light-emitting chip group A, the median value is 265 nm, the region where the emission intensity decreases by 30% from the median value is 260 nm to 270 nm, and the emission wavelength band of the ultraviolet semiconductor light-emitting chip group B is The value is 275 nm, the region where the emission intensity is reduced by 30% from the median is 270 nm to 280 nm, and the emission wavelength band of the ultraviolet semiconductor light emitting chip group C is 285 nm, and the emission intensity is reduced by 30% from the median. The region can be 280 nm to 290 nm.

本発明の紫外線半導体発光素子は、印刷装置の他、金属やガラス等の接着に用いられる紫外線硬化樹脂を硬化させる装置に用いることもでき、さらには殺菌機能を有する装置に用いても良い。以下印刷装置に用いた具体的な使用例について詳説する。   The ultraviolet semiconductor light-emitting element of the present invention can be used in a device for curing an ultraviolet curable resin used for bonding metal, glass, or the like in addition to a printing device, and may also be used in a device having a sterilizing function. Hereinafter, specific usage examples used in the printing apparatus will be described in detail.

〔印刷装置〕
図1及び図2に示すように、駆動力により回転するセンタードラム1と、このセンタードラム1の外周に沿って配置された複数の印刷ユニット2と、印刷が行われた被印刷物Pの印刷面に紫外線を照射する紫外線光源ユニットLとを備えてサテライト型の印刷装置が構成されている。
[Printer]
As shown in FIGS. 1 and 2, a center drum 1 rotated by a driving force, a plurality of printing units 2 arranged along the outer periphery of the center drum 1, and a printing surface of a printing material P on which printing has been performed. And a UV light source unit L for irradiating UV light to form a satellite type printing apparatus.

この印刷装置は、センタードラム1の駆動軸1Aの両端が板状のサイドフレーム3に回転自在に支持され、駆動軸1Aには電動モータ(図示せず)から駆動力が伝えられる。一対のサイドフレーム3の端部位置に対してロール状の被印刷物Pの供給部4が備えられ、この供給部4からの被印刷物Pをセンタードラム1に供給するガイドローラ5がサイドフレーム3に回転自在に支持され、センタードラム1から送り出された被印刷物Pを送り出す2つのガイドローラ6がサイドフレーム3に回転自在に支持されている。   In this printing apparatus, both ends of a drive shaft 1A of the center drum 1 are rotatably supported by a plate-like side frame 3, and a driving force is transmitted to the drive shaft 1A from an electric motor (not shown). A supply unit 4 for the roll-shaped printed material P is provided at the end positions of the pair of side frames 3, and a guide roller 5 for supplying the printed material P from the supply unit 4 to the center drum 1 is provided on the side frame 3. Two guide rollers 6 that are rotatably supported and feed the printing material P fed from the center drum 1 are rotatably supported by the side frames 3.

この印刷装置は、供給部4にセットされたロール体のシート状被印刷物Pをガイドローラ5によってセンタードラム1の回転速度と同期した速度で連続的に供給する。なお、搬送途中にバッファを設けることで、被印刷物の供給する速度は必ずしも同期させなくても良い。供給された被印刷物Pは、センタードラム1の回転とともに移動し、その表面に印刷ユニット2が凸版印刷方式により紫外線硬化インキ(紫外線硬化樹脂が含まれるものの一例)での印刷を行い、この印刷の直後の印刷面に対して紫外線光源ユニットLからの紫外線の照射によって紫外線硬化インキの硬化が行われる。このように印刷された被印刷物Pはガイドローラ6を介して送り出され、最終位置の紫外線光源ユニットLにより、紫外線硬化インキの最終的な硬化が行われる。   In this printing apparatus, a roll-like sheet-like printed material P set in the supply unit 4 is continuously supplied by a guide roller 5 at a speed synchronized with the rotation speed of the center drum 1. Note that by providing a buffer in the middle of conveyance, it is not always necessary to synchronize the speed at which the printing material is supplied. The supplied printing material P moves with the rotation of the center drum 1, and the printing unit 2 performs printing with ultraviolet curable ink (an example of one containing an ultraviolet curable resin) on the surface by a relief printing method. The ultraviolet curable ink is cured by irradiating ultraviolet rays from the ultraviolet light source unit L onto the printing surface immediately after. The printed material P printed in this way is sent out through the guide roller 6, and the ultraviolet curing ink is finally cured by the ultraviolet light source unit L at the final position.

