JP2012041499A - 光硬化性組成物およびそれを用いた画像表示装置。 - Google Patents

光硬化性組成物およびそれを用いた画像表示装置。 Download PDF

Info

Publication number
JP2012041499A
JP2012041499A JP2010186142A JP2010186142A JP2012041499A JP 2012041499 A JP2012041499 A JP 2012041499A JP 2010186142 A JP2010186142 A JP 2010186142A JP 2010186142 A JP2010186142 A JP 2010186142A JP 2012041499 A JP2012041499 A JP 2012041499A
Authority
JP
Japan
Prior art keywords
group
meth
acrylate
general formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010186142A
Other languages
English (en)
Inventor
Mitsuhiro Hori
充啓 堀
Hitoshi Tamai
仁 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010186142A priority Critical patent/JP2012041499A/ja
Publication of JP2012041499A publication Critical patent/JP2012041499A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】紫外線などの活性エネルギー線により速硬化可能で、低粘度かつ高伸び性に優れる光硬化性組成物およびそれより得られる接着剤、特に画像表示装置の空間部充填用接着剤およびそれを用いて製造される画像表示装置の提供。
【解決手段】(a)一般式(1):−OC(O)C(R)=CH(1)(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)で表わされる基を有するビニル系重合体、(b)一般式(2):−OC(O)C(R)=CH(2)(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)で表される基を分子末端に1個以上有する(a)成分以外の化合物、および(c)分子内にメルカプト基を1個以上有する化合物、を必須成分とする光硬化性組成物を接着剤に用いる。
【選択図】なし

