JP2012049310A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2012049310A
JP2012049310A JP2010189606A JP2010189606A JP2012049310A JP 2012049310 A JP2012049310 A JP 2012049310A JP 2010189606 A JP2010189606 A JP 2010189606A JP 2010189606 A JP2010189606 A JP 2010189606A JP 2012049310 A JP2012049310 A JP 2012049310A
Authority
JP
Japan
Prior art keywords
conductor
buffer layer
hole
wiring board
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010189606A
Other languages
Japanese (ja)
Inventor
Seiichiro Ito
征一朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010189606A priority Critical patent/JP2012049310A/en
Publication of JP2012049310A publication Critical patent/JP2012049310A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board in which a through conductor, connecting multiple wiring conductors on the upper and lower surfaces of an insulation layer electrically, can be prevented from peeling off from the inside surface of a through hole.SOLUTION: The wiring board comprises an insulating plate 1 made of a sintered ceramic body and having a through hole 3 penetrating in the thickness direction, and a through conductor 2 filling the through hole 3. A buffer layer 4 made of a sintered body containing air gaps 4a internally is interposed between the inside surface of the through hole 3 and the side surface of the through conductor 2. Since thermal expansion of the through conductor 2 can be absorbed by deformation of the buffer layer 4 containing the air gaps 4a, projection of the through conductor 2 from the insulating plate 1 can be prevented by preventing expansion of the through conductor 2 in the length direction.

Description

本発明は、厚み方向に貫通する貫通孔を有する絶縁板と、この絶縁板を厚み方向に貫通する貫通孔内に充填された貫通導体とを備え、貫通導体を介して絶縁板の上下面の配線導体等の導体が互いに電気的に接続された配線基板に関するものである。   The present invention includes an insulating plate having a through hole penetrating in the thickness direction, and a through conductor filled in the through hole penetrating the insulating plate in the thickness direction, and the upper and lower surfaces of the insulating plate are interposed through the through conductor. The present invention relates to a wiring board in which conductors such as wiring conductors are electrically connected to each other.

従来、電子部品搭載用等に使用される配線基板として、セラミック焼結体からなり、主面(上面や下面)に配線導体が形成された絶縁板と、その絶縁板を厚み方向に貫通する貫通孔と、貫通孔の内側面に被着された貫通導体(ビア導体)とを備えたものが用いられている。絶縁板の上下面の配線導体は、貫通孔が形成された位置で上下に重なり合う部分を有し、この部分で貫通導体を介して上下に電気的に接続されている。   Conventionally, as a wiring board used for mounting electronic components, etc., an insulating plate made of a ceramic sintered body and having a wiring conductor formed on the main surface (upper surface and lower surface), and a through-penetrating through the insulating plate in the thickness direction A device provided with a hole and a through conductor (via conductor) attached to the inner surface of the through hole is used. The wiring conductors on the upper and lower surfaces of the insulating plate have portions that are vertically overlapped at the positions where the through holes are formed, and these portions are electrically connected vertically via the through conductors.

このような配線基板は、例えば絶縁板の上面の配線導体に電子部品の電極や電子部品の電気検査を行なうためのプローブが接続され、下面の配線導体が回路基板等の外部電気回路基板に接続される。そして、絶縁板の上面の配線導体と、貫通導体と、絶縁板の下面の配線導体とを介して、電子部品が外部電気回路と電気的に接続され、信号の送受や、電子部品に対する電気的な検査等が行なわれる。   In such a wiring board, for example, an electrode of an electronic component or a probe for performing an electrical inspection of the electronic component is connected to the wiring conductor on the upper surface of the insulating plate, and the lower wiring conductor is connected to an external electric circuit board such as a circuit board. Is done. Then, the electronic component is electrically connected to an external electric circuit via the wiring conductor on the upper surface of the insulating plate, the through conductor, and the wiring conductor on the lower surface of the insulating plate, and transmission and reception of signals and electrical connection to the electronic component are performed. Inspects are performed.

貫通導体は、セラミック焼結体からなる絶縁層の所定位置にレーザ加工によって開口が円形状等の貫通孔を形成し、この貫通孔内に銀−パラジウム等の金属ペーストを充填した後、金属ペーストを加熱して貫通孔の内側面に金属材料として接合させることによって形成されている。   The through conductor is formed by forming a through hole with a circular opening in a predetermined position of an insulating layer made of a ceramic sintered body by laser processing, and after filling the metal paste such as silver-palladium into the through hole, the metal paste Is heated and bonded to the inner side surface of the through hole as a metal material.

特開平3−62992号公報JP-A-3-62992

しかしながら、このような配線基板においては、絶縁板と貫通導体との熱膨張率に差がある(貫通導体の方が大きい)ため、電子部品の搭載時や絶縁板の主面にさらに樹脂絶縁層等の他の絶縁層を積層する際の熱で貫通導体が絶縁板の主面よりも外側に突出する可能性があるという問題点があった。貫通導体が突出した場合には、例えば絶縁板の主面に積層した配線導体や樹脂絶縁層にクラック等の機械的な破壊が生じ、配線基板としての信頼性が低下する。   However, in such a wiring board, there is a difference in the coefficient of thermal expansion between the insulating plate and the through conductor (the through conductor is larger), so that a resin insulating layer is further added to the main surface of the insulating plate when mounting electronic parts. There is a problem that the through conductor may protrude outward from the main surface of the insulating plate due to heat generated when the other insulating layers are laminated. When the through conductor protrudes, for example, mechanical damage such as a crack occurs in the wiring conductor or the resin insulating layer laminated on the main surface of the insulating plate, and the reliability as the wiring board is lowered.

本発明は上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、セラミック焼結体からなる絶縁板に配置された貫通導体が絶縁板の主面よりも外側に突出することを抑制することが可能な配線基板を提供することにある。   The present invention has been completed in view of the above-mentioned problems of the prior art, and its purpose is to have a through conductor disposed on an insulating plate made of a ceramic sintered body protruding outward from the main surface of the insulating plate. An object of the present invention is to provide a wiring board capable of suppressing this.

本発明の配線基板は、セラミック焼結体からなり、厚み方向に貫通する貫通孔を有する絶縁板と、前記貫通孔内に充填された貫通導体とを備える配線基板であって、前記貫通孔と前記貫通導体との間に、内部に空隙を含んだ焼結体からなる緩衝層が介在していることを特徴とする。   The wiring board of the present invention is a wiring board comprising a ceramic sintered body and having an insulating plate having a through hole penetrating in the thickness direction, and a through conductor filled in the through hole. A buffer layer made of a sintered body containing voids is interposed between the through conductors.

また、本発明の配線基板は、上記構成において、前記緩衝層が、前記貫通孔の内側面に
おいて前記セラミック焼結体が部分的に溶融した後に固化してなる、内部に空隙を含んだ溶融改質層によって形成されていることを特徴とする。
In the wiring board of the present invention, in the above configuration, the buffer layer is formed by melting the ceramic sintered body partially melted on the inner surface of the through-hole and solidifying after containing the void. It is characterized by being formed of a quality layer.

