JP2012038602A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2012038602A
JP2012038602A JP2010178351A JP2010178351A JP2012038602A JP 2012038602 A JP2012038602 A JP 2012038602A JP 2010178351 A JP2010178351 A JP 2010178351A JP 2010178351 A JP2010178351 A JP 2010178351A JP 2012038602 A JP2012038602 A JP 2012038602A
Authority
JP
Japan
Prior art keywords
electrolyte solution
dye
solar cell
sealing
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010178351A
Other languages
Japanese (ja)
Inventor
Kazumasa Igarashi
一雅 五十嵐
Yuki Hasegawa
由紀 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010178351A priority Critical patent/JP2012038602A/en
Publication of JP2012038602A publication Critical patent/JP2012038602A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which has both of high reliability and durability, and which has a high sealing property of an electrolyte solution inlet, thereby causing no swelling and deterioration at the seal portion for a long period of time.SOLUTION: A sealing plug 8 having a shape capable of closing an inlet Q for injecting an electrolyte solution 5 into a gap between a pair of electrode substrates A and B is fitted into the inlet Q. A photopolymerizable composition is applied on an upper side of the sealing plug 8, a cover glass 10 is overlapped, and they are irradiated with ultraviolet ray to form a seal material hardened body (end seal) 9.

Description

本発明は、一対の電極基板を対向してシールし、シールされた空隙内に電解質液を封入してなる色素増感型太陽電池に関し、電解質液封止性が高く耐久性に優れている色素増感型太陽電池に関するものである。   The present invention relates to a dye-sensitized solar cell in which a pair of electrode substrates are sealed facing each other, and an electrolyte solution is sealed in a sealed gap, and the dye has a high electrolyte solution sealing property and excellent durability. The present invention relates to a sensitized solar cell.

色素が担持されたTiO2等の半導体膜付き透明導電基板と対向電極基板との間に、レドックス系電解質液を封入した色素増感型太陽電池は、太陽光の変換効率が高いことから、次世代低価格太陽電池として有望視されている。 A dye-sensitized solar cell in which a redox electrolyte solution is sealed between a transparent conductive substrate with a semiconductor film such as TiO 2 on which a dye is supported and a counter electrode substrate has high conversion efficiency of sunlight. Promising as a low-generation solar cell.

しかし、ヨウ素やヨウ化リチウム等のレドックス系電解質液をガラス基板やプラスチックフィルム基板の間に注入し、これを封止するに際して、シリコン太陽電池の封止に従来から使用されているエチレン−メタクリル酸共重合アイオノマー樹脂をシール材料として用いると、上記電解質液の液漏れや外界からの吸湿を防止することができないため、この種の色素増感型太陽電池は、耐久性に劣るという問題があった。   However, when a redox electrolyte such as iodine or lithium iodide is injected between a glass substrate or a plastic film substrate and sealed, ethylene-methacrylic acid conventionally used for sealing silicon solar cells is used. When a copolymerized ionomer resin is used as a sealing material, this type of dye-sensitized solar cell has a problem of poor durability because it cannot prevent leakage of the electrolyte solution and moisture absorption from the outside. .

このようなことから、エチレン−メタクリル酸共重合アイオノマー樹脂に代えて、液状エポキシ樹脂やシリコーン樹脂を用い、上記電解質液を封止(シール)することが提案されている(特許文献1参照)。また、耐電解質液性に優れるエラストマーを用いた色素増感型太陽電池用シール材料として、シランカップリング剤を含有し、分子中に少なくとも1個のヒドロシリル化反応可能なアルケニル基を含有する、ポリイソプレン系重合体とオルガノハイドロジェンポリシロキサンとを、ヒドロシリル化触媒により重合してなるシール材が提案されている(特許文献2参照)。一方、本発明者らも、長期に渡る封止において、膨潤や劣化を生じず、シール性が極めて高い光硬化(紫外線硬化)型シール材として分子両末端の少なくとも一方に、1個以上の(メタ)アクリロイル基を有する水添エラストマー誘導体を必須成分とする光重合性組成物をシール材として用いる色素増感型太陽電池を提案している(特許文献3参照)。   For this reason, it has been proposed to seal (seal) the electrolyte solution by using a liquid epoxy resin or a silicone resin instead of the ethylene-methacrylic acid copolymerized ionomer resin (see Patent Document 1). Further, as a dye-sensitized solar cell sealing material using an elastomer having excellent electrolyte solution resistance, a polysilane containing a silane coupling agent and containing at least one alkenyl group capable of hydrosilylation in a molecule. A sealing material obtained by polymerizing an isoprene-based polymer and an organohydrogenpolysiloxane with a hydrosilylation catalyst has been proposed (see Patent Document 2). On the other hand, the inventors of the present invention also have one or more (at least one end of molecular end) as a photo-curing (ultraviolet-curing) type sealing material that does not swell or deteriorate in long-term sealing and has extremely high sealing performance. A dye-sensitized solar cell using a photopolymerizable composition containing a hydrogenated elastomer derivative having a (meth) acryloyl group as an essential component as a sealing material has been proposed (see Patent Document 3).

特開2000−30767号公報JP 2000-30767 A 特開2004−95248号公報JP 2004-95248 A 特開2008−140759号公報JP 2008-140759 A

しかしながら、上記のシール材は、いずれも熱硬化または光硬化した後の硬化体は耐電解質液性に優れるものの、電解質液が注入された注入口をシール(エンドシール)する場合は、シール材が未硬化であるため、電解質液に使用する溶媒によっては、シール材の成分が電解質液に溶出する懸念があった。溶出したシール材成分は、電解質液のイオン導電性を低下させるため、太陽電池の発電効率の低下や、電解質液そのものの漏出の原因となる等、太陽電池に不具合を発生させる可能性があり、さらに改善が求められている。   However, although all of the above-mentioned sealing materials are heat-cured or photo-cured, the cured product is excellent in electrolyte solution resistance. However, when sealing the inlet into which the electrolyte solution is injected (end seal), the sealing material is Since it is uncured, depending on the solvent used in the electrolyte solution, there is a concern that the components of the sealing material may elute into the electrolyte solution. Since the eluted sealing material component reduces the ionic conductivity of the electrolyte solution, there is a possibility of causing problems in the solar cell, such as a decrease in power generation efficiency of the solar cell and leakage of the electrolyte solution itself, Further improvements are required.

本発明は、このような事情に鑑みなされたもので、上記電解質液の注入口のシール性が極めて高く、しかも、長期に渡ってそのシール部分に膨潤や劣化が生じない、高い信頼性と耐久性を兼ね備えた色素増感型太陽電池の提供をその目的とする。   The present invention has been made in view of such circumstances, and the sealing performance of the electrolyte solution inlet is extremely high, and the sealing portion does not swell or deteriorate over a long period of time, and has high reliability and durability. The object is to provide a dye-sensitized solar cell having both properties.