印刷装置において、本発明の紫外線半導体発光素子Dを用いる場合には、紫外線硬化インキの紫外線吸収特性に応じて、発光波長帯域を設定できるが、ラジカル系の紫外線硬化インキを用いる際には、紫外線半導体発光素子Dの発光波長帯域を350nm〜400nmとすることが好ましく、カチオン系の紫外線硬化インキを用いる場合には、紫外線半導体発光素子Dの発光波長帯域を250nm〜300nmとすることが好ましい。   In the printing apparatus, when the ultraviolet semiconductor light-emitting element D of the present invention is used, the emission wavelength band can be set according to the ultraviolet absorption characteristics of the ultraviolet curable ink. The emission wavelength band of the semiconductor light emitting element D is preferably 350 nm to 400 nm. When a cationic ultraviolet curable ink is used, the emission wavelength band of the ultraviolet semiconductor light emitting element D is preferably 250 nm to 300 nm.

紫外線硬化インキの一例として、ラジカル系の紫外線硬化インキは、着色剤としての顔料、紫外線により光重合を開始する光重合開始剤、光重合開始剤の開始反応を促進する触媒としての増感剤、光重合性樹脂(モノマーやオリゴマー)、消泡剤などの補助剤が含まれる。   As an example of an ultraviolet curable ink, a radical ultraviolet curable ink includes a pigment as a colorant, a photopolymerization initiator that initiates photopolymerization by ultraviolet rays, a sensitizer as a catalyst that promotes the initiation reaction of the photopolymerization initiator, Adjuvants such as photopolymerizable resins (monomers and oligomers) and antifoaming agents are included.

光重合開始剤は、例えば、ベンゾフェノン系、ベンゾイン系、アセトフェノン系、チオキサントン系の化合物を用いることができる。また、光重合性樹脂は、不飽和ポリエステル系、アクリレート系、メタクリレート系などの光重合性の樹脂が使用できるが、硬化速度の観点から、例えば、ポリエステルアクリレート、エポキシアクリレート、ウレタンアクリレートなどのアクリレート(アクリル酸)系オリゴマー/モノマーを用いることが好ましい。また、顔料の種類や、増感剤の添加量によって、紫外線吸収特性が変化する。例えば、増感剤を添加すると、硬化に有効な波長が長波長側にシフトすることが知られている。   As the photopolymerization initiator, for example, benzophenone-based, benzoin-based, acetophenone-based, and thioxanthone-based compounds can be used. In addition, as the photopolymerizable resin, a photopolymerizable resin such as unsaturated polyester, acrylate, or methacrylate can be used. From the viewpoint of curing speed, for example, acrylates such as polyester acrylate, epoxy acrylate, and urethane acrylate ( (Acrylic acid) oligomer / monomer is preferably used. Further, the ultraviolet absorption characteristics vary depending on the type of pigment and the amount of sensitizer added. For example, it is known that when a sensitizer is added, the wavelength effective for curing shifts to the long wavelength side.

ラジカル系の紫外線硬化インキは、以下のような反応により硬化が進む。
1)紫外線が照射されることにより、光重合開始剤が活性化されて励起し、反応開始点ができる。
2)光重合開始剤の励起エネルギーによってモノマーやオリゴマーなどの光重合性樹脂の二重結合を活性化させ、架橋反応により、オリゴマー同士が結合する。
3)最終的に、オリゴマーが立体的な網目状に連結し、ポリマーとなることで、インキ(樹脂)は液体から固体に相変化し硬化皮膜を形成する。
Curing of radical ultraviolet curable ink proceeds by the following reaction.
1) By irradiating with ultraviolet rays, the photopolymerization initiator is activated and excited to form a reaction starting point.
2) The double bond of a photopolymerizable resin such as a monomer or oligomer is activated by the excitation energy of the photopolymerization initiator, and the oligomers are bonded together by a crosslinking reaction.
3) Finally, the oligomers are linked in a three-dimensional network and become a polymer, so that the ink (resin) changes phase from liquid to solid to form a cured film.

