JP2012046382A - Method for producing resin-coated granular fertilizer - Google Patents

Method for producing resin-coated granular fertilizer Download PDF

Info

Publication number
JP2012046382A
JP2012046382A JP2010190572A JP2010190572A JP2012046382A JP 2012046382 A JP2012046382 A JP 2012046382A JP 2010190572 A JP2010190572 A JP 2010190572A JP 2010190572 A JP2010190572 A JP 2010190572A JP 2012046382 A JP2012046382 A JP 2012046382A
Authority
JP
Japan
Prior art keywords
granular fertilizer
resin
fertilizer
coated
urethane resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010190572A
Other languages
Japanese (ja)
Inventor
Junji Ono
順次 小野
Fumio Nanbu
文男 南部
Kimihiro Takano
公裕 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010190572A priority Critical patent/JP2012046382A/en
Publication of JP2012046382A publication Critical patent/JP2012046382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low-cost resin-coated granular fertilizer, with which elution of fertilizer components persists for a long period of time, and with which an amount of resin coating is drastically reduced compared with that needed for the conventional method.SOLUTION: The fertilizer grains with an average particle size of 6-15 mm, preferably 8-12 mm, and with average crushing strength of 15 kgf or more, preferably 20 kgf or more, are fed into a rolling type temperature controllable coating apparatus, and while heating them so as to keep the temperature at 70-75°C, the mixture of polyether polyol and 2,4,6-tris(dimethylaminomethyl) phenol is added to surfaces of fertilizer grains in rolling motion so as to coat them with uncured urethane resin, and the resin-coated granular fertilizer is obtained by subsequent thermosetting.

Description

本発明は、樹脂被覆粒状肥料の製造方法に関する。詳しくは、樹脂被覆量が従来法に比べて大幅に低減された樹脂被覆粒状肥料の製造方法に関する。   The present invention relates to a method for producing a resin-coated granular fertilizer. Specifically, the present invention relates to a method for producing a resin-coated granular fertilizer in which the resin coating amount is significantly reduced as compared with the conventional method.

近年、農業就労者の高年齢化、就業者数の減少、兼業農家の増加から、より省力型で植物の成長に合わせて肥料成分の溶出が所定の期間持続する肥効調節型樹脂被覆粒状肥料が要求されている。中でも施肥回数を大幅に減らすことを目的とした、肥料成分の溶出が長期間持続する安価な樹脂被覆粒状肥料が望まれている。   In recent years, due to the aging of agricultural workers, the decrease in the number of employed workers, and the increase in part-time farmers, it is more labor-saving and the fertilizer effect-type resin-coated granular fertilizer that keeps elution of fertilizer components as the plant grows for a predetermined period Is required. In particular, an inexpensive resin-coated granular fertilizer is desired in which elution of fertilizer components lasts for a long period of time with the aim of greatly reducing the number of times of fertilization.

肥料成分の溶出を長期間持続する樹脂被覆粒状肥料の製造方法としては、室温下での吸水量が低い粒状肥料をウレタン樹脂等で被覆し、肥料成分の溶出量を抑え、肥料成分の溶出が長期間持続する樹脂被覆粒状肥料の製造方法が知られている(特許文献1参照)。しかして、該特許文献1にも記載されているように、肥料成分の溶出を抑制するための被覆欠陥の少ない樹脂被覆粒状肥料の製造方法としては、一般に樹脂被覆量を増やして皮膜欠陥部分を補修していく方法が取られている。しかしながらこの方法では、特定重量に占める肥料成分量の大幅な低下および高価な樹脂被覆量の大幅増によるコスト高の問題がある。   As a manufacturing method of resin-coated granular fertilizer that maintains elution of fertilizer components for a long period of time, granular fertilizer with low water absorption at room temperature is coated with urethane resin, etc., and the elution of fertilizer components is suppressed. A method for producing a resin-coated granular fertilizer that lasts for a long time is known (see Patent Document 1). Therefore, as described in Patent Document 1, as a method for producing a resin-coated granular fertilizer with few coating defects for suppressing elution of fertilizer components, generally, the amount of resin coating is increased to reduce the film defect portion. The method of repairing is taken. However, this method has a problem of high cost due to a significant decrease in the amount of fertilizer components occupying a specific weight and a significant increase in the amount of expensive resin coating.

特開2009−215129(2009年9月24日公開)JP 2009-215129 (released September 24, 2009)

本発明は、従来法に比べて樹脂被覆量が大幅に低減された樹脂被覆粒状肥料を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a resin-coated granular fertilizer in which the resin coating amount is significantly reduced as compared with the conventional method.

