JP2010177031A - Dye-sensitized solar cell and its manufacturing method - Google Patents

Dye-sensitized solar cell and its manufacturing method Download PDF

Info

Publication number
JP2010177031A
JP2010177031A JP2009018234A JP2009018234A JP2010177031A JP 2010177031 A JP2010177031 A JP 2010177031A JP 2009018234 A JP2009018234 A JP 2009018234A JP 2009018234 A JP2009018234 A JP 2009018234A JP 2010177031 A JP2010177031 A JP 2010177031A
Authority
JP
Japan
Prior art keywords
electrolyte solution
sealing material
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018234A
Other languages
Japanese (ja)
Inventor
Kazumasa Igarashi
一雅 五十嵐
Yuki Hasegawa
由紀 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009018234A priority Critical patent/JP2010177031A/en
Publication of JP2010177031A publication Critical patent/JP2010177031A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which prevents elution of a seal material constituent caused by an electrolytic liquid and does not produce swelling and deterioration on sealing for a long period and has a high sealing nature and is excellent on reliability and durability. <P>SOLUTION: In the dye-sensitized solar cell wherein a pair of electrode substrates 1, 1' are sealed by facing each other and the electrolytic liquid 5 is poured into the sealed air gap, a through-hole 12a for pouring the electrolytic liquid is formed on at least a part of the electrode substrates 1, 1', the through-hole 12a is sealed by an elastic curing body 12, and the electrolytic liquid 5 is poured into the through-hole while a needle for pouring the electrolytic liquid is penetrated into the elastic curing body 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一対の電極基板を対向して接着シールし、電解質液を封入してなる色素増感型太陽電池に関し、電解質液シール性が高く耐久性に優れている色素増感型太陽電池およびその製法に関するものである。   The present invention relates to a dye-sensitized solar cell in which a pair of electrode substrates are oppositely bonded and sealed, and an electrolyte solution is enclosed, and the dye-sensitized solar cell having high electrolyte solution sealing property and excellent durability, and It relates to the manufacturing method.

色素が担持されたTiO2 等の半導体膜付き透明導電基板と対向電極基板との間に、レドックス系電解質液を封入した色素増感型太陽電池は、太陽光の変換効率が高く、低価格であることから、次世代の太陽電池として有望視されている。 A dye-sensitized solar cell in which a redox electrolyte solution is sealed between a transparent conductive substrate with a semiconductor film such as TiO 2 on which a dye is supported and a counter electrode substrate, has high conversion efficiency of sunlight and is inexpensive. Therefore, it is considered promising as a next-generation solar cell.

しかし、ヨウ素やヨウ化リチウム等のレドックス系電解質液を、ガラス基板やプラスチックフィルム基板に封入した場合、シール材料として、従来から使用されているエチレン−メタクリル酸共重合アイオノマー樹脂を用いると、上記電解質液の液漏れや外界からの吸湿を防止することができないため、この種の色素増感型太陽電池は、耐久性に劣るという問題があった。   However, when a redox electrolyte solution such as iodine or lithium iodide is sealed in a glass substrate or a plastic film substrate, the above-mentioned electrolyte can be obtained by using a conventionally used ethylene-methacrylic acid copolymer ionomer resin as a sealing material. This type of dye-sensitized solar cell has a problem of poor durability because liquid leakage and moisture absorption from the outside cannot be prevented.

このようなことから、上記エチレン−メタクリル酸共重合アイオノマー樹脂に代えて、液状エポキシ樹脂やシリコーン樹脂をシール材料として用い、上記電解質液を封止(シール)することが提案されている(特許文献1参照)。また、耐電解質液性に比較的優れるエラストマーを用いた色素増感型太陽電池用シール材料として、シランカップリング剤を含有し、分子中に少なくとも1個のヒドロシリル化反応可能なアルケニル基を含有する、ポリイソプレン系重合体とオルガノハイドロジェンポリシロキサンとを、ヒドロシリル化触媒により重合してなるシール材が提案されている(特許文献2参照)。一方、本発明者らは、長期にわたる封止において膨張や劣化を生じず、しかもシール性が高い光硬化(紫外線硬化)型シール材として、分子両末端の少なくとも一方に、1個以上の(メタ)アクリルロイル基を有する水添エラストマー誘導体を必須成分とする光重合性組成物を開発し、これをシール材として用いた色素増感型太陽電池を提案している(特許文献3参照)。   For this reason, it has been proposed to use a liquid epoxy resin or silicone resin as a sealing material instead of the ethylene-methacrylic acid copolymerized ionomer resin to seal (seal) the electrolyte solution (Patent Literature). 1). Further, as a dye-sensitized solar cell sealing material using an elastomer having relatively excellent electrolyte solution resistance, it contains a silane coupling agent and contains at least one alkenyl group capable of hydrosilylation reaction in the molecule. A sealing material obtained by polymerizing a polyisoprene polymer and an organohydrogenpolysiloxane with a hydrosilylation catalyst has been proposed (see Patent Document 2). On the other hand, the present inventors, as a photo-curing (ultraviolet-curing) type sealing material that does not cause expansion or deterioration in sealing over a long period of time and has high sealing performance, has at least one (meta) on at least one of both molecular ends. ) A photopolymerizable composition having a hydrogenated elastomer derivative having an acryloyl group as an essential component has been developed, and a dye-sensitized solar cell using this as a sealing material has been proposed (see Patent Document 3).

特開2000−30767号公報JP 2000-30767 A 特開2004−95248号公報JP 2004-95248 A 特開2008−140759号公報JP 2008-140759 A

上記シール材を熱硬化または光硬化した後の硬化体は、耐電解質液性に優れるものの、シール材の成分が電解質液に溶出する懸念があった。すなわち、従来の色素増感型太陽電池は、図2に示すように、シール(メインシール)7された空隙内に電解質液5を注入口10から注入した後、シール材8を硬化させて注入口10をシール(エンドシール)する構成である。そのため、シール材8が未硬化の状態で電解質液5と接触し、電解質液5に使用する溶媒の種類によっては、シール材8の成分が電解質液5に溶出する懸念がある。溶出したシール材成分は、電解質液5のイオン導電性を低下させ、発電効率が低下したり、また、シールが不充分なため、電解質液5そのものが漏洩する等の問題が生じるおそれがあった。なお、図2において、1,11は電極基板、2,2′は透明導電電極膜、3は多孔質半導体膜、4は増感色素、5は電解質液、6は導電膜、9はカバー材である。   The cured product after heat-curing or photo-curing the sealing material has excellent electrolyte solution resistance, but there is a concern that the components of the sealing material may be eluted into the electrolyte solution. That is, in the conventional dye-sensitized solar cell, as shown in FIG. 2, the electrolyte solution 5 is injected from the injection port 10 into the gap of the seal (main seal) 7, and then the sealing material 8 is cured and poured. The inlet 10 is configured to be sealed (end seal). Therefore, the sealing material 8 comes into contact with the electrolyte solution 5 in an uncured state, and the components of the sealing material 8 may be eluted into the electrolyte solution 5 depending on the type of solvent used for the electrolyte solution 5. The eluted sealing material component may reduce the ionic conductivity of the electrolyte solution 5 and reduce the power generation efficiency, or may cause problems such as leakage of the electrolyte solution 5 itself due to insufficient sealing. . In FIG. 2, 1 and 11 are electrode substrates, 2 and 2 'are transparent conductive electrode films, 3 is a porous semiconductor film, 4 is a sensitizing dye, 5 is an electrolyte solution, 6 is a conductive film, and 9 is a cover material. It is.