それぞれの印刷ユニット2は、図中に示すようにブラック(K)、シアン(C)、マゼンタ(M)、イエロー(Y)の少なくとも4色に対応した数だけ備えられている。また、図中に示すように終端位置において表面仕上げの目的等から透明インキ(OP)での印刷が行われる。   As shown in the drawing, each printing unit 2 is provided in a number corresponding to at least four colors of black (K), cyan (C), magenta (M), and yellow (Y). Further, as shown in the drawing, printing with transparent ink (OP) is performed at the end position for the purpose of surface finishing or the like.

図2及び図3に示すように、前述した紫外線光源ユニットLは、本発明の紫外線半導体発光素子Dを多数備えており、一対のサイドフレーム3に備えられたアタッチメント7に対してスライド操作により装着及び取り外し自在に備えられている。この紫外線光源ユニットLの着脱構造は詳述しないが、スライド操作によりセット位置まで挿入することでロック状態に達すると共に、ドロアコネクタが接続状態に達することにより外部の電源からの電力の供給が可能となる。また、ロックを解除して引き出すことによりメンテナンスが容易に行える。   As shown in FIGS. 2 and 3, the ultraviolet light source unit L described above includes a large number of the ultraviolet semiconductor light emitting elements D of the present invention, and is attached to the attachment 7 provided on the pair of side frames 3 by a sliding operation. And detachable. Although the attachment / detachment structure of the ultraviolet light source unit L will not be described in detail, it is possible to supply power from an external power source when the drawer connector reaches the connected state by being inserted to the set position by sliding operation and reaching the connected state. Become. Also, maintenance can be easily performed by releasing the lock and pulling it out.

この紫外線光源ユニットLは、側面にグレーチングが形成されたケース11の上面側に石英ガラス製の汚れ防止板12を備え、これによって光線照射面が形成されている。また、ケース11の裏面側に冷却ファン13を備え、ケース内部の基板14に対して前述した紫外線半導体発光素子Dを多数備えている(以下、汚れ防止板を有した面を上面側として説明する)。   The ultraviolet light source unit L includes a contamination prevention plate 12 made of quartz glass on the upper surface side of the case 11 having a grating formed on the side surface, thereby forming a light irradiation surface. In addition, a cooling fan 13 is provided on the back side of the case 11, and a large number of the aforementioned ultraviolet semiconductor light emitting elements D are provided on the substrate 14 inside the case (hereinafter, the surface having the anti-stain plate will be described as the upper side). ).

基板14はアルミニウム製であり、上面側に多数の紫外線半導体発光素子Dを備え、この基板14の下面側に多数のヒートシンク15が一体的に形成されている。このヒートシンク15に対して前述した冷却ファン13からの冷却風が供給される。   The substrate 14 is made of aluminum, includes a large number of ultraviolet semiconductor light emitting elements D on the upper surface side, and a large number of heat sinks 15 are integrally formed on the lower surface side of the substrate 14. Cooling air from the cooling fan 13 is supplied to the heat sink 15.

図4に示すように、基板14の長手方向に沿う4つの仮想ラインXに沿って複数の紫外線半導体発光素子Dが設定間隔で列状に配置され、それぞれの仮想ラインXの方向の列における紫外線半導体発光素子Dの位置の設定により、複数の紫外線半導体発光素子Dが千鳥配列となる。複数の紫外線半導体発光素子Dのうち4つの仮想ラインXに沿って配置されるもの同士が電気的に直列に接続されている。   As shown in FIG. 4, a plurality of ultraviolet semiconductor light emitting elements D are arranged in rows at set intervals along four virtual lines X along the longitudinal direction of the substrate 14, and ultraviolet rays in the columns in the direction of each virtual line X. By setting the position of the semiconductor light emitting elements D, the plurality of ultraviolet semiconductor light emitting elements D are arranged in a staggered arrangement. Among the plurality of ultraviolet semiconductor light emitting elements D, those arranged along the four virtual lines X are electrically connected in series.