また、本発明の配線基板は、上記構成において、前記絶縁板の主面に前記緩衝層に接する樹脂絶縁層が積層されているとともに、該樹脂絶縁層を形成する樹脂材料の一部が、前記絶縁板の主面側に位置する前記緩衝層の前記空隙内に入り込んでいることを特徴とする。   In the wiring board of the present invention, in the above configuration, a resin insulating layer in contact with the buffer layer is laminated on the main surface of the insulating plate, and a part of the resin material forming the resin insulating layer is It has entered into the space of the buffer layer located on the main surface side of the insulating plate.

本発明の配線基板によれば、セラミック焼結体からなり、厚み方向に貫通する貫通孔を有する絶縁板と、貫通孔内に充填された貫通導体とを備え、貫通孔と貫通導体との間に、内部に空隙を含んだ焼結体からなる緩衝層が介在していることから、貫通導体が熱膨張するときに、空隙を含んでいる分、絶縁板を形成するセラミック焼結体に比べて変形しやすい緩衝層が、貫通導体の膨張に応じて変形することができる。そのため、貫通導体の長さ方向の膨張を抑制することができ、貫通導体が絶縁板の主面よりも外側に突出することを効果的に抑制することができる。   According to the wiring board of the present invention, an insulating plate made of a ceramic sintered body and having a through hole penetrating in the thickness direction, and a through conductor filled in the through hole, the gap between the through hole and the through conductor is provided. In addition, since a buffer layer made of a sintered body including voids is interposed inside, when the through conductor thermally expands, the voids are included and compared to a ceramic sintered body that forms an insulating plate. The buffer layer that is easily deformed can be deformed according to the expansion of the through conductor. Therefore, expansion of the penetrating conductor in the length direction can be suppressed, and the penetrating conductor can be effectively suppressed from projecting outside the main surface of the insulating plate.

また、本発明の配線基板は、上記構成において、緩衝層が、貫通孔の内側面においてセラミック焼結体が部分的に溶融した後に固化してなる、内部に空隙を含んだ溶融改質層によって形成されている場合には、緩衝層について、貫通孔をレーザ加工で形成する際に貫通孔の内側面に生じる溶融改質層によって形成されたものとすることができる。したがって、この場合には、貫通孔の形成と同時に緩衝層を形成することができるので、貫通導体の突出を抑制することが可能な配線基板の生産性を高くすることができる。   Further, the wiring board of the present invention has the above-described configuration, wherein the buffer layer is solidified after the ceramic sintered body is partially melted on the inner side surface of the through hole, and is formed by a melt-modified layer including voids inside. When formed, the buffer layer may be formed by a melt-modified layer that is formed on the inner surface of the through hole when the through hole is formed by laser processing. Therefore, in this case, since the buffer layer can be formed simultaneously with the formation of the through hole, the productivity of the wiring board capable of suppressing the protrusion of the through conductor can be increased.

また、溶融改質層は、いったん溶融したセラミック焼結体が固化する際に生じたガラス成分を含むため、緩衝層について、例えば絶縁板と同様のセラミック焼結体で形成する場合に比べて変形しやすい緩衝層とする上で有効である。   In addition, since the melt-modified layer contains a glass component generated when the ceramic sintered body once melted, the buffer layer is deformed as compared with the case where the buffer layer is formed of a ceramic sintered body similar to an insulating plate, for example. It is effective in making the buffer layer easy to do.

また、本発明の配線基板は、上記構成において、絶縁板の主面に緩衝層に接する樹脂絶縁層が積層されているとともに、樹脂絶縁層を形成する樹脂材料の一部が、絶縁板の主面側に位置する緩衝層の空隙内に入り込んでいる場合には、貫通導体の突出の抑制に加えて、耐マイグレーション性を向上させる上で適した構成とすることもができる。   In the wiring board of the present invention, in the above configuration, the resin insulating layer in contact with the buffer layer is laminated on the main surface of the insulating plate, and a part of the resin material forming the resin insulating layer is the main plate of the insulating plate. In the case of entering the gap of the buffer layer located on the surface side, in addition to suppressing the protrusion of the through conductor, a configuration suitable for improving the migration resistance can be obtained.

すなわち、この場合には、空隙に入り込んだ樹脂材料で緩衝層と樹脂絶縁層とが密着しているため、空隙における貫通導体の導体成分(イオン)の移動を抑制できる。そのため、貫通導体の端面から緩衝層の端面を通って外部(例えば隣り合う他の貫通導体)にイオンが移動するマイグレーションを効果的に抑制することができる。なお、この場合、空隙に樹脂材料が入り込んでいないとしても、空隙の分、貫通導体の端面から外側へのイオンの移動経路を長くすることもできると考えられるが、樹脂材料が空隙に入り込んでいることによってイオンの移動が抑制されるため、マイグレーションを抑制する効果をより大きくすることができる。   That is, in this case, since the buffer layer and the resin insulating layer are in close contact with the resin material that has entered the gap, the movement of the conductor component (ion) of the through conductor in the gap can be suppressed. Therefore, migration in which ions move from the end surface of the through conductor to the outside (for example, another adjacent through conductor) through the end surface of the buffer layer can be effectively suppressed. In this case, even if the resin material does not enter the gap, it is considered that the path of ions moving from the end face of the through conductor to the outside can be lengthened by the gap, but the resin material enters the gap. Since the movement of ions is suppressed, the effect of suppressing migration can be further increased.

なお、樹脂材料は、例えばポリイミド樹脂であり、溶融改質層に比べてさらに弾性率が低く変形しやすい材料であるため、空隙内に樹脂材料が入り込んだとしても、緩衝層が変形しにくくなるようなことはない。   In addition, since the resin material is, for example, a polyimide resin and has a lower elastic modulus than the melt-modified layer and easily deforms, even if the resin material enters the gap, the buffer layer is difficult to deform. There is no such thing.

(a)は本発明の配線基板の実施の形態の一例における要部を示す上面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the principal part in an example of embodiment of the wiring board of this invention, (b) is sectional drawing in the AA of (a). 図1に示す配線基板の要部Bを拡大して示す要部断面図である。It is principal part sectional drawing which expands and shows the principal part B of the wiring board shown in FIG. 図1に示す配線基板の全体の一例を模式的に示す上面図である。It is a top view which shows typically an example of the whole wiring board shown in FIG. 本発明の配線基板の実施の形態の他の例における要部を拡大して示す要部断面図である。It is principal part sectional drawing which expands and shows the principal part in the other example of embodiment of the wiring board of this invention.