かかる事情下に鑑み、本発明者等は、肥料成分の溶出が長期間持続され、且つ樹脂被覆量が従来法に比べて大幅に低減された樹脂被覆粒状肥料の製造方法について鋭意検討した結果、肥料成分の溶出の抑制の大小は、樹脂被覆量ではなく、樹脂被覆膜厚が厚くなるほど大きく、樹脂被覆膜厚が薄くなるほど小さくなることを見出し、本発明を完成するに至った。   In view of such circumstances, the present inventors, as a result of earnestly examining the method for producing a resin-coated granular fertilizer in which elution of fertilizer components is sustained for a long period of time and the resin coating amount is significantly reduced compared to the conventional method, It was found that the suppression of the elution of the fertilizer component is not the amount of resin coating but increases as the resin coating film thickness increases, and decreases as the resin coating film thickness decreases, and the present invention has been completed.

すなわち本発明は、平均粒径が6〜15mmで平均圧壊強度が15kgf以上で有る粒状肥料を、転動状態下でその粒状肥料の表面を液状の未硬化ウレタン樹脂で被覆し、次いで熱硬化させることを特徴とする樹脂被覆粒状肥料の製造方法を提供するにある。   That is, according to the present invention, a granular fertilizer having an average particle size of 6 to 15 mm and an average crushing strength of 15 kgf or more is coated with a liquid uncured urethane resin on the surface of the granular fertilizer under rolling conditions, and then thermally cured. It is in providing the manufacturing method of the resin-coated granular fertilizer characterized by the above-mentioned.

より好ましくは、ウレタン樹脂被覆するに際し、平均粒子径が8〜12mmで平均圧壊強度が20kgf以上である粒状肥料を用いることを特徴とする上記樹脂被覆粒状肥料の製造方法を提供するにある。 More preferably, when the urethane resin is coated, a granular fertilizer having an average particle diameter of 8 to 12 mm and an average crushing strength of 20 kgf or more is used.

本発明の方法によって、肥料成分の溶出が長期間持続され、且つ樹脂被覆量が従来法に比べて大幅に低減された安価な樹脂被覆粒状肥料を製造することができる。   By the method of the present invention, it is possible to produce an inexpensive resin-coated granular fertilizer in which elution of fertilizer components is sustained for a long period of time and the resin coating amount is significantly reduced as compared with the conventional method.

以下、本発明方法を更に詳細に説明する。
本発明において使用する樹脂被覆用粒状肥料は、平均粒子径6〜15mm、好ましくは8〜12mm、平均圧壊強度は、15kgf以上、好ましくは20kgf以上のものが用いられる。使用する樹脂被覆用粒状肥料の平均粒子径が、小さ過ぎると被覆樹脂量の大幅な低減は望めず、大き過ぎると施肥量の調整や取扱いが困難となる。また、使用する樹脂被覆用粒状肥料の平均圧壊強度が低過ぎると転動状態下での樹脂被覆工程において粒子同士のぶつかりによる粒子表面の削れや剥がれ、更には割れ等が起こり被膜欠陥を生じると共に、目的とする樹脂被覆量の低減効果も減少することがある。
Hereinafter, the method of the present invention will be described in more detail.
The granular fertilizer for resin coating used in the present invention has an average particle diameter of 6 to 15 mm, preferably 8 to 12 mm, and an average crushing strength of 15 kgf or more, preferably 20 kgf or more. If the average particle diameter of the granular fertilizer for resin coating to be used is too small, a significant reduction in the amount of the coating resin cannot be expected, and if it is too large, it becomes difficult to adjust and handle the fertilizing amount. In addition, if the average crushing strength of the resin-coated granular fertilizer used is too low, the particle surface is scraped or peeled off due to collisions between the particles in the resin coating process under rolling conditions, and further cracks occur and cause coating defects. Further, the effect of reducing the target resin coating amount may be reduced.

本発明において使用する樹脂被覆用粒状肥料は、尿素、硝安、硫安、塩安、ウレアホルム等の窒素質、燐安、過燐酸石灰、重過燐酸石灰等の燐酸質、塩化加里、硫酸加里等の加里質の肥料原料物質の組み合わせによって得られる窒素−燐酸、窒素−加里、および燐酸−加里の2成分系、窒素−燐酸−加里の3成分系、あるいはこれらにマグネシウム、硼素、マンガン等植物の生育に必要な要素を含有させた粒状肥料である。   The granular fertilizer for resin coating used in the present invention includes nitrogenous substances such as urea, ammonium nitrate, ammonium sulfate, ammonium sulfate and ureaform, phosphorous substances such as phosphorous ammonium, superphosphate lime and heavy superphosphate, potassium chloride, potassium sulfate, etc. Nitrogen-phosphoric acid, nitrogen-kari, and phosphoric acid-kari two-component systems, nitrogen-phosphoric acid-kari three-component systems, or magnesium, boron, manganese, etc. It is a granular fertilizer containing the necessary elements.

