JP2012052200A - Spheroidal graphite cast iron product having excellent wear resistance - Google Patents
Spheroidal graphite cast iron product having excellent wear resistance Download PDFInfo
- Publication number
- JP2012052200A JP2012052200A JP2010196834A JP2010196834A JP2012052200A JP 2012052200 A JP2012052200 A JP 2012052200A JP 2010196834 A JP2010196834 A JP 2010196834A JP 2010196834 A JP2010196834 A JP 2010196834A JP 2012052200 A JP2012052200 A JP 2012052200A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- spheroidal graphite
- iron product
- wear resistance
- graphite cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001141 Ductile iron Inorganic materials 0.000 title claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910001018 Cast iron Inorganic materials 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 11
- 229910052748 manganese Inorganic materials 0.000 abstract description 8
- 229910052758 niobium Inorganic materials 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229910001562 pearlite Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 230000002411 adverse Effects 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910001257 Nb alloy Inorganic materials 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000002087 whitening effect Effects 0.000 description 4
- 229910007981 Si-Mg Inorganic materials 0.000 description 3
- 229910008316 Si—Mg Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 229910014458 Ca-Si Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000592 Ferroniobium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本発明は、工作機械用構造部材、土木・建築用構造部材、機械部品等に好適な、球状黒鉛鋳鉄品に係り、とくに5〜10%程度の高延性を有する球状黒鉛鋳鉄品の耐摩耗性の向上に関する。 The present invention relates to a spheroidal graphite cast iron product suitable for a structural member for machine tools, a structural member for civil engineering / architecture, a machine part, etc., and particularly wear resistance of a spheroidal graphite cast iron product having a high ductility of about 5 to 10%. Related to improvement.
球状黒鉛鋳鉄は、良好な鋳造性と、高強度を有し、鍛鋼や鋳鋼の代替として、とくに工作機械用構造部材、土木建築用構造部材、機械構造部品等の使途に広く利用されている。しかし、近年、各種構造部材、構造部品等の長寿命化、さらに経済性という観点から、鋳放しのままで、所望の高強度と延性を保持しつつ、耐摩耗性が向上した、安価な鋳鉄品が要望されている。 Spheroidal graphite cast iron has good castability and high strength, and is widely used as a substitute for forged steel and cast steel, particularly for structural members for machine tools, structural members for civil engineering, and mechanical structural components. However, in recent years, from the viewpoint of extending the life of various structural members, structural parts, etc., and economically, it is an inexpensive cast iron with improved wear resistance while maintaining the desired high strength and ductility as it is. Goods are desired.
このような要望に対して、例えば、特許文献1には、重量比で、C:3.20〜4.00%、Si:2.00〜3.20%、Mn:0.05〜3.00%、P:0.10%以下、S:0.120%以下、Cu:0.40〜2.00%、Mg:0.02〜0.08%、希土類:0.005〜0.300%を含み、残部Feからなる球状黒鉛鋳鉄品が提案されている。引用文献1に記載された技術によれば、MnとCuとともに希土類元素を含有させて、パーライトを緻密にすることにより、引張強さ:700N/mm2以上の高強度と、2%以上の伸びを確保できるとしている。 In response to such a request, for example, Patent Document 1 discloses, in weight ratio, C: 3.20 to 4.00%, Si: 2.00 to 3.20%, Mn: 0.05 to 3.00%, P: 0.10% or less, S: 0.120. % Or less, Cu: 0.40 to 2.00%, Mg: 0.02 to 0.08%, rare earth: 0.005 to 0.300%, and a spheroidal graphite cast iron product composed of the remaining Fe has been proposed. According to the technique described in Cited Document 1, by adding rare earth elements together with Mn and Cu to make pearlite dense, tensile strength: 700N / mm 2 or more high strength and 2% or more elongation. Can be secured.
また、特許文献2には、鋳造後に鋳放しで、硬度差がある高硬度部と強靭部からなり、重量%で、TC:3.0〜4.0%、Si:2.0〜3.0%、Mg:0.03〜0.06%、Mn:0.2〜0.8%、Cu:0.5〜2.0%、Sn:0.03〜0.1%及びBi:0.002〜0.05%を含有する球状黒鉛鋳鉄品が提案されている。特許文献2に記載された技術によれば、パーライト安定化元素であるMn、Cu、Snを適正量含有させパーライトを緻密化し、さらにBiを含有させることにより、鋳放しのままで、引張強さ:600 N/mm2〜700 N/mm2以上という高強度を有する鋳鉄品とすることができるとしている。
Further,
また、特許文献3には、C:3.2〜3.9%、Si:2.0〜2.6%、Mn:0.6%以下を含み、P、S、Mgを適正量に調整して含み、さらに、Cu:2.4〜3.3%、Sn:0.01〜0.05%を含有し、残部Feからなる、球状黒鉛鋳鉄が提案されている。特許文献2に記載された技術により製造された球状黒鉛鋳鉄品は、CuとSnを複合含有することにより、引張強さ:900 N/mm2以上の高強度と伸び:4%以上の高延性を確保できるとしている。
Patent Document 3 includes C: 3.2 to 3.9%, Si: 2.0 to 2.6%, Mn: 0.6% or less, P, S, and Mg are adjusted to appropriate amounts, and Cu: 2.4 to Spheroidal graphite cast iron containing 3.3%, Sn: 0.01 to 0.05%, and remaining Fe has been proposed. Spheroidal graphite cast iron manufactured by the technique described in
また、特許文献4には、質量%で、C:3.4〜4.0%、Si:1.5〜2.0%、Mn:0.35〜0.5%、Ni:1.0超〜2.0%、Cu:0.2〜0.5%を含有し、残部がFe及び不可避的不純物からなり、パーライトを面積率で60〜90%、フェライトを10〜40%含む組織を有する球状黒鉛鋳鉄が提案されている。特許文献4に記載された技術によれば、引張強さ:770MPa以上で、伸び:8.0%以上の球状黒鉛鋳鉄部材とすることができるとしている。
上記した従来技術では、主としてパーライトの増量と緻密化とにより、或る程度までの高強度化を達成でき、一定レベル程度までの耐摩耗性の向上を確保できるとしている。しかし、上記した従来技術では、パーライトの増量と緻密化により所望の耐摩耗性を確保しているため、所望の強度と延性を保持しつつ、耐摩耗性の顕著な向上を図ることは難しいという問題があった。 According to the above-described prior art, it is said that an increase in strength to a certain degree can be achieved mainly by increasing and densifying pearlite, and an improvement in wear resistance to a certain level can be ensured. However, in the above-described prior art, since the desired wear resistance is secured by increasing the amount of pearlite and densifying, it is difficult to significantly improve the wear resistance while maintaining the desired strength and ductility. There was a problem.