上記の紫外線光源ユニットLにおいては、紫外線半導体発光素子Dを4列配置としたが、これに限定されず、1列配置、2列配置またはそれ以上の多列配置としても良い。また、印刷ユニット2に隣接して配置した紫外線光源ユニットLについては、紫外線硬化インキの種類や色による紫外線吸収特性の違いに応じて、適切な発光強度分布を形成するように紫外線半導体発光素子Dの紫外線半導体発光チップ群A、B、Cの電流値を制御しても良い。更に、印刷ユニット2に隣接して配置した紫外線光源ユニットLと、最終位置の紫外線光源ユニットLとの間で、紫外線照射量を変化させ、最終位置の紫外線光源ユニットLによる紫外線照射量を強くしても良い。   In the ultraviolet light source unit L described above, the ultraviolet semiconductor light emitting elements D are arranged in four rows, but the invention is not limited to this, and may be arranged in one row, two rows, or more in multiple rows. For the ultraviolet light source unit L arranged adjacent to the printing unit 2, the ultraviolet semiconductor light-emitting element D is formed so as to form an appropriate light emission intensity distribution according to the difference in ultraviolet absorption characteristics depending on the type and color of the ultraviolet curable ink. The current values of the ultraviolet semiconductor light emitting chip groups A, B, and C may be controlled. Further, the ultraviolet ray irradiation amount is changed between the ultraviolet light source unit L disposed adjacent to the printing unit 2 and the ultraviolet light source unit L at the final position, and the ultraviolet ray irradiation amount by the ultraviolet light source unit L at the final position is increased. May be.

〔殺菌〕
また、本発明の紫外線半導体発光素子Dは、細菌等の殺菌機能を有する装置に用いても良い。殺菌を行う装置に使用した場合には、紫外線半導体発光素子Dの発光波長帯域は、250nm〜265nmとすることが好ましい。
[Sterilization]
Moreover, you may use the ultraviolet semiconductor light-emitting device D of this invention for the apparatus which has sterilization functions, such as bacteria. When used in an apparatus for sterilization, the emission wavelength band of the ultraviolet semiconductor light emitting element D is preferably 250 nm to 265 nm.

殺菌装置に紫外線半導体発光素子Dを用いた際には、以下のように作用する。細菌中の核酸(DNAまたはRNA)は、紫外線半導体発光素子Dにより照射された紫外線を吸収し、核酸を構成する塩基のチミン、シトシン、ウラシル中のピリミジンが二量体を形成するため、DNAの正常な複製やRNAへの転写ができなくなる。そのため、細菌は増殖することができなくなってしまい、不活性化され、結果として死滅してしまうことになる。   When the ultraviolet semiconductor light emitting element D is used in the sterilization apparatus, the following effects are obtained. Nucleic acids (DNA or RNA) in bacteria absorb the ultraviolet rays irradiated by the ultraviolet semiconductor light-emitting element D, and the bases of thymine, cytosine, and uracil that form nucleic acids form a dimer. Normal replication or transcription to RNA becomes impossible. As a result, the bacteria cannot grow and become inactivated, resulting in death.

特に、紫外線の殺菌効果は波長によって大きく異なり、有効な波長は260nm付近(最適は253.7nm)となっているが、DNAに作用する紫外線の波長は250nm〜265nmと広がりを有しているため、広い波長域をもつ紫外線を照射することにより、効率的に作用させることができる。   In particular, the bactericidal effect of ultraviolet rays varies greatly depending on the wavelength, and the effective wavelength is around 260 nm (optimum is 253.7 nm), but the wavelength of ultraviolet rays acting on DNA has a spread of 250 nm to 265 nm. It can be made to work efficiently by irradiating with ultraviolet rays having a wide wavelength range.

本発明の紫外線半導体発光装置は、紫外線硬化樹脂(インキ)の硬化を行う印刷機械を含む各種装置、殺菌装置などに利用することができる。   The ultraviolet semiconductor light emitting device of the present invention can be used for various devices including a printing machine for curing an ultraviolet curable resin (ink), a sterilizer, and the like.

