JP2012039016A - Manufacturing method of porous silicon optical element - Google Patents

Manufacturing method of porous silicon optical element Download PDF

Info

Publication number
JP2012039016A
JP2012039016A JP2010179887A JP2010179887A JP2012039016A JP 2012039016 A JP2012039016 A JP 2012039016A JP 2010179887 A JP2010179887 A JP 2010179887A JP 2010179887 A JP2010179887 A JP 2010179887A JP 2012039016 A JP2012039016 A JP 2012039016A
Authority
JP
Japan
Prior art keywords
porous silicon
layer
silicon substrate
single crystal
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179887A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
吉田  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2010179887A priority Critical patent/JP2012039016A/en
Publication of JP2012039016A publication Critical patent/JP2012039016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming micropores with high controllability in a porous silicon layer formed by an anode oxidation method that can increase the luminous efficiency and narrow the band of the emission wavelength.SOLUTION: A manufacturing method of a semiconductor optical element including a single-crystal silicon substrate 101, a porous silicon layer 102 embedded in its surface and used as a light emission layer or a light reception layer, a transparent electrode 103 connected to the porous silicon layer, and an ohmic electrode 104 provided for a rear surface of the single-crystal silicon substrate comprises performing anode oxidation on the surface of the single-crystal silicon substrate while applying ultrasonic vibration, so that the porous silicon layer serving as the light emission layer or the light reception layer is formed.

Description

本発明は多孔質シリコン光素子の製造方法に関し、特に陽極酸化法によって形成した多孔質シリコン層を発光層あるいは受光層とする多孔質シリコン光素子の製造方法に関する。   The present invention relates to a method for manufacturing a porous silicon optical device, and more particularly to a method for manufacturing a porous silicon optical device using a porous silicon layer formed by an anodic oxidation method as a light emitting layer or a light receiving layer.

シリコン単結晶は、ボーア(Bohr)半径程度まで微小化すると、不確定性原理によりエネルギーは増大し、また微小化されたシリコン結晶の電子あるいは正孔は、波数選択則緩和によって非局在化し、直接遷移で再結合が可能となる。これは量子サイズ効果といわれ、間接遷移型半導体であるシリコンが、直接遷移して可視光を放射する現象として知られている。   When the silicon single crystal is miniaturized to the Bohr radius, the energy increases due to the uncertainty principle, and the electrons or holes of the miniaturized silicon crystal are delocalized by wave number selection relaxation, Recombination is possible by direct transition. This is known as a quantum size effect, and is known as a phenomenon in which silicon, which is an indirect transition semiconductor, directly transitions and emits visible light.

具体的には、陽極酸化法により、シリコン単結晶の基板表面に、例えば2〜50nm径の微小孔を形成した多孔質シリコンを形成することで、受光素子あるいは発光素子を形成する技術が、特許文献1に開示されている。   Specifically, a technology for forming a light-receiving element or a light-emitting element by forming porous silicon having, for example, micropores with a diameter of 2 to 50 nm on the surface of a silicon single crystal substrate by an anodic oxidation method is disclosed in Japanese Patent It is disclosed in Document 1.

図6に、この種の多孔質シリコン光素子の模式図を示す。図6に示す多孔質シリコン光素子は、単結晶シリコン基板101の表面の一部を陽極酸化することによって、微小孔を形成した多孔質シリコン層102を形成した後、多孔質シリコン層102上に、多孔質シリコン層102から放射される光を透過する透明電極103が形成され、単結晶シリコン基板101の裏面には、オーミック性電極104が形成されている。単結晶シリコン基板101の表面は、透明電極103との絶縁のため、シリコン酸化膜またはシリコン窒化膜からなる絶縁膜105で被覆されている。   FIG. 6 shows a schematic diagram of this type of porous silicon optical device. The porous silicon optical element shown in FIG. 6 is formed on the porous silicon layer 102 after forming a porous silicon layer 102 having micropores by anodizing a part of the surface of the single crystal silicon substrate 101. A transparent electrode 103 that transmits light emitted from the porous silicon layer 102 is formed, and an ohmic electrode 104 is formed on the back surface of the single crystal silicon substrate 101. The surface of the single crystal silicon substrate 101 is covered with an insulating film 105 made of a silicon oxide film or a silicon nitride film for insulation from the transparent electrode 103.