本発明は、かかる従来技術の問題を解決し、従来材なみの強度と、延性とを有し、さらに従来材の1.5倍以上の優れた耐摩耗性を有する球状黒鉛鋳鉄品を提供することを目的とする。 The present invention solves the problems of the prior art, and provides a spheroidal graphite cast iron product having strength and ductility similar to those of conventional materials, and having an excellent wear resistance of 1.5 times or more that of conventional materials. Objective.
本発明者らは、上記した目的を達成するために、耐摩耗性と強度向上に影響する各種要因について鋭意研究した。その結果、Cuおよび/またはNiを含有し、鋳鉄の基地組織をパーライト化することにより、球状黒鉛鋳鉄の強度と耐摩耗性をともに一定レベルまで向上させることができるが、更なる耐摩耗性の向上のためには、Cr、Mo、W、V等の炭化物形成元素の含有を必要とするという知見を得た。しかし、炭化物形成元素の含有は、パーライトを増加、緻密化させて強度を向上させるが、延性を低下し、鋳鉄品の硬脆化に繋がる。さらに、炭化物形成元素の多量含有は、共晶炭化物の晶出を招き、極めて脆い材質の鋳鉄品となるという問題がある。 In order to achieve the above-mentioned object, the present inventors diligently studied various factors that affect wear resistance and strength improvement. As a result, both the strength and wear resistance of spheroidal graphite cast iron can be improved to a certain level by containing pearlite in the cast iron base structure containing Cu and / or Ni. In order to improve, the inventors have found that it is necessary to contain carbide forming elements such as Cr, Mo, W, and V. However, the inclusion of the carbide forming element increases the pearlite and densifies it to improve the strength, but decreases the ductility and leads to hard embrittlement of the cast iron product. Furthermore, a large amount of carbide-forming elements leads to crystallization of eutectic carbides, resulting in a problem that the cast iron product is made of a very brittle material.
そこで、本発明者らは、更なる検討を行い、所望の高強度と高延性を保持しつつ、更なる耐摩耗性の向上のためには、微細な極めて硬質な粒状炭化物を基地中に析出・分散させることができ、しかも析出した硬質な炭化物が周囲の基地組織に殆ど影響を及ぼさないことが重要であることに想到した。このようなことを実現できる合金元素として、本発明者らはNbに着目した。本発明者らの研究によれば、鋳鉄中ではNbは、Cと結合して最も硬い粒状のMC炭化物を形成するが、Nbが基地中に殆ど固溶しないため、Nb含有による基地組織の変化が少なく、また共晶炭化物の生成も抑制される。 Therefore, the present inventors have conducted further studies, and in order to further improve the wear resistance while maintaining the desired high strength and high ductility, fine extremely hard granular carbides are precipitated in the base. It came to mind that it is important that the hard carbides that can be dispersed and have little influence on the surrounding matrix structure. The present inventors paid attention to Nb as an alloy element that can realize such a thing. According to the study of the present inventors, Nb combines with C to form the hardest granular MC carbide in cast iron, but Nb hardly dissolves in the matrix, so the change in matrix structure due to Nb content And the formation of eutectic carbides is also suppressed.
さらに、本発明者らの研究によれば、Nbに加えてMoを複合含有させると、MoはMC炭化物中に固溶し、MC炭化物が強化され、強度特性を低下させることなく、耐摩耗性を更に向上させた鋳鉄品とすることができることを知見した。
すなわち、本発明者らは、適正量のNbとMoを複合含有させることにより、所望の高強度と、伸び:5〜10%という高延性とをともに維持しつつ、耐摩耗性が顕著に向上した球状黒鉛鋳鉄が得られるという新規な知見を得た。
Furthermore, according to the study by the present inventors, when Mo is compounded in addition to Nb, Mo is dissolved in MC carbide, MC carbide is strengthened, and wear resistance is not reduced without deteriorating strength properties. It was found that the cast iron product can be further improved.