本発明は、このような事情に鑑みなされたもので、電解質液によるシール材成分の溶出を防ぎ、長期にわたる封止において膨潤や劣化を生じず、シール性が極めて高く、信頼性および耐久性に優れた、色素増感型太陽電池およびその製法の提供をその目的とする。   The present invention has been made in view of such circumstances, prevents elution of a sealing material component by an electrolyte solution, does not cause swelling or deterioration in long-term sealing, has extremely high sealing performance, and is reliable and durable. An object of the present invention is to provide an excellent dye-sensitized solar cell and a method for producing the same.

上記の目的を達成するため、本発明は、一対の電極基板を対向して接着シールし、そのシールされた空隙内に電解質液が注入されてなる色素増感型太陽電池であって、上記電極基板の少なくとも一部に電解質液注入用の貫通孔が形成され、この貫通孔が弾性硬化体により密封され、上記弾性硬化体に対して電解質液注入用ニードルを貫通させた状態で上記電解質液の注入がなされている色素増感型太陽電池を第1の要旨とする。また、本発明は、上記色素増感型太陽電池の製法であって、上記電極基板に形成された貫通孔を弾性硬化体で密封した後、上記弾性硬化体に対して電解質液注入用ニードルを貫通し上記電解質液を注入する色素増感型太陽電池の製法を第2の要旨とする。   In order to achieve the above object, the present invention provides a dye-sensitized solar cell in which a pair of electrode substrates are bonded and sealed facing each other, and an electrolyte solution is injected into the sealed gap. A through-hole for injecting an electrolyte solution is formed in at least a part of the substrate, and the through-hole is sealed with an elastic cured body, and the electrolyte solution injection needle is penetrated through the elastic cured body with the electrolyte solution injecting needle penetrated. The dye-sensitized solar cell that has been injected is a first gist. The present invention also relates to a method for producing the dye-sensitized solar cell, wherein the through hole formed in the electrode substrate is sealed with an elastic cured body, and then an electrolyte solution injection needle is attached to the elastic cured body. The manufacturing method of the dye-sensitized solar cell which penetrates and injects the electrolyte solution is a second gist.

本発明者らは、電解質液によるシール材成分の溶出を防ぎ、長期にわたる封止において膨潤や劣化を生じず、シール性が極めて高く、信頼性および耐久性に優れた色素増感型太陽電池を得るため、鋭意研究を重ねた。その結果、電極基板の少なくとも一部に形成した電解質液注入用の貫通孔を弾性硬化体により密封し、上記弾性硬化体に対して電解質液注入用ニードルを貫通させた状態で上記電解質液の注入がなされた色素増感型太陽電池により、所期の目的が達成できることを見いだし、本発明に到達した。すなわち、本発明の色素増感型太陽電池は、弾性硬化体(シーリング材のエラストマー硬化体等)に対して、電解質液注入用ニードルを貫通させた状態で上記電解質液を注入して、電解質液を封止(シール)している。そのため、従来のように、シール材(エンドシール材)が未硬化のまま、電解質液と接触することがなく、電解質液の溶媒により、シール材成分が電解質液に溶出するおそれもない。したがって、溶出したシール材成分により、電解質液のイオン導電性が低下したり、発電効率が低下したり、電解質液そのものが漏洩する等の問題も生じない。   The inventors of the present invention provide a dye-sensitized solar cell that prevents elution of a sealing material component by an electrolyte solution, does not swell or deteriorate during long-term sealing, has extremely high sealing performance, and is excellent in reliability and durability. In order to obtain it, earnest research was repeated. As a result, the electrolyte solution injection through hole formed in at least a part of the electrode substrate is sealed with an elastic cured body, and the electrolyte solution injection is performed with the electrolyte solution injection needle penetrating the elastic cured body. As a result, it was found that the intended purpose can be achieved by the dye-sensitized solar cell in which the above is achieved, and the present invention has been achieved. That is, the dye-sensitized solar cell of the present invention is obtained by injecting the electrolyte solution into an elastic cured body (such as an elastomer cured body of a sealing material) while penetrating the electrolyte solution injection needle. Is sealed (sealed). Therefore, unlike the conventional case, the sealing material (end sealing material) remains uncured and does not come into contact with the electrolyte solution, and the solvent of the electrolyte solution does not cause the sealing material component to elute into the electrolyte solution. Therefore, the eluted sealing material component does not cause problems such as a decrease in ionic conductivity of the electrolyte solution, a decrease in power generation efficiency, and leakage of the electrolyte solution itself.

このように、本発明の色素増感型太陽電池は、電極基板の少なくとも一部に形成した電解質液注入用の貫通孔が弾性硬化体により密封され、上記弾性硬化体に対して電解質液注入用ニードルを貫通させた状態で上記電解質液の注入がなされており、上記電解質液注入用ニードルを引き抜くと、上記弾性硬化体の弾性力によりニードルの孔が自動的に閉塞され電解質液が封止(シール)される。そのため、従来のように、シール材(エンドシール材)を用いることなく、電解質液の漏洩を防止することができる。また、上記弾性硬化体を保護するためシール材(エンドシール材)を用いた場合でも、シール材と電解質液とが直接接触することがなく、シール材成分が電解質液に溶出するおそれもない。このように、本発明の色素増感型太陽電池は、電解質液によるシール材成分の溶出を防ぐことができ、長期にわたる封止において膨潤や劣化を生じず、シール性が極めて高く、信頼性および耐久性に優れている。   As described above, in the dye-sensitized solar cell of the present invention, the through hole for electrolyte solution injection formed in at least a part of the electrode substrate is sealed by the elastic cured body, and the electrolyte solution injection for the elastic cured body is performed. The electrolyte solution is injected with the needle penetrated. When the electrolyte solution injection needle is pulled out, the hole of the needle is automatically closed by the elastic force of the elastic hardened body, and the electrolyte solution is sealed ( Sealed). Therefore, the leakage of the electrolyte solution can be prevented without using a sealing material (end sealing material) as in the prior art. Further, even when a sealing material (end sealing material) is used to protect the elastic cured body, the sealing material and the electrolyte solution do not come into direct contact, and the sealing material component is not likely to elute into the electrolyte solution. As described above, the dye-sensitized solar cell of the present invention can prevent elution of the sealing material component by the electrolyte solution, does not cause swelling or deterioration during long-term sealing, has extremely high sealing performance, reliability, and Excellent durability.

