JP2008117698A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2008117698A
JP2008117698A JP2006301571A JP2006301571A JP2008117698A JP 2008117698 A JP2008117698 A JP 2008117698A JP 2006301571 A JP2006301571 A JP 2006301571A JP 2006301571 A JP2006301571 A JP 2006301571A JP 2008117698 A JP2008117698 A JP 2008117698A
Authority
JP
Japan
Prior art keywords
inlet
sealing plug
sealing
liquid material
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006301571A
Other languages
Japanese (ja)
Inventor
Kenichi Hiwatari
賢一 日渡
Naoto Masuyama
直人 桝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2006301571A priority Critical patent/JP2008117698A/en
Publication of JP2008117698A publication Critical patent/JP2008117698A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To perfectly seal an inlet for a liquid material after filling the liquid material, and to enhance long-term reliability of sealing performance, in a dye-sensitized solar cell having a structure with the liquid material filled between two substrates. <P>SOLUTION: The inlet 5 is formed on a first substrate 1, the liquid material 3 is filled in a space from the inlet 5, and the inlet 5 is sealed by inserting a sealing plug 6 into the inlet 5. The shape of the inlet 5 is formed into a tapered shape broadened toward the outside surface of the first substrate 1 from the inside surface thereof, and the shape of the sealing plug 6 is preferably formed into a tapered shape tapering toward a tip in its insertion direction. In addition, the inlet 5 with the sealing plug 6 inserted therein is covered with a single or multilayer cover material 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、色素増感太陽電池に関し、詳しくは電解液などの液体材料が封入された後の注入口を封止する構造に関する。   The present invention relates to a dye-sensitized solar cell, and more particularly to a structure for sealing an injection port after a liquid material such as an electrolyte is sealed.

色素増感型太陽電池の代表的な作製方法は以下の通りである。透明導電膜を形成したガラス基板に酸化チタン膜を形成してから色素を吸着させ、この吸着後に逆電子移動防止用にカルボン酸や有機金属塩等で処理をしたものを負極に用いている。正極は、透明導電膜を形成したガラス基板にPtを蒸着法やPt塩の熱分解法、電界メッキ等で形成している。この正極と負極をアイオノマーなどの封止材を用いて、110℃程度で熱融着させ、最後に電解液を充填している。   A typical method for producing a dye-sensitized solar cell is as follows. A dye is adsorbed after a titanium oxide film is formed on a glass substrate on which a transparent conductive film is formed, and the negative electrode is treated with carboxylic acid or an organic metal salt to prevent reverse electron transfer after this adsorption. The positive electrode is formed by depositing Pt on a glass substrate on which a transparent conductive film is formed by vapor deposition, pyrolysis of Pt salt, electroplating, or the like. The positive electrode and the negative electrode are heat-sealed at about 110 ° C. using a sealing material such as an ionomer, and finally filled with an electrolytic solution.

このようなプロセスで作製した色素増感型太陽電池において、セルに電解液を注入するために、ガラス基板に注入口を形成し、電解液を真空注入、圧力注入等によりこの注入口からセルに入れる。セルに電解液を満たした後にマスクガラスやゴム栓等で封止して、その上から紫外線硬化樹脂等を塗布して硬化させている。
紫外線硬化樹脂のモノマーや未反応物を嫌う色素増感型太陽電池の特性を考慮して、ガラス管を注入口に敷設して電解液を注入した後にガラス管をバーナーで溶かして封止する方法も検討されている(特許文献1)
In a dye-sensitized solar cell manufactured by such a process, in order to inject an electrolytic solution into the cell, an inlet is formed in the glass substrate, and the electrolytic solution is injected from the inlet into the cell by vacuum injection, pressure injection, or the like. Put in. After the cell is filled with the electrolytic solution, it is sealed with a mask glass or a rubber plug, and an ultraviolet curable resin or the like is applied and cured thereon.
Considering the characteristics of dye-sensitized solar cells that dislike UV-curable resin monomers and unreacted materials, a method of sealing a glass tube by melting it with a burner after laying the glass tube at the inlet and injecting the electrolyte (Patent Document 1)

その他の注入口の封止方法として、封止ブロックを挿入して隙間をエポキシ樹脂で固定する方法(特許文献2)、50〜40000CPSの熱硬化型、または紫外線硬化型樹脂やシリコーン樹脂、弗素樹脂で注入口を塞ぐ方法(特許文献3)、ガラス管を注入口に敷設して電解液を注入した後に電解液の循環系として使用する方法(特許文献4)、チャック付きビニール袋に入れて封止する方法(特許文献5)が挙げられる。   As other sealing methods for the inlet, a method of inserting a sealing block and fixing the gap with an epoxy resin (Patent Document 2), a thermosetting type of 50 to 40000 CPS, an ultraviolet curable resin, a silicone resin, or a fluorine resin (Patent Document 3), a method of using a glass tube laid on the inlet and injecting an electrolyte solution, and then using it as a circulation system for the electrolyte solution (Patent Document 4), sealing in a plastic bag with a chuck The method (patent document 5) to stop is mentioned.

これらの方法では構造が複雑になりコストが掛かるものであったり、衝撃性に弱いという欠点があり電解液の封止が完全に成らずに実用化には至っていない。   These methods are complicated in structure and costly, and have a drawback that they are weak in impact properties, so that the electrolytic solution is not completely sealed and has not been put into practical use.

一般的な注入口を封止する方法においては、注入口から電解液が浸透して、封止させる接着面での剥離を促進し、且つ電解液の溶媒自体が揮発するという問題が発生している。 特に電解液の溶媒が一般的には低分子系の溶剤が使用されており、プロピレンカーボネイト、アセトニトリル、エチレンカーボネイト、エタノール、エチルケトン等であり、接着剤を溶かす溶剤が電解液の溶媒であるために、接着剤が硬化しても部分的に硬化していない接着剤を溶解し、または接着剤が固定化している接着界面に浸透し膨潤させることにより剥離が進行していくという現象が発生していた。特に温度が高くなると電解液の蒸気圧や体積膨張による圧力で注入口の封止部分の剥離が顕著であり、室外での使用には大きな支障となった。   In a general method of sealing the inlet, there is a problem that the electrolyte permeates from the inlet, promotes peeling on the sealing adhesive surface, and the solvent of the electrolyte itself volatilizes. Yes. In particular, the solvent of the electrolyte is generally a low molecular weight solvent such as propylene carbonate, acetonitrile, ethylene carbonate, ethanol, ethyl ketone, etc., and the solvent that dissolves the adhesive is the solvent of the electrolyte. The phenomenon that the peeling progresses by dissolving the adhesive which is not partially cured even when the adhesive is cured, or by penetrating and swelling the adhesive interface where the adhesive is fixed has occurred. It was. In particular, when the temperature is increased, peeling of the sealing portion of the injection port is remarkable due to the vapor pressure of the electrolytic solution and the pressure due to volume expansion, which is a great hindrance for outdoor use.