本発明で使用する樹脂被覆用粒状肥料の製造方法としては、所望する平均粒子径と圧壊強度が得られる方法であれば特に限定されるものではなく、例えば、固体肥料原料を所望する肥料成分に合わせて配合、この配合物を粉砕し、得られた粉砕物を転動状態下で加水して所望形状まで造粒し、造粒後、乾燥、篩別することにより得ることができる。粉砕法としては、一般に粒子径が小さいほど強固な粒状物が得られることから、粉砕度の高いピンミル型の粉砕機、例えば固体肥料原料の微粉砕に一般的に用いられている奈良式粉砕機を用い、平均粒子径1mm以下、好ましくは、0.5mm以下に粉砕し用いればよい。また上記転動造粒には市販の皿型造粒機等を用いればよく、乾燥には、工業的に応用されているキルン乾燥機を用いればよい。かかる平均粒子径と圧壊強度を有する市販品があれば市販品を用いてもよい。   The method for producing the granular fertilizer for resin coating used in the present invention is not particularly limited as long as the desired average particle diameter and crushing strength can be obtained. For example, a solid fertilizer raw material can be used as a desired fertilizer component. They can also be blended, pulverized, and the obtained pulverized product is hydrated in a rolling state and granulated to a desired shape, and after granulation, dried and sieved. As the pulverization method, generally, the smaller the particle size, the stronger the granular material is obtained. Therefore, a pin mill type pulverizer with a high pulverization degree, for example, a Nara type pulverizer generally used for fine pulverization of solid fertilizer raw materials. And an average particle diameter of 1 mm or less, preferably 0.5 mm or less. A commercially available dish-type granulator or the like may be used for the rolling granulation, and an industrially applied kiln dryer may be used for drying. If there is a commercial product having such an average particle diameter and crushing strength, a commercial product may be used.

前記製造方法で得られた樹脂被覆用粒状肥料の表面を被覆処理する樹脂被覆材としては
、ウレタン樹脂が使用される。これらウレタン樹脂はポリイソシアネート化合物とポリオール化合物との反応により3次元架橋することにより生成するものである。また、ポリイソシアネート化合物を2種類以上および/またはポリオール化合物を2種類以上混合して用いることもできる。
A urethane resin is used as the resin coating material for coating the surface of the granular fertilizer for resin coating obtained by the manufacturing method. These urethane resins are produced by three-dimensional crosslinking by a reaction between a polyisocyanate compound and a polyol compound. Further, two or more polyisocyanate compounds and / or two or more polyol compounds can be mixed and used.

ポリイソシアネート化合物としては、例えばトルエンジイソシアネート(以下、TDIと略称することがある。)、ジフェニルメタンジイソシアネート(MDIと略称することがある。)、ナフタレンジイソシアネート、トリジンイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等を挙げることができ、必要に応じてこれらの混合物を用いることができる。中でも、MDI、TDIまたはこれらから誘導されるオリゴマー体(ポリメリックMDI、ポリメリックTDI等)が好適に用いられる。   Examples of the polyisocyanate compound include toluene diisocyanate (hereinafter sometimes abbreviated as TDI), diphenylmethane diisocyanate (sometimes abbreviated as MDI), naphthalene diisocyanate, tolidine isocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diene. An isocyanate etc. can be mentioned and these mixtures can be used as needed. Among these, MDI, TDI or oligomers derived from these (polymeric MDI, polymeric TDI, etc.) are preferably used.

ポリイソシアネート化合物と反応させるポリオール化合物としては、前記と同様の例えばアミノアルコール、アミン等を開始材として用い、プロピレングリコール、トリメチロールプロパン等の脂肪族アルコールとエチレンオキサイドやプロピレンオキサイドとを重付加して得られるポリエーテルポリオール、テトラヒドロフランを重合して得られるポリテトラメチレンエーテルグリコール等のポリエーテル型ポリオール、イサノ油やひまし油等の水酸基を保有する天然油脂や多価アルコールとポリエーテルポリオールとカルボン酸化合物を反応させる等の方法で得られるポリエステル型ポリオール等が挙げられる。   As the polyol compound to be reacted with the polyisocyanate compound, for example, amino alcohol, amine and the like as described above are used as a starting material, and an aliphatic alcohol such as propylene glycol and trimethylolpropane is polyadded with ethylene oxide and propylene oxide. Polyether polyol obtained, polyether type polyol such as polytetramethylene ether glycol obtained by polymerizing tetrahydrofuran, natural fats and oils possessing hydroxyl groups such as Isano oil and castor oil, polyhydric alcohol, polyether polyol and carboxylic acid compound Examples thereof include polyester-type polyols obtained by a method such as reaction.