上記目的を達成するため、本発明の色素増感型太陽電池は、少なくとも一方の電極基板に電解質液の注入口を設けた一対の電極基板が、互いにその導電電極面を内側にした状態で所定間隔を保って配設され、上記一対の電極基板間の空隙が、それら基板の内側面の周縁部にシール材を配設することによりシールされ、そのシールされた空隙内に電解質液が封入されてなる色素増感型太陽電池であって、上記電解質液の注入口に封止栓が嵌入されていることをその要旨とする。   In order to achieve the above object, the dye-sensitized solar cell of the present invention has a pair of electrode substrates each provided with an electrolyte solution injection port in at least one electrode substrate, with the conductive electrode surfaces facing each other. The gap between the pair of electrode substrates is sealed by disposing a sealing material on the peripheral edge of the inner side surface of the substrates, and the electrolyte solution is sealed in the sealed gap. The gist of the present invention is that the sealing plug is inserted into the electrolyte solution inlet.

すなわち、本発明者らは、発電効率の安定性に優れ、高い耐久性を有する色素増感型太陽電池を得るため、研究を重ねた。そのなかで、発電効率の低下や、電解質液の漏出等の不具合は、電解質液の注入口を未硬化のシール材を塗布後、その上にこれを封着する薄片ガラスを載置し、このシール材に紫外線照射等し硬化させて封止する際、硬化前のシール材が電解質液に溶出することに起因するのではないかと想起した。そこで、電解質液の注入口を未硬化のシール材を塗布する以外の方法で封止することができないか、さらに研究を重ねた。その結果、予め注入口を塞ぐことのできる形状に成形された封止栓を注入口に嵌入して封止すると、未硬化のシール材の成分が電解質液に溶出することなく、しかも封止性が高くなることを突き止め、本発明に至った。すなわち、本発明は、従来、電解質液の注入口の封止が、未硬化のシール材を、この注入口を塞ぐように塗布した後、その上にこれを封着する薄片ガラスを載置し、シール材を硬化させて封止するのが常識であったところ、この常識を打破してなされたものである。   That is, the present inventors have repeated research in order to obtain a dye-sensitized solar cell having excellent power generation efficiency and high durability. Among them, problems such as a decrease in power generation efficiency and leakage of the electrolyte solution are caused by placing an uncured sealing material on the injection port of the electrolyte solution and placing a thin glass on which it is sealed. When sealing the sealing material by irradiating it with ultraviolet rays or the like, it was conceived that the sealing material before curing was eluted into the electrolyte solution. Therefore, further research has been conducted on whether or not the electrolyte solution inlet can be sealed by a method other than applying an uncured sealing material. As a result, when a sealing plug molded in a shape that can close the injection port is inserted into the injection port and sealed, the components of the uncured sealing material do not elute into the electrolyte solution, and the sealing property Has been found to be high, leading to the present invention. That is, according to the present invention, conventionally, after sealing an electrolyte solution injection port, an uncured sealing material is applied so as to close the injection port, and then a thin glass for sealing it is placed thereon. When it was common sense to cure and seal the sealing material, it was made by breaking this common sense.

このように、本発明の色素増感型太陽電池は、シールされた一対の電極基板の間の空隙内に電解質液が封入されてなる色素増感型太陽電池であって、少なくとも一方の電極基板に設けた電解質液の注入口に封止栓が嵌入された構造になっている。したがって、従来のように、未硬化のシール材が上記注入口に接することがないため、上記未硬化のシール材の成分が電解質液に溶出しない。そのため、電解質液のイオン導電性が低下せず、太陽電池の発電効率の低下や、電解質液そのものの漏出の原因等の不具合の発生を抑制することができる。すなわち、本発明の色素増感型太陽電池は、上記電解質液の注入口のシール性が極めて高く、しかも、長期に渡ってそのシール部分に膨潤や劣化が生じず、高い信頼性と耐久性を兼ね備えたものとなる。   Thus, the dye-sensitized solar cell of the present invention is a dye-sensitized solar cell in which an electrolyte solution is sealed in a gap between a pair of sealed electrode substrates, and at least one of the electrode substrates In this structure, a sealing plug is fitted into the electrolyte solution inlet provided in the container. Therefore, since the uncured sealing material does not come into contact with the inlet as in the prior art, the components of the uncured sealing material do not elute into the electrolyte solution. Therefore, the ionic conductivity of the electrolyte solution does not decrease, and it is possible to suppress the occurrence of problems such as a decrease in power generation efficiency of the solar cell and the cause of leakage of the electrolyte solution itself. That is, the dye-sensitized solar cell of the present invention has an extremely high sealing performance at the electrolyte solution inlet, and does not swell or deteriorate in the sealing portion over a long period of time, and has high reliability and durability. It will be something that combines.

また、上記封止栓の上側に、シール材を介して透明封止板が重ねられ、封止栓と、シール材を介した透明封止板とで、上記電解質液の注入口が二重に封止された場合は、外部から衝撃が加えられた場合の封止栓脱落を効果的に防止でき、また、仮に封止栓と注入口との隙間から電解質液の漏れが生じても、封止栓と、シール材を介した透明封止板部分とで外部への漏出を防止することができるため、さらに高い信頼性と耐久性を兼ね備えたものとなる。   Further, a transparent sealing plate is stacked on the upper side of the sealing plug via a sealing material, and the electrolyte solution injection port is doubled between the sealing plug and the transparent sealing plate via the sealing material. When sealed, the sealing plug can be effectively prevented from falling off when an impact is applied from the outside. Even if electrolyte solution leaks from the gap between the sealing plug and the injection port, the sealing plug can be sealed. Since the leakage to the outside can be prevented by the stopper and the transparent sealing plate portion via the sealing material, it has both higher reliability and durability.

そして、上記封止栓が、熱可塑性樹脂製の封止栓である場合は、射出成形,押出成形等によって、寸法精度よく製造されるため、封止栓を注入口に嵌入した際に隙間が発生せず、電解質液の漏れをより防止できる。   And when the said sealing plug is a sealing plug made of a thermoplastic resin, since it is manufactured with dimensional accuracy by injection molding, extrusion molding, etc., there is no gap when the sealing plug is inserted into the injection port. It does not occur and leakage of the electrolyte solution can be further prevented.

さらに、上記封止栓が、ポリテトラフルオロエチレン製の封止栓である場合は、封止栓が化学的に安定で耐熱性、耐薬品性に優れるため、含有成分の電解質液への溶出を、より効果的に防止できるとともに、電解質液による封止栓の劣化も、より効果的に防止できる。   Furthermore, when the sealing plug is a polytetrafluoroethylene sealing plug, the sealing plug is chemically stable and excellent in heat resistance and chemical resistance, so that the components can be eluted into the electrolyte solution. In addition to being able to prevent more effectively, the deterioration of the sealing plug due to the electrolyte solution can also be more effectively prevented.