21 チップ(紫外線半導体発光チップ)
A、B、C 紫外線半導体発光チップ群
D 紫外線半導体発光素子
R1,R2,R3 発光波長帯域
Q 交点
U 発光強度分布
21 chip (ultraviolet semiconductor light emitting chip)
A, B, C Ultraviolet semiconductor light emitting chip group D Ultraviolet semiconductor light emitting elements R1, R2, R3 Emission wavelength band Q Intersection U Emission intensity distribution

Claims (5)

電流を流すことにより紫外線の発光波長帯域の所定の発光波長で発光する半導体発光チップを複数個配置して構成される紫外線半導体発光素子であって、
前記半導体発光チップを複数個配置したパッケージを備え、
前記パッケージには、異なるピーク波長を有し、発光波長帯域の一部が互いに重複する複数個の前記半導体発光チップを配置しており、
前記半導体発光チップは、前記発光波長帯域内で所定の発光強度分布を形成し、前記重複する発光波長帯域において前記発光強度分布の交点での発光波長における発光量が、所定の基準値の2分の1より大きく、前記所定の基準値を超えないことを特徴とする紫外線半導体発光素子。
An ultraviolet semiconductor light emitting element configured by arranging a plurality of semiconductor light emitting chips that emit light at a predetermined emission wavelength in an ultraviolet emission wavelength band by passing an electric current,
Comprising a package in which a plurality of the semiconductor light emitting chips are arranged;
In the package, a plurality of the semiconductor light emitting chips having different peak wavelengths and a part of the emission wavelength band overlapping each other are arranged,
The semiconductor light emitting chip forms a predetermined light emission intensity distribution within the light emission wavelength band, and the light emission amount at the light emission wavelength at the intersection of the light emission intensity distributions in the overlapping light emission wavelength band is two minutes of a predetermined reference value. An ultraviolet semiconductor light emitting device that is greater than 1 and does not exceed the predetermined reference value.
前記重複する発光波長帯域内において、いずれか一つの前記半導体発光チップの発光量が零に到るまでの各波長における、前記いずれか一つの半導体発光チップの発光量と他の前記半導体発光チップの発光量との合成値が、前記所定の基準値を超えていることを特徴とする請求項1に記載の紫外線半導体発光素子。   Within the overlapping light emission wavelength band, the light emission amount of any one of the semiconductor light emitting chips and the other semiconductor light emitting chips at each wavelength until the light emission amount of any one of the semiconductor light emitting chips reaches zero. 2. The ultraviolet semiconductor light-emitting element according to claim 1, wherein a composite value with a light emission amount exceeds the predetermined reference value. 前記パッケージに配置される複数の前記半導体発光チップは、前記発光波長帯域内で発光量が最大となるピーク波長を有しており、前記発光波長帯域の一部が互いに重複する複数個の前記半導体発光チップ間において、それぞれのピーク波長の差が5〜20nmの範囲であることを特徴とする請求項1に記載の紫外線半導体発光素子。   The plurality of semiconductor light emitting chips arranged in the package have a peak wavelength that maximizes the amount of light emission within the light emission wavelength band, and the plurality of semiconductors in which a part of the light emission wavelength band overlaps each other. The ultraviolet semiconductor light-emitting element according to claim 1, wherein a difference in peak wavelength between the light-emitting chips is in a range of 5 to 20 nm. 前記パッケージは、配置された複数個の前記半導体発光チップを同時に制御可能な半導体発光チップ群として、この半導体発光チップ群を複数配置しており、複数の前記半導体発光チップ群は、前記発光波長帯域内において複数の発光強度分布を形成することを特徴とする請求項1又は2に記載の紫外線半導体発光素子。   The package has a plurality of semiconductor light emitting chip groups arranged as semiconductor light emitting chip groups capable of simultaneously controlling the plurality of arranged semiconductor light emitting chips, and the plurality of semiconductor light emitting chip groups have the emission wavelength band. The ultraviolet semiconductor light-emitting element according to claim 1, wherein a plurality of light emission intensity distributions are formed inside. 前記パッケージは、配置された前記半導体発光チップを個別に、或いは、半導体発光チップ群単位で独立に電流制御可能な配線を備えており、
前記配線の接続によって、前記半導体発光チップまたは前記半導体発光チップ群を個々に電流制御することにより、前記発光波長帯域内の発光強度分布を制御可能としたことを特徴とする請求項3に記載の紫外線半導体発光素子。
The package includes wiring capable of current control individually for the arranged semiconductor light emitting chips or independently for each semiconductor light emitting chip group,
The light emission intensity distribution in the light emission wavelength band can be controlled by individually controlling the current of the semiconductor light emitting chip or the semiconductor light emitting chip group by the connection of the wiring. Ultraviolet semiconductor light emitting device.
JP2010197651A 2010-09-03 2010-09-03 Semiconductor ultraviolet light-emitting element Pending JP2012054492A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010197651A JP2012054492A (en) 2010-09-03 2010-09-03 Semiconductor ultraviolet light-emitting element
PCT/JP2010/072567 WO2012029197A1 (en) 2010-09-03 2010-12-15 Uv semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197651A JP2012054492A (en) 2010-09-03 2010-09-03 Semiconductor ultraviolet light-emitting element