また、上記弾性硬化体が、シリコーンシーリング材、変性シリコーンシーリング材、フッ素系ポリマーシーリング材、アクリルウレタンシーリング材およびポリイソブチレンシーリング材からなる群から選ばれた少なくとも一つのシーリング材のエラストマー硬化体からなる場合には、シール性、信頼性および耐久性がさらに向上するようになる。   The elastic cured body is made of an elastomer cured body of at least one sealing material selected from the group consisting of a silicone sealing material, a modified silicone sealing material, a fluorine-based polymer sealing material, an acrylic urethane sealing material, and a polyisobutylene sealing material. In some cases, the sealing performance, reliability and durability are further improved.

本発明の色素増感型太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the dye-sensitized solar cell of this invention. 従来の色素増感型太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the conventional dye-sensitized solar cell.

つぎに、本発明を実施するための形態について説明する。   Next, an embodiment for carrying out the present invention will be described.

本発明の色素増感型太陽電池は、例えば、図1に示すように、電極基板1,1′が、それらの基板の導電電極面を内側にした状態で所定間隔を保って配設され、上記電極基板1,1′間の空隙が、それら基板の内側面の周縁部に、シール材7(メインシール)を配設することによりシールされ、そのシールされた空隙内に、電解質液5が封入されている。上記電極基板1上には、透明導電電極膜2を介して、多孔質半導体膜3が形成されており、この多孔質半導体膜3に増感色素4が吸着されている。また、他方の電極基板1′の導電電極面には、透明導電電極膜2′を介して、白金等の極薄膜からなる導電膜6が形成されている。これにより、図1では、上側の電極基板1′が正極となり、下側の電極基板1が負極となる。また、上記電極基板1′には、シールされた空隙内に電解質液5を注入するための貫通孔12aが2カ所設けられており、この貫通孔12aは、弾性硬化体12により密封され、上記弾性硬化体12に対して電解質液注入用ニードル(図示せず)を貫通させた状態で上記電解質液5の注入がなされ、電解質液5が封止(シール)されている。さらに、上記弾性硬化体12は、シール材8を用いて、薄片ガラス等のカバー材9により封着されている。   In the dye-sensitized solar cell of the present invention, for example, as shown in FIG. 1, electrode substrates 1 and 1 ′ are arranged at a predetermined interval with the conductive electrode surfaces of the substrates facing inside, The gap between the electrode substrates 1 and 1 ′ is sealed by disposing a sealing material 7 (main seal) on the peripheral edge of the inner surface of the substrates, and the electrolyte solution 5 is placed in the sealed gap. It is enclosed. A porous semiconductor film 3 is formed on the electrode substrate 1 via a transparent conductive electrode film 2, and a sensitizing dye 4 is adsorbed on the porous semiconductor film 3. A conductive film 6 made of an extremely thin film such as platinum is formed on the conductive electrode surface of the other electrode substrate 1 ′ via a transparent conductive electrode film 2 ′. As a result, in FIG. 1, the upper electrode substrate 1 'becomes the positive electrode, and the lower electrode substrate 1 becomes the negative electrode. Further, the electrode substrate 1 'is provided with two through holes 12a for injecting the electrolyte solution 5 into the sealed gap. The through holes 12a are sealed by the elastic hardening body 12, and The electrolyte solution 5 is injected in a state where an electrolyte solution injection needle (not shown) is passed through the elastic cured body 12, and the electrolyte solution 5 is sealed (sealed). Further, the elastic cured body 12 is sealed with a cover material 9 such as thin glass using a seal material 8.

本発明の色素増感型太陽電池における上記電極基板1,1′としては、透明なものが好ましく、例えば、白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等からなる無機質製基板、ポリエチレン(PE),ポリプロピレン(PP),ポリエステル,ナイロン,ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),塩化ビニル,シリコーン樹脂,ポリカーボネート,ポリイミド等の樹脂製基板、有機無機ハイブリット基板等があげられる。これらのなかでも、耐熱性等の点から、無機質製基板が好ましい。   The electrode substrate 1, 1 'in the dye-sensitized solar cell of the present invention is preferably transparent, for example, an inorganic substrate made of white plate glass, soda glass, borosilicate glass, ceramics, etc., polyethylene (PE) , Polypropylene (PP), polyester, nylon, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), resinous substrates such as vinyl chloride, silicone resin, polycarbonate, polyimide, and organic-inorganic hybrid substrates. Among these, an inorganic substrate is preferable from the viewpoint of heat resistance and the like.

上記透明導電電極膜2,2′としては、例えば、インジウム−スズ複合酸化物(ITO)、フッ素がドープされた酸化スズ(FTO)、アンチモンがドープされた酸化スズ(ATO)、酸化スズ等が用いられる。これらは単独でもしくは2種以上併せて用いることができる。   Examples of the transparent conductive electrode films 2 and 2 'include indium-tin composite oxide (ITO), tin oxide doped with fluorine (FTO), tin oxide doped with antimony (ATO), and tin oxide. Used. These may be used alone or in combination of two or more.

上記負極側の電極基板1上に、透明導電電極膜2を介して形成される多孔質半導体膜3としては、例えば、酸化チタン等からなる多孔質のn型金属酸化物半導体が好ましい。   As the porous semiconductor film 3 formed on the negative electrode substrate 1 through the transparent conductive electrode film 2, for example, a porous n-type metal oxide semiconductor made of titanium oxide or the like is preferable.

上記多孔質半導体膜3に吸着している増感色素4としては、例えば、太陽光の波長300〜2000nmの光を吸収し、かつ多孔質半導体膜3に吸着する増感色素等があげられる。上記増感色素4の材料としては、例えば、ルテニウム錯体系,ポルフィリン系,フタロシアニン系,メロシアニン系,クマリン系,インドリン系等の有機色素等があげられる。   Examples of the sensitizing dye 4 adsorbed on the porous semiconductor film 3 include a sensitizing dye that absorbs sunlight having a wavelength of 300 to 2000 nm and adsorbs on the porous semiconductor film 3. Examples of the material of the sensitizing dye 4 include organic dyes such as ruthenium complex, porphyrin, phthalocyanine, merocyanine, coumarin, and indoline.

一方、上記正極側の電極基板1′上に、透明導電電極膜2′を介して形成される導電膜6としては、例えば、白金,カーボン等の極薄膜があげられる。これにより、電極基板1′において、正孔の移動性がよくなる。なかでも、白金蒸着膜がより好ましく用いられる。なお、この導電膜6は、省略しても差し支えない。   On the other hand, examples of the conductive film 6 formed on the positive electrode substrate 1 ′ via the transparent conductive electrode film 2 ′ include an ultrathin film of platinum, carbon, or the like. This improves the hole mobility in the electrode substrate 1 '. Among these, a platinum vapor deposition film is more preferably used. Note that the conductive film 6 may be omitted.