本発明の一実施例の断面図である。It is sectional drawing of one Example of this invention. 上記実施例に用いられる電極基板Aの説明図である。It is explanatory drawing of the electrode substrate A used for the said Example. 上記実施例に用いられる電極基板Bの説明図である。It is explanatory drawing of the electrode substrate B used for the said Example. 上記実施例を得る工程の説明図である。It is explanatory drawing of the process of obtaining the said Example. (a)は上記実施例の要部を示す説明図、(b),(c)はともに上記要部の変形例の説明図である。(A) is explanatory drawing which shows the principal part of the said Example, (b), (c) is explanatory drawing of the modification of the said principal part. 従来例を示す断面図である。It is sectional drawing which shows a prior art example.

つぎに、本発明を実施するための形態について説明する。   Next, an embodiment for carrying out the present invention will be described.

図1は、本発明を実施するための形態である色素増感型太陽電池の断面図であり、1および1’はガラス基板、2および2’は導電電極膜、3は酸化チタン膜、4は酸化チタン膜に吸着された増感色素、5は電解質液、6は白金蒸着膜、7はシール材硬化体(メインシール)、8は電解質液注入口を封止する封止栓、9はシール材硬化体(エンドシール)、10はカバーガラスである。なお、Aは上記1,2,3,4を有する負極側電極基板、Bは上記1’,2’,6を有する正極側電極基板である。   FIG. 1 is a cross-sectional view of a dye-sensitized solar cell according to an embodiment for carrying out the present invention. 1 and 1 ′ are glass substrates, 2 and 2 ′ are conductive electrode films, 3 is a titanium oxide film, 4 Is a sensitizing dye adsorbed on the titanium oxide film, 5 is an electrolyte solution, 6 is a platinum deposition film, 7 is a cured sealant (main seal), 8 is a sealing plug for sealing the electrolyte solution inlet, and 9 is A sealing material hardened body (end seal), 10 is a cover glass. A is a negative electrode substrate having the above 1, 2, 3 and 4, and B is a positive electrode substrate having 1 ', 2' and 6.

このような色素増感型太陽電池は、例えば、つぎのようにして得ることができる。まず、図2に示すように、ガラス基板1上の導電電極膜2の上面に、増感色素4を吸着した酸化チタン膜3が形成されている負極側電極基板A(以下「電極基板A」とする)を準備し、メインシール7(図1参照)と接する導電電極膜2上の部分Sに、(メタ)アクリロキシアルキルシラン類シランカップリング剤を塗布して表面被覆処理する。他方、図3に示すように、上記電極基板Aと対向配設される、ガラス基板1’上の導電電極膜2’上面に白金蒸着膜6を蒸着形成されている正極側電極基板B(以下「電極基板B」とする)を準備し、この電極基板Bに電解質液5の注入口Qを設け、さらにこの注入口Qの周縁部〔エンドシール9(図1参照)と接する部分S’〕と、メインシール7(図1参照)と接する部分S''に、上記と同様に(メタ)アクリロキシアルキルシラン類シランカップリング剤を塗布して表面被覆処理する。そして、予め準備されたメインシール7の未硬化物である、分子両末端の少なくとも一方に、1個以上の(メタ)アクリロイル基を有する水添エラストマー誘導体を必須成分とする光重合性組成物を、電極基板AおよびBの少なくとも一方の上記表面被覆処理された所定部分に塗布する。そして、ポリイミドテープをスペーサーとして用いて、図4に示すように、導電電極膜2および2’を内側にした状態で、電極基板AおよびB間を50μmに保って重ね合わせ、上記メインシール7となる未硬化物(光重合性組成物)に紫外線を照射してシール材硬化体(メインシール)7とし、電極基板AおよびBを貼り合わせる。   Such a dye-sensitized solar cell can be obtained, for example, as follows. First, as shown in FIG. 2, a negative electrode substrate A (hereinafter referred to as “electrode substrate A”) in which a titanium oxide film 3 adsorbing a sensitizing dye 4 is formed on the upper surface of a conductive electrode film 2 on a glass substrate 1. And a (meth) acryloxyalkylsilane silane coupling agent is applied to the portion S on the conductive electrode film 2 in contact with the main seal 7 (see FIG. 1) to perform surface coating treatment. On the other hand, as shown in FIG. 3, a positive electrode substrate B (hereinafter referred to as a platinum deposition film 6) formed by vapor deposition on the upper surface of the conductive electrode film 2 ′ on the glass substrate 1 ′ disposed opposite to the electrode substrate A. The electrode substrate B is provided with an inlet Q for the electrolyte solution 5 and a peripheral portion of the inlet Q [part S ′ in contact with the end seal 9 (see FIG. 1)]. In the same manner as described above, a (meth) acryloxyalkylsilane silane coupling agent is applied to the portion S ″ in contact with the main seal 7 (see FIG. 1) to perform surface coating treatment. Then, a photopolymerizable composition comprising a hydrogenated elastomer derivative having at least one (meth) acryloyl group as an essential component on at least one of both molecular terminals, which is an uncured product of the main seal 7 prepared in advance. The at least one of the electrode substrates A and B is applied to the predetermined portion subjected to the surface coating treatment. Then, using the polyimide tape as a spacer, with the conductive electrode films 2 and 2 ′ inside, as shown in FIG. The resulting uncured product (photopolymerizable composition) is irradiated with ultraviolet rays to form a cured seal material (main seal) 7 and the electrode substrates A and B are bonded together.

つぎに、上記貼り合わせた電極基板AおよびB間の空隙R(図4参照)に、上記注入口Qより、電解質液5を注入する。注入完了後、この注入口Qに、注入口Qを塞ぐことのできる形状の、射出成形により製造されたポリテトラフルオロエチレン製の封止栓8を嵌入し、さらに、この封止栓8の上側に、上記メインシール7の形成に用いたものと同様の光重合性組成物を塗布し、カバーガラス10を重ねる。そして、上記と同様に、この光重合性組成物に紫外線を照射してシール材硬化体(エンドシール)9とし、上記注入口Qを、封止栓8とシール材硬化体9を介したカバーガラス10とで二重に封止することで、図1に示す色素増感型太陽電池を得ることができる(図2に戻る)。   Next, the electrolyte solution 5 is injected into the gap R (see FIG. 4) between the bonded electrode substrates A and B from the injection port Q. After the injection is completed, a polytetrafluoroethylene sealing plug 8 manufactured by injection molding having a shape capable of closing the injection port Q is fitted into the injection port Q. Then, the same photopolymerizable composition as that used for forming the main seal 7 is applied, and the cover glass 10 is stacked thereon. In the same manner as described above, the photopolymerizable composition is irradiated with ultraviolet rays to form a cured seal material (end seal) 9, and the injection port Q is covered with the sealing plug 8 and the cured seal material 9. By double sealing with glass 10, the dye-sensitized solar cell shown in FIG. 1 can be obtained (return to FIG. 2).