発光層あるいは受光層を形成する多孔質シリコン層102は、単結晶シリコン基板101の表面をフッ化水素酸水溶液中で電気化学的にエッチングする陽極酸化法で形成すると、微小孔を容易に形成することができる。   The porous silicon layer 102 for forming the light emitting layer or the light receiving layer easily forms micropores when formed by an anodic oxidation method in which the surface of the single crystal silicon substrate 101 is electrochemically etched in a hydrofluoric acid aqueous solution. be able to.

図7に、多孔質シリコン層を形成するための従来の陽極酸化法の説明図を示す。単結晶シリコン基板101の裏面にオーミック性電極104を形成し、多孔質シリコン層の形成予定領域の単結晶シリコン基板101表面の一部が露出するように耐フッ化水素酸樹脂13で被覆した後、フッ化水素酸水溶液14を入れた耐フッ化水素酸容器15内に投入する。フッ化水素酸水溶液14はフッ化水素酸とエチルアルコールを適量混合した混合水溶液を用いる。そして、定電流源16の陽極をオーミック性電極104に接続し、陰極を対向電極となるプラチナ陰電極17に接続する。陽極酸化の諸条件を監視するため、電圧計18と電流計19も接続される。   FIG. 7 shows an explanatory diagram of a conventional anodic oxidation method for forming a porous silicon layer. After the ohmic electrode 104 is formed on the back surface of the single crystal silicon substrate 101 and covered with the hydrofluoric acid resin 13 so that a part of the surface of the single crystal silicon substrate 101 in the region where the porous silicon layer is to be formed is exposed. Then, the hydrofluoric acid aqueous solution 14 is put into the hydrofluoric acid resistant container 15. The hydrofluoric acid aqueous solution 14 is a mixed aqueous solution in which an appropriate amount of hydrofluoric acid and ethyl alcohol are mixed. Then, the anode of the constant current source 16 is connected to the ohmic electrode 104, and the cathode is connected to the platinum negative electrode 17 serving as a counter electrode. A voltmeter 18 and an ammeter 19 are also connected to monitor anodizing conditions.

このように配置した状態で、定電流源16から所定の条件で電流を供給すると、多孔質シリコン層102を形成することができる。   When a current is supplied from the constant current source 16 under a predetermined condition in such a state, the porous silicon layer 102 can be formed.

特許第3306077号公報Japanese Patent No. 3306077

一般的に、シリコン微結晶の発光波長と発光エネルギーは、結晶径の二乗に反比例して大きくなることが知られている。つまり、結晶粒径が均一で小さくなる程、均一で、高効率の発光を得ることができる。そのため、陽極酸化法によって形成した多孔質シリコン層を発光層あるいは受光層とする場合、陽極酸化法によって形成される微小孔をナノメータ水準で制御する必要がある。しかしながら、従来提案されている陽極酸化法では、フッ化水素酸溶液の濃度、印加する電流密度、陽極酸化時間等の種々の条件を最適化するだけでは、微小孔をナノメータ水準で制御することができず、その結果、シリコン微結晶の粒径が不均一となり、所望の発光波長や発光強度を得ることが困難で、実用化を図る上では、限界があった。   In general, it is known that the emission wavelength and emission energy of silicon microcrystals increase in inverse proportion to the square of the crystal diameter. That is, as the crystal grain size becomes uniform and small, uniform and highly efficient light emission can be obtained. Therefore, when the porous silicon layer formed by the anodic oxidation method is used as the light emitting layer or the light receiving layer, it is necessary to control the micropores formed by the anodic oxidation method at the nanometer level. However, in the conventionally proposed anodic oxidation method, the micropores can be controlled at the nanometer level only by optimizing various conditions such as the concentration of the hydrofluoric acid solution, the applied current density, and the anodic oxidation time. As a result, the grain size of the silicon microcrystal becomes non-uniform, and it is difficult to obtain a desired emission wavelength and emission intensity, and there is a limit in achieving practical use.