本発明の配線基板を添付の図面を参照しつつ詳細に説明する。図1(a)は本発明の配線基板の実施の形態の一例における要部を示す上面図であり、(b)は(a)のA−A線における断面図である。また図2は、図1に示す配線基板の要部Bを拡大して示す断面図である。また、図3は、図1に要部を示す配線基板全体の一例を模式的に示す平面図である。図1〜図3において、1は絶縁板,2は貫通導体,3は貫通孔,4は緩衝層である。絶縁板1に形成された貫通孔3内に貫通導体2が、貫通孔3の内側面と貫通導体2との間に緩衝層4が介在するように充填されて配線基板が基本的に形成されている。なお、図1に示したのは配線基板の一部であり、このような部分が複数縦横の並び等に配列されて、図3に模式的に示すような配線基板の全体が構成されている。   The wiring board of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1A is a top view showing a main part in an example of an embodiment of a wiring board of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 2 is an enlarged cross-sectional view showing a main part B of the wiring board shown in FIG. FIG. 3 is a plan view schematically showing an example of the entire wiring board whose main part is shown in FIG. 1 to 3, 1 is an insulating plate, 2 is a through conductor, 3 is a through hole, and 4 is a buffer layer. The through-conductor 2 is filled in the through-hole 3 formed in the insulating plate 1 so that the buffer layer 4 is interposed between the inner surface of the through-hole 3 and the through-conductor 2 to basically form a wiring board. ing. FIG. 1 shows a part of the wiring board, and such a part is arranged in a plurality of vertical and horizontal arrangements, and the entire wiring board as schematically shown in FIG. 3 is configured. .

絶縁板1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミック焼結体,ガラス母材中に結晶成分を析出させた結晶化ガラスまたは雲母やチタン酸アルミニウム等の微結晶焼結体からなる、金属材料とほぼ同等の精密な機械加工が可能なセラミック材料(いわゆるマシナブルセラミックス)等のセラミック焼結体により形成されている。   The insulating plate 1 is composed of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a glass ceramic sintered body, crystallized glass in which crystal components are precipitated in a glass base material, mica, or titanic acid. It is formed of a ceramic sintered body such as a ceramic material (so-called machinable ceramics), which is made of a microcrystalline sintered body of aluminum or the like and can be machined substantially as accurately as a metal material.

絶縁板1は、例えば酸化アルミニウム質焼結体からなる場合であれば、次のようにして製作することができる。すなわち、酸化アルミニウムおよび酸化ケイ素等の原料粉末に適当な有機バインダおよび有機溶剤を添加混合して作製したスラリーをドクターブレード法やリップコータ法等のシート成形技術でシート状に成形することによってセラミックグリーンシートを作製して、その後、セラミックグリーンシートを切断加工や打ち抜き加工によって適当な形状および寸法とするとともに、これを約1300〜1500℃の温度で焼成することによって製作することができる。   If the insulating plate 1 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. That is, a ceramic green sheet is formed by forming a slurry prepared by adding and mixing an appropriate organic binder and organic solvent to raw material powders such as aluminum oxide and silicon oxide into a sheet shape by a sheet forming technique such as a doctor blade method or a lip coater method. After that, the ceramic green sheet can be made into an appropriate shape and size by cutting or punching and fired at a temperature of about 1300 to 1500 ° C.

絶縁板1は、例えば四角板状や円板状等であり、例えば上面が、実装や電気チェックを行なう電子部品(図示せず)を搭載(電子部品を配線基板に電気的および機械的に接続して電子装置とするための実装、または電子部品に対して電気的なチェックを施すための一時的な載置)するための部位として使用される。電子部品としては、ICやLSI等の半導体集積回路素子およびLED(発光ダイオード)やPD(フォトダイオード),CCD(電荷結合素子)等の光半導体素子を含む半導体素子,弾性表面波素子や水晶振動子等の圧電素子,容量素子,抵抗器,半導体基板の表面に微小な電子機械機構が形成されてなるマイクロマシン(いわゆるMEMS素子)等の種々の電子部品が挙げられる。   The insulating plate 1 has, for example, a square plate shape, a disk shape, etc., for example, an upper surface is mounted with an electronic component (not shown) for mounting and electrical checking (electrical and mechanical connection of the electronic component to the wiring board) Then, it is used as a part for mounting to make an electronic device, or for temporarily placing an electronic component for electrical check). Electronic components include semiconductor integrated circuit elements such as ICs and LSIs, semiconductor elements including optical semiconductor elements such as LEDs (light emitting diodes), PDs (photodiodes), and CCDs (charge coupled devices), surface acoustic wave elements, and crystal vibrations. Various electronic components such as a piezoelectric element such as a child, a capacitive element, a resistor, and a micromachine (so-called MEMS element) in which a minute electromechanical mechanism is formed on the surface of a semiconductor substrate can be given.

図1〜図3に示す例において、絶縁板1の上面および下面には、それぞれ配線導体5が形成されている。配線導体5は、例えば電子部品と電気的に接続されて、この電子部品に対する信号の送受や、電子部品に対する電気的なチェックを行なうためのプローブを接続するための端子として機能する。絶縁板1の上下面の配線導体5は、絶縁板1を厚み方向に貫通する貫通導体2を介して互いに電気的に接続されている。   In the example shown in FIGS. 1 to 3, wiring conductors 5 are respectively formed on the upper surface and the lower surface of the insulating plate 1. The wiring conductor 5 is electrically connected to an electronic component, for example, and functions as a terminal for connecting a probe for transmitting / receiving a signal to the electronic component and performing an electrical check on the electronic component. The wiring conductors 5 on the upper and lower surfaces of the insulating plate 1 are electrically connected to each other via a through conductor 2 that penetrates the insulating plate 1 in the thickness direction.

配線導体5と電子部品との電気的な接続は、例えば配線導体5の所定部分に電子部品の電極(図示せず)を半田等の導電性接続材を介して接合することによって行なわれる。この場合、配線導体5について、例えば図1および図2に示したように貫通導体2の端面を覆う円形状等の比較的大きなパターンで(いわゆる接続パッドとして)形成しておいて、半田の接合面積をより広くして、電子部品に対する電気的な接続の信頼性を向上させるようにしてもよい。   The electrical connection between the wiring conductor 5 and the electronic component is performed, for example, by joining an electrode (not shown) of the electronic component to a predetermined portion of the wiring conductor 5 via a conductive connecting material such as solder. In this case, the wiring conductor 5 is formed in a comparatively large pattern (as a so-called connection pad) such as a circular shape covering the end face of the through conductor 2 as shown in FIGS. The area may be increased to improve the reliability of the electrical connection to the electronic component.

配線導体5は、例えば、銅や銀,パラジウム,金,白金,ニッケル,コバルト,タングステン,モリブデン,マンガン等の金属材料またはこれらの金属材料の合金材料からなる。配線導体5は、例えばタングステンからなる場合であれば、タングステンの粉末を有機溶剤およびバインダとともに混練して作製したタングステンのペーストを、絶縁板1となるセラミックグリーンシートの主面にスクリーン印刷法等の方法で所定パターンに塗布し、その後、セラミックグリーンシートと同時焼成することによって形成することができる。   The wiring conductor 5 is made of, for example, a metal material such as copper, silver, palladium, gold, platinum, nickel, cobalt, tungsten, molybdenum, manganese, or an alloy material of these metal materials. If the wiring conductor 5 is made of tungsten, for example, a paste of tungsten prepared by kneading tungsten powder together with an organic solvent and a binder is applied to the main surface of the ceramic green sheet to be the insulating plate 1 by a screen printing method or the like. It can form by apply | coating to a predetermined pattern by a method, and baking simultaneously with a ceramic green sheet after that.