この構成によれば、封止栓8の存在により、紫外線照射前の未硬化のエンドシール9(光重合性組成物)が、電解質液5に接触しないため、この光重合性組成物の成分が電解質液5に溶出しない。したがって、光重合性組成物の成分が溶出することによる、電解質液5のイオン導電性の低下が起こらず、色素増感型太陽電池の発電効率の低下を抑制することができる。また、電解質液5に不要な成分が含まれないため、電解質液5の漏出を防止することができる。そして、封止栓8が射出成形で寸法精度よく製造されているため、注入口Qとの間に隙間が生じず、また、この封止栓8はポリテトラフルオロエチレン製であるから、化学的に安定で耐熱性、耐薬品性に優れ、含有成分の電解質液5への溶出を防止できるとともに、電解質液5による封止栓8の劣化を効果的に防止できるため、色素増感型太陽電池の長寿命化を図ることができる。さらに、エンドシール9が光重合硬化体からなるため、加熱硬化が不要であり、加熱による電解質液5の蒸発に伴う不具合が生じない。しかも、上記光重合硬化体が、特殊な光重合性組成物からなるため、長期に渡る封止の際にも、電解質液5による膨潤や劣化が生じない。その上、電極基板A,Bに対する特定のシランカップリング剤の作用と相まって、高い接着力を発揮し、高度な耐久性を発現する。   According to this configuration, due to the presence of the sealing plug 8, the uncured end seal 9 (photopolymerizable composition) before irradiation with ultraviolet rays does not come into contact with the electrolyte solution 5, so that the components of the photopolymerizable composition are It does not elute into the electrolyte solution 5. Therefore, the ionic conductivity of the electrolyte solution 5 does not decrease due to the elution of the components of the photopolymerizable composition, and the decrease in power generation efficiency of the dye-sensitized solar cell can be suppressed. Moreover, since unnecessary components are not included in the electrolyte solution 5, leakage of the electrolyte solution 5 can be prevented. Since the sealing plug 8 is manufactured by injection molding with high dimensional accuracy, there is no gap between the sealing plug 8 and the sealing plug 8 made of polytetrafluoroethylene. In addition to being excellent in heat resistance and chemical resistance, it is possible to prevent the elution of the components into the electrolyte solution 5 and to effectively prevent the sealing plug 8 from being deteriorated by the electrolyte solution 5, so that the dye-sensitized solar cell It is possible to extend the service life. Furthermore, since the end seal 9 is made of a photopolymerized cured body, heat curing is not required, and there is no problem associated with evaporation of the electrolyte solution 5 due to heating. And since the said photopolymerization hardening body consists of a special photopolymerizable composition, the swelling and deterioration by the electrolyte solution 5 do not arise in the case of sealing over a long term. In addition, combined with the action of a specific silane coupling agent on the electrode substrates A and B, it exhibits high adhesive strength and develops high durability.

本発明に用いられる封止栓8は、上記の例ではポリテトラフルオロエチレンからなるものを用いているが、これに限らず熱可塑性樹脂からなるものを用いることができる。具体的には、ポリエチレン,ポリプロピレン,塩化ビニル,アクリル樹脂,ポリエチレンテレフタレート等の汎用プラスチック、ポリアミド,ポリアセタール,ポリカーボネート,ポリブチレンテレフタレート,超高分子量ポリエチレン,ポリエーテルエーテルケトン,ポリサルフォン,ポリアリレート,ポリエーテルサルフォン,ポリエーテルイミド,ポリフェニルサルフォン等のエンジニアリング・プラスチックやスーパーエンジニアリング・プラスチック、ポリテトラフルオロエチレン,ポリクロロトリフルオロエチレン,ポリビニリデンフルオライド等のフッ素樹脂等があげられる。なかでも、有機溶媒を用いたレドックス系電解質液に対して耐溶剤性に優れるポリテトラフルオロエチレンが特に好ましく用いられる。   The sealing plug 8 used in the present invention is made of polytetrafluoroethylene in the above example, but is not limited to this, and can be made of thermoplastic resin. Specifically, general-purpose plastics such as polyethylene, polypropylene, vinyl chloride, acrylic resin, polyethylene terephthalate, polyamide, polyacetal, polycarbonate, polybutylene terephthalate, ultrahigh molecular weight polyethylene, polyether ether ketone, polysulfone, polyarylate, polyether sal Examples include engineering plastics such as phonone, polyetherimide, polyphenylsulfone, and super engineering plastics, and fluorine resins such as polytetrafluoroethylene, polychlorotrifluoroethylene, and polyvinylidene fluoride. Among these, polytetrafluoroethylene having excellent solvent resistance with respect to a redox electrolyte solution using an organic solvent is particularly preferably used.

また、上記の例では、注入口Qと封止栓8の形状は、図5(a)に示すようになっているが、これに限らず、電解質液5が漏出しないように互いに隙間なく嵌合していればよい。例えば、図5(b)に示す形状であると、封止栓8を注入口Qに嵌入しやすくなり、図(c)に示す形状であると、封止栓8を注入口Qに嵌入しやすくなると同時に、電解質液5の漏出をより効果的に防ぐことができる。   Further, in the above example, the shapes of the inlet Q and the sealing plug 8 are as shown in FIG. 5A. However, the shape is not limited to this, and the inlet Q and the sealing plug 8 are fitted with no gap so that the electrolyte solution 5 does not leak. It only has to match. For example, the shape shown in FIG. 5B makes it easy to fit the sealing plug 8 into the injection port Q, and the shape shown in FIG. 5C inserts the sealing plug 8 into the injection port Q. At the same time, leakage of the electrolyte solution 5 can be more effectively prevented.

そして、上記の例では、電極基板A,Bの基材として、ガラス基板1および1’を用いているが、ガラスに代えて、プラスチック等の有機物を用いることができる。プラスチックとしては、例えば、ポリエチレン,ポリプロピレン,ポリエステル,ナイロン,ポリエチレンテレフタレート,ポリエチレンナフタレート,塩化ビニル,シリコーン樹脂,ポリイミド等があげられる。   In the above example, the glass substrates 1 and 1 ′ are used as the base material of the electrode substrates A and B. However, organic substances such as plastic can be used instead of glass. Examples of the plastic include polyethylene, polypropylene, polyester, nylon, polyethylene terephthalate, polyethylene naphthalate, vinyl chloride, silicone resin, and polyimide.