本発明は上記問題点を解決し、発光効率、発光波長の狭帯域化を図ることができる多孔質シリコン層を形成するため、陽極酸化法で多孔質シリコン層を形成する際、制御性良く微小孔を形成する方法を提供することを目的とする。   The present invention solves the above-mentioned problems and forms a porous silicon layer capable of narrowing the luminous efficiency and emission wavelength, so that when the porous silicon layer is formed by an anodic oxidation method, it is fine with good controllability. An object is to provide a method of forming a hole.

上記目的を達成するため、本願発明は、単結晶シリコン基板と、該単結晶シリコン基板表面に埋設された多孔質シリコン層と、該多孔質シリコン層に接続するように設けられた透明電極と、前記単結晶シリコン基板の裏面に設けられたオーミック性電極とを有し、前記透明電極及び前記オーミック性電極間に電圧印加することによって、前記多孔質シリコン層を発光層あるいは受光層とする半導体光素子の製造方法において、単結晶シリコン基板の表面の一部を露出させ、フッ化水素酸水溶液中で陽極酸化する際、超音波振動を印加しながら、前記露出する単結晶シリコン基板表面を陽極酸化し、発光層あるいは受光層となる前記多孔質シリコン層を形成する工程と、前記多孔質シリコン層表面に接続する透明電極を形成する工程と、前記単結晶シリコン基板の裏面に前記オーミック性電極を形成する工程とを含むことを特徴とする。   In order to achieve the above object, the present invention provides a single crystal silicon substrate, a porous silicon layer embedded on the surface of the single crystal silicon substrate, a transparent electrode provided to connect to the porous silicon layer, A semiconductor light having an ohmic electrode provided on a back surface of the single crystal silicon substrate, and applying the voltage between the transparent electrode and the ohmic electrode to make the porous silicon layer a light emitting layer or a light receiving layer. In the element manufacturing method, when exposing a part of the surface of the single crystal silicon substrate and anodizing it in an aqueous hydrofluoric acid solution, the exposed single crystal silicon substrate surface is anodized while applying ultrasonic vibration. A step of forming the porous silicon layer to be a light emitting layer or a light receiving layer, a step of forming a transparent electrode connected to the surface of the porous silicon layer, Characterized by comprising a step of forming the ohmic electrode on the back surface of the crystalline silicon substrate.

本発明の多孔質シリコン光素子の製造方法によれば、陽極酸化処理過程でシリコン基板に対して超音波振動を印加することで、多孔質シリコンの微結晶粒径のばらつきが小さくなり、シリコン光素子の発光効率、発光波長の狭帯域化を実現することができる。   According to the method for manufacturing a porous silicon optical device of the present invention, by applying ultrasonic vibration to the silicon substrate in the anodizing process, the variation in the microcrystalline particle size of the porous silicon is reduced, and the silicon light It is possible to narrow the band of the light emission efficiency and light emission wavelength of the element.

本発明の陽極酸化法の説明図である。It is explanatory drawing of the anodic oxidation method of this invention. 本発明により形成した多孔質シリコン光素子のフォトルミネッセンススペクトルを説明する図である。It is a figure explaining the photo-luminescence spectrum of the porous silicon optical element formed by this invention. 本発明により形成した多孔質シリコン光素子のフォトルミネッセンス強度の超音波発振出力依存性を説明する図である。It is a figure explaining the ultrasonic oscillation output dependence of the photoluminescence intensity | strength of the porous silicon optical element formed by this invention. 本発明により形成した多孔質シリコン光素子のフォトルミネッセンス強度の超音波発振周波数依存性を説明する図である。It is a figure explaining the ultrasonic oscillation frequency dependence of the photoluminescence intensity | strength of the porous silicon optical element formed by this invention. 本発明の多孔質シリコン光素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the porous silicon optical element of this invention. 一般的な多孔質シリコン光素子を説明する図である。It is a figure explaining a general porous silicon optical element. 従来の陽極酸化法を説明する図である。It is a figure explaining the conventional anodic oxidation method.