また、外気から空気や水がセル内部に浸透していくと光電変換効率は大きく低下するという問題も既知であるが、色素増感型太陽電池が負極側の多孔質半導体電極表面に色素を吸着させたものを使用しているが、封止用に用いる接着剤が溶解すると、色素が吸着している多孔質電極に吸着し、光電変換効率が顕著に低下するという問題もあった。   In addition, there is a known problem that the photoelectric conversion efficiency is greatly reduced when air or water penetrates from the outside air into the cell. However, the dye-sensitized solar cell adsorbs the dye on the porous semiconductor electrode surface on the negative electrode side. However, when the adhesive used for sealing is dissolved, it is adsorbed on the porous electrode on which the dye is adsorbed, and the photoelectric conversion efficiency is remarkably lowered.

このようなことから、注入口に求められる封止用材料の特性としてセル内部にある有機溶媒液に対する耐溶剤性、また外気の酸素や湿度に対するバリア性、更に屋外での暴露においては温度や紫外線に対しても安定性が求められるものである。更に注入口に設置する封止栓には太陽電池セルの温度が上昇することにより大きな圧力を受けるために、封止栓を固定化するための封止強度が必要となっている。
特開2000−348783号公報 特開2000−200627号公報 特開2000−30767号公報 特開2001−185244号公報 特開2005−228613号公報
For this reason, the sealing material required for the injection port is resistant to the organic solvent liquid inside the cell, has a barrier property against oxygen and humidity in the outside air, and is exposed to temperature and ultraviolet rays when exposed outdoors. Also, stability is required. Furthermore, since the sealing plug installed in the injection port receives a large pressure due to the rise in the temperature of the solar battery cell, a sealing strength for fixing the sealing plug is required.
JP 2000-348783 A JP 2000-200267 A JP 2000-30767 A JP 2001-185244 A JP 2005-228613 A

よって、本発明における課題は、2枚の基板間に液体材料を封入した構造を有する色素増感太陽電池において、液体材料の封入後の液体材料の注入口の封止が完全に行え、封止性能の長期信頼性を高めるようにすることにある。   Therefore, the problem in the present invention is that in a dye-sensitized solar cell having a structure in which a liquid material is sealed between two substrates, the liquid material inlet can be completely sealed after the liquid material is sealed. The purpose is to increase the long-term reliability of the performance.

かかる課題を解決するため、
請求項1にかかる発明は、2枚の基板が空隙を介して重ね合わされ、この空隙内に液体材料が充填され、基板の周縁部がシール材で封止された色素増感太陽電池であって、
基板のいずれか一方に注入口が形成され、この注入口から前記空隙内に液体材料が充填され、注入口に前記液状材料に対する接触角が90度以上の材料からなる封止栓が挿入されて注入口が封止されていることを特徴とする色素増感太陽電池である。
To solve this problem,
The invention according to claim 1 is a dye-sensitized solar cell in which two substrates are overlapped via a gap, a liquid material is filled in the gap, and a peripheral portion of the substrate is sealed with a sealing material. ,
An inlet is formed in one of the substrates, a liquid material is filled into the gap from the inlet, and a sealing plug made of a material having a contact angle of 90 degrees or more with the liquid material is inserted into the inlet. The dye-sensitized solar cell is characterized in that the inlet is sealed.

請求項2にかかる発明は、2枚の基板が空隙を介して重ね合わされ、この空隙内に液体材料が充填され、基板の周縁部がシール材で封止された色素増感太陽電池であって、
シール材に注入口が形成され、この注入口から前記空隙内に液体材料が充填され、注入口に前記液状材料に対する接触角が90度以上の材料からなる封止栓が挿入されて注入口が封止されていることを特徴とする色素増感太陽電池である。
The invention according to claim 2 is a dye-sensitized solar cell in which two substrates are overlapped via a gap, a liquid material is filled in the gap, and a peripheral portion of the substrate is sealed with a sealing material. ,
An inlet is formed in the sealing material, the liquid material is filled into the gap from the inlet, and a sealing stopper made of a material having a contact angle of 90 degrees or more with respect to the liquid material is inserted into the inlet so that the inlet is It is a dye-sensitized solar cell that is sealed.

請求項3にかかる発明は、注入口が、基板の内面から外面に向けて末広がりとされたテーパー形状となっており、
封止栓が、その挿入方向の先端に向けて先細りとされたテーパー形状となっていることを特徴とする請求項1または2記載の色素増感太陽電池である。
The invention according to claim 3 has a tapered shape in which the inlet is divergent from the inner surface to the outer surface of the substrate,
3. The dye-sensitized solar cell according to claim 1, wherein the sealing plug has a tapered shape that is tapered toward the tip in the insertion direction.

請求項4にかかる発明は、封止栓を挿入した注入口がカバー材で一重以上に被覆されていることを特徴とする請求項1ないし3のいずれかに記載の色素増感太陽電池である。   The invention according to claim 4 is the dye-sensitized solar cell according to any one of claims 1 to 3, wherein the inlet into which the sealing plug is inserted is covered with a cover material in a single layer or more. .

本発明にあっては、封止栓として、液体材料に対する接触角が90度以上の材料、例えばフッ素樹脂系材料からなるものを用いることで、封止栓が液体材料をはじくようになって、注入口と封止栓との間のわずかな隙間から液体材料が漏洩することなくなり、液体材料の漏れが一層防止できる。封止栓として、予め耐食性が良好な材料から成型されたものを使用することができるので、内部に充填された液体材料によって侵されることがなく、封止性が向上し、さらには封止栓から液体材料中に不要物が溶出することもない。   In the present invention, as the sealing plug, by using a material having a contact angle with respect to the liquid material of 90 degrees or more, for example, a material made of a fluororesin material, the sealing plug repels the liquid material, The liquid material does not leak from a slight gap between the inlet and the sealing plug, and the leakage of the liquid material can be further prevented. As the sealing plug, one molded in advance from a material with good corrosion resistance can be used, so that it is not attacked by the liquid material filled therein, the sealing performance is improved, and further the sealing plug Therefore, unnecessary substances are not eluted into the liquid material.

また、注入口の形状が内面に向けて先細りのテーパー形状となっており、封止栓がこの注入口の形状に合致する円錐状のテーパー形状となっているものを用いれば、注入口を隙間なく完全に閉塞することができる。また、封止栓を注入口に挿入する際に、注入口の内部の空気が完全に外部に押し出され、内部に留まることがなく、液体材料内に気泡として侵入することがない。また、カバー材によって、封止栓およびその周辺部が被覆されているものでは、注入口の封止をより確実にし、かつ封止栓の離脱を防止することができる。このため、液体材料の揮散が防止され、封止性能の信頼性がさらに向上する。
封止栓は電解液に対する撥水効果を用いて液体シールを成すものであるため、ガスバリア性に対しては不十分であるが、封止栓の上に形成するカバー材として水蒸気や酸素等に対するガスバリア性のあるものを形成することにより、封止性能を更に向上させることができる。
In addition, if the shape of the inlet is tapered toward the inner surface, and the sealing plug is a conical taper that matches the shape of the inlet, the inlet will be And can be completely occluded. Further, when the sealing plug is inserted into the injection port, the air inside the injection port is completely pushed out, does not stay inside, and does not enter the liquid material as bubbles. Moreover, in the case where the sealing plug and its peripheral portion are covered with the cover material, the sealing of the injection port can be made more reliable and the separation of the sealing plug can be prevented. For this reason, volatilization of a liquid material is prevented and the reliability of sealing performance further improves.
Since the sealing plug forms a liquid seal using the water repellent effect on the electrolyte, it is insufficient for the gas barrier property, but as a cover material formed on the sealing plug, it is resistant to water vapor, oxygen, etc. The sealing performance can be further improved by forming the gas barrier property.