Publications (1)

Publication Number Publication Date
JP2012054492A true JP2012054492A (en) 2012-03-15

Family

ID=45772325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197651A Pending JP2012054492A (en) 2010-09-03 2010-09-03 Semiconductor ultraviolet light-emitting element

Country Status (2)

Country Link
JP (1) JP2012054492A (en)
WO (1) WO2012029197A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161638A1 (en) * 2010-12-27 2012-06-28 Nk Works Co., Ltd. Led drive circuit
JP2013244727A (en) * 2012-05-29 2013-12-09 Kyocera Corp Lighting device, light emitting module, and printer
KR20140069673A (en) * 2012-11-29 2014-06-10 엘지디스플레이 주식회사 Display device
US8847241B2 (en) 2010-04-01 2014-09-30 Jenoptik Polymer Systems Gmbh Surface-emitting semiconductor light-emitting diode
JP2015106700A (en) * 2013-12-02 2015-06-08 Hoya Candeo Optronics株式会社 Light irradiation apparatus
WO2015108089A1 (en) * 2014-01-16 2015-07-23 株式会社トクヤマ Ultraviolet light emitting diode and ultraviolet ray source
JP2016039362A (en) * 2014-08-07 2016-03-22 株式会社トクヤマ Ultraviolet light source
JP2016066754A (en) * 2014-09-25 2016-04-28 東芝ライテック株式会社 Light source device
JP2016079190A (en) * 2014-10-09 2016-05-16 Dic株式会社 Curing device
CN105605531A (en) * 2014-10-20 2016-05-25 锋翔科技公司 Lighting device and lighting method
JP2016127154A (en) * 2014-12-29 2016-07-11 日亜化学工業株式会社 Light emission device
JP2016167589A (en) * 2015-03-02 2016-09-15 株式会社飯田照明 Ultraviolet radiation device
JP2017103351A (en) * 2015-12-02 2017-06-08 スタンレー電気株式会社 Ultraviolet light emitting device and ultraviolet light irradiating device
JP2020057761A (en) * 2018-10-02 2020-04-09 日亜化学工業株式会社 Ultraviolet-ray irradiating apparatus and hardening method for ultraviolet curing resin
CN111106217A (en) * 2018-10-25 2020-05-05 晶能光电(江西)有限公司 Preparation method of full-spectrum white light LED light-emitting device
WO2022014201A1 (en) * 2020-07-16 2022-01-20 日本電気硝子株式会社 Protective cap, electronic device, and protective cap production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543498B2 (en) * 1996-06-28 2004-07-14 豊田合成株式会社 Group III nitride semiconductor light emitting device
JP2005072141A (en) * 2003-08-21 2005-03-17 Harison Toshiba Lighting Corp Light emitting device, and light emitting element and its manufacturing method
JP4286801B2 (en) * 2005-03-11 2009-07-01 株式会社ナナオ Light emitting device, light emission intensity adjusting method, and liquid crystal display device
JP2010056192A (en) * 2008-08-27 2010-03-11 Kyocera Corp Surface-emitting irradiation device, surface-emitting irradiation equipment, and droplet discharge equipment