また、上記の例において、電極基板A,Bの各シール材硬化体(メインシール7、エンドシール9)と接する部分(S,S’,S'')に塗布される上記(メタ)アクリロキシアルキルシラン類シランカップリング剤としては、例えば、アクリロキシアルキルシラン、メタクリロキシアルキルシラン等があげられる。好適には、3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシランがあげられ、より好適には、光重合反応性が高い3−アクリロキシプロピルトリメトキシシランがあげられる。これら(メタ)アクリロキシアルキルシラン類シランカップリング剤は、単独でもしくは2種以上併せて用いられる。そして、これらのシランカップリング剤を用いた表面被覆処理は、例えば、メタノールやエタノール等の有機溶媒に、上記(メタ)アクリロキシアルキルシラン類シランカップリング剤を0.01〜5.0重量%の範囲で溶解させて、上記メインシール7、エンドシール9と接する電極基板1,1’部分(S,S’,S'')に塗布等し、60〜150℃の範囲で加熱することにより行われる。なお、電極基板AおよびBが、メインシール7、エンドシール9のみによって強固にシールされる場合には、この(メタ)アクリロキシアルキルシラン類シランカップリング剤による表面被覆処理は不要である   Further, in the above example, the (meth) acryloxy applied to the portions (S, S ′, S ″) of the electrode substrates A, B that are in contact with the respective cured sealing materials (main seal 7, end seal 9). Examples of the alkylsilane silane coupling agent include acryloxyalkylsilane and methacryloxyalkylsilane. Preferable examples include 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, and more preferable example includes 3-acryloxypropyltrimethoxysilane having high photopolymerization reactivity. These (meth) acryloxyalkylsilane silane coupling agents may be used alone or in combination of two or more. And the surface coating process using these silane coupling agents is 0.01-5.0 weight% of the said (meth) acryloxyalkylsilane silane coupling agent in organic solvents, such as methanol and ethanol, for example. And is applied to the electrode substrate 1, 1 ′ portion (S, S ′, S ″) in contact with the main seal 7 and end seal 9 and heated in the range of 60 to 150 ° C. Done. When the electrode substrates A and B are firmly sealed only by the main seal 7 and the end seal 9, the surface coating treatment with the (meth) acryloxyalkylsilane silane coupling agent is unnecessary.

そして、上記の例において、シール材硬化体(メインシール)7およびシール材硬化体(エンドシール)9の材料として用いられる光重合性組成物は、水添エラストマー誘導体を必須成分とするものであり、その水添エラストマー誘導体は、分子両末端の少なくとも一方に、1個以上の(メタ)アクリロイル基を有していればよい。なかでも、その水添エラストマー誘導体の主鎖が、水添ポリブタジエンまたは水添ポリイソプレンからなることが好ましい。なお、本発明において、(メタ)アクリロイル基とは、下記に示すアクリロイル基およびそれに対応するメタクリロイル基の少なくとも一方を意味する。   And in said example, the photopolymerizable composition used as a material of sealing material hardening body (main seal) 7 and sealing material hardening body (end seal) 9 has a hydrogenated elastomer derivative as an essential component. The hydrogenated elastomer derivative only needs to have one or more (meth) acryloyl groups at at least one of both molecular ends. Among them, the main chain of the hydrogenated elastomer derivative is preferably made of hydrogenated polybutadiene or hydrogenated polyisoprene. In the present invention, the (meth) acryloyl group means at least one of the following acryloyl groups and methacryloyl groups corresponding thereto.

Figure 2012038602
Figure 2012038602

上記水添エラストマー誘導体の主鎖となる水添ポリブタジエンとしては、例えば、水添1,4−ポリブタジエン、水添1,2−ポリブタジエン、水添1,4−ポリブタジエンと水添1,2−ポリブタジエンとの共重合体等があげられる。また、水添ポリイソプレンとしては、例えば、水添1,4−ポリイソプレン、水添1,2−ポリイソプレン、水添1,4−ポリイソプレンと水添1,2−ポリイソプレンとの共重合体等があげられる。   Examples of the hydrogenated polybutadiene as the main chain of the hydrogenated elastomer derivative include hydrogenated 1,4-polybutadiene, hydrogenated 1,2-polybutadiene, hydrogenated 1,4-polybutadiene and hydrogenated 1,2-polybutadiene. And the like. Examples of the hydrogenated polyisoprene include hydrogenated 1,4-polyisoprene, hydrogenated 1,2-polyisoprene, hydrogenated 1,4-polyisoprene and hydrogenated 1,2-polyisoprene. For example, coalescence.

上記水添エラストマー誘導体として、さらに好ましくは、ポリイソシアネートを連結基として、水添ポリブタジエンポリオールまたは水添ポリイソプレンポリオールと、ヒドロキシ(メタ)アクリレート化合物類とを、反応させて得られる水添ポリブタジエン誘導体または水添ポリイソプレン誘導体がある。また、水添ポリブタジエンポリオールまたは水添ポリイソプレンポリオールと、(メタ)アクリロイル基含有イソシアネート化合物類とを、反応させて得られる水添ポリブタジエン誘導体または水添ポリイソプレン誘導体があげられる。   As the hydrogenated elastomer derivative, more preferably, a hydrogenated polybutadiene derivative obtained by reacting a hydrogenated polybutadiene polyol or hydrogenated polyisoprene polyol with a hydroxy (meth) acrylate compound with a polyisocyanate as a linking group, or There are hydrogenated polyisoprene derivatives. Further, there may be mentioned a hydrogenated polybutadiene derivative or a hydrogenated polyisoprene derivative obtained by reacting a hydrogenated polybutadiene polyol or hydrogenated polyisoprene polyol with a (meth) acryloyl group-containing isocyanate compound.

なお、上記シール材硬化体(メインシール)7およびシール材硬化体(エンドシール)9の材料として用いられる光重合性組成物は、上記のほか、層状珪酸塩、絶縁性球状無機質充填剤、ポリ(メタ)アクリレート化合物類、光重合開始剤、酸化防止剤、消泡剤、界面活性剤、着色剤、無機質充填剤、有機質充填剤、各種スペーサー、溶剤等を、必要に応じ、適宜に配合することができる。これらは単独でもしくは2種以上併せて用いられる。   In addition to the above, the photopolymerizable composition used as a material for the sealing material cured body (main seal) 7 and the sealing material cured body (end seal) 9 includes a layered silicate, an insulating spherical inorganic filler, (Meth) acrylate compounds, photopolymerization initiators, antioxidants, antifoaming agents, surfactants, colorants, inorganic fillers, organic fillers, various spacers, solvents, etc. are appropriately blended as necessary. be able to. These may be used alone or in combination of two or more.

このようにして得られた光重合性組成物は、所定個所に塗布された後、例えば、UVランプ等により紫外線を照射し、必要に応じて所定の温度でのポストキュアーを行うことにより硬化し、シール材硬化体(メインシール)7およびシール材硬化体(エンドシール)9となる。   After the photopolymerizable composition thus obtained is applied to a predetermined location, it is cured by, for example, irradiating ultraviolet rays with a UV lamp or the like and performing post-curing at a predetermined temperature as required. The cured seal material (main seal) 7 and the cured seal material (end seal) 9 are obtained.

なお、上記図1に示す色素増感型太陽電池の電解質液5の液層、シール材硬化体(メインシール)7は、目的および用途により、それに応じた適当な厚み(基板間)および幅にして用いることができ、通常、厚みが50〜500μm、幅が1〜5mm程度である。   The liquid layer of the electrolyte solution 5 and the cured seal material (main seal) 7 of the dye-sensitized solar cell shown in FIG. 1 have an appropriate thickness (between substrates) and width according to the purpose and application. The thickness is usually about 50 to 500 μm and the width is about 1 to 5 mm.