図1ないし図3は、本発明の色素増感太陽電池の一例を示すものである。これらの図において、符号1は第1の基板、符号2は第2の基板、符号3は液体材料を示す。
第1および第2の基板1、2は、ガラス、プラスチック、セラミックまたは金属からなる厚さが2〜5mm程度の平坦で平滑な板材である。
1 to 3 show an example of the dye-sensitized solar cell of the present invention. In these drawings, reference numeral 1 denotes a first substrate, reference numeral 2 denotes a second substrate, and reference numeral 3 denotes a liquid material.
The first and second substrates 1 and 2 are flat and smooth plates made of glass, plastic, ceramic or metal and having a thickness of about 2 to 5 mm.

これら基板1、2には、その内面に色素増感太陽電池の用途に応じて、透明導電膜、色素担持金属酸化物半導体膜が形成されているが、ここではその図示は省略し、その説明も省略する。
また、液体材料3としては、色素増感太陽電池の用途に応じたイオン性電解質液などが用いられる。
A transparent conductive film and a dye-supported metal oxide semiconductor film are formed on the inner surfaces of these substrates 1 and 2 in accordance with the use of the dye-sensitized solar cell. Is also omitted.
Moreover, as the liquid material 3, an ionic electrolyte solution or the like according to the use of the dye-sensitized solar cell is used.

第1の基板1と第2の基板2とは、それらの周縁部においてシール材4によって貼り合わせられている。シール材4にはアイオノマーなどの樹脂、低融点ガラスフリットなどが用いられる。
第1の基板1と第2の基板2との間の空隙には、前記液体材料3が注入、充填されている。
The 1st board | substrate 1 and the 2nd board | substrate 2 are bonded together by the sealing material 4 in those peripheral parts. For the sealing material 4, a resin such as ionomer, a low melting point glass frit, or the like is used.
The space between the first substrate 1 and the second substrate 2 is filled with the liquid material 3.

第1の基板1の四隅部の1箇所には、注入口5が形成され、この注入口5が封止栓6が挿入された状態となっている。この注入口5は、液体材料3の注入に用いられるものである。注入口2の位置は、基板1、2の内面に形成されている前記機能性薄膜等を避けた位置となっている。
注入口5は、その構造が図3に示すように、円錐状で基板1の内面に向かって径が小さくなる擂り鉢状となったテーパー形状となっている。基板1の外面(表面)側の開口径が 1〜40mmと、基板1の内面側の開口径が0.5〜30mmとなっており、図3の角度αで表される斜面の傾斜度は、45度以下、好ましくは45〜30度となっている。このような注入口5の形成は、切削加工によって可能である。
An inlet 5 is formed at one of the four corners of the first substrate 1, and the inlet 5 is in a state in which a sealing plug 6 is inserted. The inlet 5 is used for injecting the liquid material 3. The position of the inlet 2 is a position that avoids the functional thin film formed on the inner surfaces of the substrates 1 and 2.
As shown in FIG. 3, the inlet 5 has a tapered shape that is conical and has a bowl shape that decreases in diameter toward the inner surface of the substrate 1. The opening diameter on the outer surface (front surface) side of the substrate 1 is 1 to 40 mm, the opening diameter on the inner surface side of the substrate 1 is 0.5 to 30 mm, and the slope of the slope represented by the angle α in FIG. 45 degrees or less, preferably 45 to 30 degrees. The injection port 5 can be formed by cutting.

封止栓6は、前記注入口5の内面形状に合致する外面形状を有する円錐台状のテーパー形状となっている。封止栓5の外径は前記注入口5の内径よりもわずかに、例えば0.05〜0.1mm程度大きくなっており、封止栓6を注入口5に挿入した際、これを軽く押し込み、封止栓6を機械的に注入口5の内面に圧着できるようになっている。
封止栓6をなす材料としては、ガラス、セラミック、金属、アイオノマー、フッ素系樹脂などの樹脂が用いられる。
The sealing plug 6 has a truncated conical taper shape having an outer surface shape that matches the inner surface shape of the inlet 5. The outer diameter of the sealing plug 5 is slightly larger than the inner diameter of the injection port 5, for example, about 0.05 to 0.1 mm. When the sealing plug 6 is inserted into the injection port 5, it is pushed lightly. The sealing plug 6 can be mechanically pressure-bonded to the inner surface of the injection port 5.
As a material for forming the sealing plug 6, a resin such as glass, ceramic, metal, ionomer, or fluorine resin is used.

これらの材料のなかでも、前記液体材料3に対する接触角が90度以上であるものが、封止栓6と液体材料3との接触界面で液体材料3がはじかれ、液体材料3が注入口5と封止栓6との間の微小な隙間から浸透することがなくなり、液体材料3の揮散がなくなる点で好ましい。また、液体材料3に対して耐食性の良好なものが好ましい。   Among these materials, those having a contact angle of 90 ° or more with respect to the liquid material 3 are repelled at the contact interface between the sealing plug 6 and the liquid material 3, and the liquid material 3 is injected into the inlet 5. It is preferable in that it does not permeate through a minute gap between the sealing plug 6 and the sealing material 6 and the liquid material 3 is not volatilized. Further, a material having good corrosion resistance with respect to the liquid material 3 is preferable.

このような特性を満たす封止栓6を構成する材料としては、例えばポリテトラフルオロエチレン(弗化エチレン樹脂:PTFE)、パーフルオロアルコキシアルカン(四弗化エチレンパーフルオロアルキルビニルエーテル共重合樹脂:PFA)、パーフルオロエチレンプロペンコポリマー(四弗化エチレン-六弗化プロピレン共重合樹脂:PFEP)、 エチレン−テトラフルオロエチレンコポリマー(四弗化エチレン-エチレン共重合樹脂: ETFE)、ポリビニリデンフルオライド(弗化ビニリデン樹脂:PVDF)、ポリクロロトリフルオロエチレン(三弗化塩化エチレン樹脂:PCTFE)、エチレン−クロロトリフルオロエチレンコポリマー(三弗化塩化エチレン-エチレン共重合樹脂:ECTFE)、テトラフルオロエチレン−パーフルオロイジオキソールコポリマー:TFE/PDD)、ポリビニルフルオライド(弗化ビニル樹脂:PVF)などのフッ素系樹脂、シリコーン系樹脂、シリコーンゴムなどがある。   Examples of the material constituting the sealing plug 6 satisfying such characteristics include polytetrafluoroethylene (fluorinated ethylene resin: PTFE), perfluoroalkoxyalkane (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin: PFA). Perfluoroethylene propene copolymer (tetrafluoroethylene-hexafluoropropylene copolymer resin: PFEP), ethylene-tetrafluoroethylene copolymer (tetrafluoroethylene-ethylene copolymer resin: ETFE), polyvinylidene fluoride (fluoride) Vinylidene resin: PVDF), polychlorotrifluoroethylene (trifluoroethylene chloride: PCTFE), ethylene-chlorotrifluoroethylene copolymer (ethylene trifluoride-ethylene copolymer: ECTFE), tetrafluoroethylene-par Luo Roy benzodioxole copolymer: TFE / PDD), polyvinyl fluoride (vinyl fluoride resin: PVF) fluorine-based resins such as silicone resins, and silicone rubber.