上記両電極基板1,1′間の空隙に封入される電解質液5は、電解質を含有する液体のことであり、電解質と液体溶媒とからなる。上記電解質としては、例えば、ヨウ素等があげられる。上記液体溶媒としては、例えば、炭酸エチレン、アセトニトリル、メトキシプロピオニトリル等があげられ、これにヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合して電解質液が調製される。   The electrolyte solution 5 sealed in the gap between the electrode substrates 1 and 1 'is a liquid containing an electrolyte, and is composed of an electrolyte and a liquid solvent. Examples of the electrolyte include iodine. Examples of the liquid solvent include ethylene carbonate, acetonitrile, methoxypropionitrile, and the like, and an electrolyte solution is prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine, and the like.

ここで、本発明の色素増感型太陽電池においては、上記電極基板の少なくとも一部に貫通孔が形成され、この貫通孔が弾性硬化体により密封され、上記弾性硬化体に対して電解質液注入用ニードルを貫通させた状態で上記電解質液の注入がなされていることが最大の特徴である。図1においては、シールされた空隙内に電解質液5を注入するための貫通孔12aが、上記電極基板1′に2カ所設けられており、この貫通孔12aが弾性硬化体12により密封されている。本発明においては、上記弾性硬化体12に対して、電解質液注入用ニードル(図示せず)を貫通させた状態で電解質液5の注入がなされており、上記電解質液注入用ニードルを引き抜くと、上記弾性硬化体12の弾性力によりニードルの孔が自動的に閉塞され、電解質液が封止(シール)される。   Here, in the dye-sensitized solar cell of the present invention, a through hole is formed in at least a part of the electrode substrate, and the through hole is sealed with an elastic cured body, and an electrolyte solution is injected into the elastic cured body. The most important feature is that the electrolyte solution is injected in a state in which the needle is penetrated. In FIG. 1, two through holes 12 a for injecting the electrolyte solution 5 into the sealed gap are provided in the electrode substrate 1 ′. The through holes 12 a are sealed by the elastic hardening body 12. Yes. In the present invention, the electrolyte solution 5 is injected in a state where an electrolyte solution injection needle (not shown) is passed through the elastic cured body 12, and when the electrolyte solution injection needle is pulled out, The hole of the needle is automatically closed by the elastic force of the elastic cured body 12, and the electrolyte solution is sealed.

上記弾性硬化体12としては、三次元架橋された熱硬化性エラストマー弾性硬化体が好ましく、例えば、シリコーンシーリング材、変性シリコーンシーリング材、フッ素系ポリマーシーリング材、アクリルウレタンシーリング材およびポリイソブチレンシーリング材からなる群から選ばれた少なくとも一つのシーリング材のエラストマー硬化体等があげられる。   The elastic cured body 12 is preferably a three-dimensionally cross-linked thermosetting elastomer elastic cured body, for example, a silicone sealing material, a modified silicone sealing material, a fluorine-based polymer sealing material, an acrylic urethane sealing material, and a polyisobutylene sealing material. And an elastomer cured body of at least one sealing material selected from the group.

上記シリコーンシーリング材としては、例えば、湿気硬化性のアルコキシシリル基含有ポリジメチルシロキサン等があげられ、上記変性シリコーンシーリング材としては、例えば、末端にアルコキシシリル基を含有するポリエーテル等があげられる。上記フッ素系ポリマーシーリング材としては、例えば、末端がヒドロキシシリル化および末端不飽和化ポリジメチルシロキサンパーフルオロポリエーテルコポリマーとの熱硬化性フッ素シリコーン体等があげられ、上記アクリルウレタンシーリング材としては、例えば、イソシアネート硬化型水酸基含有アクリルポリマー等があげられ、上記ポリイソブチレンシーリング材としては、例えば、末端がヒドロキシシリル化および末端不飽和化ポリイソブチレンや、アルコキシリル基含有ポリイソブチレン等があげられる。   Examples of the silicone sealant include moisture curable alkoxysilyl group-containing polydimethylsiloxane, and examples of the modified silicone sealant include polyether containing an alkoxysilyl group at the terminal. Examples of the fluorine-based polymer sealing material include a thermosetting fluorosilicone body with a hydroxysilylated and terminal-unsaturated polydimethylsiloxane perfluoropolyether copolymer at the terminal, and the acrylic urethane sealing material includes: Examples thereof include isocyanate-curing hydroxyl group-containing acrylic polymers, and examples of the polyisobutylene sealing material include hydroxysilylated and terminally unsaturated polyisobutylenes having terminal ends and alkoxyl group-containing polyisobutylenes.

なお、図1においては、雹、風、雨等から保護するため、上記弾性硬化体12は、シール材8を用いて、薄片ガラス等のカバー材9により封着されている。   In FIG. 1, the elastic cured body 12 is sealed with a cover material 9 such as flake glass using a sealing material 8 in order to protect it from hail, wind, rain and the like.

上記シール材(エンドシール材)8としては、例えば、シール材7に用いる光重合性組成物と同様のものを用いることができる。   As the sealing material (end sealing material) 8, for example, the same material as the photopolymerizable composition used for the sealing material 7 can be used.

ここで、本発明の色素増感型太陽電池の製法について説明する。具体的には、図1に示すように、透明導電電極膜2付き電極基板1を準備し、この電極基板1の導電電極面(電解質液側)に、例えば、酸化チタンペーストを5〜50μmの厚みで塗布し、400〜600℃で0.5〜3時間焼成して、多孔質半導体膜3を形成する。つぎに、多孔質半導体膜3が形成された電極基板1を、濃度調整した増感色素4のエタノール溶液に浸漬する。その後、無水エタノールに浸漬することにより余剰の増感色素4を取り除き、乾燥することにより増感色素4が吸着した多孔質半導体膜3が得られる。つぎに、上記シール材7と接するこの電極基板1部分に、シランカップリング剤を用いて表面被覆処理をする。この表面被覆処理は、例えば、メタノールやエタノール等の有機溶媒に、上記シランカップリング剤を0.01〜5.0重量%の範囲で溶解させて、上記シール材7と接する電極基板1部分に塗布等し、60〜150℃の範囲で加熱することにより行われる。   Here, the manufacturing method of the dye-sensitized solar cell of this invention is demonstrated. Specifically, as shown in FIG. 1, an electrode substrate 1 with a transparent conductive electrode film 2 is prepared, and, for example, a titanium oxide paste of 5 to 50 μm is formed on the conductive electrode surface (electrolyte side) of the electrode substrate 1. The porous semiconductor film 3 is formed by coating with a thickness and baking at 400 to 600 ° C. for 0.5 to 3 hours. Next, the electrode substrate 1 on which the porous semiconductor film 3 is formed is immersed in an ethanol solution of the sensitizing dye 4 whose concentration is adjusted. Then, the excess sensitizing dye 4 is removed by immersing in absolute ethanol, and the porous semiconductor film 3 to which the sensitizing dye 4 is adsorbed is obtained by drying. Next, a surface coating treatment is performed on the portion of the electrode substrate 1 in contact with the sealing material 7 using a silane coupling agent. This surface coating treatment is performed, for example, by dissolving the silane coupling agent in an organic solvent such as methanol or ethanol in the range of 0.01 to 5.0% by weight to the electrode substrate 1 portion in contact with the sealing material 7. It is performed by coating and heating in the range of 60 to 150 ° C.