つぎに、実施例について、比較例と併せて説明する。ただし、本発明はこれに限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to this.

まず、実施例に先立ち、下記に示す各成分の材料を準備した。   First, prior to the examples, materials for each component shown below were prepared.

〔分子両末端の少なくとも一方に、1個以上の(メタ)アクリロイル基を有する水添エラストマー誘導体を必須成分とする光重合性組成物〕
水添エラストマー誘導体として、下記水添エラストマー誘導体aを2g、ジメチロールジシクロペンタンジアクリレート(トリシクロデカンジメタノールジアクリレート)を8g、および光ラジカル重合開始剤を0.5g配合して、光重合性組成物を作製した。
[Photopolymerizable composition comprising, as an essential component, a hydrogenated elastomer derivative having at least one (meth) acryloyl group at at least one of both molecular ends]
As a hydrogenated elastomer derivative, 2 g of the following hydrogenated elastomer derivative a, 8 g of dimethylol dicyclopentane diacrylate (tricyclodecane dimethanol diacrylate), and 0.5 g of a radical photopolymerization initiator were blended to perform photopolymerization. A sex composition was prepared.

〔水添エラストマー誘導体a〕
下記一般式(1)で示される両末端に水酸基を有する水添ポリブタジエン(数平均分子量:約1500、水酸基価:75KOHmg/g、ヨウ素価:10I2 mg/100g、粘度30Pa・s/25℃)15g(0.01mol)、ノルボルネンジイソシアネート10.2g(0.05mol)、トルエン20gをそれぞれガラス製反応器にとり、窒素ガス気流下、50℃に加温した。その後、5重量%ジブチルチンラウレートの酢酸エチル溶液0.4gを加え、50℃で6時間反応させた。その後、ハイドロキノン0.001g、2−ヒドロキシ−1,3−ジメタクリロキシプロパン(グリセリンジメタクリレート)20.7g(0.09mol)を加え、60℃でさらに6時間反応させた。つぎに、反応物を過剰のアセトニトリル中に投入・撹拌して洗浄し、固液分離後、減圧乾燥により、目的の水添エラストマー誘導体aを得た。得られた反応物は、フーリエ変換赤外分光装置(FT−IR:サーモエレクトロン社製、Nicolet IR200)によれば、イソシアネート基由来の特性吸収帯(2260cm-1近傍)が消失し、また、ゲルパーミエーションクロマトグラフ(GPC:東ソー社製、HLC−8120)によって測定される標準ポリスチレン換算重量平均分子量は、6150であった。
[Hydrogenated elastomer derivative a]
Hydrogenated polybutadiene having hydroxyl groups at both ends represented by the following general formula (1) (number average molecular weight: about 1500, hydroxyl value: 75 KOH mg / g, iodine value: 10I 2 mg / 100 g, viscosity 30 Pa · s / 25 ° C.) 15 g (0.01 mol), 10.2 g (0.05 mol) of norbornene diisocyanate, and 20 g of toluene were each taken in a glass reactor and heated to 50 ° C. under a nitrogen gas stream. Thereafter, 0.4 g of an ethyl acetate solution of 5% by weight dibutyltin laurate was added and reacted at 50 ° C. for 6 hours. Thereafter, 0.001 g of hydroquinone and 20.7 g (0.09 mol) of 2-hydroxy-1,3-dimethacryloxypropane (glycerin dimethacrylate) were added, and the mixture was further reacted at 60 ° C. for 6 hours. Next, the reaction product was put into excess acetonitrile and stirred for washing, and after solid-liquid separation, the desired hydrogenated elastomer derivative a was obtained by drying under reduced pressure. According to the Fourier transform infrared spectrometer (FT-IR: manufactured by Thermo Electron, Nicolet IR200), the obtained reaction product disappeared from the characteristic absorption band (near 2260 cm-1) derived from the isocyanate group, The standard polystyrene equivalent weight average molecular weight measured by a permeation chromatograph (GPC: manufactured by Tosoh Corporation, HLC-8120) was 6150.

Figure 2012038602
Figure 2012038602

〔電解質液〕
2(0.1M)、LiI(0.5M)、4−t−ブチルピリジン(0.5M)を含有するアセトニトリル溶媒の電解質液を準備した。
(Electrolyte solution)
An electrolyte solution of acetonitrile solvent containing I 2 (0.1M), LiI (0.5M), 4-t-butylpyridine (0.5M) was prepared.

〔電極基板の貼り合わせ〕
図2に示すように、フッ素ドープ透明導電電極膜2が設けられたホウ珪酸ガラス板からなる基板1(大きさ:26mm×76mm×厚み1.3mm)の、メインシール7配設予定部分Sより内側全面に、酸化チタンペーストをスクリーン印刷した。その後、この基板1を500℃で1時間焼成して、導電電極膜2上に厚み8〜12μmのTiO2半導体膜3が設けられた電極基板Aを作製した。つぎに、この電極基板Aをルテニウム系増感色素(Solaronix社製、ルテニウム535色素)のエタノール溶液に一日浸漬し、無水エタノールで洗浄して上記半導体膜3に色素4を吸着させた。さらに、電極基板Aのメインシール7の配設予定部分Sに、3−アクリロキシプロピルトリメトキシシランの1重量%メタノール溶液を塗布し、100℃で10分間乾燥し、表面被覆処理された電極基板Aを準備した。
一方、図3に示すように、上記と同じ大きさのホウ珪酸ガラスからなる基板1’上に、白金膜6付きのフッ素ドープ透明導電電極膜2が設けられた電極基板Bを準備し、この電極基板Bに、ダイヤモンドドリルで2mmΦの電解質液5の注入口Qを2箇所設け、その後、電極基板Bの注入口Qの周縁部S’(エンドシール9と接する部分)と、メインシール7の配設予定部分S''に、3−アクリロキシプロピルトリメトキシシランの1重量%メタノール溶液を塗布し、100℃で10分間乾燥し、表面被覆処理された電極基板Bを準備した。
上記電極基板Aと、電極基板Bとを、互いに導電電極面を内側にした状態で、厚みが50μmのポリイミドテープをスペーサーとして使用し、これらの電極基板A,B同士が50μmの間隔を保つようにして、前記光重合性組成物を塗布し、両者を重ね合わせた。そして、窒素気流下、積算光量3000mJ/cmの条件で、上記光重合性組成物をUV硬化させ、両者A,Bを貼り合わせた。
[Lamination of electrode substrate]
As shown in FIG. 2, the main seal 7 is disposed on a portion S of a substrate 1 (size: 26 mm × 76 mm × thickness 1.3 mm) made of a borosilicate glass plate provided with a fluorine-doped transparent conductive electrode film 2. A titanium oxide paste was screen printed on the entire inner surface. Thereafter, the substrate 1 was calcined 1 hour at 500 ° C., TiO 2 semiconductor film 3 having a thickness of 8~12μm was produced an electrode substrate A provided on the conductive electrode film 2. Next, the electrode substrate A was immersed in an ethanol solution of a ruthenium-based sensitizing dye (manufactured by Solaronix, ruthenium 535 dye) for one day and washed with anhydrous ethanol to adsorb the dye 4 to the semiconductor film 3. Furthermore, a 1 wt% methanol solution of 3-acryloxypropyltrimethoxysilane is applied to a portion S of the electrode substrate A where the main seal 7 is to be disposed, dried at 100 ° C. for 10 minutes, and surface coated. A was prepared.
On the other hand, as shown in FIG. 3, an electrode substrate B provided with a fluorine-doped transparent conductive electrode film 2 with a platinum film 6 on a substrate 1 ′ made of borosilicate glass having the same size as described above was prepared. The electrode substrate B is provided with two injection ports Q for the electrolyte solution 5 of 2 mmΦ with a diamond drill, and then the peripheral edge S ′ (portion in contact with the end seal 9) of the injection port Q of the electrode substrate B and the main seal 7. A 1 wt% methanol solution of 3-acryloxypropyltrimethoxysilane was applied to the portion S ″ to be disposed, and dried at 100 ° C. for 10 minutes to prepare a surface-coated electrode substrate B.
The electrode substrate A and the electrode substrate B are used with spacers made of polyimide tape having a thickness of 50 μm, with the conductive electrode surfaces facing each other, so that the electrode substrates A and B are kept at a distance of 50 μm. Then, the photopolymerizable composition was applied, and both were superposed. And the said photopolymerizable composition was UV-cured on condition of 3000 mJ / cm of integrated light quantity under nitrogen stream, and both A and B were bonded together.