本発明の多孔質シリコン光素子の製造方法は、超音波振動を印加しながら陽極酸化を行うことで、均一な微小孔を形成し、その結果、シリコン微結晶粒径のばらつきが小さい多孔質シリコン層を形成することを大きな特徴としている。以下、本発明の実施例について詳細に説明する。   The method for producing a porous silicon optical device of the present invention is to form uniform micropores by performing anodization while applying ultrasonic vibration, and as a result, porous silicon having a small variation in silicon crystallite grain size. A major feature is the formation of a layer. Examples of the present invention will be described in detail below.

以下、本発明の多孔質シリコン光素子の製造方法について説明する。まず、面方位(100)、比抵抗が2〜4Ωcmのp型単結晶シリコン基板101を用意する。次に単結晶シリコン基板101の裏面に、真空蒸着法等でアルミニウムからなるオーミック性電極104を形成する。このオーミック性電極104は、後述する透明電極との間で、電圧を印加することによって多孔質シリコン光素子を形成するとともに、陽極酸化を行う際、電源の陽極に接続して一方の電極を構成する。その後、多孔質シリコン層の形成予定領域を開口するように、単結晶シリコン基板101表面の一部を露出するように耐フッ化水素酸樹脂13で被覆する。   Hereinafter, the manufacturing method of the porous silicon optical device of the present invention will be described. First, a p-type single crystal silicon substrate 101 having a plane orientation (100) and a specific resistance of 2 to 4 Ωcm is prepared. Next, an ohmic electrode 104 made of aluminum is formed on the back surface of the single crystal silicon substrate 101 by vacuum deposition or the like. The ohmic electrode 104 forms a porous silicon optical element by applying a voltage to a transparent electrode, which will be described later, and is connected to the anode of the power source when anodizing is performed to constitute one electrode To do. Then, the hydrofluoric acid resin 13 is covered so that a part of the surface of the single crystal silicon substrate 101 is exposed so as to open a region where the porous silicon layer is to be formed.

一方、50wt%のフッ化水素酸とエチルアルコールを混合比1:1で混合して、陽極酸化のためのフッ化水素酸水溶液15を用意する。   On the other hand, 50 wt% hydrofluoric acid and ethyl alcohol are mixed at a mixing ratio of 1: 1 to prepare a hydrofluoric acid aqueous solution 15 for anodic oxidation.

定電流源16の陽極をオーミック性電極104に接続し、陰極を対向電極となるプラチナの陰電極17に接続する。また陽極酸化の諸条件を監視するために、電圧計18と電流計19を接続する。本発明では、陽極酸化を行う際、超音波を印加することができるように、耐フッ化水素酸性容器15を超音波発生機11が配置された純水12中に浸漬させる構成となっている。   The anode of the constant current source 16 is connected to the ohmic electrode 104, and the cathode is connected to the platinum negative electrode 17 serving as a counter electrode. In addition, a voltmeter 18 and an ammeter 19 are connected to monitor various conditions of anodization. In the present invention, the hydrogen fluoride acid resistant container 15 is immersed in the pure water 12 in which the ultrasonic generator 11 is arranged so that ultrasonic waves can be applied when anodizing. .