また、透明導電電極膜2′付き電極基板1′を準備し、この電極基板1′上の導電電極面(電解質液側)に、スパッタリング法等により白金蒸着膜等の導電膜6を蒸着形成する。上記電極基板1′に、ダイヤモンドドリル等で貫通孔12aを、例えば、2箇所開ける。つぎに、上記貫通孔12aに、上記弾性硬化体12用のシーリング材(例えば、シリコーンシーリング材等)を充填し、一旦室内に放置し、上記シーリング材の硬化体で上記貫通孔12aを密封する。その後、上記弾性硬化体(例えば、エラストマー硬化体)12の表面の凹凸がなくなるように整形し、電極基板1′(ガラス面)と弾性硬化体12面を平滑にするとともに、トルエンとメタノールにて電極基板1′(ガラス面)と導電膜6(白金面)を洗浄する。そして、シール材7と接するこの電極基板1′部分にも、上記電極基板1と同様に、シランカップリング剤を塗布して表面被覆処理する。   Also, an electrode substrate 1 ′ with a transparent conductive electrode film 2 ′ is prepared, and a conductive film 6 such as a platinum vapor deposition film is deposited on the conductive electrode surface (electrolyte side) on the electrode substrate 1 ′ by sputtering or the like. . For example, two holes 12a are formed in the electrode substrate 1 'with a diamond drill or the like. Next, the through-hole 12a is filled with a sealing material (for example, silicone sealing material) for the elastic cured body 12, and is left in the room to seal the through-hole 12a with a cured body of the sealing material. . After that, the elastic cured body (for example, elastomer cured body) 12 is shaped so that there are no irregularities on the surface, the electrode substrate 1 '(glass surface) and the elastic cured body 12 are smoothed, and toluene and methanol are used. The electrode substrate 1 ′ (glass surface) and the conductive film 6 (platinum surface) are cleaned. Then, similarly to the electrode substrate 1, a silane coupling agent is applied to the electrode substrate 1 ′ that is in contact with the sealing material 7 and surface-treated.

つぎに、前述の手法と同様にして作製した上記光重合性組成物を、電極基板1および1′の少なくとも一方の所定部分に塗布し、シール材7の未硬化物を形成する。そして、導電電極面を内側にした状態で、電極基板1および1′をシール材7により貼り合せ、高圧水銀灯等の紫外線照射装置を用いて、照射強度0.5〜10000mW/cm2 で、照射時間0.5〜600秒間の条件で、紫外線照射(窒素雰囲気中であることが好ましい)して硬化させ、メインシールを行う。 Next, the photopolymerizable composition prepared in the same manner as described above is applied to at least one predetermined part of the electrode substrates 1 and 1 'to form an uncured material of the seal material 7. Then, with the conductive electrode surface facing inward, the electrode substrates 1 and 1 'are bonded together with the sealing material 7, and irradiated with an irradiation intensity of 0.5 to 10000 mW / cm 2 using an ultraviolet irradiation device such as a high-pressure mercury lamp. Under the condition of time of 0.5 to 600 seconds, it is cured by ultraviolet irradiation (preferably in a nitrogen atmosphere) to perform main sealing.

つぎに、上記電極基板1′の一方の貫通孔12aを密封した弾性硬化体12に対して、電解質液5を入れたシリンジ(注射筒)のニードル(注射針)を貫通させる。また、上記電極基板1′の他方の貫通孔12aに充填したシリコーンシーリング材の硬化体12部分には、空気抜きとして、ニードルのみを差しむ。そして、上記シリンジを押し込むことで、ニードルを介して電解質液5を、上記電極基板1,1′間の空隙に注入し、電解質液5の注入が終了した後、ニードルを注入口から引き抜く。さらに、上記メインシール材用の光重合性組成物と同様の光重合性組成物を塗布した薄片ガラス等のカバー材9を載せ、上記と同様に、紫外線照射し組成物を硬化させて封口(エンドシール)を行なう。このようにして、図1に示す色素増感型太陽電池を得ることができる。   Next, a needle (injection needle) of a syringe (injection cylinder) containing the electrolyte solution 5 is passed through the elastic cured body 12 in which one through hole 12a of the electrode substrate 1 'is sealed. Further, only the needle is inserted into the hardened body 12 portion of the silicone sealing material filled in the other through hole 12a of the electrode substrate 1 'as air vent. And by pushing in the said syringe, the electrolyte solution 5 is inject | poured into the space | gap between the said electrode substrates 1 and 1 'through a needle, After injection | pouring of the electrolyte solution 5 is complete | finished, a needle is pulled out from an injection port. Further, a cover material 9 such as glass flakes coated with a photopolymerizable composition similar to the photopolymerizable composition for the main sealing material is placed, and in the same manner as described above, the composition is sealed by irradiation with ultraviolet rays to cure the composition ( End seal). In this way, the dye-sensitized solar cell shown in FIG. 1 can be obtained.

本発明の色素増感型太陽電池におけるシール材等は、目的および用途により、適宜、適当な厚み(基板間)および幅にして用いることができ、通常、幅が1〜5mm程度、厚みが50〜500μmであることが好ましい。   The sealing material or the like in the dye-sensitized solar cell of the present invention can be appropriately used in an appropriate thickness (between substrates) and width depending on the purpose and application. Usually, the width is about 1 to 5 mm and the thickness is 50. It is preferable that it is -500 micrometers.