使用するポリイソシアネート化合物に由来するNCO基とポリオール化合物に由来するOH基の当量比、いわゆるNCO/OHは、通常0.9〜1.2の間で調整される。   The equivalent ratio of the NCO group derived from the polyisocyanate compound to be used and the OH group derived from the polyol compound, so-called NCO / OH, is usually adjusted between 0.9 and 1.2.

ウレタン樹脂原料の硬化促進の目的で添加される触媒としては、例えば、トリエチレンジアミン、N−メチルモルフォリン、N,N−ジメチルモルフォリン、ジアザビシクロウンデセン、イミダゾール、エチルメチルイミダゾール、ジアザビシクロオクタン、2,4,6,−トリス(ジメチルアミノミチル)フェノール等のアミン系触媒、尿素等のアンモニア誘導体、水酸化ナトリウム、水酸化カリウム等のアルカリ性化合物、ジブチルスズラウレート、ジブチルスズマレート等の有機スズ化合物が挙げられる。中でもアミン系触媒が好適に用いられる。これら触媒の量は、ポリイソシアネート化合物とポリオール化合物の総重量に対して、通常、0.05〜5重量%程度である。   Examples of the catalyst added for the purpose of accelerating the curing of the urethane resin raw material include triethylenediamine, N-methylmorpholine, N, N-dimethylmorpholine, diazabicycloundecene, imidazole, ethylmethylimidazole, diazabicyclo. Amine catalysts such as octane, 2,4,6, -tris (dimethylaminomytyl) phenol, ammonia derivatives such as urea, alkaline compounds such as sodium hydroxide and potassium hydroxide, organic compounds such as dibutyltin laurate and dibutyltin malate A tin compound is mentioned. Of these, amine-based catalysts are preferably used. The amount of these catalysts is usually about 0.05 to 5% by weight based on the total weight of the polyisocyanate compound and the polyol compound.

樹脂被覆材の量は、特に制限されるものではなく、所望する溶出速度、溶出期間に応じて適宜調節される。通常は、粒状肥料に対して0.5〜10重量%の範囲内において行なわれる。   The amount of the resin coating material is not particularly limited, and is appropriately adjusted according to a desired elution rate and elution period. Usually, it is performed within a range of 0.5 to 10% by weight with respect to the granular fertilizer.

ウレタン樹脂の被覆処理方法としては特に制限されるものではなく、当該分野で公知の方法が適用し得る。一般的には、温度制御可能な転動型の回転円筒や回転皿等の装置に、前記製造方法等で得られた平均粒子径が6〜15mm、平均圧壊強度が15kgf以上の粒状肥料を供給して転動させながら、これに液状の未硬化ウレタン樹脂を添加被覆し、次いで熱硬化させることを繰り返して被覆処理する方法が用いられる。   The method for coating the urethane resin is not particularly limited, and methods known in the art can be applied. Generally, granular fertilizer with an average particle diameter of 6 to 15 mm and an average crushing strength of 15 kgf or more obtained by the above-described manufacturing method is supplied to a temperature-controllable rolling cylinder or rotating dish. Then, while rolling, a coating method is used in which a liquid uncured urethane resin is added and coated, followed by heat curing.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。
なお、実施例中の部および%は特記しない限りすべて重量部および重量百分率を示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In addition, unless otherwise indicated, all the parts and% in an Example show a weight part and a weight percentage.

また、肥料成分の溶出量の測定は以下の方法で行なった。
肥料成分の溶出量の測定:
20本の250mlの蓋付きポリ容器のそれぞれに、測定する樹脂被覆粒状肥料15gを入れ、水200mlを添加して浸漬し、蓋をして25℃の恒温槽に静置した。
所定期間毎に、ポリ容器を恒温槽から取り出し、溶液を化学濾紙で濾過して水中に溶出した肥料成分を定量分析し、溶出量(%)を算出した。
Moreover, the measurement of the elution amount of the fertilizer component was performed by the following method.
Measurement of elution amount of fertilizer components:
In each of 20 250 ml plastic containers with a lid, 15 g of resin-coated granular fertilizer to be measured was added, 200 ml of water was added and immersed, the lid was put on, and left in a thermostatic bath at 25 ° C.
Every predetermined period, the plastic container was taken out from the thermostat, the solution was filtered with chemical filter paper, and the fertilizer components eluted in water were quantitatively analyzed, and the elution amount (%) was calculated.