また、封止栓6全体をこれらの材料で作製してもよいが、金属、ガラス、セラミック、他の樹脂などからなる本体の表面にこれらの材料を表面被覆して封止栓6を構成してもよい。
このような封止栓6の製造は、樹脂からなるものでは射出成形法により、ガラス、セラミックス、金属であれば切削加工で行うことができる。
The entire sealing plug 6 may be made of these materials, but the sealing plug 6 is configured by covering these materials on the surface of the main body made of metal, glass, ceramic, other resin, or the like. May be.
Such a sealing plug 6 can be manufactured by an injection molding method if it is made of resin, and by cutting if it is glass, ceramics, or metal.

図4および図5は、封止栓6の変形例を示すものである。図4に示した例は、上記材料からなる略円筒状の外筒61と、この外筒61内部を貫通するガラス、金属、セラミックスなどからなる棒状体62とからなる封止栓6である。
図5に示す例は、図4に示した例において、棒状体62に代えてガラス管、金属管などのパイプ体63を用いたもので、このものでは液体材料3を充填したのち、パイプ体63を溶融して封じて使用し、必要に応じてパイプ体63を切断して液体材料3を追加したり、交換したりすることができる。
4 and 5 show a modification of the sealing plug 6. The example shown in FIG. 4 is a sealing plug 6 comprising a substantially cylindrical outer cylinder 61 made of the above material and a rod-like body 62 made of glass, metal, ceramics, or the like that penetrates the inside of the outer cylinder 61.
The example shown in FIG. 5 uses a pipe body 63 such as a glass tube or a metal tube instead of the rod-like body 62 in the example shown in FIG. 4. In this example, after filling the liquid material 3, the pipe body 63 is melted and sealed for use, and the pipe body 63 can be cut and the liquid material 3 added or exchanged as necessary.

さらに、封止栓6の上部にはカバー材7が設けられ、封止栓6とその周辺部の基板1表面がカバー材7で被覆されている。このカバー材7は、封止栓6による注入口5の封止をより確実にして液体材料3の揮散を抑え、かつ封止栓6の離脱を防止するためのもので、ガラスペースト、エポキシ樹脂、アイオノマー、紫外線硬化型樹脂などの樹脂、ハンダ、水ガラスなどを用いて形成されたものである。   Further, a cover material 7 is provided on the upper portion of the sealing plug 6, and the surface of the sealing plug 6 and its peripheral substrate 1 is covered with the cover material 7. The cover material 7 is used for more reliably sealing the inlet 5 with the sealing plug 6 to suppress the volatilization of the liquid material 3 and to prevent the sealing plug 6 from being detached. These are formed using resin such as ionomer and ultraviolet curable resin, solder, water glass and the like.

このカバー材7は、図2に示すように一重であってもよいが、異なった材料を用いて二重以上に設けることが好ましい。
図6に示した例は、二重のカバー材を設けたもので、水ガラスからなる一次カバー71を封止栓6上に水ガラス71を塗布し、この上にアクリル系紫外線硬化型樹脂72を塗布、硬化したものである。
The cover material 7 may be a single layer as shown in FIG. 2, but it is preferable to provide a double or more layer using different materials.
In the example shown in FIG. 6, a double cover material is provided. A primary cover 71 made of water glass is coated on the sealing plug 6 with water glass 71, and an acrylic ultraviolet curable resin 72 is applied thereon. Is applied and cured.

図7に示した例は、封止栓6上にガラス板73を置き、このガラス板73の周辺に水ガラス74を塗布し、さらにガラス板73上にエポキシ樹脂75を塗布、硬化したものである。
図8に示した例は、封止栓6上に紫外線硬化型樹脂76を塗布、硬化し、この上に低融点ハンダ77を配し、さらにエポキシ樹脂78を塗布、硬化したものである。この低融点ハンダとしては、In、Ag、Bi、Te、Pbのいずれかを主成分に含んだものが好ましく、融点としては、300℃以下が望ましい。
In the example shown in FIG. 7, a glass plate 73 is placed on the sealing plug 6, a water glass 74 is applied around the glass plate 73, and an epoxy resin 75 is applied and cured on the glass plate 73. is there.
In the example shown in FIG. 8, an ultraviolet curable resin 76 is applied and cured on the sealing plug 6, a low melting point solder 77 is disposed thereon, and an epoxy resin 78 is applied and cured. The low melting point solder preferably contains any of In, Ag, Bi, Te, and Pb as a main component, and the melting point is preferably 300 ° C. or lower.

図9に示した例は、図5に示したような構造の封止栓6を使用したもので、外筒61の周囲をガラス板79で包囲して補強し、ガラス板79の上に紫外線硬化型樹脂80を塗布、硬化したものである。
図10に示した例は、図5に示したような構造の封止栓6を使用したもので、外筒61の周囲をガラス筒81で包囲して補強し、ガラス筒81の上にシリコーンゴム製キャップ82を被せて接着したものである。
The example shown in FIG. 9 uses the sealing plug 6 having the structure shown in FIG. 5 and surrounds and reinforces the periphery of the outer cylinder 61 with a glass plate 79. A curable resin 80 is applied and cured.
The example shown in FIG. 10 uses the sealing plug 6 having the structure shown in FIG. 5 and surrounds the outer cylinder 61 with a glass cylinder 81 to reinforce it. A rubber cap 82 is put on and bonded.

また、封止栓6上を被覆する材料としては、液体材料3からの溶媒蒸気が常に接触しているために、ここでの溶媒に対するバリア性と耐溶媒性が必要であり、例えば水ガラスや金属アルコキシドを加水分解させて作製したゲル膜、金属アルコキシドを加水分解させて作製したゾルを用いたゲル膜、シロキサン結合を有するシリコーン樹脂、更にはシロキサン結合を有する有機無機ハイブリッド材料等が挙げられる。   In addition, as the material for covering the sealing plug 6, the solvent vapor from the liquid material 3 is always in contact with each other, so that the barrier property and the solvent resistance against the solvent here are necessary. Examples thereof include a gel film prepared by hydrolyzing metal alkoxide, a gel film using a sol prepared by hydrolyzing metal alkoxide, a silicone resin having a siloxane bond, and an organic-inorganic hybrid material having a siloxane bond.

また、封止栓6上を被覆する紫外線硬化樹脂としては、例えばエポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、不飽和ポリエステル、ポリエーテルアクリレート、ビニルアクリレート、ポリブタジエンアクリレート、ポリスチリルエチルメタクリレート等が挙げられる。
また、熱硬化型樹脂では、代表的な樹脂としてエポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド樹脂が挙げられる。
Examples of the ultraviolet curable resin that covers the sealing plug 6 include epoxy acrylate, urethane acrylate, polyester acrylate, unsaturated polyester, polyether acrylate, vinyl acrylate, polybutadiene acrylate, and polystyrylethyl methacrylate.
In thermosetting resins, representative resins include epoxy resins, phenol resins, polyurethane resins, silicone resins, and polyimide resins.