つぎに、実施例について、比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

〔実施例1〕
(負極側電極基板の作製)
フッ素ドープ透明導電電極膜付ホウ珪酸ガラス板(大きさ:26mm×76mm×厚み1.3mm)の一面に、酸化チタンペーストをスクリーン印刷した後、500℃で1時間焼成することにより、厚み8〜12μmの半導体膜を作製した。つぎに、この半導体膜を、ルテニウム系増感色素(Solaronix 社製、ルテニウム535色素)のエタノール溶液に一旦浸漬し、無水エタノールで洗浄して色素を吸着させた。さらに、シール材を配設する周辺部のメインシール塗工部に、3−アクリロキシプロピルトリメトキシシランの1重量%メタノール溶液を塗布し、100℃で10分間乾燥し、シランカップリング剤で表面被覆処理した負極側電極基板を作製した。
[Example 1]
(Preparation of negative electrode substrate)
A titanium oxide paste is screen-printed on one surface of a borosilicate glass plate with a fluorine-doped transparent conductive electrode film (size: 26 mm × 76 mm × thickness 1.3 mm), and then baked at 500 ° C. for 1 hour to obtain a thickness of 8 to A 12 μm semiconductor film was produced. Next, this semiconductor film was once immersed in an ethanol solution of a ruthenium-based sensitizing dye (manufactured by Solaronix, ruthenium 535 dye) and washed with absolute ethanol to adsorb the dye. Further, a 1 wt% methanol solution of 3-acryloxypropyltrimethoxysilane is applied to the main seal coating portion around the seal material and dried at 100 ° C. for 10 minutes, and the surface is coated with a silane coupling agent. A coated negative electrode substrate was prepared.

(正極側電極基板の作製)
白金膜付ホウ珪酸ガラス板(大きさ:26mm×76mm×厚み1.3mm)に、ダイヤモンドドリルで貫通孔(直径2mm)を2箇所開けた。つぎに、上記貫通孔にシリコーンシーリング材(セメダイン社製、セメダイン8060)を充填し、一旦室内に放置し、上記シリコーンシーリング材の硬化体で上記貫通孔を密封した。その後、上記硬化体の表面の凹凸がなくなるように整形し、ガラス面と硬化体面を平滑にするとともに、トルエンとメタノールにてガラス面と白金面を洗浄した。つぎに、シール材を配設する周辺部のメインシール塗工部に、3−アクリロキシプロピルトリメトキシシランの1重量%メタノール溶液を塗布し、100℃で10分間乾燥し、シランカップリング剤で表面被覆処理した正極側電極基板を作製した。
(Preparation of positive electrode substrate)
Two holes (diameter 2 mm) were opened with a diamond drill in a borosilicate glass plate with a platinum film (size: 26 mm × 76 mm × thickness 1.3 mm). Next, a silicone sealing material (Cemedine 8060, manufactured by Cemedine Co., Ltd.) was filled in the through hole, and then left in the room, and the through hole was sealed with a cured body of the silicone sealing material. Then, it shape | molded so that the unevenness | corrugation of the surface of the said hardening body might be eliminated, and while smoothing the glass surface and the hardening body surface, the glass surface and the platinum surface were wash | cleaned with toluene and methanol. Next, a 1 wt% methanol solution of 3-acryloxypropyltrimethoxysilane is applied to the main seal coating portion around the seal material and dried at 100 ° C. for 10 minutes. A positive electrode substrate subjected to surface coating treatment was prepared.

(色素増感型太陽電池の作製)
上記負極側電極基板および正極側電極基板の導電電極面を内側にした状態で、50μm(50μmポリイミドテープをスペーサーに使用)に間隔を保って、光重合性組成物を塗布し、窒素気流下、積算光量3000mJ/cm2 の条件で紫外線硬化させて、負極側電極基板および正極側電極基板の導電電極面を貼り合わせてメインシールを行なった。
(Preparation of dye-sensitized solar cell)
With the conductive electrode surfaces of the negative electrode substrate and the positive electrode substrate facing inside, the photopolymerizable composition was applied at a distance of 50 μm (50 μm polyimide tape was used as a spacer), under a nitrogen stream, Ultraviolet curing was performed under conditions of an integrated light quantity of 3000 mJ / cm 2 , and the negative electrode substrate and the conductive electrode surface of the positive electrode substrate were bonded together to perform main sealing.

つぎに、上記正極側電極基板の一方の貫通孔を密封したエラストマー硬化体に対して、電解質液〔組成:I2 (0.1mol/L)、4−t−ブチルピリジン(0.5mol/L)のアセトニトリル溶媒〕を入れたシリンジ(注射筒)のニードル(注射針、直径0.4mm)を貫通させた。また、上記正極側電極基板の他方の貫通孔を密封したエラストマー硬化体に対しては、空気抜きとして、ニードル(直径0.4mm)のみを差しんだ。その後、上記シリンジを押し込むことで、ニードルを介して電解質液を、上記電極基板間の空隙に注入した。電解質液の注入が終了した後、ニードルを注入口から引き抜いた。この時、電解質液の注入口からの漏れはなかった。さらに、上記メインシール材用の光重合性組成物と同様の光重合性組成物を塗布した薄片ガラスを載せ、窒素気流下、積算光量3000mJ/cm2 の条件で紫外線硬化させて、エンドシールを行い、色素増感型太陽電池を作製した。 Next, an electrolyte solution [composition: I 2 (0.1 mol / L), 4-t-butylpyridine (0.5 mol / L) is applied to the cured elastomer having one through hole of the positive electrode substrate sealed. The needle (injection needle, diameter 0.4 mm) of a syringe (injection cylinder) containing the acetonitrile solvent] was passed through. Moreover, only the needle (diameter 0.4 mm) was inserted into the cured elastomer having the other through hole of the positive electrode substrate sealed as air. Thereafter, the syringe was pushed in to inject the electrolyte solution into the gap between the electrode substrates through the needle. After the injection of the electrolyte solution was completed, the needle was pulled out from the injection port. At this time, there was no leakage from the electrolyte solution inlet. Further, a thin glass coated with a photopolymerizable composition similar to the photopolymerizable composition for the main sealing material is placed, and UV-cured under a condition of an integrated light quantity of 3000 mJ / cm 2 under a nitrogen stream, and an end seal is formed. The dye-sensitized solar cell was manufactured.

〔実施例2〕
実施例1のエラストマー硬化体用のシリコーンシーリング材(セメダイン社製、セメダイン8060)に代えて、フッ素系ポリマーシーリング材(信越化学工業社製、SIFEL8370A/B液、2液加熱硬化タイプ)を用いた。それ以外は、実施例1の製法に準じて、色素増感型太陽電池を作製した。
[Example 2]
Instead of the silicone sealing material for the cured elastomer of Example 1 (Cemedine, Cemedine 8060), a fluorine-based polymer sealing material (Shin-Etsu Chemical Co., Ltd., SIFEL8370A / B solution, two-component heat curing type) was used. . Other than that, the dye-sensitized solar cell was produced according to the manufacturing method of Example 1.

〔実施例3〕
実施例1のエラストマー硬化体用のシリコーンシーリング材(セメダイン社製、セメダイン8060)に代えて、ポリイソブチレンシーリング材(カネカ社製、エピオンSタイプ、常温縮合硬化タイプ)を用いた。それ以外は、実施例1の製法に準じて、色素増感型太陽電池を作製した。
Example 3
Instead of the silicone sealing material for the cured elastomer of Example 1 (Cemedine, Cemedine 8060), a polyisobutylene sealing material (Kaneka, Epion S type, room temperature condensation curable type) was used. Other than that, the dye-sensitized solar cell was produced according to the manufacturing method of Example 1.