実施例1
(1)樹脂被覆用粒状肥料の製造:
使用する固体肥料原料を、配合して奈良式粉砕機を用いて粉砕して、その平均粒径を0.5mm以下とした。次いでこの微粉砕物を皿型造粒機を用いて転動状態下で加水して造粒することを繰り返して、粒径の大部分(90重量%に占める)が6〜15mmで、且つ平均粒子径が8〜12mmの粒状物とした。次いでこの造粒物をキルン乾燥機を用いて乾燥、篩分けして、肥料成分19−7−10(粒径:6〜15mm 、平均粒径:11.2mm、圧壊強度:15kgf以上、平均圧壊強度:34kgf)(19−7−10はN−P−KOとしての含量%を示す、以下同じ)の粒状肥料1000kgを得た。
(2)樹脂被覆粒状肥料の製造:
実施例1の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は4%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)20.88kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール0.4kgを加え、30分撹拌し、混合物21.28kgを得た(以下、混合物Aと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)18.72kgと混合物A21.28kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約106μmであった。
このようにして得たウレタン樹脂被覆量4%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Example 1
(1) Production of granular fertilizer for resin coating:
The solid fertilizer raw material to be used was blended and pulverized using a Nara type pulverizer, and the average particle size was adjusted to 0.5 mm or less. Subsequently, the finely pulverized product was repeatedly granulated by adding water in a rolling state using a dish type granulator, and the majority of the particle size (occupying 90% by weight) was 6 to 15 mm, and the average It was set as the granular material whose particle diameter is 8-12 mm. Next, this granulated product was dried and sieved using a kiln dryer, and fertilizer component 19-7-10 (particle size: 6 to 15 mm, average particle size: 11.2 mm, crushing strength: 15 kgf or more, average crushing) (Strength: 34 kgf) (19-7-10 indicates the content% as NP 2 O 5 -K 2 O, the same shall apply hereinafter) 1000 kg of granular fertilizer was obtained.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in Example 1 (1) was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 4%.
Add 20.88 kg of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 0.4 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst to a polyol mixing tank at room temperature. The mixture was stirred for 30 minutes to obtain 21.28 kg of the mixture (hereinafter referred to as the mixture A).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 18.72 kg of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 21.28 kg of the mixture A were mixed as the polyisocyanate compound. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of the coated product was about 106 μm.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 4% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例1
(1)ウレタン樹脂被覆用粒状肥料の製造:
実施例1の(1)と同様に、使用する固体肥料原料を、配合して奈良式粉砕機を用いて粉砕して、その平均粒径を0.5mm以下とした。次いでこの微粉砕物を皿型造粒機を用いて転動状態下で加水して造粒することを繰り返して、粒径の大部分が2〜5mmの粒状物とした。次いでこの造粒物をキルン乾燥機を用いて乾燥、篩分けして、実施例1と同じ肥料成分19−7−10(粒径:2〜5mm 、平均粒径:4.1mm、圧壊強度:1.5kgf以上、平均圧壊強度:3.6kgf)の粒状肥料2000kgを得た。
(2)樹脂被覆粒状肥料の製造:
比較例1の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は4%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)20.88kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール0.4kgを加え、30分撹拌し、混合物21.28kgを得た(以下、混合物Bと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)18.72kgと混合物B21.28kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約38μmであった。
このようにして得たウレタン樹脂被覆量4%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 1
(1) Production of granular fertilizer for urethane resin coating:
In the same manner as in Example 1 (1), the solid fertilizer raw materials to be used were blended and pulverized using a Nara type pulverizer so that the average particle size was 0.5 mm or less. Next, this finely pulverized product was repeatedly granulated by adding water in a rolling state using a dish type granulator to obtain a granulated product having a major particle size of 2 to 5 mm. Next, the granulated product was dried and sieved using a kiln dryer, and the same fertilizer component 19-7-10 as in Example 1 (particle size: 2 to 5 mm, average particle size: 4.1 mm, crushing strength: A granular fertilizer of 2000 kg having an average crushing strength of 3.6 kgf) of 1.5 kgf or more was obtained.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in (1) of Comparative Example 1 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 4%.
Add 20.88 kg of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 0.4 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst to a polyol mixing tank at room temperature. The mixture was stirred for 30 minutes to obtain 21.28 kg of the mixture (hereinafter referred to as the mixture B).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 18.72 kg of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 21.28 kg of the mixture B were mixed. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of the coated product was about 38 μm.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 4% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例2
(1)ウレタン樹脂被覆用粒状肥料の製造:
比較例1の(1)で製造した粒状肥料1000kgを使用した。
(2)樹脂被覆粒状肥料の製造:
比較例1の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は11%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)57.42kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール1.1kgを加え、30分撹拌し、混合物58.52kgを得た(以下、混合物Cと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)51.48kgと混合物C58.52kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約106μmであった。
このようにして得たウレタン樹脂被覆量11%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 2
(1) Production of granular fertilizer for urethane resin coating:
The granular fertilizer 1000kg manufactured by (1) of the comparative example 1 was used.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in (1) of Comparative Example 1 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 11%.
At room temperature, 57.42 kg of branched polyether polyol (Sumiten (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 1.1 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst were added to a polyol mixing tank. The mixture was stirred for 30 minutes to obtain 58.52 kg of a mixture (hereinafter referred to as the mixture C).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 51.48 kg of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 58.52 kg of the mixture C were mixed. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of the coated product was about 106 μm.
For the resin-coated granular fertilizer having a urethane resin coating amount of 11% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