さらに、硬化型ではないが、封止栓6の押圧用に使用できる熱可塑性または熱融着型の樹脂については、ABS樹脂、PP(ポリプロピレン)、PE(ポリエチレン)、PS(ポリスチレン)、PMMA(アクリル)、PET(ポリエチレンテレフタレート)、PPE(ポリフェニレンエーテル) 、PA(ナイロン/ポリアミド)、PC(ポリカーボネイト)、POM(ポリアセタール)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)、フッ素樹脂、ウレタン樹脂等がある。   Furthermore, although not a curable type, a thermoplastic or heat-fusion type resin that can be used for pressing the sealing plug 6 is ABS resin, PP (polypropylene), PE (polyethylene), PS (polystyrene), PMMA ( Acrylic), PET (polyethylene terephthalate), PPE (polyphenylene ether), PA (nylon / polyamide), PC (polycarbonate), POM (polyacetal), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), PEEK (polyether ether) Ketone), fluororesin, urethane resin and the like.

また、封止栓6の最表面に成膜する材料としては、上記の樹脂の中でも非極性分子が好ましく、樹脂の非極性化にすることにより樹脂に含まれる水を低減し、且つ樹脂中への水の含浸を防ぐことができる。
このような非極性材料としては、例えばポリエチレン樹脂、ポリプロピレン樹脂、エチレンプロピレン共重合体等のポリオレフィン系樹脂が挙げられる。これらの樹脂を封止栓の上に熱圧着して、この上に接着剤を塗布して硬化固定することもできる。
Moreover, as a material to form a film on the outermost surface of the sealing plug 6, nonpolar molecules are preferable among the above resins. By making the resin nonpolar, water contained in the resin is reduced and into the resin. Water impregnation can be prevented.
Examples of such nonpolar materials include polyolefin resins such as polyethylene resins, polypropylene resins, and ethylene propylene copolymers. These resins can be thermocompression-bonded on a sealing plug, and an adhesive can be applied thereon to be cured and fixed.

前記カバー材7の積層構造としては、封止栓6上に液体材料3に対する耐溶剤性の高いものを設置し、更にこの上に耐水性の高い被膜を形成するものに限定されない。封止栓6の上に形成するものは少なくとも液体材料3に対して溶解しなければ良く、この上にガラス板を設置し、更に上から紫外線硬化樹脂で全体を固定化することでも良い。
カバー材7の積層構造は少なくとも封止栓6の上に、封止栓6を固定化するためのものが形成されたものであれば良いが、封止栓6の上にガスバリア性のある層や耐水性のある層等を複数層形成することにより封止の安定化を行うことが望ましい。
The laminated structure of the cover material 7 is not limited to a structure in which a highly solvent-resistant material with respect to the liquid material 3 is installed on the sealing plug 6 and a highly water-resistant film is formed thereon. What is formed on the sealing plug 6 is not required to be dissolved in at least the liquid material 3, and a glass plate may be installed thereon, and the whole may be fixed with an ultraviolet curable resin from above.
The cover member 7 may have a layered structure as long as it is formed on at least the sealing plug 6 to fix the sealing plug 6, but a layer having a gas barrier property on the sealing plug 6. It is desirable to stabilize the sealing by forming a plurality of layers having water resistance or the like.

このような色素増感太陽電池にあっては、液体材料3の注入口5を基板1に形成したので、従来のシール材に注入口を形成するものに比べて、注入口5の形状が一定となり、予め注入口5の形状に合致した形状に成形しておいた封止栓6でこれを機械的に封止することができる。このため、従来の硬化性樹脂液を流し込んで封止する手法に比較して封止性能の信頼性が格段に向上する。   In such a dye-sensitized solar cell, since the injection port 5 of the liquid material 3 is formed in the substrate 1, the shape of the injection port 5 is constant as compared with a conventional sealing material in which the injection port is formed. Thus, this can be mechanically sealed with a sealing plug 6 that has been previously formed into a shape that matches the shape of the inlet 5. For this reason, the reliability of the sealing performance is remarkably improved as compared with the conventional method of pouring and sealing the curable resin liquid.

また、注入口5の形状が内面に向けて先細りのテーパー形状となっており、封止栓6がこの注入口5の形状に合致する円錐状のテーパー形状となっているので、注入口5を隙間なく完全に閉塞することができる。また、封止栓6を注入口5に挿入する際に、注入口5の内部の空気が完全に外部に押し出され、内部に留まることがなく、液体材料3内に気泡として侵入することがない。   In addition, the shape of the injection port 5 is tapered toward the inner surface, and the sealing plug 6 has a conical taper shape that matches the shape of the injection port 5. It can be completely closed without a gap. Further, when the sealing plug 6 is inserted into the injection port 5, the air inside the injection port 5 is completely pushed out and does not stay inside and does not enter the liquid material 3 as bubbles. .

さらに、封止栓6として、ガラス、セラミック、フッ素樹脂からなるものを用いれば、封止栓6自体の耐薬品性が優れているので、内部の液体材料3によって侵されることもなく、逆に封止栓6から溶出物が流れ出て液体材料3を変質させることもない。
また、封止栓6をなす材料に液体材料3に対する接触角が90度以上のものを用いることで、液体材料3が封止栓6にはじかれて封止栓6と注入口5との間のわずかな隙間を液体材料3が侵入することがなく、液体材料3の揮散が抑えられる。
Furthermore, if the sealing plug 6 is made of glass, ceramic, or fluororesin, the sealing plug 6 itself has excellent chemical resistance, so that it is not affected by the liquid material 3 inside. The eluate does not flow out from the sealing plug 6 and the liquid material 3 is not altered.
Further, by using a material having a contact angle of 90 degrees or more with respect to the liquid material 3 as a material forming the sealing plug 6, the liquid material 3 is repelled by the sealing plug 6 and between the sealing plug 6 and the injection port 5. Thus, the liquid material 3 does not enter the slight gap, and volatilization of the liquid material 3 is suppressed.

また、カバー材7によって、封止栓6およびその周辺部が被覆されているので、注入口5の封止をより確実にし、かつ封止栓6の離脱を防止することができる。このため、封止性能の信頼性がさらに向上する。   Moreover, since the sealing plug 6 and its peripheral part are covered with the cover material 7, the injection port 5 can be more reliably sealed and the sealing plug 6 can be prevented from being detached. For this reason, the reliability of the sealing performance is further improved.

また、本発明では、シール材4の適切な部位に注入口5を形成しておき、ここから内部の空隙に液状材料3を注入、充填したのち、封止栓6を挿入し、必要に応じてカバー部材7を被覆する構造を採用することもできる。
この場合には、シール材4に形成する注入口5の形状が一定に保たれるように、シール材4を構成する材料を選択することが望ましい。
Further, in the present invention, the injection port 5 is formed at an appropriate portion of the sealing material 4, and after the liquid material 3 is injected and filled from the inside into the gap, the sealing plug 6 is inserted, if necessary. A structure for covering the cover member 7 can also be adopted.
In this case, it is desirable to select the material constituting the sealing material 4 so that the shape of the injection port 5 formed in the sealing material 4 is kept constant.