That is, the present inventors significantly improved wear resistance while maintaining both desired high strength and high ductility of 5% to 10% by incorporating an appropriate amount of Nb and Mo. The inventors obtained new knowledge that a spheroidal graphite cast iron can be obtained.
まず、本発明の基礎となった実験結果について説明する。
質量%で、3.4〜3.9%C−2.3〜2.8%Si−0.4〜1.0%Mn−0〜1.4%Nb−0.3〜1.5%Cu−0.01〜0.60%Mo−0.027〜0.051%Mg−0〜1.2%Ni−残部Feからなる各組成の球状黒鉛鋳鉄製Y型キールブロック(平行部肉厚:15mm)から試験片を採取し、試験を実施した。
なお、従来例を質量%で0.38%C−2.7%Si−0.6%Mn−0.5%Cu−0.05%Mg−残部Feの球状黒鉛鋳鉄とした。
First, the experimental results on which the present invention is based will be described.
3.4-3.9% C-2.3-2.8% Si-0.4-1.0% Mn-0-1.4% Nb-0.3-1.5% Cu-0.01-0.60% Mo-0.027-0.051% Mg-0-1.2% by mass% Test pieces were collected from spheroidal graphite cast iron Y-type keel blocks (parallel portion thickness: 15 mm) composed of Ni and the balance Fe, and the test was performed.
In addition, the conventional example was made into 0.38% C-2.7% Si-0.6% Mn-0.5% Cu-0.05% Mg-balance Fe spheroidal graphite cast iron in mass%.
図1に引張強さと伸びの関係を示す。なお、図1には、参考としてJIS G 5502に規定された球状黒鉛鋳鉄の引張強さと伸びの関係を併記した。
強度の増加に伴い、伸び(延性)が低下することは参考として示したJISに規定された球状黒鉛鋳鉄におけるように、ごく一般的なことであるが、Nb−Cu−Mo系、Cu系は、同一強度で比較して伸び(延性)の向上が著しくなる。
FIG. 1 shows the relationship between tensile strength and elongation. In FIG. 1, the relationship between the tensile strength and elongation of spheroidal graphite cast iron defined in JIS G 5502 is shown together as a reference.
It is very common that the elongation (ductility) decreases as the strength increases, as in the spheroidal graphite cast iron specified in JIS shown as a reference, but Nb-Cu-Mo and Cu are The elongation (ductility) is remarkably improved as compared with the same strength.
これら、Cu系、Nb−Cu−Mo系について、2円盤の転がりすべり方式の摩耗試験結果から、従来例の摩耗量を基準として、摩耗比=(従来例の摩耗量)/(各鋳鉄品の摩耗量)を求め、摩耗比と伸びとの関係で図2に示す。
図2から、同一伸びで比較して、適正量のNb、Cu、Moを添加したNb−Cu−Mo系(●印)で、従来例、Cu系、適正範囲外のNb−Cu−Mo系に比べて著しい耐摩耗性の向上が認められるという知見を得た。
For these Cu-based and Nb-Cu-Mo-based, based on the results of the two-disk rolling sliding wear test, the wear ratio = (the wear amount of the conventional example) / (for each cast iron product) The amount of wear is determined and is shown in FIG. 2 in relation to the wear ratio and elongation.
From Fig. 2, compared with the same elongation, Nb-Cu-Mo system (marked with ●) with the appropriate amount of Nb, Cu, Mo added, conventional example, Cu system, Nb-Cu-Mo system outside the appropriate range As a result, it was found that a significant improvement in wear resistance was observed.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:3.0〜4.0%、Si:1.8〜3.0%、Mn:0.2〜1.2%、Cu:0.2〜1.3%、Nb:0.05〜1.0%、Mo:0.05〜0.5%、Mg:0.01〜0.06%を含有し、残部Feおよび不可避的不純物からなる組成を有し、耐摩耗性に優れることを特徴とする球状黒鉛鋳鉄品。
(2)(1)において、前記組成に加えてさらに、質量%で、Ni:0.1〜1.5%含有する組成であることを特徴とする球状黒鉛鋳鉄品。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、S:0.001〜0.03%含有する組成であることを特徴とする球状黒鉛鋳鉄品。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 3.0 to 4.0%, Si: 1.8 to 3.0%, Mn: 0.2 to 1.2%, Cu: 0.2 to 1.3%, Nb: 0.05 to 1.0%, Mo: 0.05 to 0.5%, Mg : A spheroidal graphite cast iron product containing 0.01 to 0.06%, having a composition composed of the remaining Fe and inevitable impurities, and having excellent wear resistance.
(2) The spheroidal graphite cast iron product according to (1), wherein in addition to the above composition, the composition further contains Ni: 0.1 to 1.5% by mass%.
(3) A spheroidal graphite cast iron product according to (1) or (2), wherein in addition to the above composition, the composition further contains S: 0.001 to 0.03% by mass%.