その後、超音波を印加しながら、陽極酸化を行う。一例として、超音波発生機11から発振周波数45kHz、発振出力100Wの超音波振動を印加しながら、定電流源16により電流密度50mA/cm2の定電流を供給し、120秒間陽極酸化して多孔質シリコン層102を形成する。 Thereafter, anodization is performed while applying ultrasonic waves. As an example, while applying ultrasonic vibration with an oscillation frequency of 45 kHz and an oscillation output of 100 W from the ultrasonic generator 11, a constant current with a current density of 50 mA / cm 2 is supplied from the constant current source 16, and anodized for 120 seconds to be porous. A quality silicon layer 102 is formed.

陽極酸化法は、従来方法同様、単結晶シリコン基板101から正孔が供給されることによって、微小孔の先端部のみで局部的、自律的にシリコンの溶出反応が進行する。また微小孔は、陽極となる単結晶シリコン基板101と陰極のプラチナ陰電極17間に印加した電界とは逆方向に優先的に進行する。   In the anodic oxidation method, as in the conventional method, by supplying holes from the single crystal silicon substrate 101, the elution reaction of silicon proceeds locally and autonomously only at the tips of the micropores. The micropores preferentially advance in the direction opposite to the electric field applied between the single crystal silicon substrate 101 serving as the anode and the platinum negative electrode 17 serving as the cathode.

ここで本発明では、超音波振動を印加しながら陽極酸化を行うことで、陽極と陰極が、規則的に振動し、それに伴い電界の印加方向も振動する。その結果、溶出反応の進行方向、即ち、微小孔の形成方向が規則的に変化し、粒径ばらつきの少ない多孔質シリコンが形成できる。具体的には、粒径が数nmのシリコン微結晶が規則的に堆積した多孔質シリコン層102を形成することができる。   Here, in the present invention, by performing anodic oxidation while applying ultrasonic vibration, the anode and the cathode vibrate regularly, and accordingly, the application direction of the electric field also vibrates. As a result, the advancing direction of the elution reaction, that is, the formation direction of the micropores is regularly changed, so that porous silicon with little particle size variation can be formed. Specifically, the porous silicon layer 102 in which silicon microcrystals having a particle size of several nm are regularly deposited can be formed.

次に、以上の方法により形成した多結晶シリコン層12を用いて、多孔質シリコン光素子を形成する方法について説明する。   Next, a method for forming a porous silicon optical element using the polycrystalline silicon layer 12 formed by the above method will be described.

まず、前述の方法によって、単結晶シリコン基板101の表面に、多孔質シリコン層102を形成し、耐フッ化水素酸樹脂13を除去する(図2a)。   First, the porous silicon layer 102 is formed on the surface of the single crystal silicon substrate 101 by the above-described method, and the hydrofluoric acid resistant resin 13 is removed (FIG. 2a).

単結晶シリコン基板101の表面全面に、透明電極103との絶縁のため、スパッタ装置を用いてシリコン酸化膜、またはシリコン窒化膜等の絶縁膜105を、厚さ3000nm程度堆積する(図2b)。   An insulating film 105 such as a silicon oxide film or a silicon nitride film is deposited on the entire surface of the single crystal silicon substrate 101 to a thickness of about 3000 nm using a sputtering apparatus for insulation from the transparent electrode 103 (FIG. 2b).

通常のフォトリソグラフ法により、絶縁膜105をバッファードフッ酸、またはドライエッチング工程を用いてエッチングし、先に形成した多孔質シリコン層102表面を露出させる(図2c)。   The insulating film 105 is etched by a normal photolithography method using buffered hydrofluoric acid or a dry etching process to expose the surface of the previously formed porous silicon layer 102 (FIG. 2c).

全面に、スパッタ法によりITO(インジウム、スズ酸化膜)のような、多孔質シリコン層102から放出される光を透過する透明電極103を、厚さ3000nm程度堆積し、所望の形状にパターニングし、多孔質シリコン光素子を完成する(図2d)。   A transparent electrode 103 that transmits light emitted from the porous silicon layer 102, such as ITO (indium, tin oxide film), is deposited on the entire surface by a thickness of about 3000 nm, and patterned into a desired shape. A porous silicon optical device is completed (FIG. 2d).