貫通孔3は、例えば、セラミック焼結体からなる絶縁板1にレーザ光の照射による孔あけ加工(レーザ加工)を施すことによって形成されている。貫通孔3について、(未焼成の上記セラミックグリーンシートの状態ではなく)セラミック焼結体からなる絶縁板1に孔あけ加工を施して形成した場合には、焼成時の収縮に起因する寸法精度の低下の影響を受けない。そのため、この場合には、絶縁板1における貫通孔3の位置精度を高くする上で有利である。   The through hole 3 is formed, for example, by subjecting the insulating plate 1 made of a ceramic sintered body to drilling processing (laser processing) by laser beam irradiation. When the through hole 3 is formed by drilling the insulating plate 1 made of a ceramic sintered body (not in the state of the unfired ceramic green sheet), the dimensional accuracy due to shrinkage during firing is reduced. Unaffected by decline. Therefore, this case is advantageous in increasing the positional accuracy of the through hole 3 in the insulating plate 1.

貫通孔3は、例えば、直径が200μm〜700μm程度の円形状であり、この貫通孔3の内側に貫通導体4が充填されている。   The through hole 3 has, for example, a circular shape with a diameter of about 200 μm to 700 μm, and the through conductor 4 is filled inside the through hole 3.

貫通導体2は、例えば、銅や銀,パラジウム,金,白金,ニッケル,コバルト,タングステン,モリブデン,マンガン等の金属材料またはこれらの金属材料の合金材料からなる。貫通導体2は、例えば上下の配線導体5等の、絶縁板1の上下にそれぞれ配置される導体の間を電気的に接続するためのものであるため、貫通導体2の電気抵抗を低く抑えることを考慮すれば、貫通導体2を形成する金属材料としては銅または銀が特に適している。   The through conductor 2 is made of, for example, a metal material such as copper, silver, palladium, gold, platinum, nickel, cobalt, tungsten, molybdenum, manganese, or an alloy material of these metal materials. Since the through conductor 2 is for electrically connecting the conductors disposed above and below the insulating plate 1 such as the upper and lower wiring conductors 5, for example, the electrical resistance of the through conductor 2 is kept low. In consideration of the above, copper or silver is particularly suitable as the metal material for forming the through conductor 2.

貫通導体2は、例えば銀や銅の粉末を有機溶剤およびバインダとともに混練して作製した導体ペーストを貫通孔3内に真空吸引を併用したスクリーン印刷法等の方法で埋め込んだ後、この導体ペーストを絶縁板1とともに加熱することによって、貫通孔3内に充填させることができる。この場合、貫通導体2を形成する金属材料に、絶縁板1(貫通孔3の内側面)に対する密着性を向上させること等のためにガラス成分を添加してもよい。   The through conductor 2 is formed by, for example, embedding a conductive paste prepared by kneading silver or copper powder together with an organic solvent and a binder by a method such as screen printing using vacuum suction in the through hole 3. By heating together with the insulating plate 1, the through holes 3 can be filled. In this case, a glass component may be added to the metal material forming the through conductor 2 in order to improve the adhesion to the insulating plate 1 (the inner surface of the through hole 3).

このような配線基板において、例えば、絶縁板1の上面の配線導体5に電子部品(図示せず)の電極や電子部品の電気検査を行なうためのプローブ(図示せず)が接続され、下面の配線導体5が回路基板等の外部電気回路基板(図示せず)に接続される。そして、絶縁板1の上面の配線導体5と、貫通導体2と、絶縁板1の下面の配線導体5とを介して、電子部品が外部電気回路と電気的に接続され、信号の送受や、電子部品に対する電気的なチェック等が行なわれる。なお、電子部品に対する電気的なチェックは、例えば半導体集積回路素子の集積回路が正常に作動するか否かの検査である。この場合には、半導体基板(シリコンウエハ等)に形成された多数の半導体集積回路素子(図示せず)に対して、個片に切断する前に一括して検査を行なうために、例えば図1に示したような配線基板が、半導体基板と同じ程度の大きさの母基板に配列形成されたものが使用される。この場合の配線基板(多数個配列された配線基板)は、いわゆるプローブカードとして使用することができる。   In such a wiring board, for example, an electrode of an electronic component (not shown) and a probe (not shown) for performing an electrical inspection of the electronic component are connected to the wiring conductor 5 on the upper surface of the insulating plate 1. The wiring conductor 5 is connected to an external electric circuit board (not shown) such as a circuit board. The electronic component is electrically connected to an external electric circuit via the wiring conductor 5 on the upper surface of the insulating plate 1, the through conductor 2, and the wiring conductor 5 on the lower surface of the insulating plate 1. An electrical check for electronic components is performed. The electrical check for the electronic component is, for example, an inspection of whether or not the integrated circuit of the semiconductor integrated circuit element operates normally. In this case, in order to collectively inspect a plurality of semiconductor integrated circuit elements (not shown) formed on a semiconductor substrate (silicon wafer or the like) before cutting into individual pieces, for example, FIG. A wiring board as shown in FIG. 5 is used in which a wiring board is arranged on a mother board having the same size as a semiconductor substrate. In this case, the wiring board (wiring board arranged in large numbers) can be used as a so-called probe card.

本発明の配線基板において、貫通導体2の側面と貫通孔3の内側面との間に、内部に空隙4aを有する焼結体からなる緩衝層4が介在している。緩衝層4は、例えば絶縁板1と同様のセラミック焼結体や結晶化ガラス,ガラス材料とセラミックフィラー粒子との焼結体(ガラスセラミック焼結体),セラミック焼結体がいったん溶融した後に固化してなる溶融改質体等の焼結体によって形成されている。緩衝層4は、セラミック焼結体からなる絶縁板1に比べて熱膨張係数が大きい貫通導体2の熱膨張を吸収するためのものである。   In the wiring board of the present invention, a buffer layer 4 made of a sintered body having a gap 4a inside is interposed between the side surface of the through conductor 2 and the inner side surface of the through hole 3. The buffer layer 4 is solidified after the ceramic sintered body is melted once, for example, a ceramic sintered body or crystallized glass similar to the insulating plate 1, a sintered body of glass material and ceramic filler particles (glass ceramic sintered body). Formed by a sintered body such as a melt-modified body. The buffer layer 4 is for absorbing thermal expansion of the through conductor 2 having a larger thermal expansion coefficient than the insulating plate 1 made of a ceramic sintered body.

この場合、緩衝層4は、内部に空隙4aを有しているため、この空隙4aの分、例えば絶縁板1を形成しているセラミック焼結体に比べて、応力による変形が容易である。そのため、絶縁板1を形成するセラミック焼結体に比べて変形しやすい緩衝層4が、貫通導体2の膨張に応じて変形することができる。そのため、貫通導体2の長さ方向の膨張を抑制することができ、貫通導体2が絶縁板1の主面よりも外側に突出することを効果的に抑制することができる。   In this case, since the buffer layer 4 has a gap 4a inside, the deformation due to stress is easier than the ceramic sintered body forming the insulating plate 1 by the amount of the gap 4a. Therefore, the buffer layer 4, which is more easily deformed than the ceramic sintered body forming the insulating plate 1, can be deformed according to the expansion of the through conductor 2. Therefore, expansion of the through conductor 2 in the length direction can be suppressed, and the through conductor 2 can be effectively suppressed from projecting outside the main surface of the insulating plate 1.