本発明によれば、引張強さ:700MPa以上の高強度を有し、5%以上の高延性と、さらに従来材の1.5倍以上の優れた耐摩耗性とを兼備し、工作機械用構造部材、土木・建築用構造部材、機械部品等用として好適な、球状黒鉛鋳鉄品を容易に製造でき、産業上格段の効果を奏する。また、本発明になる球状黒鉛鋳鉄は、適度の高強度と優れた延性とを兼備し、耐摩耗性に優れる鋳鉄品であり、機械部品の金具や爪、床板や、止め具などを配した景観用部材、マンホールの蓋や、土木建築用の止め具や、その他、種々の鋳物部材への適用も可能となるという効果もある。 According to the present invention, a tensile strength of 700 MPa or more, a high ductility of 5% or more, and an excellent wear resistance that is 1.5 times or more that of conventional materials, are structural members for machine tools. Further, it is possible to easily produce a spheroidal graphite cast iron product suitable for civil engineering / architectural structural members, machine parts, and the like, and has a remarkable industrial effect. In addition, the spheroidal graphite cast iron according to the present invention is a cast iron product that has moderately high strength and excellent ductility and is excellent in wear resistance, and is provided with mechanical parts such as metal fittings, nails, floor boards, and fasteners. There is also an effect that it can be applied to a landscape member, a manhole cover, a stop for civil engineering, and other various cast members.
まず、本発明の球状黒鉛鋳鉄品の組成限定理由について説明する。なお、以下、組成における質量%は単に%で記す。
C:3.0〜4.0%
Cは、球状黒鉛の晶出量、パーライト中の層状セメンタイト量およびMC炭化物の析出量、ならびに溶湯の流動性に影響する重要な元素である。C含有量が3.0%未満では特に流動性が不足し、引け巣が発生しやすく、また黒鉛量が不足し、所望の高強度、高延性を確保する球状黒鉛鋳鉄とすることが難しくなる。一方、4.0%を超える含有は、黒鉛量が過多となり、強度が低下する。このため、Cは3.0〜4.0%に限定した。なお、好ましくは、3.3〜3.9%である。
First, the reasons for limiting the composition of the spheroidal graphite cast iron product of the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
C: 3.0-4.0%
C is an important element that affects the amount of spheroidal graphite crystallization, the amount of layered cementite in pearlite and the amount of MC carbide precipitated, and the fluidity of the molten metal. If the C content is less than 3.0%, fluidity is particularly insufficient, shrinkage cavities are likely to occur, and the graphite content is insufficient, making it difficult to obtain a spheroidal graphite cast iron that secures desired high strength and high ductility. On the other hand, if the content exceeds 4.0%, the amount of graphite becomes excessive and the strength decreases. For this reason, C was limited to 3.0-4.0%. In addition, Preferably, it is 3.3 to 3.9%.
Si:1.8〜3.0%
Siは、溶湯の流動性と白銑化に影響を及ぼすとともに、さらに黒鉛の生成を促進するとともに、フェライトの析出を促進し、高延性の確保に寄与する元素であり、本発明では1.8%以上の含有を必要とする。Siが1.8%未満では、流動性が低下して薄肉部への溶湯の充填が困難になるとともに、白銑化も発生する。一方、3.0%を超える含有は、黒鉛形状が乱れ、形状の崩れた黒鉛となりやすく、高強度化が困難になる。このため、Siは1.8〜3.0%の範囲に限定した。なお、好ましくは、2.2〜2.9%である。
Si: 1.8-3.0%
Si is an element that affects the fluidity and whitening of the molten metal, further promotes the formation of graphite, promotes the precipitation of ferrite, and contributes to ensuring high ductility. In the present invention, 1.8% or more It is necessary to contain. If Si is less than 1.8%, the fluidity is lowered, making it difficult to fill the thin portion with molten metal, and whitening also occurs. On the other hand, if the content exceeds 3.0%, the graphite shape is disturbed, and the graphite tends to be deformed, making it difficult to increase the strength. For this reason, Si was limited to the range of 1.8 to 3.0%. In addition, Preferably, it is 2.2 to 2.9%.
Mn:0.2〜1.2%
Mnは、基地中に固溶し、基地の高強度化に寄与する有用な元素である。このような効果を得るためには、0.2%以上の含有を必要とする。Mnが0.2%未満では強度が低下し、所望の高強度を確保できなくなる。一方、1.2%を超えるMnの含有は、凝固セルの粒界にMnが偏析して材質を脆化させる。このため、Mnは0.2〜1.2%の範囲に限定した。なお、好ましくは、0.3 〜1.0%である。
Mn: 0.2-1.2%
Mn is a useful element that dissolves in the base and contributes to increasing the strength of the base. In order to obtain such an effect, the content of 0.2% or more is required. If Mn is less than 0.2%, the strength decreases, and the desired high strength cannot be ensured. On the other hand, if the Mn content exceeds 1.2%, the Mn segregates at the grain boundaries of the solidification cell and embrittles the material. For this reason, Mn was limited to the range of 0.2 to 1.2%. In addition, Preferably, it is 0.3 to 1.0%.
Cu:0.2%以上1.3%以下
Cuは、パーライト組織を緻密化するととともに、基地を高強度化する作用を有する元素である。このような効果を得るためには、0.2%以上の含有を必要とする。一方、1.3%を超える含有は、延性の低下を招く。このため、Cuは0.2%以上1.3%以下の範囲に限定した。なお、好ましくは0.3〜1.1%である。
Cu: 0.2% to 1.3%
Cu is an element that has the effect of densifying the pearlite structure and increasing the strength of the matrix. In order to obtain such an effect, the content of 0.2% or more is required. On the other hand, the content exceeding 1.3% causes a decrease in ductility. For this reason, Cu was limited to the range of 0.2% to 1.3%. In addition, Preferably it is 0.3 to 1.1%.