次に、上記方法によって形成した多孔質シリコン光素子の特性について説明する。図3に本発明のシリコン光素子のフォトルミネッセンススペクトルと従来の陽極酸化法によって作製したシリコン光素子のフォトルミネッセンススペクトルを比較した図を示す。これらのフォトルミネッセンススペクトルは、励起光に同一強度で波長が325nmのHe−Cdレーザを用い、同一測定系において室温で測定した。   Next, the characteristics of the porous silicon optical element formed by the above method will be described. FIG. 3 shows a comparison between the photoluminescence spectrum of the silicon optical device of the present invention and the photoluminescence spectrum of a silicon optical device produced by a conventional anodic oxidation method. These photoluminescence spectra were measured at room temperature in the same measurement system using a He—Cd laser having the same intensity and wavelength of 325 nm as excitation light.

図3に示すように、本発明のシリコン光素子は、680nmにフォトルミネッセンス発光が得られた。また、従来例と比較して強度が強く、発光効率が高いことが確認された。さらに、半値幅で比較したフォトルミネッセンススペクトルの広がりは、本発明では168nmであるのに対し、従来例では200nmとなり、本発明のフォトルミネッセンススペクトルの方が狭帯化していることがわかる。さらにまた、フォトルミネッセンススペクトルのシリコン基板表面の面内分布についても観察した結果、シリコン基板全体の特性の均一性が良いことも確認された。   As shown in FIG. 3, the photoluminescence emission was obtained at 680 nm in the silicon optical device of the present invention. Moreover, it was confirmed that the intensity was higher than that of the conventional example and the luminous efficiency was high. Furthermore, the spread of the photoluminescence spectrum compared with the half width is 168 nm in the present invention, whereas it is 200 nm in the conventional example, indicating that the photoluminescence spectrum of the present invention is narrower. Furthermore, as a result of observing the in-plane distribution of the surface of the silicon substrate of the photoluminescence spectrum, it was confirmed that the uniformity of the characteristics of the entire silicon substrate was good.

図4に本発明のシリコン光素子のフォトルミネッセンス強度の超音波発振出力依存性を示す。超音波発振出力の増加に伴い発光強度が強くなることが確認できる。なお、超音波振動の印加を行わない場合は、発光強度は0.2となる。従って、超音波振動を印加すると、印加しない場合と比較して、発光強度が高くなることがわかる。なお、超音波発振出力は、陽極酸化の他の諸条件により、最適な条件を設定すればよい。   FIG. 4 shows the ultrasonic oscillation output dependence of the photoluminescence intensity of the silicon optical device of the present invention. It can be confirmed that the emission intensity increases as the ultrasonic oscillation output increases. Note that when no ultrasonic vibration is applied, the light emission intensity is 0.2. Therefore, it can be seen that when the ultrasonic vibration is applied, the light emission intensity is higher than when the ultrasonic vibration is not applied. In addition, what is necessary is just to set optimal conditions for the ultrasonic oscillation output by other various conditions of anodization.

図5に本発明のシリコン光素子のフォトルミネッセンス強度の超音波発振周波数依存性を示す。発光強度は超音波発振周波数にも依存することが確認できる。超音波発振周波数は、高いほどシリコン微結晶の粒径が均一となり、粒径を数nmオーダーで制御することができる。従って、シリコン微結晶の粒径が所望の大きさとなるように、超音波振動発振出力、発振周波数および陽極酸化条件を適宜設定する必要がある。   FIG. 5 shows the ultrasonic oscillation frequency dependence of the photoluminescence intensity of the silicon optical device of the present invention. It can be confirmed that the emission intensity also depends on the ultrasonic oscillation frequency. The higher the ultrasonic oscillation frequency, the more uniform the crystal grain size of silicon microcrystals, and the grain size can be controlled on the order of several nm. Therefore, it is necessary to appropriately set the ultrasonic vibration oscillation output, the oscillation frequency, and the anodizing conditions so that the silicon crystallites have a desired grain size.