実施例2
(1)ウレタン樹脂被覆用粒状肥料の製造:
使用する固体肥料原料を、配合して奈良式粉砕機を用いて粉砕して、その平均粒径を0.5mm以下とした。次いでこの微粉砕物を皿型造粒機を用いて転動状態下で加水して造粒することを繰り返して、粒径の大部分が6〜15mmおよび/または平均粒径が8〜12mmの粒状物とした。次いでこの造粒物をキルン乾燥機を用いて乾燥、篩分けして、肥料成分12−10−25(粒径:6〜15mm 、平均粒径:8.9mm、圧壊強度:15kgf以上、平均圧壊強度:26kgf)(12−10−25はN−P−KOとしての含量%を示す、以下同じ)の粒状肥料1000kgを得た。
(2)樹脂被覆粒状肥料の製造:
実施例2の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は5%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)26.1kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール0.5kgを加え、30分撹拌し、混合物26.6kgを得た(以下、混合物Dと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)23.4kgと混合物D26.6kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約105μmであった。
このようにして得たウレタン樹脂被覆量5%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Example 2
(1) Production of granular fertilizer for urethane resin coating:
The solid fertilizer raw material to be used was blended and pulverized using a Nara type pulverizer, and the average particle size was adjusted to 0.5 mm or less. Subsequently, the finely pulverized product is repeatedly granulated by adding water in a rolling state using a dish-type granulator, so that most of the particle size is 6 to 15 mm and / or the average particle size is 8 to 12 mm. A granular material was used. Next, the granulated product was dried and sieved using a kiln dryer, and fertilizer component 12-10-25 (particle size: 6 to 15 mm, average particle size: 8.9 mm, crushing strength: 15 kgf or more, average crushing) (Strength: 26 kgf) (12-10-25 indicates the content% as NP 2 O 5 -K 2 O, the same shall apply hereinafter) 1000 kg of granular fertilizer was obtained.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in (1) of Example 2 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 5%.
Add 26.1 kg of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 0.5 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst at room temperature. The mixture was stirred for 30 minutes to obtain 26.6 kg of the mixture (hereinafter referred to as the mixture D).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 23.4 kg of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 26.6 kg of the mixture D were mixed. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of this coated product was about 105 μm.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 5% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例3
(1)ウレタン樹脂被覆用粒状肥料の製造:
実施例2の(1)と同様に、使用する固体肥料原料を、配合して奈良式粉砕機を用いて粉砕して、その平均粒径を0.5mm以下とした。次いでこの微粉砕物を皿型造粒機を用いて転動状態下で加水して造粒することを繰り返して、粒径の大部分が2〜5mmの粒状物とした。次いでこの造粒物をキルン乾燥機を用いて乾燥、篩分けして、実施例2と同じ肥料成分12−10−25(粒径:2〜5mm 、平均粒径:2.8mm、圧壊強度:1.5kgf以上、平均圧壊強度:2.4kgf)の粒状肥料2000kgを得た。
(2)樹脂被覆粒状肥料の製造:
比較例3の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は5%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)26.1kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール0.5kgを加え、30分撹拌し、混合物26.6kgを得た(以下、混合物Eと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)23.4kgと混合物E26.6kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約33μmであった。
このようにして得たウレタン樹脂被覆量5%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 3
(1) Production of granular fertilizer for urethane resin coating:
In the same manner as in Example 2 (1), the solid fertilizer raw materials to be used were blended and pulverized using a Nara type pulverizer, and the average particle size was adjusted to 0.5 mm or less. Next, this finely pulverized product was repeatedly granulated by adding water in a rolling state using a dish type granulator to obtain a granulated product having a major particle size of 2 to 5 mm. Next, the granulated product was dried and sieved using a kiln dryer, and the same fertilizer component 12-10-25 as in Example 2 (particle size: 2 to 5 mm, average particle size: 2.8 mm, crushing strength: 2000 kgf of granular fertilizer having an average crushing strength of 2.4 kgf) was obtained.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in (1) of Comparative Example 3 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 5%.
Add 26.1 kg of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 0.5 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst at room temperature. The mixture was stirred for 30 minutes to obtain 26.6 kg of a mixture (hereinafter referred to as the mixture E).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 23.4 kg of Polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 26.6 kg of the mixture E were mixed. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of the coated product was about 33 μm.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 5% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例4
(1)ウレタン樹脂被覆用粒状肥料の製造:
比較例3の(1)で製造した粒状肥料1000kgを使用した。
(2)樹脂被覆粒状肥料の製造:
比較例3の(1)で得た粒状肥料の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。粒状肥料に対するウレタン樹脂の被覆量は16%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)83.52kgと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール1.6kgを加え、30分撹拌し、混合物85.12kgを得た(以下、混合物Fと記す。)。
温度制御可能な転動型の被覆装置に粒状肥料1000kgを仕込んだ。被覆装置の回転部を5〜15rpmで回転させ、仕込んだ粒状肥料を転動状態にした。粒状肥料の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)74.88kgと混合物F85.12kgを混合して得られる液状の未硬化ウレタン樹脂組成物で被覆し、次いで熱硬化させることを繰り返して被覆処理した。この被覆処理物のウレタン樹脂膜厚は約105μmであった。
このようにして得たウレタン樹脂被覆量16%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 4
(1) Production of granular fertilizer for urethane resin coating:
The granular fertilizer 1000kg manufactured by (1) of the comparative example 3 was used.
(2) Production of resin-coated granular fertilizer:
The surface of the granular fertilizer obtained in (1) of Comparative Example 3 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the granular fertilizer was 16%.
Add 83.52 kg of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 1.6 kg of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst at room temperature. The mixture was stirred for 30 minutes to obtain 85.12 kg of a mixture (hereinafter referred to as the mixture F).
1000 kg of granular fertilizer was charged into a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating apparatus was rotated at 5 to 15 rpm, and the charged granular fertilizer was brought into a rolling state. While maintaining the temperature of the granular fertilizer to 70 to 75 ° C., 74.88 kg of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 85.12 kg of the mixture F were mixed. The resulting liquid uncured urethane resin composition was coated and then thermally cured for repeated coating treatment. The thickness of the urethane resin film of this coated product was about 105 μm.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 16% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