〔実施例1〕
上記のとおり貼り合わされた電極基板A,Bにおいて、電極基板Bの注入口Qから、準備した電解質液5を、電極基板A,B間の空隙Rに、0.4mmΦのニードル(注射針)をつけたシリンジ(注射筒)を用いて注入した。注入が完了した後、注入口Qからニードルを引き抜き、代わりにポリテトラフルオロエチレン樹脂製の封止栓8を注入口Qに嵌入し、注入口Qを封止した。その後、さらに封止栓8の上側および周縁部に、上記電極基板A,Bの貼り合せ時に用いたものと同様の光重合性組成物を塗布し、その上にカバーガラス10を載置して、窒素気流下、積算光量3000mJ/cmの条件で、光重合性組成物をUV硬化させ、本発明の色素増感型太陽電池を製造した。
[Example 1]
In the electrode substrates A and B bonded together as described above, the prepared electrolyte solution 5 is inserted into the gap R between the electrode substrates A and B from the injection port Q of the electrode substrate B, and a 0.4 mmφ needle (injection needle) is provided. It inject | poured using the attached syringe (syringe). After the injection was completed, the needle was pulled out from the injection port Q. Instead, a sealing plug 8 made of polytetrafluoroethylene resin was fitted into the injection port Q, and the injection port Q was sealed. Thereafter, a photopolymerizable composition similar to that used when the electrode substrates A and B are bonded is further applied to the upper side and the peripheral edge of the sealing plug 8, and a cover glass 10 is placed thereon. Then, the photopolymerizable composition was UV-cured under the condition of an integrated light quantity of 3000 mJ / cm under a nitrogen stream to produce the dye-sensitized solar cell of the present invention.

〔実施例2〕
封止栓8として、フッ素ゴム(デュポンエラストマー社製、バイトン)製のものを用いた以外は実施例1と同様にして、本発明の色素増感型太陽電池を製造した。
[Example 2]
A dye-sensitized solar cell of the present invention was manufactured in the same manner as in Example 1 except that a fluorine rubber (manufactured by DuPont Elastomer, Viton) was used as the sealing plug 8.

〔実施例3〕
封止栓8として、アクリル系熱可塑性エラストマー(クラレ社製)製のものを用いた以外は実施例1と同様にして、本発明の色素増感型太陽電池を製造した。
Example 3
A dye-sensitized solar cell of the present invention was manufactured in the same manner as in Example 1 except that an acrylic thermoplastic elastomer (manufactured by Kuraray Co., Ltd.) was used as the sealing plug 8.

〔比較例1〕
封止栓8を用いない以外は実施例1と同様にして、色素増感型太陽電池を製造した。
[Comparative Example 1]
A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that the sealing plug 8 was not used.

このようにして得られた実施例1〜3品および比較例1品の色素増感型太陽電池について、電解質液充填保持率および電解質液5の漏出個所の評価を行うため、下記に示す試験を行った。また、評価は下記に示す基準により行い、その結果を、後記の〔表1〕に併せて示した。   For the dye-sensitized solar cells of Examples 1 to 3 and Comparative Example 1 thus obtained, the following tests were conducted in order to evaluate the electrolyte solution filling retention rate and the leakage location of the electrolyte solution 5. went. Moreover, evaluation was performed according to the following criteria, and the results are also shown in [Table 1] below.

〔試験方法〕
実施例1〜3品および比較例1品を、60℃または85℃の高温乾燥機中にそれぞれ500時間放置した。
〔Test method〕
The products of Examples 1 to 3 and the product of Comparative Example 1 were left in a high-temperature dryer at 60 ° C. or 85 ° C. for 500 hours, respectively.

〔電解質液充填保持率〕
実施例1〜3品および比較例1品について、上面から見た時の電解質液5の充填面積を、製造直後と、試験後の2回測定し、製造直後の充填面積に対する試験後の充填面積を算出して、電解質液充填保持率とした。この電解質液充填保持率は、電解質液5の漏出がない場合には100%となり、漏出の度合いが大きくなる程、数値が小さくなる。これは電解質液5が漏出すると、漏出分だけ内部に空間ができ、この部分には電解質液5がなく、電解質液5の充填面積が減少することから、このように算出したものである。
[Electrolytic solution filling retention]
About Example 1-3 goods and Comparative Example 1 goods, the filling area of the electrolyte solution 5 when it sees from an upper surface is measured twice immediately after manufacture and after a test, and the filling area after a test with respect to the filling area immediately after manufacture Was calculated as the electrolyte solution filling retention rate. The electrolyte solution filling retention rate is 100% when there is no leakage of the electrolyte solution 5, and the numerical value decreases as the degree of leakage increases. This is calculated in this way because when the electrolyte solution 5 leaks, there is a space in the interior corresponding to the leak, and there is no electrolyte solution 5 in this portion, and the filling area of the electrolyte solution 5 decreases.

〔漏出個所〕
実施例1〜3品および比較例1品について、試験後に、電解質液5の漏出がないか目視観察を行い、漏出があった場合には、その個所を示した。
[Leakage location]
For the products of Examples 1 to 3 and the product of Comparative Example 1, after the test, whether or not the electrolyte solution 5 leaked was visually observed, and if there was a leak, the location was indicated.