また、シール材4として、アイオノマーなどの熱可塑性樹脂からなる枠状に射出成型された成型品を用い、これの射出成型時に同時に注入口5を成型しておき、この注入口5に封止栓6を挿入した状態のシール材4を用いて2枚の基板1、2を接合する。ついで、封止栓6を一旦取り外して、液体材料3を注入、充填したのち、再度封止栓6を挿入し、必要に応じてカバー部材7を被覆する方法を採用することもできる。   Further, as the sealing material 4, a molded product that is injection-molded into a frame shape made of a thermoplastic resin such as ionomer is used, and the injection port 5 is molded at the same time as the injection molding, and a sealing plug is connected to the injection port 5. The two substrates 1 and 2 are joined using the sealing material 4 in a state in which 6 is inserted. Then, after the sealing plug 6 is once removed and the liquid material 3 is injected and filled, the sealing plug 6 is inserted again, and the cover member 7 can be covered as necessary.

以下、具体例を示す。
(例1)
色素増感型太陽電池セルを作製した。第1および第2のガラス基板には、透明導電膜を形成したソーダガラスの厚さ3mm、幅5cm、長さ10cmのガラス板を用いた。
この2枚のガラス基板を、互いに対向して、厚さ60μmのアイオノマーを介して熱融着してセルとした。
Specific examples are shown below.
(Example 1)
A dye-sensitized solar cell was produced. As the first and second glass substrates, glass plates having a thickness of 3 mm, a width of 5 cm, and a length of 10 cm of soda glass on which a transparent conductive film was formed were used.
The two glass substrates were opposed to each other and thermally fused via an ionomer having a thickness of 60 μm to form a cell.

このガラス基板の一方には、色素担持酸化チタン半導体膜からなる負極が形成されており、他方には、Pt担持した透明導電膜からなる正極が形成されている。この正極側のガラス基板に、ドリルを用いて電解液に接触する面には直径1mmの穴、外側には直径2mmの穴になるようにテーパーを付けて注入口を形成した。
作製したセルにLiIとIを溶かしたアセトニトリルからなる電解液を注入口よりセル全体に均一になるように注入した。
A negative electrode made of a dye-supported titanium oxide semiconductor film is formed on one side of the glass substrate, and a positive electrode made of a transparent conductive film carrying Pt is formed on the other side. An injection port was formed on this positive electrode side glass substrate by using a drill so that a hole with a diameter of 1 mm was formed on the surface in contact with the electrolytic solution and a hole with a diameter of 2 mm was formed on the outside.
And injecting an electrolyte solution composed of an acetonitrile to produce the cells were dissolved LiI and I 2 to be uniform throughout the cell from the inlet.

封止栓として、高さ5mm、底面の直径2.5mm、上面1mmの円錐台状のものを作製した。封止栓の材料は、フッ素系樹脂のPTFEで構成した。また、PVDF,PFAなどの他のフッ素系樹脂でも同様な形状の封止栓を作製した。
比較例として、シリコ−ンゴム、ブチルゴム、PMMA(ポリメチルメタクリレート)、ガラス栓を用いて同一形状の栓を作製した。
A sealing plug having a height of 5 mm, a bottom diameter of 2.5 mm, and a top surface of 1 mm was prepared. The material of the sealing plug was made of PTFE fluororesin. Moreover, the sealing plug of the same shape was produced also with other fluorine resin, such as PVDF and PFA.
As a comparative example, a stopper having the same shape was prepared using silicone rubber, butyl rubber, PMMA (polymethyl methacrylate), and a glass stopper.

それぞれの材質の接触角を測定し、表1に示した。また、封止材料の違いによる溶媒の揮発量は、初期の充填量で割った規格化した数値で評価した。揮発条件としては、室温にて1ヶ月の室内放置で行った。
この結果を表2に示した。この結果から少なくとも接触角として90度以上のものが良いことが分かった。
The contact angle of each material was measured and shown in Table 1. The volatilization amount of the solvent due to the difference in the sealing material was evaluated by a normalized value divided by the initial filling amount. As the volatilization condition, the sample was left indoors for 1 month at room temperature.
The results are shown in Table 2. From this result, it was found that at least a contact angle of 90 degrees or more is good.

Figure 2008117698
Figure 2008117698

Figure 2008117698
Figure 2008117698

例1において、電解液を注入してから注入口にフッ素系樹脂PTFEを用いて作製した封止栓を押圧して、この封止栓の上を、図6に示すように各種封止材料からなるカバー材で被覆した。
封止材料としては水ガラス、アクリル樹脂系紫外線硬化樹脂、エポキシ樹脂の三つを用いた。それぞれの材料を厚み2mm、直径4mm程度になるように封止栓の上に塗布して硬化させた。
In Example 1, after injecting the electrolytic solution, a sealing plug prepared using fluorine-based resin PTFE was pressed into the injection port, and the top of the sealing plug was made of various sealing materials as shown in FIG. It was covered with a cover material.
As the sealing material, water glass, acrylic resin-based ultraviolet curable resin, and epoxy resin were used. Each material was applied onto a sealing plug so as to have a thickness of about 2 mm and a diameter of about 4 mm and cured.

各封止材料の硬化条件として、水ガラスは和光純薬製を用いて、40℃にて乾燥させた。また、アクリル樹脂系紫外線硬化樹脂は日東電工製のものを用いて100Wの紫外線ランプで5分間照射して硬化させた。エポキシ樹脂は、エポキシ系接着剤(ハンツマン・アドバンスト・マテリアルズ製:品名 アラルダイト)を用いて室温12時間で硬化させた。   Water glass was dried at 40 ° C. using Wako Pure Chemical as a curing condition for each sealing material. The acrylic resin UV curable resin was made by Nitto Denko and was cured by irradiation with a 100 W UV lamp for 5 minutes. The epoxy resin was cured at room temperature for 12 hours using an epoxy adhesive (manufactured by Huntsman Advanced Materials: product name Araldite).

作製したサンプルセルを70℃飽和蒸気中にて1週間保持して電解液の揮発量と封止状態を調べた。
この結果を表3に示した。この結果から、封止栓の上にカバー材を設けない状態では溶媒が揮発していくが、カバー材を設けたものでは揮発による減少を抑制できることが分かった。
The prepared sample cell was kept in a saturated steam at 70 ° C. for one week, and the volatilization amount of the electrolytic solution and the sealing state were examined.
The results are shown in Table 3. From this result, it was found that the solvent evaporates in the state where the cover material is not provided on the sealing plug, but the decrease due to the volatilization can be suppressed in the case where the cover material is provided.

Figure 2008117698
Figure 2008117698

(例3)
例1において、電解液を注入してから注入口にフッ素系樹脂PVDFを用いて作製した封止栓を押圧して、更に封止栓の上を図7のように厚み0.1mmの5mm角のガラス板を置き、その上から各種封止材料を塗布して硬化させた。
封止材料としては、例2と同様に水ガラス、アクリル樹脂系紫外線硬化樹脂、エポキシ樹脂の3種を用いた。それぞれの材料を厚み2mm、幅3mmでガラス板の上に1mm程度かぶるように塗布して硬化させた。
各封止材料の硬化条件は、例2と同様とした。
(Example 3)
In Example 1, after injecting the electrolytic solution, a sealing plug made of fluororesin PVDF was pressed into the injection port, and the top of the sealing plug was 5 mm square with a thickness of 0.1 mm as shown in FIG. A glass plate was placed, and various sealing materials were applied thereon and cured.
As the sealing material, three types of water glass, acrylic resin-based ultraviolet curable resin, and epoxy resin were used in the same manner as in Example 2. Each material was applied and cured so as to cover a glass plate with a thickness of 2 mm and a width of 3 mm on a glass plate.
The curing conditions for each sealing material were the same as in Example 2.