Nb:0.05〜1.0%
Nbは、本発明では最も重要な元素であり、硬質な粒状のMC型炭化物を形成し、適度の高強度と優れた延性とを保持しつつ、更なる耐摩耗性向上に有効に寄与する元素である。また、Nbは、凝固組織をも微細化し、高強度化に有効に寄与する。このような効果は、0.05%以上の含有で認められるが、1.0%を超える含有は、MC型炭化物が粗大化し、延性の低下を招く。このため、Nbは0.05〜1.0%の範囲に限定した。なお、好ましくは、0.1〜0.8%である。なお、Nbの添加は、フェロニオブ、あるいはFe−Nb合金を用いることが好ましいが、溶湯に溶けにくい傾向があり、溶製時の早期から投入しておくことが好ましい。なお、最近ではNb合金の表面にフラックスを被覆したり、フラックスを混合したNb合金等が市販されており、これらのNb合金を使用すれば、Nb含有合金の溶湯への溶解が促進されるという利点がある。
Nb: 0.05-1.0%
Nb is the most important element in the present invention, and forms a hard granular MC type carbide, while maintaining moderately high strength and excellent ductility, and effectively contributing to further improvement in wear resistance. It is. Nb also makes the solidified structure finer and contributes effectively to higher strength. Such an effect is recognized when the content is 0.05% or more. However, when the content exceeds 1.0%, the MC-type carbide is coarsened and ductility is reduced. For this reason, Nb was limited to the range of 0.05 to 1.0%. In addition, Preferably, it is 0.1 to 0.8%. Nb is preferably added using ferroniobium or an Fe—Nb alloy. However, it tends to be difficult to dissolve in the molten metal, and it is preferable to add Nb at an early stage of melting. In addition, recently, Nb alloys, etc., in which the surface of the Nb alloy is coated with flux or mixed with flux are commercially available, and the use of these Nb alloys promotes dissolution of the Nb-containing alloy into the molten metal. There are advantages.
Mo:0.05〜0.5%
Moは、本発明では重要な元素であり、Nbと複合含有することにより、Moが硬質な粒状のMC型炭化物に固溶し、MC炭化物を強化して、強度特性を低下させることなく、耐摩耗性を更に向上させる作用を有する。なお、MC型炭化物に固溶しきれなかったMoは、基地を強化する作用を有する。このような効果は、0.05%以上の含有で顕著となるが、0.5%を超える含有は、引け巣(ザク巣)が出現しやすくなり、鋳物の健全性が低下する。このため、Moは0.05〜0.5%の範囲に限定した。なお、好ましくは0.05〜0.4%である。
Mo: 0.05-0.5%
Mo is an important element in the present invention, and when mixed with Nb, Mo dissolves in the hard granular MC type carbide, strengthens the MC carbide, and does not deteriorate the strength characteristics. It has the effect of further improving the wear properties. Mo that could not be completely dissolved in the MC type carbide has the effect of strengthening the base. Such an effect becomes remarkable when the content is 0.05% or more. However, when the content exceeds 0.5%, shrinkage nests (zaku nests) tend to appear and the soundness of the casting is lowered. For this reason, Mo was limited to a range of 0.05 to 0.5%. In addition, Preferably it is 0.05 to 0.4%.
Mg:0.01〜0.06%
Mgは、黒鉛を球状化する作用を有し、球状黒鉛鋳鉄では必須元素である。このような効果を確保するためには、0.01%以上の含有を必要とする。一方、0.06%を超える含有は、Mgの酸化物が多量のドロスを発生させ、表面欠陥を増加させる。このため、Mgは0.01〜0.06%の範囲に限定した。なお、好ましくは0.02〜0.05%である。
上記した成分が基本の成分であるが、上記した基本組成に加えてさらに、選択元素として、Niを含有してもよい。
Mg: 0.01-0.06%
Mg has a function of spheroidizing graphite, and is an essential element in spheroidal graphite cast iron. In order to ensure such an effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 0.06%, Mg oxide generates a large amount of dross and increases surface defects. For this reason, Mg was limited to the range of 0.01 to 0.06%. In addition, Preferably it is 0.02 to 0.05%.
The above-described components are basic components, but in addition to the basic composition described above, Ni may be further included as a selective element.
Ni:0.1〜1.5%
Niは、基地中に固溶して炭素の拡散を抑制し、基地のパーライト変態を促進し、強度を増加させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.1%以上の含有で顕著となる。一方、1.5%を超える含有は、オーステナイトを安定化させ、基地組織を一部、ベイナイト化、あるいはマルテンサイト化させて、強度のばらつきを大きくする悪影響を及ぼす。このため、Niは0.1〜1.5%の範囲に限定することが好ましい。
Ni: 0.1-1.5%
Ni is an element that has the effect of dissolving in the matrix and suppressing the diffusion of carbon, promoting the pearlite transformation of the matrix, and increasing the strength, and can be contained as necessary. Such an effect becomes remarkable when the content is 0.1% or more. On the other hand, if the content exceeds 1.5%, austenite is stabilized, and part of the base structure is made bainite or martensite, which has an adverse effect of increasing strength variation. For this reason, Ni is preferably limited to a range of 0.1 to 1.5%.