本発明の配線基板においては、上記のように貫通導体2の絶縁板1(主面)からの突出が抑制されているため、貫通導体2の突出による配線導体5や樹脂絶縁層6の剥がれや変形等を効果的に抑制することができる。そのため、配線導体5に対するプローブの接続を容易かつ確実に行なうことができ、樹脂絶縁層6の絶縁板1に対する接合の信頼性が高い配線基板とすることができる。また、貫通導体2の絶縁板1(具体的には貫通孔3の内側面)からの剥離が抑制されているため、貫通導体2を介した絶縁板1の上下面間の電気的な接続の信頼性を高くする上で有効な配線基板とすることができる。   In the wiring board of the present invention, since the protrusion of the through conductor 2 from the insulating plate 1 (main surface) is suppressed as described above, the wiring conductor 5 and the resin insulating layer 6 are not peeled off by the protrusion of the through conductor 2. Deformation and the like can be effectively suppressed. Therefore, the probe can be easily and surely connected to the wiring conductor 5, and a wiring substrate with high bonding reliability of the resin insulating layer 6 to the insulating plate 1 can be obtained. Further, since peeling of the through conductor 2 from the insulating plate 1 (specifically, the inner surface of the through hole 3) is suppressed, electrical connection between the upper and lower surfaces of the insulating plate 1 via the through conductor 2 is prevented. It is possible to provide an effective wiring board for increasing reliability.

空隙4aを有する焼結体は、例えば、加熱時に分解する樹脂材料(図示せず)を含むセラミック材料やガラス材料を加熱して焼結させることによって形成することができる。例えば、絶縁板1の貫通孔3内に貫通導体2となる導体ペーストを充填する前に、その貫通孔3の内側面に上記の樹脂材料を含むセラミック材料を被着させておいて、導体ペーストとともに加熱することによって、空隙4aを有する緩衝層4を貫通導体2の側面と貫通孔3の内側面との間に介在させることができる。   The sintered body having the voids 4a can be formed, for example, by heating and sintering a ceramic material or glass material containing a resin material (not shown) that decomposes when heated. For example, before filling the through hole 3 of the insulating plate 1 with the conductive paste to be the through conductor 2, a ceramic material containing the above resin material is deposited on the inner surface of the through hole 3, and the conductive paste By heating together, the buffer layer 4 having the gap 4 a can be interposed between the side surface of the through conductor 2 and the inner side surface of the through hole 3.

空隙4aは、緩衝層貫通導体2の熱膨張を吸収する上では合計の体積が大きいほど好ましいが、大きくし過ぎると、緩衝層4の機械的な強度が低くなり、貫通導体2と貫通孔3との間の接合強度が低くなる可能性がある。そのため、空隙4aは、貫通導体2と貫通孔3との間の接合強度を確保することができる範囲で、できるだけ合計の体積が大きくなるようにすることが好ましい。   The gap 4a is preferably as large as the total volume is large in order to absorb the thermal expansion of the buffer layer through conductor 2, but if it is too large, the mechanical strength of the buffer layer 4 is reduced, and the through conductor 2 and the through hole 3 are reduced. There is a possibility that the bonding strength between the two will be low. Therefore, it is preferable that the total volume of the gap 4a is as large as possible within a range in which the bonding strength between the through conductor 2 and the through hole 3 can be ensured.

空隙4aは、このような条件を考慮して、貫通導体2の熱膨張を効果的に吸収する上では、緩衝層4の全体積に対して、合計で3〜20%程度の体積に設定すればよい。   In consideration of such conditions, the gap 4a is set to a volume of about 3 to 20% in total with respect to the total volume of the buffer layer 4 in order to effectively absorb the thermal expansion of the through conductor 2. That's fine.

例えば、絶縁板1が酸化アルミニウム質焼結体(熱膨張係数が約7×10−6/℃)からなり、貫通導体2を形成する導体材料が、熱膨張係数が約8〜20×10−6/℃程度の上記の金属材料(銅や銀,チタン等)からなる場合であれば、空隙4aは、緩衝層4に対して合計で3〜15%程度の体積に設定すればよい。 For example, the insulating plate 1 is made of an aluminum oxide sintered body (thermal expansion coefficient is about 7 × 10 −6 / ° C.), and the conductive material forming the through conductor 2 has a thermal expansion coefficient of about 8 to 20 × 10 If the metal material (copper, silver, titanium, etc.) at about 6 / ° C. is used, the gap 4 a may be set to a volume of about 3 to 15% in total with respect to the buffer layer 4.

緩衝層4の厚さ(例えば円筒状である緩衝層4の内径と外径との差)は、絶縁板1および貫通導体2の材料や貫通導体2の寸法(直径等の太さや長さ)、配線基板に作用する熱量等に応じて適宜設定すればよい。   The thickness of the buffer layer 4 (for example, the difference between the inner diameter and the outer diameter of the cylindrical buffer layer 4) is the material of the insulating plate 1 and the through conductor 2 and the dimensions of the through conductor 2 (thickness and length such as diameter). What is necessary is just to set suitably according to the calorie | heat amount etc. which act on a wiring board.

緩衝層4は、貫通導体2の熱膨張を吸収する上では厚さが大きい方が好ましいが、厚くしすぎると、配線基板の小型化や高密度化が妨げられたり、形成しにくくなって配線基板の生産性が低くなったりする可能性がある。そのため、緩衝層4の厚さは、5〜50μm程度の範囲に設定することが好ましい。   The buffer layer 4 preferably has a large thickness in order to absorb the thermal expansion of the through conductor 2. However, if the buffer layer 4 is too thick, miniaturization and high density of the wiring board are hindered or difficult to form. There is a possibility that the productivity of the substrate is lowered. Therefore, the thickness of the buffer layer 4 is preferably set in the range of about 5 to 50 μm.

また、空隙4aは、図1に示した例では、断面の形状が不定形状であるが、断面の形状が円形状や楕円形状等でもかまわない。なお、貫通導体2の熱膨張を吸収するための緩衝層4の変形は主として厚み方向に生じるので、空隙4aは、緩衝層4の厚み方向の寸法が大きいものが好ましい。   In the example shown in FIG. 1, the gap 4a has an indefinite cross-sectional shape, but the cross-sectional shape may be circular or elliptical. Since the deformation of the buffer layer 4 for absorbing the thermal expansion of the through conductor 2 mainly occurs in the thickness direction, the gap 4a preferably has a large dimension in the thickness direction of the buffer layer 4.

緩衝層4の長さ方向に複数の空隙4aを分散させる場合、これらの空隙4aは、それぞれの大きさおよび形状が互いに同様であっても、異なっていても構わない。いずれの場合においても、緩衝層4の全長にわたって、貫通導体2の熱膨張を吸収する効果を得ることができる。   When a plurality of voids 4a are dispersed in the length direction of the buffer layer 4, these voids 4a may have the same or different sizes and shapes. In any case, the effect of absorbing the thermal expansion of the through conductor 2 can be obtained over the entire length of the buffer layer 4.