作製したサンプルセルを70℃飽和蒸気中にて1週間保持して電解液の揮発量と封止状態を調べた。
この結果を表4に示した。この結果から、封止栓の上にカバー材を設けない状態では溶媒が揮発していくが、封止栓の上に一層から二層へとカバー材を増やして設けた場合には更に揮発による減少を抑制できることが分かった。
The prepared sample cell was kept in a saturated steam at 70 ° C. for one week, and the volatilization amount of the electrolytic solution and the sealing state were examined.
The results are shown in Table 4. From this result, the solvent volatilizes in the state where the cover material is not provided on the sealing plug, but when the cover material is increased from one layer to two layers on the sealing plug, it is further caused by volatilization. It was found that the decrease can be suppressed.

Figure 2008117698
Figure 2008117698

(例4)
例1において、電解液を注入してから注入口に弗素樹脂PFAを用いて作製した封止栓を押圧して、更に封止栓の上に、図8に示すように各種封止材料を塗布、硬化させた後、超音波ハンダ装置(黒田テクノ製USM−3)を用いて厚さ0.5mmのハンダ層を設け、この上にエポキシ樹脂を塗布して硬化させた。
各種封止材料としては、例3と同様に水ガラス、アクリル樹脂系紫外線硬化樹脂、エポキシ樹脂の3種を用いた。それぞれの材料を厚み2mm、直径4mmで塗布して硬化させた。各封止材料の硬化条件は例2と同様とした。
(Example 4)
In Example 1, after injecting the electrolytic solution, the sealing plug produced using fluorine resin PFA was pressed into the injection port, and various sealing materials were applied on the sealing plug as shown in FIG. After curing, a solder layer having a thickness of 0.5 mm was provided using an ultrasonic solder apparatus (USM-3 manufactured by Kuroda Techno), and an epoxy resin was applied thereon and cured.
As various sealing materials, three kinds of water glass, acrylic resin-based ultraviolet curable resin, and epoxy resin were used in the same manner as in Example 3. Each material was applied and cured with a thickness of 2 mm and a diameter of 4 mm. The curing conditions for each sealing material were the same as in Example 2.

作製したサンプルセルを70℃飽和蒸気中にて1週間保持して電解液の揮発量と封止状態を調べた。この結果を表5に示した。この結果から、封止栓の上にカバー材を設けない状態では溶媒が揮発していくが、封止栓の上に二層から三層へとカバー材を増やして設けた場合には更に揮発による減少を抑制できることが分かった。   The prepared sample cell was kept in a saturated steam at 70 ° C. for one week, and the volatilization amount of the electrolytic solution and the sealing state were examined. The results are shown in Table 5. From this result, the solvent evaporates when the cover material is not provided on the sealing plug. However, when the cover material is increased from two layers to three layers on the sealing plug, the solvent is further evaporated. It has been found that the decrease due to the

Figure 2008117698
Figure 2008117698

(例5)
例1において、注入口に厚み3mmのガラス板をガラス基板に融着させておき、そこに注入口の径として直径4mmの穴を貫通させて形成した。PFEPを用いて作製した封止 栓に図9に示すようにガラス管を挿入したものを注入口に押圧して、その上に各種封止材料で封止栓を固定化させた。
電解液をガラス管より注入してからガラス管の端部はバーナーで溶融して封止した。封止材料としては、例2と同様に水ガラス、アクリル樹脂系紫外線硬化樹脂、エポキシ樹脂の3種を用いた。それぞれの材料を厚み1mm程度に塗布して図7の形になるように硬化させた。
(Example 5)
In Example 1, a glass plate having a thickness of 3 mm was fused to the glass substrate at the inlet, and a hole having a diameter of 4 mm was formed therethrough as the diameter of the inlet. A glass plug inserted as shown in FIG. 9 into a sealing plug produced using PFEP was pressed against the injection port, and the sealing plug was fixed thereon with various sealing materials.
After injecting the electrolytic solution from the glass tube, the end of the glass tube was melted and sealed with a burner. As the sealing material, three types of water glass, acrylic resin-based ultraviolet curable resin, and epoxy resin were used in the same manner as in Example 2. Each material was applied to a thickness of about 1 mm and cured to the shape of FIG.

作製したサンプルセルを70℃飽和蒸気中にて1週間保持して電解液の揮発量と封止状態を調べた。この結果を表6に示した。この結果から、封止栓の上にカバー材を設けない状態では溶媒が揮発していくが、封止栓の上にカバー材を設けた場合には更に揮発による減少を抑制できることが分かった   The prepared sample cell was kept in a saturated steam at 70 ° C. for one week, and the volatilization amount of the electrolytic solution and the sealing state were examined. The results are shown in Table 6. From this result, it was found that the solvent evaporates in the state where the cover material is not provided on the sealing plug, but when the cover material is provided on the sealing plug, the decrease due to volatilization can be further suppressed.

Figure 2008117698
Figure 2008117698

本発明の色素増感太陽電池の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention. 本発明における注入口の形状を示す概略断面図である。It is a schematic sectional drawing which shows the shape of the injection inlet in this invention. 本発明における封止栓の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the sealing stopper in this invention. 本発明における封止栓の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the sealing stopper in this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the dye-sensitized solar cell of this invention.

符号の説明Explanation of symbols

1・・第1の基板、2・・第2の基板、3・・液体材料、4・・シール材、5・・注入口、6・・封止栓、7・・カバー材 1 ·· First substrate 2 ·· Second substrate 3 ·· Liquid material 4 ·· Seal material 5 ·· Inlet 6 ·· Sealing plug 7 ·· Cover material

Claims (4)

2枚の基板が空隙を介して重ね合わされ、この空隙内に液体材料が充填され、基板の周縁部がシール材で封止された色素増感太陽電池であって、
基板のいずれか一方に注入口が形成され、この注入口から前記空隙内に液体材料が充填され、注入口に前記液状材料に対する接触角が90度以上の材料からなる封止栓が挿入されて注入口が封止されていることを特徴とする色素増感太陽電池。
A dye-sensitized solar cell in which two substrates are overlapped via a gap, filled with a liquid material in the gap, and the peripheral edge of the substrate is sealed with a sealing material,
An inlet is formed in one of the substrates, a liquid material is filled into the gap from the inlet, and a sealing plug made of a material having a contact angle of 90 degrees or more with the liquid material is inserted into the inlet. A dye-sensitized solar cell, wherein an inlet is sealed.
2枚の基板が空隙を介して重ね合わされ、この空隙内に液体材料が充填され、基板の周縁部がシール材で封止された色素増感太陽電池であって、
シール材に注入口が形成され、この注入口から前記空隙内に液体材料が充填され、注入口に前記液状材料に対する接触角が90度以上の材料からなる封止栓が挿入されて注入口が封止されていることを特徴とする色素増感太陽電池。
A dye-sensitized solar cell in which two substrates are overlapped via a gap, filled with a liquid material in the gap, and the peripheral edge of the substrate is sealed with a sealing material,
An inlet is formed in the sealing material, the liquid material is filled into the gap from the inlet, and a sealing stopper made of a material having a contact angle of 90 degrees or more with respect to the liquid material is inserted into the inlet so that the inlet is A dye-sensitized solar cell which is sealed.
注入口が、基板の内面から外面に向けて末広がりとされたテーパー形状となっており、
封止栓が、その挿入方向の先端に向けて先細りとされたテーパー形状となっていることを特徴とする請求項1または2記載の色素増感太陽電池。
The injection port has a tapered shape that widens toward the outer surface from the inner surface of the substrate,
The dye-sensitized solar cell according to claim 1 or 2, wherein the sealing plug has a tapered shape tapered toward the tip in the insertion direction.
封止栓を挿入した注入口がカバー材で一重以上に被覆されていることを特徴とする請求項1ないし3のいずれかに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the inlet into which the sealing plug is inserted is covered with a cover material in a single layer or more.
JP2006301571A 2006-11-07 2006-11-07 Dye-sensitized solar cell Withdrawn JP2008117698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301571A JP2008117698A (en) 2006-11-07 2006-11-07 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301571A JP2008117698A (en) 2006-11-07 2006-11-07 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2008117698A true JP2008117698A (en) 2008-05-22