〔比較例〕
前述の図2に示したような、シール(メインシール)された空隙内に電解質液を注入口から注入した後、注入口をシール(エンドシール)する構造の色素増感型太陽電池を作製した。
[Comparative Example]
A dye-sensitized solar cell having a structure in which the electrolyte solution is injected into the sealed (main sealed) gap as shown in FIG. 2 from the injection port and then the injection port is sealed (end seal) was produced. .

(負極側電極基板の作製)
実施例1と同様にして負極側電極基板を作製した。
(Preparation of negative electrode substrate)
A negative electrode substrate was prepared in the same manner as in Example 1.

(正極側電極基板の作製)
図2に示すように、電解質液の注入口(開孔部)を有する以外は、実施例1と略同様にして正極側電極基板を作製した。
(Preparation of positive electrode substrate)
As shown in FIG. 2, a positive electrode substrate was prepared in substantially the same manner as in Example 1 except that it had an electrolyte solution inlet (opening).

(色素増感型太陽電池の作製)
上記負極側電極基板および正極側電極基板の導電電極面を内側にした状態で、50μm(50μmポリイミドテープをスペーサーに使用)に間隔を保って、光重合性組成物を塗布し、窒素気流下、積算光量3000mJ/cm2 の条件で紫外線硬化させて、負極側電極基板および正極側電極基板の導電電極面を貼り合わせてメインシールを行なった。つぎに、対向して貼り合わせた正極側電極基板の注入口(開孔部)から、実施例1と同様の電解質液を注入した。さらに、上記メインシール材用の光重合性組成物と同様の光重合性組成物を塗布した薄片ガラスを載せ、窒素気流下、積算光量3000mJ/cm2 の条件で紫外線硬化させて、エンドシールを行い、色素増感型太陽電池を作製した。
(Preparation of dye-sensitized solar cell)
With the conductive electrode surfaces of the negative electrode substrate and the positive electrode substrate facing inside, the photopolymerizable composition was applied at a distance of 50 μm (50 μm polyimide tape was used as a spacer), under a nitrogen stream, Ultraviolet curing was performed under conditions of an integrated light quantity of 3000 mJ / cm 2 , and the negative electrode substrate and the conductive electrode surface of the positive electrode substrate were bonded together to perform main sealing. Next, an electrolyte solution similar to that in Example 1 was injected from the injection port (opening portion) of the positive electrode substrate bonded together. Further, a thin glass coated with a photopolymerizable composition similar to the photopolymerizable composition for the main sealing material is placed, and UV-cured under a condition of an integrated light quantity of 3000 mJ / cm 2 under a nitrogen stream, and an end seal is formed. The dye-sensitized solar cell was manufactured.

このようにして得られた実施例および比較例の色素増感型太陽電池を用い、下記の基準に従って、電解質液充填保持率を測定した。その結果を下記の表1に示した。   Using the dye-sensitized solar cells of Examples and Comparative Examples thus obtained, the electrolyte solution filling retention was measured according to the following criteria. The results are shown in Table 1 below.

〔電解質液充填保持率〕
得られた各色素増感型太陽電池を、85℃の高温乾燥機中に500時間放置して、電解質液充填保持率を求め、電解質液の漏洩性を評価した。また、電解質液の漏洩があった場合には、漏洩箇所を目視で観察した。
[Electrolytic solution filling retention]
Each of the obtained dye-sensitized solar cells was left in a high-temperature dryer at 85 ° C. for 500 hours to determine the electrolyte solution filling retention rate, and the leakage of the electrolyte solution was evaluated. Moreover, when there was leakage of the electrolyte solution, the leakage portion was visually observed.

Figure 2010177031
Figure 2010177031

上記表1の結果から、実施例品は、500時間放置しても電池セルの電解質液漏れはなく、耐久性に優れていた。なお、実施例1のエラストマー硬化体用のシリコーンシーリング材に代えて、変性シリコーンシーリング材、アクリルウレタンシーリング材、ポリイソブチレンシーリング材を用いた場合でも、実施例1と同様の優れた効果が得られることを、本発明者らは確認している。   From the results shown in Table 1, the product of the example was excellent in durability without leakage of the electrolyte solution of the battery cell even after being left for 500 hours. Even when a modified silicone sealant, an acrylic urethane sealant, or a polyisobutylene sealant is used in place of the silicone sealant for the cured elastomer of Example 1, the same excellent effect as in Example 1 can be obtained. The present inventors have confirmed that.

これに対して、比較例品は、電解質液充填保持率は84%であり、16%の電解質液が注入口から漏洩し、耐久性が劣っていた。比較例品では、シール材(エンドシール材)が未硬化の状態で電解質液と接触し、電解質液に使用する溶媒によって、シール材の成分が電解質液に溶出するため、シールが不充分となり、電解質液が漏洩するためであると考えられる。   On the other hand, the comparative example product had an electrolyte solution filling retention rate of 84%, and 16% of the electrolyte solution leaked from the inlet, resulting in poor durability. In the comparative example product, the seal material (end seal material) comes into contact with the electrolyte solution in an uncured state, and the components of the seal material are eluted into the electrolyte solution by the solvent used in the electrolyte solution. This is probably because the electrolyte solution leaks.

本発明の色素増感型太陽電池は、電解質液によるシール材成分の溶出を防ぐことができ、長期にわたる封止において膨潤や劣化を生じず、シール性が極めて高く、信頼性および耐久性に優れている。   The dye-sensitized solar cell of the present invention can prevent elution of the sealing material component by the electrolyte solution, does not swell or deteriorate during long-term sealing, has extremely high sealing performance, and is excellent in reliability and durability. ing.

1,1′電極基板
5 電解質液
8 シール材
12a 貫通孔
12 弾性硬化体
1, 1 'electrode substrate 5 electrolyte solution 8 sealing material 12a through-hole 12 elastic hardened body

Claims (3)