S:0.001〜0.03%
Sは、基本的には不純物元素であるが、Mg、Si等と化合物を形成して黒鉛の核を形成し、黒鉛化を促進する作用を有する元素であるといわれている。このような効果を得るために、本発明では0.001%以上含有させる。一方、0.03%を超える含有は、黒鉛形状を低下させる。このため、Sは0.001〜0.03%の範囲に限定した。
S: 0.001 to 0.03%
S is basically an impurity element, but is said to be an element having an action of promoting the graphitization by forming a nucleus of graphite by forming a compound with Mg, Si and the like. In order to obtain such effects, 0.001% or more is contained in the present invention. On the other hand, a content exceeding 0.03% lowers the graphite shape. For this reason, S was limited to the range of 0.001 to 0.03%.
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としてPを0.04%未満、Crを0.1%未満、Tiを0.05%未満、Wを0.1%未満に調整することが好ましい。
Pは、ザク巣を増加させたり、凝固セルの粒界に偏析して材質を脆化させる作用を有する元素であり、本発明では不純物としてできるだけ低減することが望ましい。0.04%以上では上記した悪影響が顕著となる。このため、Pは0.04%未満に調整することが好ましい。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, it is preferable to adjust P to less than 0.04%, Cr to less than 0.1%, Ti to less than 0.05%, and W to less than 0.1%.
P is an element that has an effect of increasing the number of nests or segregating at the grain boundaries of the solidification cell to embrittle the material. In the present invention, P is preferably reduced as much as possible. Above 0.04%, the above-mentioned adverse effects become significant. For this reason, it is preferable to adjust P to less than 0.04%.
Cr、Ti、Wはいずれも、白銑化を促進させる元素であり、白銑化抑制のために、低減することが好ましい。Cr:0.1%未満、Ti:0.05%未満、W:0.1%未満であれば悪影響は小さく、許容できる。上記した範囲内とするためには、これら元素を多量に含有することのない溶解原料を使用することが肝要であるが、通常の一般的な溶解原料であれば、とくに溶解原料の厳選を必要としない。なお、より好ましくは、Cr:0.05%未満、Ti:0.03%未満、W:0.05%未満である。 Cr, Ti, and W are all elements that promote whitening, and are preferably reduced in order to suppress whitening. If Cr: less than 0.1%, Ti: less than 0.05%, W: less than 0.1%, the adverse effect is small and acceptable. In order to make it within the above-mentioned range, it is important to use dissolved raw materials that do not contain a large amount of these elements. And not. More preferably, Cr is less than 0.05%, Ti is less than 0.03%, and W is less than 0.05%.
また、不可避的不純物としての、Al、Ca、Ba、Bi、REMは、Al :0.05%未満、Ca:0.008%未満、Ba:0.002%未満、Bi:0.02%未満、REM:0.05%未満、が許容できる。
Al、Ca 、Ba、Bi、REMは、通常、黒鉛球状化剤として使用されるFe−Si−Mg合金や、通常、接種剤として使用されるFe−Si合金やCa−Si合金中に含有される。このため、Al、Ca、Ba、Bi、REMは、球状黒鉛鋳鉄には不可避的に含まれる不純物となる。しかし、Al を0.05%以上を含有すると、黒鉛球状化に悪影響を及ぼし強度低下の原因となる。また、Caを0.008%以上、Baを0.002%以上含有すると、ドロスが増加し、表面欠陥の発生が増加する。また、Bi:0.02%以上含有すると、黒鉛球状化に悪影響を及ぼしたり、炭化物を晶出する場合がある。また、REMを0.05%以上含有すると、薄肉鋳鉄品を鋳造するに際して、チル組織を発生させたり、黒鉛形状を劣化させたりする。
Moreover, Al, Ca, Ba, Bi, and REM as inevitable impurities are Al: less than 0.05%, Ca: less than 0.008%, Ba: less than 0.002%, Bi: less than 0.02%, REM: less than 0.05%, acceptable.
Al, Ca, Ba, Bi, and REM are usually contained in Fe-Si-Mg alloys that are used as graphite spheroids, and Fe-Si alloys and Ca-Si alloys that are usually used as inoculating agents. The For this reason, Al, Ca, Ba, Bi, and REM are impurities inevitably contained in the spheroidal graphite cast iron. However, if Al is contained in an amount of 0.05% or more, it adversely affects the spheroidization of graphite and causes a decrease in strength. Further, when Ca is contained in an amount of 0.008% or more and Ba is contained in an amount of 0.002% or more, dross increases and the occurrence of surface defects increases. Further, when Bi is contained in an amount of 0.02% or more, it may adversely affect the spheroidization of graphite and may cause crystallization of carbides. Further, when REM is contained in an amount of 0.05% or more, a chill structure is generated or the graphite shape is deteriorated when casting a thin cast iron product.
上記した不純物以外の不可避的不純物として、Nがあるが、通常の溶湯溶製法であれば、N含有量は0.002〜0.03%程度となる。この程度の含有範囲であればとくに悪影響はない。
本発明の球状黒鉛鋳鉄品は、上記した組成を有し、鋳放しのままで、ほぼ引張強さ:700MPaの高強度と、5%以上の高延性とを有し、強度−延性バランスに優れ、さらに従来材の1.5倍以上の優れた耐摩耗性を有する。
There is N as an inevitable impurity other than the above-described impurities, but in the case of a normal molten metal melting method, the N content is about 0.002 to 0.03%. If the content is within this range, there is no particular adverse effect.