Family

ID=39503454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301571A Withdrawn JP2008117698A (en) 2006-11-07 2006-11-07 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2008117698A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097271B1 (en) * 2009-11-06 2011-12-21 삼성에스디아이 주식회사 Photoelectric conversion device
JP2012038602A (en) * 2010-08-09 2012-02-23 Nitto Denko Corp Dye-sensitized solar cell
JP2012104484A (en) * 2010-11-10 2012-05-31 Korea Electronics Telecommun Dye-sensitized solar cell
KR101156456B1 (en) 2011-06-16 2012-06-18 주식회사 티모이앤엠 Dye-sensitized solar cell module wiht multilayer sealing
KR101219869B1 (en) * 2011-05-09 2013-01-21 현대하이스코 주식회사 Dye sensitized solar cell with excellent airtightness and electromigration chracteristics
KR101219847B1 (en) 2011-05-09 2013-01-21 현대하이스코 주식회사 Dye sensitized solar cell with excellent airtightness
KR101312272B1 (en) 2011-08-09 2013-09-25 삼성에스디아이 주식회사 Photoelectric conversion device
JP2013219224A (en) * 2012-04-10 2013-10-24 Nec Corp Vacuum package, manufacturing method of vacuum package, and sensor
JP2013542566A (en) * 2010-10-08 2013-11-21 エルジー・ケム・リミテッド Secondary battery with improved sealing performance
JP5382186B1 (en) * 2012-10-10 2014-01-08 ウシオ電機株式会社 Dye-sensitized solar cell
US8710362B2 (en) 2009-12-28 2014-04-29 Samsung Sdi Co., Ltd. Photoelectric conversion device
JP2015167068A (en) * 2014-03-03 2015-09-24 株式会社豊田自動織機 Manufacturing apparatus of power storage device and manufacturing method of power storage device
WO2017221184A1 (en) * 2016-06-21 2017-12-28 3Gsolar Photovoltaics Ltd. Seals for holes in solar cells
CN113394524A (en) * 2021-06-30 2021-09-14 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary liquid supplementing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097271B1 (en) * 2009-11-06 2011-12-21 삼성에스디아이 주식회사 Photoelectric conversion device
US8710362B2 (en) 2009-12-28 2014-04-29 Samsung Sdi Co., Ltd. Photoelectric conversion device
JP2012038602A (en) * 2010-08-09 2012-02-23 Nitto Denko Corp Dye-sensitized solar cell
JP2013542566A (en) * 2010-10-08 2013-11-21 エルジー・ケム・リミテッド Secondary battery with improved sealing performance
KR101426824B1 (en) * 2010-11-10 2014-08-06 한국전자통신연구원 Dye sensitized solar cell
JP2012104484A (en) * 2010-11-10 2012-05-31 Korea Electronics Telecommun Dye-sensitized solar cell
KR101219847B1 (en) 2011-05-09 2013-01-21 현대하이스코 주식회사 Dye sensitized solar cell with excellent airtightness
KR101219869B1 (en) * 2011-05-09 2013-01-21 현대하이스코 주식회사 Dye sensitized solar cell with excellent airtightness and electromigration chracteristics
KR101156456B1 (en) 2011-06-16 2012-06-18 주식회사 티모이앤엠 Dye-sensitized solar cell module wiht multilayer sealing
KR101312272B1 (en) 2011-08-09 2013-09-25 삼성에스디아이 주식회사 Photoelectric conversion device
US8785764B2 (en) 2011-08-09 2014-07-22 Samsung Sdi Co., Ltd. Photoelectric conversion device
JP2013219224A (en) * 2012-04-10 2013-10-24 Nec Corp Vacuum package, manufacturing method of vacuum package, and sensor
JP5382186B1 (en) * 2012-10-10 2014-01-08 ウシオ電機株式会社 Dye-sensitized solar cell
JP2015167068A (en) * 2014-03-03 2015-09-24 株式会社豊田自動織機 Manufacturing apparatus of power storage device and manufacturing method of power storage device
WO2017221184A1 (en) * 2016-06-21 2017-12-28 3Gsolar Photovoltaics Ltd. Seals for holes in solar cells
CN113394524A (en) * 2021-06-30 2021-09-14 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary liquid supplementing method
CN113394524B (en) * 2021-06-30 2023-11-10 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary fluid infusion method

Similar Documents

Publication Publication Date Title
JP2008117698A (en) Dye-sensitized solar cell
CN101661962B (en) Solar battery back film with high cohesiveness and processing process
JP2003203763A (en) Housing structure with multi-layer sealing layer
JP2020510968A (en) Bipolar battery and plate
JP2013533587A (en) Organic electroluminescent device with separating foil
WO2007010658A1 (en) Electrochemical cell and method for manufacturing same
WO2015165182A1 (en) Packaging structure and packaging method for organic electroluminescent device, and display apparatus
CN1511255A (en) Proton conductor gas sensor
KR101811473B1 (en) Waterproof layer coated pouch type secondary battery and method for fabricating thereof
KR101305242B1 (en) Secondary Battery of Novel Structure
JP4396574B2 (en) Dye-sensitized solar cell and method for producing the same
CN112415827A (en) Electrochromic element and preparation method thereof
JP3862210B2 (en) Fuel cell sealing structure and packing molding method
JP5024285B2 (en) Fuel cell cartridge, method of manufacturing the same, and fuel cell system
JP2007324012A (en) Electrochemical device
JP5626012B2 (en) SOLAR CELL MODULE AND METHOD OF CONNECTING SOLAR CELL MODULE
EP3046123A2 (en) Sealing structure of a dye-sensitized solar cell and sealing method thereof
US8710362B2 (en) Photoelectric conversion device
KR102512284B1 (en) Membrane-electrode assembly and preparation method thereof
KR101788325B1 (en) Solar cell with ion separator and method of the manufacturing of the same
JP2017015461A (en) Galvanic cell oxygen sensor
JP4463236B2 (en) Fuel cell packing
JP2009140828A (en) Dye-sensitized solar cell
KR101219847B1 (en) Dye sensitized solar cell with excellent airtightness
US20190221376A1 (en) Seals for holes in solar cells

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202