Description

本発明は光硬化性組成物およびそれを用いた画像表示装置に関する。さらに詳しくは、(メタ)アクリレート基を有するビニル系重合体を必須成分とし、組成物の伸び率が25℃で1000%を越える光硬化性組成物およびそれを塗布硬化させて得られる画像表示装置に関する。
液晶ディスプレイ、有機ELディスプレイ、タッチパネルディスプレイなどの画像表示装置のモジュール部、またはタッチパネル電極基板部と最上部の透明カバー(PETフィルム、強化ガラス、アクリル板等)との間には、従来エアギャップを設けることで、外からの衝撃で、カバーが割れた場合でも、モジュールに影響が出ないような構造(エアギャップ構造)になっている。また、近年、一部ではディスプレイの視認性向上と耐衝撃性の実現を目的に、光学弾性樹脂硬化性組成物が用いられはじめている。(特許文献1、2)組成物としては、光重合性官能基を有するウレタンアクリレート、エポキシアクリレートなどをバインダーポリマーとする光(UV)で硬化可能なものが多く用いられるが、これらの樹脂を用いると充填された樹脂の収縮による外部応力によりモジュールに変形が生じる可能性がある。特に液晶モジュールにおいてこの問題は重要で、応力によりモジュール表面の偏光フィルムや液晶を挟んでいるガラス板に負荷がかかると、画面表示ムラなどの異常が現れる。この問題を解決するために高伸び率を有する樹脂を使用した画像表示装置が提案されている。(特許文献3)。
上記の光学弾性樹脂組成物として特に適する物の1つとして、耐熱性・耐候性などの観点で(メタ)アクリロイル基、アルケニル基を有する(メタ)アクリル系重合体が挙げられる。特に紫外線などの活性エネルギー線により硬化される樹脂は速硬化性に優れており、特に好ましい。実際の配合系では、これらの重合体は反応性希釈剤などと組み合わせて用いられ、所望の物性に応じてさまざまな配合がなされるが、高い伸び率を有する配合系は一般に困難であった。一般に、硬化物を高伸びにするためにはバインダーポリマーの平均分子量を上げたり、高分子量の希釈モノマーを使用したりする方法が考えられるが、それに伴って樹脂の粘度が上昇しハンドリング性が悪くなるという問題がある。したがってそれらの方法以外で高伸びを達成する必要がある。
特開2004−077887号公報 特開2005−055641号公報 特開2009−186963号公報
本発明は、紫外線などの活性エネルギー線により速硬化可能で、低粘度かつ高伸び性に優れる光硬化性組成物およびそれより得られる接着剤、特に画像表示装置の空間部充填用接着剤およびそれを用いて製造される画像表示装置の提供を目的とする。
上述の現状に鑑み、本発明者らが鋭意検討した結果、(メタ)アクリル系重合体、反応性希釈剤およびメルカプト基を含む化合物を必須成分とする光硬化性組成物を使用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は、
(a)一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表わされる基を有するビニル系重合体、
(b)一般式(2):
−OC(O)C(R)=CH (2)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表される基を分子末端に1個以上有する(a)成分以外の化合物、および
(c)分子内にメルカプト基を1個以上有する化合物、
を必須成分とする光硬化性組成物に関する。
(a)成分が
一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表わされる基を1分子あたり平均して1個より多く有するビニル系重合体(a−1)と、
一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表わされる基を1分子あたり平均して1個以下有するビニル系重合体(a−2)の両方を含むことが好ましい。
(a)成分が(メタ)アクリル系重合体であり、かつ重合体の分子量分布が1.8未満であることが好ましい。
(b)成分として、ジシクロペンタニル(メタ)アクリレートを用いることが好ましい。
25℃における組成物の粘度が5000mPa・s以下であることが好ましい。
上記のいずれかに記載の光硬化性組成物に関する。
上記のいずれかに記載の光硬化性組成物を、画像表示モジュールパネルとカバーボードの接着に用い、製造される画像表示装置に関する。
上記のいずれかに記載の光硬化性組成物を、タッチパネル用電極基板とカバーボードの接着に用い、製造される画像表示装置に関する。
本発明の硬化性組成物は、硬化前は比較的低粘度であるにもかかわらず、紫外線などのエネルギー線照射により速やかに高伸び性を有する硬化物となる。
以下に本発明の硬化性組成物について詳述する。
<(a)成分>
(a)成分は、一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表わされる基を有するビニル系重合体である。
(1)式の構造は、架橋点間分子量を均一かつ大きく(好ましくは500〜100000)にすることで良好なゴム弾性が得られるという観点から、ビニル系重合体の分子末端に存在することが好ましい。
(メタ)アクリロイル系基中のRaは、水素原子または炭素数1〜20の有機基を表わす。前記炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、ニトリル基などがあげられ、これらは水酸基などの置換基を有していてもよい。
前記炭素数1〜20のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基など、炭素数6〜20のアリール基としては、例えばフェニル基、ナフチル基など、炭素数7〜20のアラルキル基としては、例えばベンジル基、フェニルエチル基などがあげられる。
の具体例としては、例えば−H、−CH、−CHCH、−(CH)nCH(nは2〜19の整数を表わす)、−C、−CHOH、−CNなどがあげられ、好ましくは−H、−CHである。
(a)成分の主鎖を構成するビニル系モノマーには特に限定はなく、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシ)プロピルトリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチルなどの(メタ)アクリル系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩などの芳香族ビニル系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデンなどのフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシランなどのケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミドなどのマレイミド系モノマー;アクリロニトリル、メタクリロニトリルなどのニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミドなどのアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニルなどのビニルエステル類;エチレン、プロピレンなどのアルケン類;ブタジエン、イソプレンなどの共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコールなどがあげられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。なかでも、生成物の物性などの点から、芳香族ビニル系モノマーおよび(メタ)アクリル系モノマーが好ましい。
本発明においては、これらの好ましいモノマーを他の前記モノマーと共重合させてもよく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。
(a)成分のビニル系重合体は上記ビニル系モノマーを重合して得られるものであれば良いが、(メタ)アクリル系モノマーを重合して得られる(メタ)アクリル系重合体が好ましい。
(a)成分の分子量分布(ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)の比)には、特に限定はないが、好ましくは1.8未満、より好ましくは1.7以下、さらに好ましくは1.6以下、特に好ましくは1.5以下、特別に好ましくは1.4以下、最も好ましくは1.3以下である。
なお、本発明におけるGPC測定の際には、通常は、クロロホルムまたはテトラヒドロフランを移動相として、ポリスチレンゲルカラムを使用し、分子量の値はポリスチレン換算値で求めている。
(a)成分の数平均分子量の下限は、好ましくは500、より好ましくは3,000であり、上限は、好ましくは100,000、より好ましくは40,000である。分子量が500未満であると、ビニル系重合体の本来の特性が発現されにくくなる傾向があり、100,000をこえると、ハンドリングが困難になりやすい傾向がある。
上記ビニル系重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)の値が1.8未満であることが好ましい。
<(a)成分の製造方法>
(a)成分の製法については特に限定はないが、ビニル系重合体は一般に、アニオン重合あるいはラジカル重合によって製造される。中でもモノマーの汎用性あるいは制御の容易さからラジカル重合が好ましい。ラジカル重合の中でも、リビングラジカル重合あるいは連鎖移動剤を用いたラジカル重合によって製造されるのが好ましく、特に前者が好ましい。
(a)成分の製造に用いられるラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを用いて、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と、末端などの制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類することができる。
「一般的なラジカル重合法」は簡便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量の使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題がある。また、フリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題もある。
「制御ラジカル重合法」は、さらに、特定の官能基を有する連鎖移動剤を用いて重合を行なうことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と、重合生長末端が停止反応などを起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに、分類することができる。
「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また、前記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題もある。
これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御が難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(Mw/Mnが1.1〜1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量を自由にコントロールすることができる。
したがって、「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、前記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。
なお、リビング重合とは、狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。
「リビングラジカル重合法」は、近年様々なグループで積極的に研究がなされている。
その例としては、例えばジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュルズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカル捕捉剤を用いるもの、有機ハロゲン化物などを開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)などがあげられる。
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物などを開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、前記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲンなどを末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としては、さらに好ましい。
前記原子移動ラジカル重合法としては、例えばMatyjaszewskiら、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁、マクロモレキュルズ(Macromolecules)1995年、28巻、7901頁、サイエンス(Science)1996年、272巻、866頁、WO96/30421号パンフレット,WO97/18247号パンフレットあるいはSawamotoら、マクロモレキュルズ(Macromolecules)1995年、28巻、1721頁などに記載の方法があげられる。
本発明において、これらのうちのどの方法を使用するかには特に制約はないが、基本的には制御ラジカル重合法が利用され、さらに制御の容易さなどからリビングラジカル重合法が好ましく、特に原子移動ラジカル重合法が好ましい。
まず、制御ラジカル重合法のうちの一つ、連鎖移動剤を用いた重合法について説明する。
連鎖移動剤(テロマー)を用いたラジカル重合には特に限定はないが、本発明に適した末端構造を有するビニル系重合体を得る方法としては、つぎの2つの方法が例示される。
特開平4−132706号公報に示されているようなハロゲン化炭化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と、特開昭61−271306号公報、特許2594402号公報、特開昭54−47782号公報に示されているような水酸基含有メルカプタンあるいは水酸基含有ポリスルフィドなどを連鎖移動剤として用いて水酸基末端の重合体を得る方法である。
次に、リビングラジカル重合法について説明する。そのうち、まず、ニトロキシド化合物などのラジカル捕捉剤(キャッピング剤)を用いる方法について説明する。
この重合法では、一般に安定なニトロキシフリーラジカル(=N−O・)をラジカルキャッピング剤として用いる。このような化合物には特に限定はないが、2,2,6,6−置換−1−ピペリジニルオキシラジカルや2,2,5,5−置換−1−ピロリジニルオキシラジカルなど、環状ヒドロキシアミンからのニトロキシフリーラジカルが好ましい。置換基としてはメチル基やエチル基などの炭素数4以下のアルキル基が適当である。
前記ニトロキシフリーラジカル化合物の具体例としては、特に限定はないが、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)、2,2,6,6−テトラエチル−1−ピペリジニルオキシラジカル、2,2,6,6−テトラメチル−4−オキソ−1−ピペリジニルオキシラジカル、2,2,5,5−テトラメチル−1−ピロリジニルオキシラジカル、1,1,3,3−テトラメチル−2−イソインドリニルオキシラジカル、N,N−ジ−t−ブチルアミンオキシラジカルなどがあげられる。
前記ニトロキシフリーラジカルの代わりに、ガルビノキシル(galvinoxyl)フリーラジカルなどの安定なフリーラジカルを用いても構わない。
前記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。
両者の使用割合には特に限定はないが、ラジカルキャッピング剤1モルに対し、ラジカル開始剤0.1〜10モルが適切である。
ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度条件下でラジカルを発生し得るパーオキシドが好ましい。
前記パーオキシドとしては、特に限定はないが、ベンゾイルパーオキシド、ラウロイルパーオキシドなどのジアシルパーオキシド類、ジクミルパーオキシド、ジ−t−ブチルパーオキシドなどのジアルキルパーオキシド類、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネートなどのパーオキシカーボネート類、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエートなどのアルキルパーエステル類などがあげられる。特にベンゾイルパーオキシドが好ましい。
さらに、パーオキシドの代わりにアゾビスイソブチロニトリルのようなラジカル発生性アゾ化合物などのラジカル発生剤も使用し得る。
マクロモレキュルズ(Macromolecules)1995年,28巻,2993頁に報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、下記のようなアルコキシアミン化合物を開始剤として用いても構わない。
Figure 2012041499
アルコキシアミン化合物を開始剤として用いる場合、それが前記のような水酸基などの官能基を有するものを用いると末端に官能基を有する重合体が得られる。これを本発明に利用すると、末端に官能基を有する重合体が得られる。
前記ニトロキシド化合物などのラジカル捕捉剤を用いる重合で用いられるモノマー、溶媒、重合温度などの重合条件には特に限定はないが、つぎに説明する原子移動ラジカル重合について用いるものと同様で構わない。