一対の電極基板を対向して接着シールし、そのシールされた空隙内に電解質液が注入されてなる色素増感型太陽電池であって、上記電極基板の少なくとも一部に電解質液注入用の貫通孔が形成され、この貫通孔が弾性硬化体により密封され、上記弾性硬化体に対して電解質液注入用ニードルを貫通させた状態で上記電解質液の注入がなされていることを特徴とする色素増感型太陽電池。   A dye-sensitized solar cell in which a pair of electrode substrates are bonded and sealed facing each other, and an electrolyte solution is injected into the sealed gap, and at least a part of the electrode substrate penetrates for injection of the electrolyte solution A hole is formed, the through hole is sealed with an elastic cured body, and the electrolyte solution is injected in a state in which the electrolyte solution injection needle is passed through the elastic cured body. Sensitive solar cell. 上記弾性硬化体が、シリコーンシーリング材、変性シリコーンシーリング材、フッ素系ポリマーシーリング材、アクリルウレタンシーリング材およびポリイソブチレンシーリング材からなる群から選ばれた少なくとも一つのシーリング材のエラストマー硬化体からなる請求項1記載の色素増感型太陽電池。   The elastic cured body comprises an elastomer cured body of at least one sealing material selected from the group consisting of a silicone sealing material, a modified silicone sealing material, a fluorine-based polymer sealing material, an acrylic urethane sealing material, and a polyisobutylene sealing material. 1. The dye-sensitized solar cell according to 1. 請求項1または2記載の色素増感型太陽電池の製法であって、上記電極基板に形成された貫通孔を弾性硬化体で密封した後、上記弾性硬化体に対して電解質液注入用ニードルを貫通し上記電解質液を注入することを特徴とする色素増感型太陽電池の製法。   3. The method for producing a dye-sensitized solar cell according to claim 1, wherein a through hole formed in the electrode substrate is sealed with an elastic cured body, and then an electrolyte solution injection needle is attached to the elastic cured body. A method for producing a dye-sensitized solar cell, which penetrates and injects the electrolyte solution.
JP2009018234A 2009-01-29 2009-01-29 Dye-sensitized solar cell and its manufacturing method Pending JP2010177031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018234A JP2010177031A (en) 2009-01-29 2009-01-29 Dye-sensitized solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018234A JP2010177031A (en) 2009-01-29 2009-01-29 Dye-sensitized solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010177031A true JP2010177031A (en) 2010-08-12

Family

ID=42707766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018234A Pending JP2010177031A (en) 2009-01-29 2009-01-29 Dye-sensitized solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010177031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156456B1 (en) 2011-06-16 2012-06-18 주식회사 티모이앤엠 Dye-sensitized solar cell module wiht multilayer sealing
KR101255756B1 (en) 2011-04-14 2013-04-17 주식회사 이건창호 Method for sealing injection hole of electrolyte for dye-sensitized solar cell using glass-frit and adhesive resin
JP2013543630A (en) * 2010-09-03 2013-12-05 コーニング インコーポレイテッド Process for sealing glass package and resulting glass package
JP2014229364A (en) * 2013-05-17 2014-12-08 積水化学工業株式会社 Test piece for evaluation, power generation performance, catalytic activity, density of redox couple in electrolyte, evaluation method of amount of sensitizing dye eluted into electrolyte, management method of manufacturing facility of dye-sensitized solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307786A (en) * 2000-04-18 2001-11-02 Fuji Xerox Co Ltd Photoelectric transfer element, its production method and photoelectric transfer module
JP2003332602A (en) * 2002-05-09 2003-11-21 Seiko Epson Corp Photoelectric conversion element
JP2005222941A (en) * 2004-02-03 2005-08-18 Samsung Sdi Co Ltd Dye-sensitized solar cell and manufacturing method therefor
JP2006210317A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2006324201A (en) * 2005-05-20 2006-11-30 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2007059181A (en) * 2005-08-24 2007-03-08 Sony Corp Optical device and manufacturing method therefor
JP2007123088A (en) * 2005-10-28 2007-05-17 Sfc:Kk Dye-sensitized solar cell
JP2007280761A (en) * 2006-04-06 2007-10-25 Kyocera Corp Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307786A (en) * 2000-04-18 2001-11-02 Fuji Xerox Co Ltd Photoelectric transfer element, its production method and photoelectric transfer module
JP2003332602A (en) * 2002-05-09 2003-11-21 Seiko Epson Corp Photoelectric conversion element
JP2005222941A (en) * 2004-02-03 2005-08-18 Samsung Sdi Co Ltd Dye-sensitized solar cell and manufacturing method therefor
JP2006210317A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2006324201A (en) * 2005-05-20 2006-11-30 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2007059181A (en) * 2005-08-24 2007-03-08 Sony Corp Optical device and manufacturing method therefor
JP2007123088A (en) * 2005-10-28 2007-05-17 Sfc:Kk Dye-sensitized solar cell
JP2007280761A (en) * 2006-04-06 2007-10-25 Kyocera Corp Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543630A (en) * 2010-09-03 2013-12-05 コーニング インコーポレイテッド Process for sealing glass package and resulting glass package
KR101255756B1 (en) 2011-04-14 2013-04-17 주식회사 이건창호 Method for sealing injection hole of electrolyte for dye-sensitized solar cell using glass-frit and adhesive resin
KR101156456B1 (en) 2011-06-16 2012-06-18 주식회사 티모이앤엠 Dye-sensitized solar cell module wiht multilayer sealing
JP2014229364A (en) * 2013-05-17 2014-12-08 積水化学工業株式会社 Test piece for evaluation, power generation performance, catalytic activity, density of redox couple in electrolyte, evaluation method of amount of sensitizing dye eluted into electrolyte, management method of manufacturing facility of dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
Wang et al. Encapsulation and stability testing of perovskite solar cells for real life applications
Chen et al. PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell
JP5091681B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
Ikegami et al. Improvement in durability of flexible plastic dye-sensitized solar cell modules
Rondán-Gómez et al. Recent advances in dye-sensitized solar cells
Wu et al. Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell
JP3982968B2 (en) Dye-sensitized solar cell using polymer electrolyte and method for producing the same
JP2007059181A (en) Optical device and manufacturing method therefor
JP2009245782A (en) Dye-sensitized solar cell
JP4887694B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, PHOTOELECTRIC CONVERSION ELEMENT MODULE, ELECTRONIC DEVICE, MOBILE BODY, POWER GENERATION SYSTEM, DISPLAY AND MANUFACTURING METHOD
JP2007066526A (en) Semiconductor electrode, dye-sensitized solar cell, and its manufacturing method
JP2010177031A (en) Dye-sensitized solar cell and its manufacturing method
JP2006100069A (en) Photoelectric conversion device and photovoltaic power generator
JP2011165469A (en) Semiconductor electrode layer, method of manufacturing the same, and electrochemical device
US10020120B2 (en) Electronic device and manufacturing method for same
JP2006004827A (en) Photoelectric conversion element and its manufacturing method
JP5960921B2 (en) Method for reactivating counter electrode active material of dye-sensitized solar cell, method for regenerating dye-sensitized solar cell, catalyst layer, counter electrode, and dye-sensitized solar cell
JP5105936B2 (en) Dye-sensitized solar cell sealing material and dye-sensitized solar cell using the same
US20110277807A1 (en) Photoelectric conversion module
JP2010040432A (en) Dye-sensitized solar cell and partition forming method
JP2008251421A (en) Electrode for dye-sensitized solar cell, and dye-sensitized solar cell using it
JP4759646B1 (en) Electronic device and manufacturing method thereof
JP4759647B1 (en) Electronic device and manufacturing method thereof
CN102484302B (en) Dye-sensitized solar cell
JP5465446B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119