Figure 2012046382
Figure 2012046382

表1に示すように、肥料成分の溶出の抑制の大小は、樹脂被覆量ではなく、樹脂被覆膜厚であることが解る。従って、本発明の方法によれば、同じ肥料成分の溶出性能を示す樹脂被覆量が従来法に比べて大幅に低減された安価なウレタン樹脂被覆粒状肥料を容易に得ることができる。   As shown in Table 1, it can be seen that the suppression of the elution of the fertilizer component is not the resin coating amount but the resin coating film thickness. Therefore, according to the method of the present invention, it is possible to easily obtain an inexpensive urethane resin-coated granular fertilizer in which the resin coating amount showing the elution performance of the same fertilizer component is significantly reduced as compared with the conventional method.

Claims (2)

平均粒子径が6〜15mmで平均圧壊強度が15kgf以上である粒状肥料を、転動状態下でその表面を液状の未硬化ウレタン樹脂で被覆し、次いで熱硬化させることを特徴とする樹脂被覆粒状肥料の製造方法。   Resin-coated granules characterized in that a granular fertilizer having an average particle diameter of 6 to 15 mm and an average crushing strength of 15 kgf or more is coated with a liquid uncured urethane resin on the surface in a rolling state and then thermally cured. Fertilizer manufacturing method. ウレタン樹脂被覆する粒状肥料の平均粒子径が8〜12mmで平均圧壊強度が20kgf以上であることを特徴とする請求項1記載の樹脂被覆粒状肥料の製造方法。
The method for producing a resin-coated granular fertilizer according to claim 1, wherein the granular fertilizer coated with urethane resin has an average particle diameter of 8 to 12 mm and an average crushing strength of 20 kgf or more.
JP2010190572A 2010-08-27 2010-08-27 Method for producing resin-coated granular fertilizer Pending JP2012046382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190572A JP2012046382A (en) 2010-08-27 2010-08-27 Method for producing resin-coated granular fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190572A JP2012046382A (en) 2010-08-27 2010-08-27 Method for producing resin-coated granular fertilizer

Publications (1)

Publication Number Publication Date
JP2012046382A true JP2012046382A (en) 2012-03-08

Family

ID=45901703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190572A Pending JP2012046382A (en) 2010-08-27 2010-08-27 Method for producing resin-coated granular fertilizer

Country Status (1)

Country Link
JP (1) JP2012046382A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861828A (en) * 1981-09-11 1983-04-13 ノルスク・ヒドロ・アクシエセルスカ−ブ Particulate based on urea with large particle size and production thereof
JPH09202683A (en) * 1996-01-23 1997-08-05 Sumitomo Chem Co Ltd Production of coated fertilizer
JPH09208355A (en) * 1996-02-08 1997-08-12 Sumitomo Chem Co Ltd Coated fertilizer
JP2001213685A (en) * 1999-12-10 2001-08-07 Bayer Corp Polyurethane encapsulated fertilizer with improved slow-release
JP2009215129A (en) * 2008-03-12 2009-09-24 Sumitomo Chemical Co Ltd Method of producing resin coated granular fertilizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861828A (en) * 1981-09-11 1983-04-13 ノルスク・ヒドロ・アクシエセルスカ−ブ Particulate based on urea with large particle size and production thereof
JPH09202683A (en) * 1996-01-23 1997-08-05 Sumitomo Chem Co Ltd Production of coated fertilizer
JPH09208355A (en) * 1996-02-08 1997-08-12 Sumitomo Chem Co Ltd Coated fertilizer
JP2001213685A (en) * 1999-12-10 2001-08-07 Bayer Corp Polyurethane encapsulated fertilizer with improved slow-release
JP2009215129A (en) * 2008-03-12 2009-09-24 Sumitomo Chemical Co Ltd Method of producing resin coated granular fertilizer

Similar Documents

Publication Publication Date Title
JP6753870B2 (en) Potential two-component polyurethane adhesive that cures with infrared rays
CN108586060B (en) Functional composite coated controlled-release fertilizer with polyolefin wax as base coat and production method thereof
JP2001213685A (en) Polyurethane encapsulated fertilizer with improved slow-release
JP2002114591A (en) Fertilizer sealed with slow-releasing polyurethane using oil polyol
JP5810544B2 (en) Coated granule and method for producing the coated granule
CN101679588B (en) Granule coated with urethane resin
CN106800472A (en) A kind of composite modified polyurethane coated liquid, release and release control fertilizer and preparation method thereof
CN111019078B (en) Waterborne polyurethane curing agent and preparation method and application thereof
WO2019046349A1 (en) Polymer coated fertilizer
JP5028848B2 (en) Method for producing resin-coated granular fertilizer
TWI756183B (en) Coated granular fertilizer, method for producing coated granular fertilizer, and fertilizer composition
JP2010202482A (en) Coated granular fertilizer and method of manufacturing the same
JP5604819B2 (en) Method for producing resin-coated granular fertilizer
JPH10265288A (en) Coated granular fertilizer and its production
JP2012046382A (en) Method for producing resin-coated granular fertilizer
JP2006298673A (en) Polyurethane-coated granular fertilizer
JP2005067904A (en) Coated granular fertilizer and method for manufacturing coated granular fertilizer
JP2012046381A (en) Method for producing resin-coated granular fertilizer
JP2010120785A (en) Coated granular fertilizer and method for producing the same
CN104449540A (en) Polyurethane adhesive composition for PVC (Polyvinyl Chloride) film surface
JPH09202683A (en) Production of coated fertilizer
JP2009215129A (en) Method of producing resin coated granular fertilizer
CN110540468A (en) Cage type silsesquioxane modified in-situ reaction film-forming type coated controlled release fertilizer and preparation method thereof
JP6146804B2 (en) Process for producing controlled release bioactive particulates
JP2005001957A (en) Granular coated fertilizer and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224