The spheroidal graphite cast iron product of the present invention has the above-described composition, as-cast, and has a high tensile strength of about 700 MPa and a high ductility of 5% or more, and has an excellent strength-ductility balance. In addition, it has an excellent wear resistance of more than 1.5 times that of conventional materials.
つぎに、本発明の球状黒鉛鋳鉄品の好ましい製造方法について説明する。
高周波炉等の常用の鋳鉄溶製方法で母溶湯を溶製し、該母溶湯に、常用のSi−Mg合金等の黒鉛球状化剤を添加する黒鉛球状化処理を行ったのち、さらに、通常のFe−Si合金、Ca−Si合金等の接種剤で接種して上記した組成とし、所望の形状に形成された、砂型、金型等の常用の鋳型に注湯することが好ましい。なお、本発明においては、接種は、常用の方法である、取鍋に移送時に行う方法、あるいは湯道等の鋳型内(インモールド接種)で行う方法のいずれで行ってもよいことは言うまでもない。
Next, a preferred method for producing the spheroidal graphite cast iron product of the present invention will be described.
After melting the mother molten metal by a conventional cast iron melting method such as a high-frequency furnace, adding a graphite spheroidizing agent such as a conventional Si-Mg alloy to the mother molten metal, It is preferable to inject with a conventional mold such as a sand mold or a mold formed in a desired shape by inoculating with an inoculant such as Fe-Si alloy or Ca-Si alloy. In the present invention, it goes without saying that the inoculation may be carried out by any of the usual methods, such as a method of transferring to a ladle or a method of performing in a mold such as a runner (in-mold inoculation). .
以下、さらに実施例に基づいて本発明についてさらに説明する。 The present invention will be further described below based on examples.
高周波炉を用いて溶製した母溶湯に、表1に示す合金組成となるように合金元素を添加した。なお、合金元素添加後の溶湯の最高温度は、1490〜1580℃とした。合金元素添加後の溶湯に、ついで、市販のSi−Mg合金(Fe−45質量%Si−5質量%Mg−1.8質量%REM−2質量%Ca合金)を用いてサンドイッチ法で黒鉛球状化処理を行った。ついで、溶湯を取鍋に移し替え、その際に、Fe−75質量%Si−0.2質量%Al合金で接種した。接種直後、化学分析用試料を採取し、直ちに、溶湯を砂型に注湯(鋳込み)し、Y型キールブロック(平行部肉厚15mm)とした。なお、鋳込み温度は、1360℃〜1480℃とした。 An alloying element was added to the molten mother metal melted using a high-frequency furnace so that the alloy composition shown in Table 1 was obtained. The maximum temperature of the molten metal after addition of the alloy elements was 1490 to 1580 ° C. Graphite spheroidization by sandwich method using commercially available Si-Mg alloy (Fe-45 mass% Si-5 mass% Mg-1.8 mass% REM-2 mass% Ca alloy) for the molten metal after addition of alloying elements Went. Subsequently, the molten metal was transferred to a pan, and inoculated with Fe-75 mass% Si-0.2 mass% Al alloy. Immediately after inoculation, a sample for chemical analysis was collected, and immediately the molten metal was poured into a sand mold (casting) to form a Y-type keel block (parallel part thickness 15 mm). The casting temperature was 1360 ° C to 1480 ° C.
鋳込み後、18時間以上放置したのち、型バラシを行い、Y型キールブロックから、鋳放し状態で、試験片を採取し、引張試験および摩耗試験を実施した。試験方法は次のとおりとした。
(1)引張試験
Y型キールブロックから、JIS 14A号引張試験片(平行部径:10mmφ×GL50mm)を採取し、JIS Z 2241の規定に準拠して、室温(25℃)で引張試験を実施し、引張強さTS、および伸びElを測定した。
(2)摩耗試験
Y型キールブロックから、摩耗試験片(円盤状試験片:外径φ60mm×肉厚10mm)を採取した。摩耗試験は、2円盤の転がりすべり方式とした。相手材は、S45C材製の円盤状試験片(外径φ190mm×肉厚15mm)とした。摩耗試験は、試験片回転数:700rpm、すべり率:5%、荷重:100kgf(980N)、試験時間:60minとした。なお、試験片の発熱を避けるために、試験片を水冷しながら摩耗試験を実施した。摩耗試験の前後に試験片の重量測定を行い、試験片の摩耗減量(摩耗量)を測定した。各鋳鉄品の耐摩耗性は、従来例(鋳鉄品No.M)の摩耗量に対する比、摩耗比=(従来例の摩耗量)/(各鋳鉄品(試験片)の摩耗量)で評価した。この摩耗比が大きいほど、耐摩耗性が優れることを意味する。
After casting, the mold was brushed after standing for 18 hours or more, and test pieces were collected from the Y-type keel block in an as-cast state, and a tensile test and a wear test were performed. The test method was as follows.
(1) Tensile test A JIS 14A tensile test piece (parallel part diameter: 10mmφ x GL50mm) was collected from a Y-type keel block and subjected to a tensile test at room temperature (25 ° C) in accordance with the provisions of JIS Z 2241. The tensile strength TS and the elongation El were measured.
(2) Wear test A wear test piece (disk-shaped test piece: outer diameter φ60 mm ×
得られた結果を表2に示す。 The obtained results are shown in Table 2.