空隙4aは、貫通導体2の熱膨張を緩衝層4の変形で効果的に吸収することを考慮すれば、緩衝層4の全域に偏りなく分散して配置されていることが好ましい。この場合、空隙4aが緩衝層4の内側面(貫通導体2と接する面)に露出した場合であっても、貫通導体2に上記のようにガラス成分が添加されていれば、その空隙4に入り込むのは、主に貫通導体2中のガラス成分であり、そのガラス成分は貫通導体2の銅等の導体金属よりも熱膨張がガラスの方が小さい。そのため、空隙4に入り込んだガラスが貫通導体2以上に膨張することはなく、このガラスが、貫通導体2が熱膨張した際に変形して、貫通導体2の膨張を緩衝することができる。したがって、このような場合にも、緩衝層4の緩衝性が損なわれることはない。   Considering that the thermal expansion of the through conductor 2 is effectively absorbed by deformation of the buffer layer 4, it is preferable that the gaps 4 a are arranged evenly distributed throughout the buffer layer 4. In this case, even if the gap 4a is exposed on the inner surface of the buffer layer 4 (the surface in contact with the through conductor 2), if the glass component is added to the through conductor 2 as described above, It is mainly the glass component in the through conductor 2 that enters the glass, and the glass component has a smaller thermal expansion in the glass than the conductor metal such as copper in the through conductor 2. Therefore, the glass that has entered the gap 4 does not expand more than the through conductor 2, and this glass can be deformed when the through conductor 2 is thermally expanded to buffer the expansion of the through conductor 2. Therefore, even in such a case, the buffer property of the buffer layer 4 is not impaired.

また、空隙4aは、絶縁板1のうち貫通孔3の内側面に相当する部分がいったん溶融した後に固化してなる溶融改質体によって形成された溶融改質層(符号なし)からなるものとしてもよい。溶融改質層は、上記のように絶縁板1を形成するセラミック焼結体がいったん溶融し液状になった後、急速に冷却されて固化する時に空気を巻き込むため、内部に空隙4aが形成される。したがって、この場合には容易に空隙4aを有する焼結体を形成することができ、この焼結体を緩衝層4として貫通孔3の内側面に層状に形成することができる。この場合には、形成された貫通孔3の内側面に既に緩衝層4が形成されているので、この貫通孔3内に導体ペーストを充填して加熱することによって、貫通導体2の側面と貫通孔3の内側面との間に緩衝層4が介在してなる配線基板を容易に製作することができる。   Moreover, the space | gap 4a shall consist of the melt-modification layer (no code | symbol) formed by the melt-modified body which solidifies after the part corresponded to the inner surface of the through-hole 3 among the insulating plates 1 once fuse | melted. Also good. In the melt-modified layer, since the ceramic sintered body forming the insulating plate 1 is once melted and turned into a liquid state as described above, air is entrained when rapidly cooled and solidified, so that a void 4a is formed inside. The Therefore, in this case, a sintered body having voids 4 a can be easily formed, and this sintered body can be formed as a buffer layer 4 on the inner surface of the through hole 3 in a layered manner. In this case, since the buffer layer 4 has already been formed on the inner side surface of the formed through hole 3, the side surface of the through conductor 2 is penetrated by filling the through hole 3 with a conductive paste and heating. A wiring board in which the buffer layer 4 is interposed between the inner surface of the hole 3 can be easily manufactured.

また、貫通孔3の内側面に沿って絶縁板1を形成するセラミック焼結体を溶融させるには、絶縁板1にレーザ加工を施して貫通孔3を形成するようにすればよい。レーザ光によって絶縁板1が厚み方向に溶融除去されて貫通孔3が形成される際に、この貫通孔3の内側面においても熱でセラミック焼結体が部分的に溶融する。そして、レーザ光の照射を止めれば、貫通孔3の内側面が冷えて固化し、緩衝層4となる溶融改質層が形成される。   Further, in order to melt the ceramic sintered body that forms the insulating plate 1 along the inner surface of the through hole 3, the through hole 3 may be formed by laser processing the insulating plate 1. When the insulating plate 1 is melted and removed by the laser beam in the thickness direction and the through hole 3 is formed, the ceramic sintered body is partially melted by heat also on the inner surface of the through hole 3. When the laser beam irradiation is stopped, the inner surface of the through hole 3 is cooled and solidified, and a melt-modified layer that becomes the buffer layer 4 is formed.

すなわち、本発明の配線基板において、緩衝層4が、貫通孔3の内側面においてセラミック焼結体が部分的に溶融した後に固化してなる、内部に空隙を含んだ溶融改質層によって形成されている場合には、緩衝層4について、貫通孔3をレーザ加工で形成する際に貫通孔3の内側面に生じる溶融改質層によって形成されたものとすることができる。したがって、この場合には、貫通孔3の形成と同時に緩衝層4を形成することができるので、貫通導体2の突出を抑制することが可能な配線基板の生産性を高くすることができる。   That is, in the wiring board of the present invention, the buffer layer 4 is formed by a melt-modified layer containing voids inside, which is solidified after the ceramic sintered body is partially melted on the inner surface of the through-hole 3. When the through hole 3 is formed by laser processing, the buffer layer 4 can be formed by a melt-modified layer generated on the inner surface of the through hole 3. Therefore, in this case, since the buffer layer 4 can be formed simultaneously with the formation of the through hole 3, the productivity of the wiring board capable of suppressing the protrusion of the through conductor 2 can be increased.

また、溶融改質層は、いったん溶融したセラミック焼結体が固化する際に生じたガラス成分を含むため、緩衝層4について、例えば絶縁板1と同様のセラミック焼結体で形成する場合に比べて変形しやすい緩衝層とする上で効果がある。なお、セラミック焼結体は、例えば酸化アルミニウム質焼結体である場合には弾性率が約330〜360GPa程度であり、ガラス成分の弾性率は、約10〜80GPa程度(いずれも1気圧)である。   In addition, since the melt-modified layer includes a glass component generated when the once sintered ceramic sintered body is solidified, the buffer layer 4 is, for example, compared with a case where the ceramic sintered body similar to the insulating plate 1 is formed. It is effective in forming a buffer layer that is easily deformed. When the ceramic sintered body is, for example, an aluminum oxide sintered body, the elastic modulus is about 330 to 360 GPa, and the elastic modulus of the glass component is about 10 to 80 GPa (all at 1 atm). is there.

溶融改質層で緩衝層4を形成する場合、その内部の空隙4aの個数や大きさ,形状はレーザ光の波長,パルス幅,レーザ出力等によって調整することができる。   When the buffer layer 4 is formed of a melt-modified layer, the number, size, and shape of the voids 4a inside the buffer layer 4 can be adjusted by the wavelength, pulse width, laser output, etc. of the laser beam.