Figure 2012038602
Figure 2012038602

表1の結果より、実施例1〜3品は全てについて、電解質液充填保持率が非常に高く(100%)であり、電解質液5の漏出がないといえる。これに対し、比較例1品は、65℃では問題はないものの、85℃、500時間の放置において、電解質液充填保持率がやや低下しており、また、漏出個所を目視で確認することができることがわかった。   From the results in Table 1, it can be said that all of the products of Examples 1 to 3 have a very high electrolyte solution filling retention rate (100%) and there is no leakage of the electrolyte solution 5. On the other hand, although the product of Comparative Example 1 has no problem at 65 ° C., the electrolyte solution filling retention rate is slightly lowered when left at 85 ° C. for 500 hours, and the leakage location can be visually confirmed. I knew it was possible.

〔実施例4〕
なお、実施例1において、電極基板AおよびBに3−アクリロキシプロピルトリメトキシシランの1重量%メタノール溶液による表面被覆処理を行わず、光重合性組成物を塗布したカバーガラス10を載置しない色素増感型太陽電池を製造し、同様に評価を行ったところ、実施例1品とほぼ同等の評価が得られた。しかし、85℃における500時間を超える放置において、わずかに実施例1品の方が優れていた。
Example 4
In Example 1, the electrode substrate A and B are not subjected to surface coating treatment with a 1 wt% methanol solution of 3-acryloxypropyltrimethoxysilane, and the cover glass 10 coated with the photopolymerizable composition is not placed. When a dye-sensitized solar cell was manufactured and evaluated in the same manner, an evaluation almost equivalent to that of the product of Example 1 was obtained. However, the product of Example 1 was slightly superior when left at 85 ° C. for over 500 hours.

このように、各実施例品は、電解質液5の注入口Qを完全に封止することができ、また、シール材硬化体(メインシール)7、シール材硬化体(エンドシール)9および封止栓8が高い耐電解質液性、接着性を有している。したがって、本発明の色素増感型太陽電池は、長期保存および長期使用に耐えうる極めて優れたものとなる。   As described above, each of the products of the examples can completely seal the inlet Q of the electrolyte solution 5, and the sealing material cured body (main seal) 7, the sealing material cured body (end seal) 9, and the sealing material. The stopper plug 8 has high electrolyte solution resistance and adhesiveness. Therefore, the dye-sensitized solar cell of the present invention is extremely excellent to withstand long-term storage and long-term use.

本発明は、電解質液封止性が高く、耐久性に優れている色素増感型太陽電池に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a dye-sensitized solar cell that has high electrolyte liquid sealing properties and excellent durability.

5 電解質液
8 封止栓
9 シール材硬化体
10 カバーガラス
A 負極側電極基板
B 正極側電極基板
Q 注入口
5 Electrolyte liquid 8 Seal plug 9 Sealing material cured body 10 Cover glass A Negative electrode substrate B Positive electrode substrate Q Inlet

Claims (4)

少なくとも一方の電極基板に電解質液の注入口を設けた一対の電極基板が、互いにその導電電極面を内側にした状態で所定間隔を保って配設され、上記一対の電極基板間の空隙が、それら基板の内側面の周縁部にシール材を配設することによりシールされ、そのシールされた空隙内に電解質液が封入されてなる色素増感型太陽電池であって、上記電解質液の注入口に封止栓が嵌入されていることを特徴とする色素増感型太陽電池。   A pair of electrode substrates provided with electrolyte solution inlets in at least one of the electrode substrates are disposed at a predetermined interval with the conductive electrode surfaces facing each other, and the gap between the pair of electrode substrates is A dye-sensitized solar cell that is sealed by disposing a sealing material on the peripheral edge of the inner side surface of the substrate, and in which the electrolyte solution is sealed in the sealed gap, the electrolyte solution inlet A dye-sensitized solar cell, wherein a sealing plug is inserted into the solar cell. 上記封止栓の上側に、シール材を介して透明封止板が重ねられ、封止栓と、シール材を介した透明封止板とで、上記電解質液の注入口が二重に封止された請求項1記載の色素増感型太陽電池。   A transparent sealing plate is stacked on the upper side of the sealing plug via a sealing material, and the inlet for the electrolyte solution is double sealed with the sealing plug and the transparent sealing plate via the sealing material. The dye-sensitized solar cell according to claim 1. 上記封止栓が、熱可塑性樹脂製封止栓である請求項1または2記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the sealing plug is a thermoplastic resin sealing plug. 上記封止栓が、ポリテトラフルオロエチレン製封止栓である請求項1〜3のいずれか一項に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the sealing plug is a polytetrafluoroethylene sealing plug.
JP2010178351A 2010-08-09 2010-08-09 Dye-sensitized solar cell Pending JP2012038602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178351A JP2012038602A (en) 2010-08-09 2010-08-09 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178351A JP2012038602A (en) 2010-08-09 2010-08-09 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2012038602A true JP2012038602A (en) 2012-02-23

Family

ID=45850389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178351A Pending JP2012038602A (en) 2010-08-09 2010-08-09 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2012038602A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117698A (en) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd Dye-sensitized solar cell
JP2009266778A (en) * 2008-04-30 2009-11-12 Nitto Denko Corp Dye-sensitized solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117698A (en) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd Dye-sensitized solar cell
JP2009266778A (en) * 2008-04-30 2009-11-12 Nitto Denko Corp Dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP5091681B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
WO2010041729A1 (en) Functional device and manufacturing method therefor
EP2099090B1 (en) Dye-sensitized solar cell
JP2012226855A (en) Dye-sensitized solar cell and sealant used therein
JP2002075472A (en) Color solar cell and manufacturing method of the same
EP2573862A1 (en) Photoelectric conversion element using thermosetting sealing agent for photoelectric conversion element
WO2009133800A1 (en) Pigment-sensitized solar battery
Ko et al. Self-healable electrochromic ion gels for low power and robust displays
JP4457266B2 (en) Curable composition and sealant using the same
JP2010180324A (en) Photo-setting composition, its use as sealing material for wet organic solar cell, and wet organic solar cell
JP2009289549A (en) Sealer for dye-sensitized solar cell
JP2010177031A (en) Dye-sensitized solar cell and its manufacturing method
JP2012028113A (en) Dye-sensitized solar cell
EP2400590A1 (en) Sealing agent for dye-sensitized solar cell and dye-sensitized solar cell
JP2012038602A (en) Dye-sensitized solar cell
JP4816864B2 (en) Dye-sensitized solar cell
JP2002368233A (en) Photoelectric converter
KR102512284B1 (en) Membrane-electrode assembly and preparation method thereof
US20140144504A1 (en) Uv curable sealing composition and dye-sensitized solar cell using the same
CN108949080A (en) sealant material and manufacturing method, display panel and manufacturing method
JP6276612B2 (en) Electrochemical cell and method for producing the same
JP4556232B2 (en) Dye-sensitized solar cell and method for producing the same
JP7365080B2 (en) photocurable composition
JP2011159514A (en) Sealing structure of dye-sensitized solar cell, and dye-sensitized solar cell
JP5750761B2 (en) Photocurable composition and its use as a sealing material for wet organic solar cells, and wet organic solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203