つぎに、本発明に使用するリビングラジカル重合法としてより好ましい原子移動ラジカル重合法について説明する。この原子移動ラジカル重合法では、有機ハロゲン化物、特に反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物などが開始剤として用いられる。
具体的に例示するならば、C‐CHX、C‐C(H)(X)CH、C−C(X)(CH (式中、Cはフェニル基、Xは塩素原子、臭素原子またはヨウ素原子) R−C(H)(X)−CO、R−C(CH)(X)−CO、R−C(H)(X)−C(O)R、R−C(CH)(X)−C(O)R
(式中、R、Rは水原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基、Xは塩素原子、臭素原子またはヨウ素原子)
−C−SO
(式中、Rは水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基、Xは塩素原子、臭素原子またはヨウ素原子)
などがあげられる。
原子移動ラジカル重合法の開始剤として、重合を開始する官能基以外の官能基を有する有機ハロゲン化物またはハロゲン化スルホニル化合物を用いることもできる。このような場合、一方の主鎖末端に前記官能基を、他方の主鎖末端に前記一般式(1)で表わされる構造を有するビニル系重合体が製造される。
前記官能基としては、アルケニル基、架橋性シリル基、ヒドロキシル基、エポキシ基、アミノ基、アミド基などがあげられる。
前記アルケニル基を有する有機ハロゲン化物には特に限定はなく、例えば一般式(6):
C(X)−R−R−C(R)=CH (6)
(式中、Rは水素原子またはメチル基、R、Rは水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基または他端において相互に連結したもの、Rは−C(O)O−(エステル基)、−C(O)−(ケト基)、またはo−,m−,p−フェニレン基、Rは直接結合または1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基、Xは塩素原子、臭素原子またはヨウ素原子)
で示されるものが例示される。
前記置換基R、Rの具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基などがあげられる。RとRは、他端において連結して環状骨格を形成していてもよい。
の1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基としては、例えば1個以上のエーテル結合を含有していてもよい炭素数1〜20のアルキレン基などがあげられる。
一般式(6)で示されるアルケニル基を有する有機ハロゲン化物の具体例としては、
XCHC(O)O(CH)nCH=CH
CC(H)(X)C(O)O(CH)nCH=CH
(HC)C(X)C(O)O(CH)nCH=CH
CHCHC(H)(X)C(O)O(CH)nCH=CH
Figure 2012041499
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは0〜20の整数)
XCHC(O)O(CH)nO(CH)mCH=CH
CC(H)(X)C(O)O(CH)nO(CH)mCH=CH
(HC)C(X)C(O)O(CH)nO(CH)mCH=CH
CHCHC(H)(X)C(O)O(CH)nO(CH)mCH=CH
Figure 2012041499
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CH)n−CH=CH
o,m,p−CHC(H)(X)−C−(CH)n−CH=CH
o,m,p−CHCHC(H)(X)−C−(CH)n−CH=CH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは0〜20の整数)
o,m,p−XCH−C−(CH)n−O−(CH)m−CH=CH
o,m,p−CHC(H)(X)−C−(CH)n−O−(CH)m−CH=CH
o,m,p−CHCHC(H)(X)−C−(CH)n−O−(CH)mCH=CH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−O−(CH)n−CH=CH
o,m,p−CHC(H)(X)−C−O−(CH)n−CH=CH
o,m,p−CHCHC(H)(X)−C−O−(CH)n−CH=CH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは0〜20の整数)
o,m,p−XCH−C−O−(CH)n−O−(CH)m−CH=CH
o,m,p−CHC(H)(X)−C−O−(CH)n−O−(CH)m−CH=CH
o,m,p−CHCHC(H)(X)−C−O−(CH)n−O−(CH)m−CH=CH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは1〜20の整数、mは0〜20の整数)
前記アルケニル基を有する有機ハロゲン化物としては、さらに一般式(7):
C=C(R)−R−C(R)(X)−R10−R (7)
(式中、R、R、R、R、Xは前記に同じ、R10は、直接結合、−C(O)O−(エステル基)、−C(O)−(ケト基)またはo−,m−,p−フェニレン基を表わす)
で示される化合物があげられる。
は、直接結合または炭素数1〜20の2価の有機基(1個以上のエーテル結合を含有していてもよい)であるが、直接結合である場合は、ハロゲン原子の結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素−ハロゲン結合が活性化されているので、R10としてC(O)O基やフェニレン基などを有する必要は必ずしもなく、直接結合であってもよい。Rが直接結合でない場合、炭素−ハロゲン結合を活性化するために、R10としてはC(O)O基、C(O)基、フェニレン基が好ましい。
一般式(7)で示される化合物を具体的に例示するならば、
CH=CHCHX、CH=C(CH)CHX、
CH=CHC(H)(X)CH、CH=C(CH)C(H)(X)CH
CH=CHC(X)(CH、CH=CHC(H)(X)C
CH=CHC(H)(X)CH(CH
CH=CHC(H)(X)C、CH=CHC(H)(X)CH
CH=CHCHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CHCHC(H)(X)−C
CH=CH(CHC(H)(X)−C
CH=CH(CHC(H)(X)−C
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
などをあげることができる。
前記アルケニル基を有するハロゲン化スルホニル化合物の具体例をあげるならば、
o−,m−,p−CH=CH−(CH)n−C−SOX、
o−,m−,p−CH=CH−(CH)n−O−C−SO
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは0〜20の整数)
などをあげることができる。
前記架橋性シリル基を有する有機ハロゲン化物には特に限定はなく、例えば一般式(8):
C(X)−R−R−C(H)(R)CH−[Si(R11−b(Y)bO]m−Si(R12−a(Y)a(8)
(式中、R、R、R、R、R、Xは前記に同じ、R11、R12は、いずれも炭素数1〜20のアルキル基、アリール基、アラルキル基、または(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R11またはR12が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい、Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい、aは0、1、2または3、bは0、1または2、mは0〜19の整数、ただし、a+mb≧1であることを満足する)
に示すものが例示される。
一般式(8)で示される化合物を具体的に例示するならば、
XCHC(O)O(CH)nSi(OCH
CHC(H)(X)C(O)O(CHSi(OCH
(CHC(X)C(O)O(CH)nSi(OCH
XCHC(O)O(CHSi(CH)(OCH
CHC(H)(X)C(O)O(CHSi(CH)(OCH
(CHC(X)C(O)O(CHSi(CH)(OCH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは0〜20の整数)
XCHC(O)O(CHO(CHSi(OCH
CC(H)(X)C(O)O(CHO(CHSi(OCH
(HC)C(X)C(O)O(CHO(CHSi(OCH
CHCHC(H)(X)C(O)O(CHO(CHSi(OCH
XCHC(O)O(CHO(CHSi(CH)(OCH
CC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH
(HC)C(X)C(O)O(CHO(CH−Si(CH)(OCH
CHCHC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−(CHSi(OCH
o,m,p−XCH−C−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−(CHSi(OCH
o,m,p−XCH−C−(CH−O−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CH−O−(CHSi(OCH)3、
o,m,p−CHCHC(H)(X)−C−(CH−O−(CHSi(OCH
o,m,p−XCH−C−O−(CHSi(OCH
o,m,p−CHC(H)(X)−C−O−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−O−(CH−Si(OCH
o,m,p−XCH−C−O−(CH−O−(CH−Si(OCH
o,m,p−CHC(H)(X)−C−O−(CH−O−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−O−(CH−O−(CHSi(OCH
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子)
などがあげられる。
前記架橋性シリル基を有する有機ハロゲン化物としては、さらに一般式(9):
(R12−a(Y)aSi−[OSi(R11)−b(Y)b]−CH−C(H)(R)−R−C(R)(X)−R10−R (9)
(式中、R、R、R、R、R10、R11、R12、a、b、X、Yは前記に同じ、mは0〜19の整数)
で示されるものが例示される。
一般式(9)で示される化合物を具体的に例示するならば、
(CHO)SiCHCHC(H)(X)C
(CHO)(CH)SiCHCHC(H)(X)C
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−C
(CHO)(CH)Si(CHC(H)(X)−C
(CHO)Si(CHC(H)(X)−C
(CHO)(CH)Si(CHC(H)(X)−C
(以上の式中、Xは塩素原子、臭素原子またはヨウ素原子、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
などがあげられる。
前記ヒドロキシル基を有する有機ハロゲン化物またはハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
HO−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素原子、臭素原子またはヨウ素原子、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
前記アミノ基を有する有機ハロゲン化物またはハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
N−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素原子、臭素原子またはヨウ素原子、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
前記エポキシ基を有する有機ハロゲン化物またはハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
Figure 2012041499
(式中、Xは塩素原子、臭素原子またはヨウ素原子、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
一般式(1)で表わされる基を1分子あたり2個以上、分子末端に有するビニル系重合体を得るためには、2個以上の開始点を有する有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤として用いるのが好ましい。具体的に例示するならば、
Figure 2012041499
Figure 2012041499
などがあげられる。
前記重合において用いられるビニル系モノマーには特に制約はなく、既に例示したものをすべて好適に用いることができる。
また、重合触媒として用いられる遷移金属錯体には特に限定はないが、好ましくは周期律表第7族、8族、9族、10族または11族元素を中心金属とする金属錯体、例えば銅、ニッケル、ルテニウム、鉄の錯体である。さらに好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄または2価のニッケルの錯体があげられる。なかでも、銅の錯体が好ましい。
前記1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅などがあげられる。
銅化合物を用いる場合、触媒活性を高めるために2,2′−ビピリジル、その誘導体、1,10−フェナントロリン、その誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2−アミノエチル)アミンなどのポリアミンなどの配位子を添加することができる。
また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。
ルテニウム化合物を触媒として用いる場合、活性化剤としてアルミニウムアルコキシド類を添加することができる。
さらに、2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)も、触媒として好適である。
重合は、無溶剤または各種の溶剤中で行なうことができる。
溶剤の種類としては、ベンゼン、トルエンなどの炭化水素系溶剤、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶剤、塩化メチレン、クロロホルムなどのハロゲン化炭化水素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、メタノール、エタノール、プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶剤、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶剤などがあげられる。これらは単独で使用してもよく2種以上を混合して用いてもよい。
また、重合は、室温〜200℃、好ましくは50〜150℃の範囲で行なうことができる。
(a)成分の官能基導入方法には特に限定はないが、例えば前述の方法により反応性官能基を有するビニル系重合体を製造し、反応性官能基を(メタ)アクリロイル系基を有する置換基に変換することにより製造することができる。
以下に、反応性官能基を有するビニル系の重合体の末端を一般式(1)で表わされる基に変換する方法について説明する。
ビニル系重合体の末端に(メタ)アクリロイル系基を導入する方法には特に限定はないが、例えば以下の方法があげられる。
[導入方法1]末端にハロゲン基を有するビニル系重合体と、一般式(2):
−OC(O)C(R)=CH (2)
(式中、Rは水素原子または炭素数1〜20の有機基を表わす、M+はアルカリ金属イオンまたは4級アンモニウムイオンを表わす)
で示される化合物との反応による方法。
末端にハロゲン基を有するビニル系重合体としては、一般式(3):
−CRX (3)
(式中、R、Rはビニル系モノマーのエチレン性不飽和基に結合した基、Xは塩素原子、臭素原子またはヨウ素原子を表わす)
で示される末端基を有するものが好ましい。
[導入方法2]末端に水酸基を有するビニル系重合体と、一般式(4):
C(O)C(R)=CH (4)
(式中、Raは水素原子または炭素数1〜20の有機基を表わす、X1は塩素原子、臭素原子または水酸基を表わす)
で示される化合物との反応による方法。
[導入方法3]末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、残存イソシアネート基と一般式(5):
HO−R’− OC(O)C(R)=CH (5)
(式中、Raは水素原子または炭素数1〜20の有機基を表わす、R’は炭素数2〜20の2価の有機基を表わす)
で示される化合物との反応による方法。
以下に、前記各方法について詳細に説明する。
[導入方法1]
導入方法1は、末端にハロゲン基を有するビニル系重合体と、一般式(2)で示される化合物との反応による方法である。
末端にハロゲン基を有するビニル系重合体には、特に限定はないが、一般式(3)に示す末端基を有するものが好ましい。
末端にハロゲン基を有するビニル系重合体、特に一般式(3)で表わされる末端基を有するビニル系重合体は、前述の有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合する方法、あるいはハロゲン化合物を連鎖移動剤としてビニル系モノマーを重合する方法により製造されるが、好ましくは前者である。
一般式(2)で表わされる化合物には特に限定はない。
一般式(2)中のRaにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
一般式(2)中のMは、オキシアニオンの対カチオンであり、その例としては、アルカリ金属イオン、4級アンモニウムイオンなどがあげられる。
前記アルカリ金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオンなどがあげられ、4級アンモニウムイオンとしては、例えばテトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラベンジルアンモニウムイオン、トリメチルドデシルアンモニウムイオン、テトラブチルアンモニウムイオン、ジメチルピペリジニウムイオンなどがあげられる。これらのうち、好ましいものとしてはアルカリ金属イオン、より好ましいものとしてはナトリウムイオン、カリウムイオンがあげられる。
一般式(2)で示される化合物の使用量は、一般式(3)で示される末端基に対して、好ましくは1〜5当量、より好ましくは1.0〜1.2当量である。
前記反応を実施する溶剤には特に限定はないが、求核置換反応であるため極性溶媒が好ましく、例えばテトラヒドロフラン、ジオキサン、ジエチルエーテル、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド、アセトニトリルなどが好ましく用いられる。
反応温度には特に限定はないが、好ましくは0〜150℃、より好ましくは10〜100℃である。
[導入方法2]
導入方法2は、末端に水酸基を有するビニル系重合体と、一般式(4)で示される化合物との反応による方法である。
一般式(4)で表わされる化合物には特に限定はない。
一般式(4)中のRにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
末端に水酸基を有するビニル系重合体は、前述の有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合させる方法、あるいは水酸基を有する化合物を連鎖移動剤としてビニル系モノマーを重合させる方法により製造されるが、好ましくは前者である。
末端に水酸基を有するビニル系重合体を製造する方法には特に限定はないが、例えば以下の方法が例示される。
(a)リビングラジカル重合によりビニル系重合体を合成する際に、一般式(10):
C=C(R13)−R14−R15−OH (10)
(式中、R13は水素原子または炭素数1〜20の有機基、R14は−C(O)O−(エステル基)またはo−、m−もしくはp−フェニレン基、R15は直接結合または1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基を表わす)
で示される一分子中に重合性のアルケニル基および水酸基を併せもつ化合物などを第2のモノマーとして反応させる方法。
前記R13としては、水素原子、メチル基が好ましい。また、R14がエステル基のものは(メタ)アクリレート系化合物、R14がフェニレン基のものはスチレン系化合物である。
なお、一分子中に重合性のアルケニル基および水酸基を併せもつ化合物を反応させる時期に制限はないが、特にゴム的な性質を期待する場合には、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。
このような化合物には特に限定はないが、例えば一般式(11):
C=C(R13)−R16−OH (11)
(式中、R13は前記と同じ、R16は1個以上のエーテル結合を有していてもよい炭素数1〜20の2価の有機基を表わす)
に示される化合物などがあげられる。
前記一般式(11)で示される化合物には特に限定はないが、入手が容易であるという点から、10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。
(c)特開平4−132706号公報などに開示されているような方法で、原子移動ラジカル重合により得られる一般式(3)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲン原子を、加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。
(d)原子移動ラジカル重合により得られる一般式(3)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(12):
C−(R17)(R18)−R16−OH (12)
(式中、R16およびMは前記と同じ、R17、R18はともにカルバニオンC−を安定化する電子吸引基または一方が前記電子吸引基で、他方が水素原子、炭素数1〜10のアルキル基またはフェニル基を表わす)
で示される水酸基を有する安定化カルバニオンなどを反応させてハロゲンを置換する方法。
前記電子吸引基としては、−COR(エステル基)、−C(O)R(ケト基)、−CON(R)(アミド基)、−COSR(チオエステル基)、−CN(ニトリル基)、−NO(ニトロ基)などがあげられ、−COR、−C(O)R、−CNが特に好ましい。置換基Rは、炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基であり、好ましくは炭素数1〜10のアルキル基またはフェニル基である。
(e)原子移動ラジカル重合により得られる一般式(3)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかるのちにアルデヒド類またはケトン類を反応させる方法。
(f)重合体末端のハロゲン原子、好ましくは一般式(3)で示されるハロゲンを少なくとも1個有するビニル系重合体に、一般式(13):
HO−R16−O-M (13)
(式中、R16およびMは前記と同じ)
で表わされる水酸基含有化合物などや、
一般式(14):
HO−R16−C(O)O−M (14)
(式中、R16およびMは前記と同じ)
で示される水酸基含有化合物などを反応させて、前記ハロゲン原子を水酸基含有置換基に置換する方法。
(a)〜(b)のような水酸基を導入する方法にハロゲン原子が直接関与しない場合、制御がより容易である点から(b)の方法がさらに好ましい。
また、(c)〜(f)のような炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲン原子を変換することにより水酸基を導入する場合、制御がより容易である点から(f)の方法がさらに好ましい。
一般式(4)で示される化合物の使用量は、ビニル系重合体の末端水酸基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
前記反応を実施する溶剤には特に限定はないが、求核置換反応であるため極性溶剤が好ましく、例えばテトラヒドロフラン、ジオキサン、ジエチルエーテル、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド、アセトニトリルなどが好ましく用いられる。
反応温度には特に限定はないが、好ましくは0〜150℃、より好ましくは10〜100℃である。
[導入方法3]
導入方法3は、末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、残存イソシアネート基と一般式(5):
HO−R’−OC(O)C(R)=CH (5)
(式中、Rは水素原子または炭素数1〜20の有機基を表わす、R’は炭素数2〜20の2価の有機基を表わす)
で示される化合物との反応による方法である。
一般式(5)中のRにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
一般式(5)中のR’の炭素数2〜20の2価の有機基としては、例えば炭素数2〜20のアルキレン基(エチレン基、プロピレン基、ブチレン基など)、炭素数6〜20のアルキレン基、炭素数7〜20のアルキレン基などがあげられる。
一般式(5)で示される化合物には特に限定はないが、特に好ましい化合物としては、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシエチルなどがあげられる。
前記末端に水酸基を有するビニル系重合体は、前記のとおりである。
ジイソシアネート化合物には特に限定はなく、従来公知のものをいずれも使用することができる。具体例としては、例えばトルイレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、メタキシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、水素化ジフェニルメタンジイソシアネート、水素化トルイレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートなどをあげることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。また、ブロックイソシアネートを使用しても構わない。より優れた耐候性を得る点から、ヘキサメチレンジイソシアネート、水素化ジフェニルメタンジイソシアネートなどの芳香環を有しないジイソシアネート化合物を用いるのが好ましい。
ジイソシアネート化合物の使用量は、ビニル系重合体の末端水酸基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
また、反応溶剤には特に限定はないが、非プロトン性溶剤などが好ましい。
反応温度には特に限定はないが、好ましくは0〜250℃、より好ましくは20〜200℃である。
一般式(5)で示される化合物の使用量は、残存イソシアネート基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
<(a−1)成分および(a−2)成分>
上記の製造方法により、(a)成分において、開始剤種および反応条件を制御することで、一般式(1)で表される基の1分子あたりの数を任意で制御することが可能である。
1分子あたり平均して一般式(1)で表される基を1個より多く有するビニル系重合体(a−1)は架橋性高分子[一般式(1)で表される基を2個以上有する高分子)]を有するため、用いることで強靭な組成物を得ることが可能である。
また、1分子あたり平均して一般式(1)で表される基を1個以下有するビニル系重合体(a−2)は架橋性高分子をほとんど有しないため、用いることで柔軟な組成物を得ることが可能である。
本発明の組成物においては、(a−1)成分と(a−2)成分を組み合わせて用いる事ができる。使用する比率については特に限定は無いが、高伸びを発現する観点から、(a−1):(a−2)=1:99〜90:10が好ましい、(a−1)成分が1部より少ないと、組成物を光重合により架橋することが出来ず、良好な硬化物が得られないので好ましくない。また、(a−2)が10部より少ないと硬化物が脆くなり、高伸びが得られないため好ましくない。さらには(a−1):(a−2)=5:95〜80:20がより好ましい。
<伸び率>
伸び率は25℃で700%以上有することが好ましい。700%未満の場合、樹脂の硬化収縮による外部応力の影響が偏光フィルムまたは液晶を挟むガラスに大きく伝わり、画像表示ムラが生じるため好ましくない。また、より好ましくは25℃で1000%以上、特に好ましくは25℃で1100%以上である。
伸び率は一般的な試験方法で測定することができる。例えば、JISK6251に示される引張特性試験に準じた方法が挙げられる。
<(b)成分>
(b)成分は、
一般式(6):
−OC(O)C(R)=CH (6)
(式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
で表される基を分子末端に1個以上有する化合物、である。
(6)の構造を1個以上有する化合物であれば、特に限定はないが、例えば、単官能(メタ)アクリレート類、多官能(メタ)アクリレート類などが挙げられる。単官能(メタ)アクリレートとしては、(メタ)アクリル酸、エチル(メタ)アクリレート、1−メトキシエチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート 、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ノニルフェノキシテトラエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、2−エチルヘキシルポリエチレングリコール(メタ)アクリレート、ノニルフェニルポリプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、グリシジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エピクロロヒドリン変性ブチル(メタ)アクリレート、エピクロロヒドリン変性フェノキシ(メタ)アクリレート、エチレンオキサイド変性フタル酸(メタ)アクリレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、カプロラクトン変性2−ヒドロキシエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、モルホリノ(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、トリメトキシシリル(メタ)アクリレートなどが挙げられる。
多官能アクリレートとしては、1、3−ブチレングリコールジ(メタ)アクリレート、1,4−ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレ−ト、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エピクロロヒドリン変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールSジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ジシクロペンテニルジアクリレート、エチレンオキサイド変性ジシクロペンテニルジ(メタ)アクリレート、ジ(メタ)アクリロイルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。
(b)成分としてはジシクロペンタニル(メタ)アクリレートが高伸び性の発現および紫外線硬化性の点で好ましい。
(b)成分としては、これらの化合物を単独で用いても良いし、複数を用いることも可能である。
(b)成分は(a)成分100重量部に対して、5〜100重量部用いることが好ましい。5重量部以下であると、接着性が低下するため好ましくない、また、100重量部より多く用いると硬化収縮が大きくなりすぎるため好ましくない。より好ましくは10〜70重量部であり、さらに好ましくは10〜50重量部である。
<(c)成分>
(c)成分は分子内にメルカプト基を1個以上含む化合物である。メルカプト基を1個以上含んでいれば特に限定はないが、例えばオクチルメルカプタン、ドデシルメルカプタン、1,2−エタンジチオールなどのアルキルメルカプタン類、3−メルカプトプロピルアルコールなどのメルカプトアルキルアルコール類、γ−メルカプトプロピルトリメトキシシランなどのメルカプトシラン類、β−メルカプトプロピオン酸、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、トリス−[(3−メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリス(3−メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)などのβ−メルカプトプロピオン酸誘導体類、ペンタエリスリトール テトラキス(3−メルカプトブチレート)、1,4−ビス(3−メルカプトブチルオキシ)ブタン、トリス−[(3−メルカプトブチルオキシ)エチル]イソシアヌレートなどのβ−メルカプトブタン酸誘導体類などが挙げられる。また、ポリチオール化合物を用いることも可能である。
(c)成分としては、これらの化合物を単独で用いても良いし、複数を用いることも可能である。
(c)成分は(a)成分100重量部に対して、0.1〜10重量部用いることが好ましい。0.1重量部以下であると、伸び率が大きくならないため好ましくない、また、10重量部以上用いると光重合が阻害されて架橋反応が起こらなくなるため好ましくない。より好ましくは0.2〜5重量部であり、さらに好ましくは0.5〜4重量部である。
<光重合開始剤>
本発明の光硬化性組成物には、特に限定されないが、速く硬化させたり、充分な性状の硬化物を得たりするために光重合開始剤を使用することが好ましい。
光重合開始剤としては、特に限定はないが、光重合開始剤としては、光ラジカル開始剤、光アニオン開始剤、近赤外光重合開始剤等が挙げられ、光ラジカル開始剤、光アニオン開始剤が好ましく、光ラジカル開始剤が特に好ましい。
光ラジカル開始剤としては、例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェノン、3−ブロモアセトフェノン、4−アリルアセトフェノン、p−ジアセチルベンゼン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、3−クロロキサントーン、3,9−ジクロロキサントーン、3−クロロ−8−ノニルキサントーン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4−ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2−クロロチオキサントーン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ジベンゾイル等が挙げられる。
これらのうち、α−ヒドロキシケトン化合物(例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等)、フェニルケトン誘導体(例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェノン、3−ブロモアセトフェノン、4−アリルアセトフェノン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、ビス(4−ジメチルアミノフェニル)ケトン等)が好ましい。
光アニオン開始剤としては、例えば、1,10−ジアミノデカン、4,4’−トリメチレンジピペラジン、カルバメート類及びその誘導体、コバルト−アミン錯体類、アミノオキシイミノ類、アンモニウムボレート類等が挙げられる。
近赤外光重合開始剤としては、近赤外光吸収性陽イオン染料等を使用しても構わない。近赤外光吸収性陽イオン染料としては、650〜1500nmの領域の光エネルギーで励起する、例えば特開平3−111402号公報、特開平5−194619号公報等に開示されている近赤外光吸収性陽イオン染料−ボレート陰イオン錯体等を用いるのが好ましく、ホウ素系増感剤を併用することがさらに好ましい。
これらの光重合開始剤は、単独、又は2種以上混合して用いても、他の化合物と組み合わせて用いてもよい。
他の化合物との組み合わせとしては、具体的には、ジエタノールメチルアミン、ジメチルエタノールアミン、トリエタノールアミン等のアミンとの組み合わせ、さらにこれにジフェニルヨードニウムクロリド等のヨードニウム塩を組み合わせたもの、メチレンブルー等の色素及びアミンと組み合わせたもの等が挙げられる。
なお、前記光重合開始剤を使用する場合、必要により、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、パラターシャリーブチルカテコール等の重合禁止剤類を添加することもできる。
光重合開始剤を使用する場合、その添加量は特に制限はないが、硬化性と貯蔵安定性の点から、(a)成分のビニル系重合体100重量部に対して、0.001〜10重量部が好ましい。より好ましくは0.01〜10重量部であり、さらに好ましくは0.1〜10重量部である。
<組成物の粘度>
本発明の光硬化性組成物においては、粘度が25℃において5000mPa・s以下であることが好ましい。25℃で5000mPa・sより高いと、接着剤として使用する場合塗布するのに多大な時間を要するため好ましくない。さらには、25℃で4000mPa・s以下であることが好ましく、特に25℃で3000mPa・s以下であることがより好ましい。
<硬化性組成物>
本発明の硬化性組成物においては、目的とする物性に応じて、各種の配合剤を添加しても構わない。例えば、金属石鹸、充填材、微小中空粒子、酸化防止剤、可塑剤、光安定剤、接着性付与剤、溶剤、などである。これらについて、以下に詳細を説明する。
<金属石鹸>
本発明の硬化性組成物には、金型離型性を高めるために必要に応じて金属石鹸をさらに含有させることができる。
金属石鹸としては、特に制限はないが、一般に長鎖脂肪酸と金属イオンが結合したものであり、脂肪酸に基づく無極性あるいは低極性の部分と、金属との結合部分に基づく極性の部分を一分子中に合わせて持っているものであれば、公知のものを任意に使用できる。
長鎖脂肪酸としては、例えば炭素数1〜18の飽和脂肪酸、炭素数3〜18の不飽和脂肪酸、脂肪族ジカルボン酸等が挙げられる。これらの中では、入手性の点から炭素数1〜18の飽和脂肪酸が好ましく、離型性の効果の点から炭素数6〜18の飽和脂肪酸が特に好ましい。金属イオンとしては、アルカリ金属(リチウム、ナトリウム、カリウム)、アルカリ土類金属(マグネシウム、カルシウム、バリウム)、亜鉛、鉛、コバルト、アルミニウム、マンガン、ストロンチウム等が挙げられる。
具体的に例示すれば、特開2005−232419公報段落[0155]記載の金属石鹸が挙げられる。
これらの金属石鹸の中では、入手性、安全性の点からステアリン酸金属塩類が好ましく、特に経済性の点から、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛からなる群から選択される1つ以上のものが最も好ましい。
この金属石鹸の添加量としては特に制限はないが、(a)成分および(b)成分合計100重量部に対して0.025〜5重量部の範囲で使用することが好ましく、0.05〜4重量部使用するのがより好ましい。配合量が5重量部より多いと硬化物の物性が低下する傾向があり、0.025重量部より少ないと金型離型性が得られにくい傾向がある。
<充填材>
充填材としては、特に限定されないが特開2005−232419公報段落[0158]記載の充填材が挙げられる。
これら充填材のうちでは、結晶性シリカ、溶融シリカ、ドロマイト、カーボンブラック、炭酸カルシウム、酸化チタン、タルク等が好ましい。
特に、これら充填材で強度の高い硬化物を得たい場合には、主に結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー及び活性亜鉛華等から選ばれる充填材を添加できる。なかでも、比表面積(BET吸着法による)が50m2/g以上、通常50〜400m2/g、好ましくは100〜300m2/g程度の超微粉末状のシリカが好ましい。またその表面が、オルガノシランやオルガノシラザン、ジオルガノポリシロキサン等の有機ケイ素化合物で予め疎水処理されたシリカが更に好ましい。
また、低強度で伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、タルク、酸化第二鉄、酸化亜鉛及びシラスバルーン等から選ばれる充填材を添加できる。なお、一般的に、炭酸カルシウムは、比表面積が小さいと、硬化物の破断強度、破断伸びの改善効果が充分でないことがある。比表面積の値が大きいほど、硬化物の破断強度、破断伸びの改善効果はより大きくなる。
更に、炭酸カルシウムは、表面処理剤を用いて表面処理を施してある方がより好ましい。表面処理炭酸カルシウムを用いた場合、表面処理していない炭酸カルシウムを用いた場合に比較して、本発明の硬化性組成物の作業性を改善し、該硬化性組成物の貯蔵安定性効果がより向上すると考えられる。
前記の表面処理剤としては、公知のものを使用でき、例えば、特開2005−232419公報段落[0161]記載の表面処理剤が挙げられる。
この表面処理剤の処理量は、炭酸カルシウムに対して、0.1〜20重量%の範囲で処理するのが好ましく、1〜5重量%の範囲で処理するのがより好ましい。処理量が0.1重量%未満の場合には、作業性の改善効果が充分でないことがあり、20重量%を越えると、硬化性組成物の貯蔵安定性が低下することがある。
特に限定はされないが、炭酸カルシウムを用いる場合、配合物のチクソ性や硬化物の破断強度、破断伸び等の改善効果を特に期待する場合には、膠質炭酸カルシウムを用いるのが好ましい。
一方、重質炭酸カルシウムを配合物の増量、コストダウン等を目的として添加することがある特開2005−232419公報段落[0163]記載のものを使用することができる。
上記充填材は、目的や必要に応じて単独で使用してもよく、2種以上を併用してもよい。充填材を用いる場合の添加量は、(a)成分および(b)成分合計100重量部に対して、充填材を5〜1000重量部の範囲で使用するのが好ましく、20〜500重量部の範囲で使用するのがより好ましく、40〜300重量部の範囲で使用するのが特に好ましい。配合量が5重量部未満の場合には、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがあり、1000重量部を越えると該硬化性組成物の作業性が低下することがある。
<微小中空粒子>
物性の大きな低下を起こすことなく軽量化、低コスト化を図ることを目的として、微小中空粒子をこれら補強性充填材に併用して添加することができる。
このような微小中空粒子(以下において、「バルーン」と称することがある。)には、特に限定はされないが、「機能性フィラーの最新技術」(CMC)に記載されているように、直径が1mm以下、好ましくは500μm以下、更に好ましくは200μm以下の無機質あるいは有機質の材料で構成された中空体(無機系バルーンや有機系バルーン)が挙げられる。特に、真比重が1.0g/cm3以下である微小中空体を用いることが好ましく、更には0.5g/cm3以下である微小中空体を用いることが好ましい。
前記無機系バルーン及び有機系バルーンとしては、特開2005−232419公報段落[0168]〜[0170]に記載されているバルーンを使用することができる。
上記バルーンは単独で使用しても良く、2種類以上混合して用いても良い。さらに、これらバルーンの表面を脂肪酸、脂肪酸エステル、ロジン、ロジン酸リグニン、シランカップリング剤、チタンカップリング剤、アルミカップリング剤、ポリプロピレングリコール等で、分散性及び配合物の作業性を改良するために処理したものも使用することができる。これらのバルーンは、配合物を硬化させた場合の物性のうち、柔軟性及び伸び・強度を損なうことなく、軽量化させコストダウンするために使用される。
バルーンの添加量は、特に限定されないが、(a)成分および(b)成分合計100重量部に対して、好ましくは0.1〜50重量部、更に好ましくは0.1〜30重量部の範囲で使用できる。この量が0.1重量部未満では軽量化の効果が小さく、50重量部より多いとこの配合物を硬化させた場合の機械特性のうち、引張強度の低下が認められることがある。また、バルーンの比重が0.1以上の場合は、その添加量は好ましくは3〜50重量部、更に好ましくは5〜30重量部である。
<酸化防止剤>
本発明の硬化性組成物には、各種酸化防止剤を必要に応じて用いてもよい。これらの酸化防止剤としては、p−フェニレンジアミン系酸化防止剤、アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤や、二次酸化防止剤としてリン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
酸化防止剤の添加量は、特に限定されないが、(a)成分および(b)成分合計100重量部に対して、好ましくは0.1〜10重量部、更に好ましくは1〜5重量部の範囲で使用できる。
<可塑剤>
本発明の硬化性組成物には、必要に応じて可塑剤を配合することができる。
可塑剤としては特に限定されないが、物性の調整、性状の調節等の目的により、例えば、特開2005−232419公報段落[0173]記載の可塑剤が挙げられる。これらの中では、粘度の低減効果が顕著であり、耐熱性試験時における揮散率が低いという点から、ポリエステル系可塑剤、ビニル系重合体が好ましい。また、数平均分子量500〜15000の重合体である高分子可塑剤が、添加することにより、該硬化性組成物の粘度及び該硬化性組成物を硬化して得られる硬化物の引張り強度、伸び等の機械特性が調整できるとともに、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持できるため好適である。なお、限定はされないがこの高分子可塑剤は、官能基を有しても有しなくても構わない。
上記高分子可塑剤の数平均分子量は、500〜15000と記載したが、好ましくは800〜10000であり、より好ましくは1000〜8000である。分子量が低すぎると熱にさらされたり液体に接した場合に可塑剤が経時的に流出し、初期の物性を長期にわたり維持できないことがある。また、分子量が高すぎると粘度が高くなり、作業性が低下する傾向がある。
これらの高分子可塑剤のうちで、ビニル系重合体と相溶するものが好ましい。中でも相溶性及び耐候性、耐熱老化性の点からビニル系重合体が好ましい。ビニル系重合体の中でも(メタ)アクリル系重合体が好ましく、アクリル系重合体がさらに好ましい。このアクリル系重合体の合成法は、従来からの溶液重合で得られるものや、無溶剤型アクリルポリマー等を挙げることができる。後者のアクリル系可塑剤は溶剤や連鎖移動剤を使用せず高温連続重合法(USP4414370、特開昭59−6207号公報、特公平5−58005号公報、特開平1−313522号公報、USP5010166)にて作製されるため、本発明の目的にはより好ましい。その例としては特に限定されないが、東亞合成品UPシリーズ等が挙げられる(工業材料1999年10月号参照)。勿論、他の合成法としてリビングラジカル重合法をも挙げることができる。この方法によれば、その重合体の分子量分布が狭く、低粘度化が可能なことから好ましく、更には原子移動ラジカル重合法がより好ましいが、これに限定されるものではない。
高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.8未満が好ましい。1.7以下がより好ましく、1.6以下がなお好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.3以下が最も好ましい。
上記高分子可塑剤を含む可塑剤は、単独で使用してもよく、2種以上を併用してもよいが、必ずしも必要とするものではない。また必要によっては高分子可塑剤を用い、物性に悪影響を与えない範囲で低分子可塑剤を更に併用しても良い。
なおこれら可塑剤は、重合体製造時に配合することも可能である。
可塑剤を用いる場合の使用量は、限定されないが、(a)成分および(b)成分合計100重量部に対して、好ましくは1〜100重量部、より好ましくは5〜50重量部である。1重量部未満では可塑剤としての効果が発現しにくい傾向があり、100重量部を越えると硬化物の機械強度が不足する傾向がある。
上記可塑剤以外に、本発明においては、次に述べる反応性希釈剤を用いても構わない。
反応性希釈剤として、硬化養生中に揮発し得るような低沸点の化合物を用いた場合は、硬化前後で形状変化を起こしたり、揮発物により環境にも悪影響を及ぼしたりすることから、常温での沸点が100℃以上である有機化合物が特に好ましい。
反応性希釈剤の具体例としては、1−オクテン、4−ビニルシクロヘキセン、酢酸アリル、1,1−ジアセトキシ−2−プロペン、1−ウンデセン酸メチル、8−アセトキシ−1,6−オクタジエン等が挙げられるが、これらに限定されるものではない。
反応性希釈剤の添加量は、(a)成分および(b)成分合計100重量部に対し、好ましくは0.1〜100重量部、より好ましくは0.5〜70重量部、さらに好ましくは1〜50重量部である。
<光安定剤>
本発明の硬化性組成物には、必要に応じて光安定剤を添加しても良い。光安定剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。
特に限定はされないが、光安定剤の中でも、紫外線吸収剤が好ましく、具体的には、例えば、チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上いずれもBASF製)等のようなベンゾトリアゾール系化合物やチヌビン1577等のようなトリアジン系、CHIMASSORB81等のようなベンゾフェノン系、チヌビン120(BASF製)等のようなベンゾエート系化合物等が例示できる。
また、ヒンダードアミン系化合物も好ましく、そのような化合物の具体的には2006−274084号公報記載のものが挙げられるが、これらに限定されるものではない。更には紫外線吸収剤とヒンダードアミン系化合物の組合せはより効果を発揮することがあるため、特に限定はされないが併用しても良く、併用することが好ましいことがある。
光安定剤は前述した酸化防止剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。予め光安定剤と酸化防止剤を混合してあるチヌビンC353、チヌビンB75(以上いずれもBASF製)などを使用しても良い。
光安定剤の使用量は、(a)成分および(b)成分合計100重量部に対して0.1〜10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、10重量部超では効果に大差がなく経済的に不利である。
<接着性付与剤>
本発明の硬化性組成物にさらに基材接着性を向上させる目的で接着性付与剤を添加することができる、接着性付与剤としては、架橋性シリル基含有化合物、極性基を有するビニル系単量体が好ましく、更にはシランカップリング剤、酸性含有ビニル系単量体が好ましい。
これらを具体的に例示すると、特開2005−232419公報段落[0184]記載の接着性付与剤が挙げられる。
分子中にエポキシ基、イソシアネート基、イソシアヌレート基、カルバメート基、アミノ基、メルカプト基、カルボキシル基、ハロゲン基、(メタ)アクリル基等の、炭素原子及び水素原子以外の原子を有する有機基と、架橋性シリル基を併せ持つシランカップリング剤を用いることができる。
これらを具体的に例示すると、特開2005−232419公報段落[0185]記載の炭素原子及び水素原子以外の原子を有する有機基と、架橋性シリル基を併せ持つシランカップリング剤が挙げられる。
これらの中でも、硬化性及び接着性の点から、分子中にエポキシ基あるいは(メタ)アクリル基を有するアルコキシシラン類がより好ましい。極性基を有するビニル系単量体としては、カルボキシル基含有単量体としては(メタ)アクリル酸、アクリロキシプロピオン酸、シトラコン酸、フマル酸、イタコン酸、クロトン酸、マレイン酸またはそのエステル類、無水マレイン酸およびその誘導体等が挙げられる。上記、ガルボキシル基含有単量体のエステル類としては2−(メタ)アクリロイルキシエチルコハク酸、2−(メタ)アクリロイルキシエチルヘキサヒドロフタル酸等が挙げられる。また、スルホン酸基含有単量体としては、ビニルスルホン酸、(メタ)アクリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、ビニルベンゼンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン類又はその塩類を挙げることができる。更に、リン酸基含有単量体としては、2−((メタ)アクリロイルシエチルホスフェート)、2−(メタ)アクリロイルオキシプロピルホスフェート、2−(メタ)アクリロイルオキシ−3−クロロプロピルフォスフェート、2−(メタ)アクリロイルオキシエチルフェニルフォスフェート等が挙げられる。中でもリン酸基含有単量体が好ましい。
また、該単量体は2個以上の重合性基を有してしても構わない。
添加量としては、ビニル系重合体(a)成分および(b)成分合計100重量部に対して、0.1〜100重量%である。機械強度、相溶性、揺変性のバランスの点で0.5〜70重量%が好ましく、1〜50重量%がより好ましい。

これらは、単独で用いてもよく、また2種以上を併用してもよい。
シランカップリング剤、極性基含有ビニル系単量体以外の接着性付与剤の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、変性フェノール樹脂、シクロペンタジエン−フェノール樹脂、キシレン樹脂、クマロン樹脂、石油樹脂、テルペン樹脂、テルペンフェノール樹脂、ロジンエステル樹脂硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。
また、接着性を更に向上させるために、架橋性シリル基縮合触媒を上記接着性付与剤とともに併用することができる。架橋性シリル基縮合触媒としては、例えば、特開2005−232419公報段落[0187]記載されているものが挙げられる。
上記接着性付与剤は、(a)成分および(B)成分合計100重量部に対して、0.01〜20重量部配合するのが好ましい。0.01重量部未満では接着性の改善効果が小さく、20重量部を越えると硬化物物性が低下し易い傾向がある。好ましくは0.1〜10重量部であり、更に好ましくは0.5〜5重量部である。
上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。
<溶剤>
本発明の硬化性組成物には、必要に応じて溶剤を配合することができる。
配合できる溶剤としては、例えばトルエン、キシレン等の芳香族炭化水素系溶剤;酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤等が挙げられる。これらの溶剤は重合体の製造時に用いてもよい。
<その他の添加剤>
本発明の硬化性組成物には、硬化性組成物又はその硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、難燃剤、老化防止剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。
このような添加物の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号の各明細書などに記載されている。
<用途>
本発明の光硬化性組成物は、光硬化性の接着剤として使用することができる。用途は特に限定されないが、例えば液晶ディスプレイ(LCD)・有機エレクトロルミネッセンス(EL)ディスプレイ・プラズマディスプレイ・電子ペーパーなどといった画像表示パネルモジュール用部品の接着、または画像表示パネルモジュールとそれを保護するためのカバーボードとの接着、抵抗膜式タッチパネル用電極基板または静電容量式タッチパネル用電極基板とそれを保護するためのカバーボードとの接着、CD・DVD・ブルーレイディスクなどといった光学ディスクの記録再生装置用部品およびその周辺材料の接着、マイクロスピーカー装置用部品およびその周辺材料の接着などに好ましく用いることができる。特に、LCD・有機EL・プラズマディスプレイ・電子ペーパーなどの画像表示パネルモジュールとそれを保護するためのカバーボードとの接着、抵抗膜式タッチパネル用電極基板または静電容量式タッチパネル用電極基板とそれを保護するためのカバーボードとの接着に好ましく用いることができる。
カバーボードの素材に特に制限はないが、ある程度の加工性、強度を有し、かつ画像を鮮明に認識する観点から無色透明である素材であることが好ましい。例えば、ガラス、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)などが挙げられる。これらの中でも、特にガラス、PMMAが透明性の観点から好ましい。
本発明の硬化性組成物をパネルモジュールとカバーボード、またはタッチパネル用電極基板とカバーボードの間の充填用接着剤として用いる場合の塗布方法は特に限定されず、一般に使用されている各種の塗布方法を用いることができる。例えば、ディスペンサーを用いる方法、コーターを用いる方法、スプレーを用いる方法等があるが、塗布後時のタレ防止性、透明カバーボード(フィルム)との貼り合せ時の混入防止の点でディスペンサーによるものが好ましい。
<画像表示装置>
本発明の硬化性組成物を画像表示パネルモジュールとカバーボードの間の充填用接着剤、およびタッチパネル用電極基板とカバーボードの間の充填用接着剤として用いて製造される画像表示装置の用途に制限はないが、例えば、テレビ、カーナビゲーションシステム、 PDA、携帯電話、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、電子広告板(デジタルサイネージ)、携帯ゲーム機、音楽再生装置、パソコン、電子書籍(電子ペーパー)用端末装置などのディスプレイ部分に使用することができる。
以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明は、下記実施例に限定されるものではない。
また、下記実施例中、「数平均分子量」及び「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804およびK-802.5;昭和電工(株)製)、GPC溶媒としてクロロホルムを用いた。
下記実施例中、「平均末端(メタ)アクリロイル基数」は、「重合体1分子当たりに導入された(メタ)アクリロイル基数」であり、H−NMR分析及びGPCにより求められた数平均分子量より算出した。
(ただし、H−NMRはBruker社製ASX−400を使用し、溶媒として重クロロホルムを用いて23℃にて測定した。)
なお、下記実施例及び比較例中の「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。
(製造例1、2)
各原料の使用量を表1に示す。
(1)重合工程
アクリル酸エステル(予め混合されたアクリル酸エステル)を脱酸素した。攪拌機付ステンレス製反応容器の内部を脱酸素し、臭化第一銅、全アクリル酸エステルの一部(表1では初期仕込みモノマーとして記載)を仕込み、加熱攪拌した。アセトニトリル(表1では重合用アセトニトリルと記載)、開始剤としてジエチル2,5−ジブロモアジペート(DBAE)または2−ブロモブチル酸エチルを添加、混合し、混合液の温度を約80℃に調節した段階でペンタメチルジエチレントリアミン(以下、トリアミンと略す)を添加し、重合反応を開始した。残りのアクリル酸エステル(表1では追加モノマーとして記載)を逐次添加し、重合反応を進めた。重合途中、適宜トリアミンを追加し、重合速度を調整した。重合時に使用したトリアミンの総量を重合用トリアミンとして表1に示す。重合が進行すると重合熱により内温が上昇するので内温を約80℃〜約90℃に調整しながら重合を進行させた。
(2)酸素処理工程
モノマー転化率(重合反応率)が約95%以上の時点で反応容器気相部に酸素‐窒素混合ガスを導入した。内温を約80℃〜約90℃に保ちながらしながら反応液を数時間加熱攪拌して反応液中の重合触媒と酸素を接触させた。アセトニトリル及び未反応のモノマーを減圧脱揮して除去し、重合体を含有する濃縮物を得た。濃縮物は著しく着色していた。
(3)第一粗精製
酢酸ブチルを重合体の希釈溶媒として使用した。重合体100kgに対して100〜150kg程度の酢酸ブチルで(2)の濃縮物を希釈し、ろ過助剤(ラジオライトR900、昭和化学工業製)および/または吸着剤(キョーワード700SEN、キョーワード500SH)を添加した。反応容器気相部に酸素‐窒素混合ガスを導入した後、約80℃で数時間加熱攪拌した。不溶な触媒成分をろ過除去した。ろ液は重合触媒残渣によって着色および若干の濁りを有していた。
(4)第二粗精製
ろ液を攪拌機付ステンレス製反応容器に仕込み、吸着剤(キョーワード700SEN、キョーワード500SH)を添加した。気相部に酸素−窒素混合ガスを導入して約100℃で数時間加熱攪拌した後、吸着剤等の不溶成分をろ過除去した。ろ液はほとんど無色透明な清澄液であった。ろ液を濃縮し、ほぼ無色透明の重合体を得た。
(5)(メタ)アクリロイル基導入工程
重合体100kgをN,N−ジメチルアセトアミド(DMAc)約100kgに溶解し、アクリル酸カリウム(末端Br基に対して約2モル当量)、熱安定剤(H−TEMPO:4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−n−オキシル)、吸着剤(キョーワード700SEN)、を添加し、約70℃で数時間加熱攪拌した。DMACを減圧留去し、重合体濃縮物を重合体100kgに対して約100kgのトルエンで希釈し、ろ過助剤を添加して固形分をろ別し、ろ液を濃縮し、末端にアクリロイル基を有する重合体[P1]、[P2]を得た。得られた重合体の1分子あたりに導入されたアクリロイル基数、数平均分子量、分子量分布を併せて表1に示す。
Figure 2012041499
(実施例1)
(a)成分として製造例1、2で得られた重合体[P1]を50部、[P2]を50部、(b)成分として、ジシクロペンタニルメタクリレート(商品名;FA−513M、日立化成製)を50部、(c)成分としてn−ドデシルメルカプタン(NDM 和光純薬製)3部、2ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名;DAROCUR1173、BASF製)1部を加え、2Lのプラネタリーミキサー(井上製作所製)で2時間混練して、光硬化性組成物を得た。得られた組成物の粘度をBL型粘度計(東機産業製)を用いて測定した。
次に、得られた組成物をUV照射装置(FUSION製Light Hammer6)にて6000mJ/cmの積算光量の紫外線を照射し、硬化させた。得られた硬化物の硬度、および伸びを以下の条件で測定した。
(硬度)
A型硬度計(高分子計器製)を用いて、JISK6253の方法に準拠して測定した。
(伸び)
STEREOGRAPH W2(島津製作所製)を用いて、JISK6251の方法に準拠して測定した。
(実施例2〜3、比較例1〜4)
表2に示す配合比で、実施例1同様の方法で光硬化性組成物を得た。
なお使用した原料は以下の通りである。
TEA−1000:ポリブタジエンアクリレート、日本曹達製
EBECRYL8402:ウレタンアクリレート、ダイセル・サイテック製
IBXA:イソボロニルアクリレート、大阪有機化学製
A−189:3−メルカプトプロピルトリメトキシシラン、モメンティブ製
PEMP:ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、堺化学製
Figure 2012041499

Claims (8)

  1. (a)一般式(1):
    −OC(O)C(R)=CH (1)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
    で表わされる基を有するビニル系重合体、
    (b)一般式(2):
    −OC(O)C(R)=CH (2)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
    で表される基を分子末端に1個以上有する(a)成分以外の化合物、および
    (c)分子内にメルカプト基を1個以上有する化合物、
    を必須成分とする光硬化性組成物。
  2. (a)成分が
    一般式(1):
    −OC(O)C(R)=CH (1)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
    で表わされる基を1分子あたり平均して1個より多く有するビニル系重合体(a−1)と、
    一般式(1):
    −OC(O)C(R)=CH (1)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表わす)
    で表わされる基を1分子あたり平均して1個以下有するビニル系重合体(a−2)の両方を含むことを特徴とする請求項1に記載の光硬化性組成物。
  3. (a)成分が(メタ)アクリル系重合体であり、かつ重合体の分子量分布が1.8未満である、請求項1〜2のいずれかに記載の光硬化性組成物。
  4. (b)成分として、ジシクロペンタニル(メタ)アクリレートを用いた、請求項1〜3のいずれかに記載の光硬化性組成物。
  5. 25℃における組成物の粘度が5000mPa・s以下である、請求項1〜4のいずれかに記載の光硬化性組成物。
  6. 請求項1〜5のいずれかに記載の光硬化性組成物を用いた接着剤。
  7. 請求項1〜5のいずれかに記載の光硬化性組成物を、画像表示モジュールパネルとカバーボードの接着に用い、製造される画像表示装置。
  8. 請求項1〜5のいずれかに記載の光硬化性組成物を、タッチパネル用電極基板とカバーボードの接着に用い、製造される画像表示装置。
JP2010186142A 2010-08-23 2010-08-23 光硬化性組成物およびそれを用いた画像表示装置。 Pending JP2012041499A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186142A JP2012041499A (ja) 2010-08-23 2010-08-23 光硬化性組成物およびそれを用いた画像表示装置。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186142A JP2012041499A (ja) 2010-08-23 2010-08-23 光硬化性組成物およびそれを用いた画像表示装置。

Publications (1)

Publication Number Publication Date
JP2012041499A true JP2012041499A (ja) 2012-03-01

Family

ID=45898160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186142A Pending JP2012041499A (ja) 2010-08-23 2010-08-23 光硬化性組成物およびそれを用いた画像表示装置。

Country Status (1)

Country Link
JP (1) JP2012041499A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216825A (ja) * 2012-04-11 2013-10-24 Kaneka Corp 光硬化性組成物
WO2014061267A1 (ja) * 2012-10-16 2014-04-24 株式会社ブリヂストン 光硬化性エラストマー組成物、シール材、及び装置
JPWO2012081708A1 (ja) * 2010-12-16 2014-05-22 日立化成株式会社 光硬化性樹脂組成物、画像表示用装置、その製造方法
JP2014534986A (ja) * 2011-09-28 2014-12-25 スリーエム イノベイティブ プロパティズ カンパニー 液体でありかつ光学的に透明である接着剤を剛性基材上にコーティングする方法
JP2017044969A (ja) * 2015-08-28 2017-03-02 積水化学工業株式会社 表示素子用封止剤
JP2018178078A (ja) * 2017-04-14 2018-11-15 協立化学産業株式会社 光硬化型接着剤組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012081708A1 (ja) * 2010-12-16 2014-05-22 日立化成株式会社 光硬化性樹脂組成物、画像表示用装置、その製造方法
JP2014534986A (ja) * 2011-09-28 2014-12-25 スリーエム イノベイティブ プロパティズ カンパニー 液体でありかつ光学的に透明である接着剤を剛性基材上にコーティングする方法
JP2013216825A (ja) * 2012-04-11 2013-10-24 Kaneka Corp 光硬化性組成物
WO2014061267A1 (ja) * 2012-10-16 2014-04-24 株式会社ブリヂストン 光硬化性エラストマー組成物、シール材、及び装置
JP2017044969A (ja) * 2015-08-28 2017-03-02 積水化学工業株式会社 表示素子用封止剤
JP2018178078A (ja) * 2017-04-14 2018-11-15 協立化学産業株式会社 光硬化型接着剤組成物
JP2022066273A (ja) * 2017-04-14 2022-04-28 協立化学産業株式会社 光硬化型接着剤組成物
JP7075109B2 (ja) 2017-04-14 2022-05-25 協立化学産業株式会社 光硬化型接着剤組成物

Similar Documents

Publication Publication Date Title
JP3990110B2 (ja) 枝分かれした重合体の製造方法及び重合体
JP5002261B2 (ja) 光ラジカル硬化/光カチオン硬化併用硬化性組成物
JP5676256B2 (ja) 難接着基材用接着剤組成物とそれを用いた接着剤および光学ディスク装置
JP4176900B2 (ja) 硬化性組成物
JPWO2006112420A1 (ja) 硬化性組成物、該組成物を含有する粘着剤用組成物および粘着剤
JP4842887B2 (ja) 枝分かれした重合体の製造方法及び重合体
JPWO2005087890A1 (ja) 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
JP2006278476A (ja) 放熱シート用組成物及びそれを硬化させてなる放熱シート
JP2012041499A (ja) 光硬化性組成物およびそれを用いた画像表示装置。
JP2000095826A (ja) 硬化性組成物
JP2007077182A (ja) 活性エネルギー硬化型組成物およびそれを硬化させて得られる硬化物
JP5243797B2 (ja) 光ラジカル硬化/光カチオン硬化併用硬化性組成物
JP4865246B2 (ja) 熱ラジカル硬化/熱カチオン硬化併用硬化性組成物
JPWO2005030866A1 (ja) 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
JP2014202916A (ja) 画像表示装置、およびそれを搭載した電気、電子機器
JP5512923B2 (ja) ノイズ抑制シート用組成物及びそれを硬化させてなるノイズ抑制シート
JP4786921B2 (ja) 現場成形ガスケット用組成物および現場成形ガスケット
JP2006299257A (ja) 接着剤組成物
JP6076008B2 (ja) 暗部の活性エネルギー線硬化性組成物を硬化させる方法
JP2005105065A (ja) アクリル系粘着剤
JP5996918B2 (ja) 二液型光硬化性組成物
JP2013194126A (ja) 活性エネルギー線硬化性組成物および硬化物、ならびにこれらを用いた画像表示装置
JP2006274085A (ja) 液状硬化性組成物および硬化物
JP2014047291A (ja) 暗部硬化性が改善されたfpd貼合せ用光硬化性組成物
JP2012184323A (ja) 硬化性組成物およびそれを用いた画像表示装置