また、本発明の配線基板は、上記構成において、図4に示すように、絶縁板1の主面に
緩衝層4に接する樹脂絶縁層6が積層されているとともに、樹脂絶縁層6を形成する樹脂材料の一部6aが、絶縁板1の主面側に位置する緩衝層4の空隙4a内に入り込んでいる場合には、貫通導体2の突出の抑制に加えて、耐マイグレーション性を向上させる上で適した配線基板とすることもできる。 すなわち、この場合には、空隙4aに入り込んだ樹脂材料の一部6aで緩衝層4と樹脂絶縁層6とが密着しているため、空隙4aにおける貫通導体2の導体成分(イオン)の移動を抑制できる。そのため、貫通導体2の端面から緩衝層4の端面を通って外部(例えば隣り合う他の貫通導体4)にイオンが移動するマイグレーションを効果的に抑制することができる。なお、この場合、空隙4aに樹脂材料6aが入り込んでいないとしても、空隙4aの分、貫通導体2の端面から外側へのイオンの移動経路を長くすることもできるが、樹脂材料6aが空隙4aに入り込んでいることによってイオンの移動がより効果的に抑制されるため、マイグレーションを抑制する効果をより大きくすることができる。
Further, in the wiring board of the present invention, in the above configuration, as shown in FIG. 4, the resin insulating layer 6 in contact with the buffer layer 4 is laminated on the main surface of the insulating plate 1, and the resin insulating layer 6 is formed. When a part 6a of the resin material enters the gap 4a of the buffer layer 4 located on the main surface side of the insulating plate 1, in addition to suppressing the protrusion of the through conductor 2, the migration resistance is improved. A wiring board suitable for the above can also be obtained. That is, in this case, since the buffer layer 4 and the resin insulating layer 6 are in close contact with a part 6a of the resin material that has entered the gap 4a, the conductor component (ion) of the through conductor 2 in the gap 4a moves. Can be suppressed. Therefore, the migration of ions from the end face of the through conductor 2 through the end face of the buffer layer 4 to the outside (for example, another adjacent through conductor 4) can be effectively suppressed. In this case, even if the resin material 6a does not enter the gap 4a, it is possible to lengthen the ion movement path from the end face of the through conductor 2 to the outside by the gap 4a, but the resin material 6a has the gap 4a. Since the movement of ions is more effectively suppressed by entering, the effect of suppressing migration can be further increased.

なお、樹脂絶縁層6を形成する樹脂材料は、例えばポリイミド樹脂であり、溶融改質層に比べてさらに弾性率が低く変形しやすい材料であるため、空隙4a内に樹脂材料が入り込んだとしても、緩衝層4が変形しにくくなるようなことはない。なお、ポリイミド樹脂は、弾性率が約1〜15GPa程度であり、溶融改質層4(焼結体)の弾性率は、上記のように約10〜60GPa程度または約330〜360GPa程度(いずれも1気圧)である。   The resin material that forms the resin insulating layer 6 is, for example, a polyimide resin, and is a material that has a lower elastic modulus than the melt-modified layer and is easily deformed. Therefore, even if the resin material enters the gap 4a. The buffer layer 4 is not likely to be deformed. The polyimide resin has an elastic modulus of about 1 to 15 GPa, and the elastic modulus of the melt-modified layer 4 (sintered body) is about 10 to 60 GPa or about 330 to 360 GPa (both as described above). 1 atm).

なお、樹脂絶縁層6は、例えば配線導体5と電気的に接続される他の配線導体(図示せず)を上面に配置するためのものである。樹脂絶縁層6と他の配線導体とを配線基板の絶縁板1上に積層することによって多層配線基板を作製することができる。   The resin insulating layer 6 is for arranging, for example, another wiring conductor (not shown) electrically connected to the wiring conductor 5 on the upper surface. A multilayer wiring board can be manufactured by laminating the resin insulating layer 6 and another wiring conductor on the insulating plate 1 of the wiring board.

このような樹脂絶縁層6は、例えば未硬化のポリイミド樹脂のペーストまたはシートを配線基板1の上面に積層し、その後、加熱硬化させることによって配線基板の絶縁板1上に積層することができる。   Such a resin insulation layer 6 can be laminated | stacked on the insulating board 1 of a wiring board by laminating | stacking the paste or sheet | seat of a non-hardened polyimide resin on the upper surface of the wiring board 1, for example, and making it harden | cure after that.

配線導体5と電気的に接続される他の配線導体は、例えば銅や銀,パラジウム,金,白金,アルミニウム,クロム,ニッケル,コバルト,チタン,タングステン,モリブデン,マンガン等の金属材料またはこれらの金属材料の合金材料からなり、スパッタリング法や蒸着法,めっき法等の薄膜形成法によって樹脂絶縁層6の上面に配置することができる。   Other wiring conductors that are electrically connected to the wiring conductor 5 are, for example, metal materials such as copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cobalt, titanium, tungsten, molybdenum, manganese, or these metals. It is made of an alloy material, and can be disposed on the upper surface of the resin insulating layer 6 by a thin film forming method such as sputtering, vapor deposition or plating.

配線導体5と他の配線導体との電気的な接続は、樹脂絶縁層6に貫通導体(ビア導体)(図示せず)を銅等の金属材料を用いてめっき法等の方法で形成しておいて、このビア導体を介して行なわせることができる。   The electrical connection between the wiring conductor 5 and another wiring conductor is performed by forming a through conductor (via conductor) (not shown) in the resin insulating layer 6 by using a metal material such as copper and plating. However, this can be done via this via conductor.

酸化アルミニウム質焼結体からなるセラミック基板に直径が約680μmで長さが約2500
μmの貫通孔をレーザ加工で形成し、この貫通孔の内側に導体ペーストとして銀ペーストを充填し、約300℃で加熱して貫通導体を形成して、以下に述べる実施例1および2の配
線基板をそれぞれ100個ずつ作製した。作製した実施例1,2および比較例の各配線基板100個について、加速試験として温度サイクル試験(−20℃〜+80℃、1000サイクル)の後、貫通導体の絶縁板からの突出の有無を金属顕微鏡を用いて外観によって確認した。また、貫通導体に突出が発生した配線基板については、走査型電子顕微鏡を用いて断面観察を行ない、突出量を測定した。
A ceramic substrate made of an aluminum oxide sintered body has a diameter of about 680μm and a length of about 2500
A through-hole of μm is formed by laser processing, a silver paste is filled as a conductor paste inside the through-hole, heated at about 300 ° C. to form a through-conductor, and the wiring of Examples 1 and 2 described below 100 substrates were prepared for each. After 100 temperature wiring tests (-20 ° C to + 80 ° C, 1000 cycles) as an acceleration test for 100 wiring boards of Examples 1 and 2 and Comparative Example produced, the presence or absence of protrusion of the through conductor from the metal The appearance was confirmed using a microscope. Moreover, about the wiring board in which the protrusion generate | occur | produced in the penetration conductor, cross-sectional observation was performed using the scanning electron microscope, and the protrusion amount was measured.