以上説明したように、陽極酸化を行う際、超音波振動を印加することで、多孔質シリコン光素子の光特性が向上することが確認された。さらに本発明によれば、15nm程度の口径の単結晶シリコン基板に多孔質シリコン層を形成した場合、面内のバラツキが少ないことも確認でき、歩留まり良く多孔質シリコン光素子を形成できることも確認ででた。   As described above, it has been confirmed that the optical characteristics of the porous silicon optical element are improved by applying ultrasonic vibration when anodizing. Furthermore, according to the present invention, when a porous silicon layer is formed on a single crystal silicon substrate having a diameter of about 15 nm, it can be confirmed that there is little in-plane variation, and it is also confirmed that a porous silicon optical device can be formed with a high yield. It was.

11:超音波発生機、12:純水、13:耐フッ化水素酸性樹脂、14:フッ化水素酸水溶液、15:耐フッ化水素酸性容器、16:定電流電源、17:プラチナ陰電極、18:電圧計、19:電流計、101:単結晶シリコン基板、102:多孔質シリコン層、103:透明電極、104:オーミック性電極、105:絶縁膜 11: Ultrasonic generator, 12: Pure water, 13: Hydrogen fluoride acid resistant resin, 14: Hydrofluoric acid aqueous solution, 15: Hydrogen fluoride acid resistant container, 16: Constant current power source, 17: Platinum negative electrode, 18: Voltmeter, 19: Ammeter, 101: Single crystal silicon substrate, 102: Porous silicon layer, 103: Transparent electrode, 104: Ohmic electrode, 105: Insulating film

Claims (1)

単結晶シリコン基板と、該単結晶シリコン基板表面に埋設された多孔質シリコン層と、該多孔質シリコン層に接続するように設けられた透明電極と、前記単結晶シリコン基板の裏面に設けられたオーミック性電極とを有し、前記透明電極及び前記オーミック性電極間に電圧印加することによって、前記多孔質シリコン層を発光層あるいは受光層とする半導体光素子の製造方法において、
単結晶シリコン基板の表面の一部を露出させ、フッ化水素酸水溶液中で陽極酸化する際、超音波振動を印加しながら、前記露出する単結晶シリコン基板表面を陽極酸化し、発光層あるいは受光層となる前記多孔質シリコン層を形成する工程と、
前記多孔質シリコン層表面に接続する透明電極を形成する工程と、
前記単結晶シリコン基板の裏面に前記オーミック性電極を形成する工程とを含むことを特徴とする多孔質シリコン光素子の製造方法。
A single crystal silicon substrate; a porous silicon layer embedded on the surface of the single crystal silicon substrate; a transparent electrode provided to connect to the porous silicon layer; and a back surface of the single crystal silicon substrate. In the method of manufacturing a semiconductor optical device having an ohmic electrode, and applying a voltage between the transparent electrode and the ohmic electrode, the porous silicon layer is a light emitting layer or a light receiving layer.
When a part of the surface of the single crystal silicon substrate is exposed and anodized in an aqueous hydrofluoric acid solution, the exposed single crystal silicon substrate surface is anodized while applying ultrasonic vibration, and a light emitting layer or a light receiving layer is received. Forming the porous silicon layer to be a layer;
Forming a transparent electrode connected to the surface of the porous silicon layer;
Forming the ohmic electrode on the back surface of the single crystal silicon substrate.
JP2010179887A 2010-08-11 2010-08-11 Manufacturing method of porous silicon optical element Pending JP2012039016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179887A JP2012039016A (en) 2010-08-11 2010-08-11 Manufacturing method of porous silicon optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179887A JP2012039016A (en) 2010-08-11 2010-08-11 Manufacturing method of porous silicon optical element

Publications (1)

Publication Number Publication Date
JP2012039016A true JP2012039016A (en) 2012-02-23