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847241B2 (en) 2010-04-01 2014-09-30 Jenoptik Polymer Systems Gmbh Surface-emitting semiconductor light-emitting diode
US8810136B2 (en) * 2010-12-27 2014-08-19 Nk Works Co., Ltd. LED drive circuit
US20120161638A1 (en) * 2010-12-27 2012-06-28 Nk Works Co., Ltd. Led drive circuit
JP2013244727A (en) * 2012-05-29 2013-12-09 Kyocera Corp Lighting device, light emitting module, and printer
KR101971049B1 (en) * 2012-11-29 2019-04-22 엘지디스플레이 주식회사 Display device
KR20140069673A (en) * 2012-11-29 2014-06-10 엘지디스플레이 주식회사 Display device
JP2015106700A (en) * 2013-12-02 2015-06-08 Hoya Candeo Optronics株式会社 Light irradiation apparatus
WO2015108089A1 (en) * 2014-01-16 2015-07-23 株式会社トクヤマ Ultraviolet light emitting diode and ultraviolet ray source
JP2016039362A (en) * 2014-08-07 2016-03-22 株式会社トクヤマ Ultraviolet light source
JP2016066754A (en) * 2014-09-25 2016-04-28 東芝ライテック株式会社 Light source device
JP2016079190A (en) * 2014-10-09 2016-05-16 Dic株式会社 Curing device
CN105605531A (en) * 2014-10-20 2016-05-25 锋翔科技公司 Lighting device and lighting method
JP2016111340A (en) * 2014-10-20 2016-06-20 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. Lighting device with faceted reflector
JP2016127154A (en) * 2014-12-29 2016-07-11 日亜化学工業株式会社 Light emission device
JP2016167589A (en) * 2015-03-02 2016-09-15 株式会社飯田照明 Ultraviolet radiation device
JP2021170650A (en) * 2015-03-02 2021-10-28 株式会社飯田照明 Ultraviolet irradiation device
JP7170349B2 (en) 2015-03-02 2022-11-14 株式会社飯田照明 UV irradiation device
JP2017103351A (en) * 2015-12-02 2017-06-08 スタンレー電気株式会社 Ultraviolet light emitting device and ultraviolet light irradiating device
JP2020057761A (en) * 2018-10-02 2020-04-09 日亜化学工業株式会社 Ultraviolet-ray irradiating apparatus and hardening method for ultraviolet curing resin
JP7228111B2 (en) 2018-10-02 2023-02-24 日亜化学工業株式会社 Ultraviolet irradiation device and curing method for ultraviolet curing resin
CN111106217A (en) * 2018-10-25 2020-05-05 晶能光电(江西)有限公司 Preparation method of full-spectrum white light LED light-emitting device
WO2022014201A1 (en) * 2020-07-16 2022-01-20 日本電気硝子株式会社 Protective cap, electronic device, and protective cap production method

Also Published As

Publication number Publication date
WO2012029197A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2012029197A1 (en) Uv semiconductor light-emitting element
US7202490B2 (en) LED modifying apparatus and method
EP2283934B1 (en) Method for curing a substance, device for carrying out said method and ink
EP2250681B1 (en) Light emitting module and display device having the same
US8080812B2 (en) Multi-attribute light effects for use in curing and other applications involving photoreactions and processing
US8421043B2 (en) Solid state radiation source array
ES2638974T3 (en) Ink and printed matter set
US20060204670A1 (en) UV curing method and apparatus
US20050104946A1 (en) Ink jet UV curing
US20040164325A1 (en) UV curing for ink jet printer
WO2005057669A2 (en) Irradiation apparatus
US20130070035A1 (en) Distributed light sources and systems for photo-reactive curing
WO2005068509A1 (en) Uv curing method and apparatus
WO2017110194A1 (en) Light irradiating device and phototherapy machine
JP3197315U (en) Wrap-around window for lighting module
JP2011079157A (en) Lighting system
JP2005209865A (en) Surface emitting type uv irradiation apparatus
CN214515788U (en) Ultraviolet irradiation device