(実施例1)
貫通導体の側面と貫通孔の内側面との間に厚さが約30μmの緩衝層を溶融改質層によって形成し、それぞれの差し渡しの最大が約50〜60μmで最小が約10〜20μmの不定形(概ね細長い楕円球状)の空隙が緩衝層に形成されたものを作製した。空隙の合計の体積は緩
衝層の体積に対して約10%であった。
Example 1
A buffer layer having a thickness of about 30 μm is formed between the side surface of the through conductor and the inner side surface of the through hole by a melt-modified layer, and the maximum of each of the gaps is about 50 to 60 μm and the minimum is about 10 to 20 μm. A standard-shaped (generally elongated elliptical spherical) void was formed in the buffer layer. The total volume of the voids was about 10% with respect to the volume of the buffer layer.

(実施例2)
貫通導体の側面と貫通孔の内側面との間に厚さが約30μmの緩衝層を溶融改質層によって形成し、直径が約3〜10μmの球形状、または長軸が約10〜20μmで短軸が約5μm程
度の楕円球状の空隙が緩衝層に形成されたものを作製した。空隙の合計の体積は緩衝層の体積に対して約5%であった。
(Example 2)
A buffer layer having a thickness of about 30 μm is formed by a melt-modified layer between the side surface of the through conductor and the inner side surface of the through hole, and has a spherical shape with a diameter of about 3 to 10 μm or a long axis of about 10 to 20 μm. An oval spherical void having a short axis of about 5 μm was formed in the buffer layer. The total volume of the voids was about 5% with respect to the volume of the buffer layer.

(比較例)
セラミックグリーンシートに打ち抜き加工で貫通孔を形成し、焼成後に実施例1および2と同様の導体ペーストを貫通孔内に充填し、同様の条件で加熱して貫通導体を形成した。比較例の配線基板についても、100個作製し、実施例1および2と同様に貫通導体の突
出の有無を確認した。
(Comparative example)
A through hole was formed in the ceramic green sheet by punching, and after firing, the same conductive paste as in Examples 1 and 2 was filled into the through hole and heated under the same conditions to form a through conductor. As for the wiring board of the comparative example, 100 pieces were produced, and the presence or absence of protrusion of the through conductor was confirmed in the same manner as in Examples 1 and 2.

(試験結果)
その結果、実施例1および2の配線基板では貫通導体の絶縁板からの突出および剥離が見られなかったのに対し、比較例の配線基板では1個の配線基板において2つの貫通導体に、他の1個の配線基板において1つの貫通導体に、それぞれ5μm程度の突出が発生していた。
(Test results)
As a result, in the wiring boards of Examples 1 and 2, the through conductors did not protrude or peel from the insulating plate, whereas in the comparative wiring board, the two through conductors in one wiring board In each of the wiring boards, protrusions of about 5 μm occurred on one through conductor.

以上の結果により、本発明の配線基板における、貫通導体の突出を抑制する効果を確認することができた。   From the above results, the effect of suppressing the protrusion of the through conductor in the wiring board of the present invention could be confirmed.

1・・・絶縁板
2・・・貫通導体
3・・・貫通孔
4・・・緩衝層
4a・・空隙
5・・・配線導体
6・・・樹脂絶縁層
6a・・樹脂材料の一部
DESCRIPTION OF SYMBOLS 1 ... Insulation board 2 ... Through-conductor 3 ... Through-hole 4 ... Buffer layer 4a .... Air gap 5 ... Wiring conductor 6 ... Resin insulation layer 6a ...... A part of resin material

Claims (3)

セラミック焼結体からなり、厚み方向に貫通する貫通孔を有する絶縁板と、前記貫通孔内に充填された貫通導体とを備える配線基板であって、前記貫通孔の内側面と前記貫通導体の側面との間に、内部に空隙を含んだ焼結体からなる緩衝層が介在していることを特徴とする配線基板。 A wiring board made of a ceramic sintered body, comprising an insulating plate having a through hole penetrating in the thickness direction, and a through conductor filled in the through hole, the inner surface of the through hole and the through conductor A wiring board characterized in that a buffer layer made of a sintered body including voids is interposed between a side surface and a side surface. 前記緩衝層は、前記貫通孔の内側面において前記セラミック焼結体が部分的に溶融した後に固化してなる、内部に前記空隙を含んだ溶融改質層によって形成されていることを特徴とする請求項1記載の配線基板。 The buffer layer is formed of a melt-modified layer including the voids inside thereof, which is solidified after the ceramic sintered body is partially melted on the inner surface of the through hole. The wiring board according to claim 1. 前記絶縁板の主面に前記緩衝層に接する樹脂絶縁層が積層されているとともに、該樹脂絶縁層を形成する樹脂材料の一部が、前記絶縁板の前記主面側に位置する前記緩衝層の前記空隙内に入り込んでいることを特徴とする請求項1または請求項2記載の配線基板。 The buffer layer in which a resin insulating layer in contact with the buffer layer is laminated on the main surface of the insulating plate, and a part of the resin material forming the resin insulating layer is located on the main surface side of the insulating plate The wiring board according to claim 1, wherein the wiring board enters the gap.
JP2010189606A 2010-08-26 2010-08-26 Wiring board Pending JP2012049310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189606A JP2012049310A (en) 2010-08-26 2010-08-26 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189606A JP2012049310A (en) 2010-08-26 2010-08-26 Wiring board

Publications (1)

Publication Number Publication Date
JP2012049310A true JP2012049310A (en) 2012-03-08

Family

ID=45903854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189606A Pending JP2012049310A (en) 2010-08-26 2010-08-26 Wiring board

Country Status (1)

Country Link
JP (1) JP2012049310A (en)

Similar Documents

Publication Publication Date Title
US8138428B2 (en) Lead-embedded metallized ceramics substrate and package
JP2004356618A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, structure having semiconductor element, intermediate substrate, and substrate, and method for manufacturing intermediate substrate
JP5744210B2 (en) Thin film wiring board and probe card board
JP5566271B2 (en) Wiring board and manufacturing method thereof
JP2012222328A (en) Wiring board and manufacturing method of the same
JP2013083620A (en) Probe card and manufacturing method thereof
JP5848901B2 (en) Wiring board
JP2015198093A (en) Interposer, semiconductor device, method of manufacturing interposer, and method of manufacturing semiconductor device
JP6100617B2 (en) Multi-layer wiring board and probe card board
JP2006196857A (en) Composite circuit substrate with case and manufacturing method thereof
JP5300698B2 (en) Wiring board
JP2012049310A (en) Wiring board
JP5787808B2 (en) Probe card wiring board and probe card using the same
JP2009238976A (en) Ceramic laminated substrate and method for manufacturing the ceramic laminated body
JP2013115123A (en) Wiring board and manufacturing method therefor
KR101101574B1 (en) Ceramic substrate and manufacturing method thereof
JP6418918B2 (en) Circuit board for probe card and probe card having the same
JP5601993B2 (en) Wiring board
JP6151616B2 (en) Electronic component mounting substrate and electronic device
JP2014192491A (en) Wiring board
JP2011049342A (en) Substrate for mounting electronic component, and method for manufacturing the same
JP2011205010A (en) Wiring substrate and production method thereof
JP2004014616A (en) External connection terminal for ceramic circuit board
JP2004356619A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate
JP2012094833A (en) Wiring board