Family

ID=45850652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179887A Pending JP2012039016A (en) 2010-08-11 2010-08-11 Manufacturing method of porous silicon optical element

Country Status (1)

Country Link
JP (1) JP2012039016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037110A1 (en) * 2014-09-04 2016-03-10 Applied Materials, Inc. Method and apparatus for forming porous silicon layers
CN113410341A (en) * 2021-06-21 2021-09-17 吉林师范大学 Preparation method of silicon oxide passivation layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194221A (en) * 1998-01-07 1999-07-21 Oki Electric Ind Co Ltd Forming method of optical waveguide and optical waveguide element
JP3306077B2 (en) * 1991-03-28 2002-07-24 科学技術振興事業団 Porous silicon light-emitting device, porous silicon light-receiving device, and methods of manufacturing the same
JP2003129288A (en) * 2001-10-16 2003-05-08 Canon Inc Porous structure and manufacturing process therefor
JP2003328190A (en) * 2002-05-14 2003-11-19 Matsushita Electric Works Ltd Anodic oxidation method, electrochemical oxidation method, electric field emission type electron source, and manufacturing method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306077B2 (en) * 1991-03-28 2002-07-24 科学技術振興事業団 Porous silicon light-emitting device, porous silicon light-receiving device, and methods of manufacturing the same
JPH11194221A (en) * 1998-01-07 1999-07-21 Oki Electric Ind Co Ltd Forming method of optical waveguide and optical waveguide element
JP2003129288A (en) * 2001-10-16 2003-05-08 Canon Inc Porous structure and manufacturing process therefor
JP2003328190A (en) * 2002-05-14 2003-11-19 Matsushita Electric Works Ltd Anodic oxidation method, electrochemical oxidation method, electric field emission type electron source, and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037110A1 (en) * 2014-09-04 2016-03-10 Applied Materials, Inc. Method and apparatus for forming porous silicon layers
CN113410341A (en) * 2021-06-21 2021-09-17 吉林师范大学 Preparation method of silicon oxide passivation layer

Similar Documents

Publication Publication Date Title
JP5866477B2 (en) Copper assisted anti-reflective etching of silicon surfaces
US5306647A (en) Method for manufacturing a solar cell from a substrate wafer
Putra et al. 18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact
KR20090102508A (en) Method for texturing of silicon solar cell using surfactant
JP2011515858A (en) Anti-reflective etching of silicon surfaces catalyzed with ionic metal solutions
KR20140014065A (en) Method for the wet-chemical etching back of a solar cell emitter
Tutashkonko et al. Mesoporous Germanium formed by bipolar electrochemical etching
JP2012039016A (en) Manufacturing method of porous silicon optical element
JPH11233484A (en) Manufacture of rugged substrate
Wehrspohn et al. Conditions of elaboration of luminescent porous silicon from hydrogenated amorphous silicon
JP3076783B2 (en) Etching method of nitride material
JP2005256071A (en) Method for producing anodized film
Xiong et al. Flat layered structure and improved photoluminescence emission from porous silicon microcavities formed by pulsed anodic etching
JP6160959B2 (en) Manufacturing method of solar cell
JPH04356977A (en) Porous silicon
Lasmi et al. Fabrication of Lithography-Free Silicon Sub-Micro-Pyramids
WO2018179738A1 (en) Oxygen generation electrode and oxygen generation device
JP2003133308A (en) Method and device for manufacturing silicon-carbide oxide film and method of manufacturing semiconductor element using the oxide film
CN110148650A (en) The preparation method of laser doping SE is carried out in silicon chip surface
JP3207505B2 (en) Manufacturing method of porous silicon member
JPH0689891A (en) Method of processing porous silicon layer
JPH098258A (en) Manufacture of soi substrate
JPH0799342A (en) Manufacture of porous silicon
JP3027101B2 (en) Method for forming porous silicon
JP5637473B2 (en) Layered structure manufacturing method, semiconductor substrate, element circuit manufacturing method, and series connection circuit of solar cell elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111