本発明例はいずれも、従来例と同等の、強度と、延性(伸び)を維持しつつ、かつ従来例の1.5倍以上の耐摩耗性を有する、球状黒鉛鋳鉄品となっている。一方、本発明範囲を外れる比較例は、少なくとも強度、延性、あるいは耐摩耗性のいずれかが、所望の特性を確保できていない。 Each of the examples of the present invention is a spheroidal graphite cast iron product having the same strength and ductility (elongation) as the conventional example and having 1.5 times or more wear resistance of the conventional example. On the other hand, in the comparative example that is out of the scope of the present invention, at least one of strength, ductility, and wear resistance cannot secure desired characteristics.
Claims (3)
C:3.0〜4.0%、 Si:1.8〜3.0%、
Mn:0.2〜1.2%、 Cu:0.2〜1.3%、
Nb:0.05〜1.0%、 Mo:0.05〜0.5%、
Mg:0.01〜0.06%、
を含有し、残部Feおよび不可避的不純物からなる組成を有し、耐摩耗性に優れることを特徴とする球状黒鉛鋳鉄品。 % By mass
C: 3.0-4.0%, Si: 1.8-3.0%,
Mn: 0.2-1.2%, Cu: 0.2-1.3%
Nb: 0.05 to 1.0%, Mo: 0.05 to 0.5%,
Mg: 0.01-0.06%,
Nodular cast iron product characterized by having a composition composed of the balance Fe and inevitable impurities and having excellent wear resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196834A JP5712531B2 (en) | 2010-09-02 | 2010-09-02 | Spheroidal graphite cast iron products with excellent wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196834A JP5712531B2 (en) | 2010-09-02 | 2010-09-02 | Spheroidal graphite cast iron products with excellent wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012052200A true JP2012052200A (en) | 2012-03-15 |
JP5712531B2 JP5712531B2 (en) | 2015-05-07 |
Family
ID=45905840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010196834A Active JP5712531B2 (en) | 2010-09-02 | 2010-09-02 | Spheroidal graphite cast iron products with excellent wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5712531B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107964622A (en) * | 2017-11-27 | 2018-04-27 | 梅州伟友耐磨材料有限公司 | A kind of excavator ductile iron gear of high-ductility high wear-resistant high strength and high hardness and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258951A (en) * | 1989-03-30 | 1990-10-19 | Kubota Ltd | Wear-resistant cast iron material having high elastic modulus |
JP2008303434A (en) * | 2007-06-08 | 2008-12-18 | Jfe Steel Kk | High strength spheroidal graphite iron casting having excellent wear resistance |
JP2009509035A (en) * | 2005-09-15 | 2009-03-05 | グリード・ファウンドリーズ・インコーポレイテッド | High silicon niobium casting alloy and method for producing the same |
JP2010132979A (en) * | 2008-12-05 | 2010-06-17 | Jfe Steel Corp | High strength thick spherical graphite cast iron product excellent in wear resistance |
-
2010
- 2010-09-02 JP JP2010196834A patent/JP5712531B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258951A (en) * | 1989-03-30 | 1990-10-19 | Kubota Ltd | Wear-resistant cast iron material having high elastic modulus |
JP2009509035A (en) * | 2005-09-15 | 2009-03-05 | グリード・ファウンドリーズ・インコーポレイテッド | High silicon niobium casting alloy and method for producing the same |
JP2008303434A (en) * | 2007-06-08 | 2008-12-18 | Jfe Steel Kk | High strength spheroidal graphite iron casting having excellent wear resistance |
JP2010132979A (en) * | 2008-12-05 | 2010-06-17 | Jfe Steel Corp | High strength thick spherical graphite cast iron product excellent in wear resistance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107964622A (en) * | 2017-11-27 | 2018-04-27 | 梅州伟友耐磨材料有限公司 | A kind of excavator ductile iron gear of high-ductility high wear-resistant high strength and high hardness and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5712531B2 (en) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5012231B2 (en) | High-strength spheroidal graphite cast iron with excellent wear resistance | |
JP4835424B2 (en) | High strength spheroidal graphite cast iron | |
JP5712560B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
CN102134682B (en) | Wear resistant steel plate | |
CN102260829B (en) | 500 HB wear resistant steel plate and its manufacturing method | |
JP4787640B2 (en) | Composite roll for rolling | |
JP2005206913A (en) | Alloy tool steel | |
CN101078090A (en) | Low-alloy high speed steel roll material and preparation method thereof | |
CN103498107A (en) | High-boron high-chromium low-carbon high-temperature-resistant wear-resisting alloy steel and manufacturing method thereof | |
JPWO2013100148A1 (en) | Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same | |
WO2009028736A1 (en) | Austenitic cast iron, process for manufacturing the same, austenitic cast iron castings, and exhaust system parts | |
CN109881089B (en) | High-strength wear-resistant steel and preparation method thereof | |
JP2007245217A5 (en) | ||
CN103882326B (en) | A kind of high-strength abrasion-proof shovel loader teeth | |
JP5589646B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
JP5712525B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
JP2022550358A (en) | Alloy structural steel and its manufacturing method | |
JP2007154295A (en) | Wear resistant cast steel and its production method | |
JP5282546B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JP2007308784A (en) | Alloy steel | |
TW390910B (en) | High strength spheroidal graphite cast iron | |
JP5282547B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JP5712531B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
JP3913935B2 (en) | Hypoeutectic spheroidal graphite cast iron | |
JP4672433B2 (en) | Heat-resistant casting alloy and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130617 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130624 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5712531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |