JP2007324012A - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
JP2007324012A
JP2007324012A JP2006154237A JP2006154237A JP2007324012A JP 2007324012 A JP2007324012 A JP 2007324012A JP 2006154237 A JP2006154237 A JP 2006154237A JP 2006154237 A JP2006154237 A JP 2006154237A JP 2007324012 A JP2007324012 A JP 2007324012A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte membrane
electrochemical device
power generation
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006154237A
Other languages
Japanese (ja)
Other versions
JP5145657B2 (en
Inventor
Kazuaki Fukushima
和明 福島
Shuji Goto
習志 後藤
Sayaka Nanjo
さやか 南條
Tetsuo Kusamoto
哲郎 草本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006154237A priority Critical patent/JP5145657B2/en
Publication of JP2007324012A publication Critical patent/JP2007324012A/en
Application granted granted Critical
Publication of JP5145657B2 publication Critical patent/JP5145657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device such as a fuel cell having excellent power generation efficiency and capable of manufacturing simply. <P>SOLUTION: The fuel cell 12 has a plane arrangement structure 11A in which a plurality of power generation parts 1 consisting of an electrolyte membrane 3 and a positive electrode 4 and a negative electrode 5 pinching this electrolyte membrane 3 are arranged with a given spacing along the surface direction. The exposed parts 3a of the electrolyte membrane 3 protruding oppositely from the positive electrode 4 and the negative electrode 5 between a plurality of mutually adjoining power generation parts 1 are embedded in an adhesive layer (seal) 2 of gas barrier property, and thereby the plurality of the power generation parts 1 are connected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小型電子機器の電源として好適な燃料電池等の電気化学デバイスに関するものである。   The present invention relates to an electrochemical device such as a fuel cell suitable as a power source for a small electronic device.

現在、電子機器の電源として様々な1次電池および2次電池が用いられている。これらの電池の特性を判断する1つの方法にエネルギー密度がある。このエネルギー密度とは、電池の単位質量又は単位体積当りのエネルギー容量のことである。   Currently, various primary batteries and secondary batteries are used as power sources for electronic devices. One method of determining the characteristics of these batteries is energy density. This energy density is the energy capacity per unit mass or unit volume of the battery.

近年、電子機器が小型化及び高性能化するにつれて、これに用いられる電源の高容量化及び高出力化、特に高容量化の必要性が大きくなってきており、従来の1次電池および2次電池では、電子機器の駆動に十分なエネルギーを供給することが困難になってきている。このような現状を打開する解決策として、よりエネルギー密度が高い電池の開発が急務とされており、燃料電池はその候補の1つとして注目されている。   In recent years, as electronic devices have become smaller and higher in performance, the need for higher capacity and higher output power, particularly higher capacity, has been increasing. With batteries, it has become difficult to supply sufficient energy to drive electronic devices. As a solution to overcome this situation, the development of a battery having a higher energy density is urgently required, and the fuel cell is attracting attention as one of the candidates.

燃料電池は、負極(アノード)、正極(カソード)及び電解質等からなり、負極側に燃料が供給され、正極側に空気又は酸素が供給される。そして、燃料の酸化還元反応が、負極及び正極上で起こり、燃料が持つ化学エネルギーの一部が電気エネルギーに変換されて取り出される。   The fuel cell includes a negative electrode (anode), a positive electrode (cathode), an electrolyte, and the like, and fuel is supplied to the negative electrode side, and air or oxygen is supplied to the positive electrode side. Then, a redox reaction of the fuel occurs on the negative electrode and the positive electrode, and a part of the chemical energy of the fuel is converted into electric energy and taken out.

既に、様々な種類の燃料電池が提案又は試作され、一部のものは実用的に製造され、利用されている。これ等の燃料電池は、用いられる電解質によって、例えば、アルカリ電解質型燃料電池(AFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)及び固体高分子型燃料電池(PEFC)等に分類される。   Various types of fuel cells have already been proposed or prototyped, and some are practically manufactured and used. Depending on the electrolyte used, these fuel cells may be, for example, alkaline electrolyte fuel cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC). ) And polymer electrolyte fuel cell (PEFC).

例えば図7に示す固体高分子形燃料電池62Aは、高分子イオン交換膜(陽イオン交換膜)からなる電解質膜(電解質)51を採用している。この電解質膜51の両側に、それぞれが、例えば、カーボンを主体とする基材に、貴金属系の電極触媒層を接合した負極52及び正極53を設けた膜・電極接合体(発電部)54を、2つの燃料供給部によって挟持した単位セル(燃料電池セル)を備えている。   For example, a polymer electrolyte fuel cell 62A shown in FIG. 7 employs an electrolyte membrane (electrolyte) 51 made of a polymer ion exchange membrane (cation exchange membrane). For example, a membrane / electrode assembly (power generation unit) 54 in which a negative electrode 52 and a positive electrode 53 each having a noble metal-based electrode catalyst layer bonded to a base material mainly made of carbon, for example, is provided on both sides of the electrolyte membrane 51. A unit cell (fuel cell) sandwiched between two fuel supply units is provided.

通常、この単位セルは、単独で用いるにはその取り出せる電圧が低い(0.3V−0.8V)ため、所定数だけ単位セルが積層されることにより、燃料電池スタックとして使用されている。   Normally, this unit cell is used as a fuel cell stack by stacking a predetermined number of unit cells because the voltage that can be taken out is low (0.3V-0.8V) when used alone.

この種の燃料電池62Aにおいては、負極52側に燃料ガス、例えば、主に水素を含有するガスが供給されると、電極の触媒上で水素がイオン化され、電解質膜51を介して正極53側へと移動する。その間に生じた電子は外部回路61に取り出され、直流の電気エネルギーとして利用される。なお、正極53には、酸化剤ガス、例えば、主に酸素を含有するガス又は空気が供給されるために、この正極53において、水素イオン、電子及び酸素が反応して水が生成される。   In this type of fuel cell 62A, when a fuel gas, for example, a gas mainly containing hydrogen is supplied to the negative electrode 52 side, hydrogen is ionized on the electrode catalyst, and the positive electrode 53 side passes through the electrolyte membrane 51. Move to. Electrons generated during that time are taken out by the external circuit 61 and used as direct current electric energy. The positive electrode 53 is supplied with an oxidant gas, for example, a gas or air mainly containing oxygen, so that hydrogen ions, electrons, and oxygen react in the positive electrode 53 to generate water.

一方、モバイル用途向け等のダイレクトメタノール型燃料電池といった薄型構造が好まれる燃料電池では、複数の単位セルを平面状に1列または複数列に配置し、各単位セル同士を電気的に直列に接続した平面積層構造の燃料電池が採用されることが多い。   On the other hand, in a fuel cell that prefers a thin structure such as a direct methanol fuel cell for mobile use, a plurality of unit cells are arranged in a row or a plurality of rows in a planar shape, and the unit cells are electrically connected in series. In many cases, a planar stacked fuel cell is employed.

その場合、所定数だけ直列化するためには、必要とする単電池の数だけ、例えば、テフロン(登録商標)等の絶縁基板(ガスケット)に電極部分のみをはめ込むことのできる電極サイズの孔を複数設け、そこに単位セルをはめ込んで平面配列構造体とし、燃料電池を作製する。この時、単位セルの電極部分の大きさよりも大きめに切断された電解質膜をその絶縁基板で挟み込み、所定の手段によって圧力を掛けて物理的に密着させシール部分を形成することにより、絶縁性及びガスシール性を確保している。   In that case, in order to serialize a predetermined number, the number of cells required, for example, an electrode size hole that can fit only the electrode portion into an insulating substrate (gasket) such as Teflon (registered trademark). A plurality of units are provided, and unit cells are fitted therein to form a planar array structure, thereby producing a fuel cell. At this time, an electrolyte membrane cut larger than the size of the electrode portion of the unit cell is sandwiched between the insulating substrates, and pressure is applied by a predetermined means to physically adhere to form a seal portion, thereby providing insulation and Gas sealability is secured.

しかしながら、電解質膜と絶縁基板との物理的な密着によりシール部分を形成しているため、そのシール性を向上させるためには、シール部分となる電解質膜の部分を大きくしたり、絶縁基板の電解質膜に対する押し付け圧力を高くしたりしなければならない。このため、単位セルの筐体は大きくかつ厚くなるという欠点がある。   However, since the sealing portion is formed by physical adhesion between the electrolyte membrane and the insulating substrate, in order to improve the sealing performance, the portion of the electrolyte membrane that becomes the sealing portion can be increased, or the electrolyte of the insulating substrate can be increased. For example, the pressing pressure on the membrane must be increased. For this reason, there is a disadvantage that the casing of the unit cell is large and thick.

また、固体高分子電解質膜はその水分量によって伸び縮みする特性を有するため、発電時における水分量の変化等によりシール部分のシール性能が不安定となり、ガスシール性を維持することが難しい。このガスシール性の不良により、燃料電池セルが発熱し、燃料が無駄に消費されてしまう。   In addition, since the solid polymer electrolyte membrane has a characteristic of expanding and contracting depending on the amount of water, the sealing performance of the seal portion becomes unstable due to a change in the amount of water during power generation, and it is difficult to maintain gas sealing performance. Due to this poor gas sealing performance, the fuel cells generate heat and the fuel is wasted.

そこで、これ等の課題を解決する方法としては、図8に示すような構造の燃料電池62Bが提案されている(後述の特許文献1を参照)。   Therefore, as a method for solving these problems, a fuel cell 62B having a structure as shown in FIG. 8 has been proposed (see Patent Document 1 described later).

この構造においては、膜・電極接合体(MEA)54Bの電解質膜51(プロトン伝導部)の所定部分において、金属イオンやアンモニウムイオンによりスルホン酸基のプロトンを置換して、絶縁層(プロトン絶縁部)63を形成し、これをゴムパッキン64で挟持している。   In this structure, in a predetermined portion of the electrolyte membrane 51 (proton conducting portion) of the membrane-electrode assembly (MEA) 54B, the proton of the sulfonic acid group is replaced by a metal ion or ammonium ion, and the insulating layer (proton insulating portion) ) 63 is formed and held between the rubber packings 64.

特許公報第2894378号(2頁右欄34行目〜3頁左欄28行目、図2)Patent Publication No. 2894378 (page 2, right column, line 34 to page 3, left column, line 28, FIG. 2)

しかし、図8に示す構造の燃料電池62Bでは、長期の発電時において、絶縁層(プロトン絶縁部)63に導入したイオンが電解質膜(プロトン伝導部)51へ移動してしまうので、燃料電池62Bの出力が低下し易い。更には、絶縁層(プロトン絶縁部)63を形成するための処理が煩雑である。   However, in the fuel cell 62B having the structure shown in FIG. 8, the ions introduced into the insulating layer (proton insulating portion) 63 move to the electrolyte membrane (proton conducting portion) 51 during long-term power generation. The output of Furthermore, the process for forming the insulating layer (proton insulating part) 63 is complicated.

本発明は、このような状況に鑑みてなされたものであって、その目的は、発電効率が良好であり、平面配列構造を簡易に作製することができる燃料電池等の電気化学デバイスを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrochemical device such as a fuel cell that has good power generation efficiency and can easily produce a planar array structure. There is.

即ち、本発明は、電解質膜と、この電解質膜を挟持する第1極及び第2極電極とからなる膜・電極接合体の複数個が、所定の間隔を置いて面方向に沿って配置されている電気化学デバイスにおいて、互いに隣接する複数の前記膜・電極接合体間で前記第1極及び第2極電極から対向して突出した前記電解質膜の露出部がガスバリア性の接着層に埋設され、これによって複数の前記膜・電極接合体が連結されていることを特徴とする電気化学デバイスに係わるものである。   That is, according to the present invention, a plurality of membrane / electrode assemblies comprising an electrolyte membrane and a first electrode and a second electrode sandwiching the electrolyte membrane are arranged along a plane direction at a predetermined interval. In the electrochemical device, an exposed portion of the electrolyte membrane that protrudes from the first electrode and the second electrode between a plurality of adjacent membrane-electrode assemblies is embedded in a gas barrier adhesive layer. Thus, the present invention relates to an electrochemical device characterized in that a plurality of the membrane-electrode assemblies are connected.

本発明によれば、互いに隣接する複数の前記膜・電極接合体間で前記第1極及び第2極電極から対向して突出した前記電解質膜の露出部が絶縁性でかつガスバリア性の接着層に埋設され、複数の前記膜・電極接合体が連結されているために、前記接着層から前記膜・電極接合体への不所望な物質の移動もなくなることから、電極間の短絡がなく、ガスシール性が良好となり、これによってデバイスとしての信頼性が高く、例えば発電効率の良好な電気化学デバイスを得ることができる。   According to the present invention, the exposed portion of the electrolyte membrane protruding in opposition from the first electrode and the second electrode between a plurality of adjacent membrane-electrode assemblies is insulative and has a gas barrier property. Embedded in the plurality of membrane-electrode assemblies connected to each other, there is no movement of undesired substances from the adhesive layer to the membrane-electrode assembly, so there is no short circuit between the electrodes, As a result, the gas sealing property is improved, and as a result, the reliability of the device is high, and for example, an electrochemical device having good power generation efficiency can be obtained.

しかも、対向した前記電解質膜の露出部を前記接着層に埋設して連結することによって、複数の膜・電極接合体を面方向に沿って高密度に配置した高出力で薄型の構造を簡易に作製することができる。   In addition, by embedding and connecting the exposed portions of the facing electrolyte membrane in the adhesive layer, a high-output and thin structure in which a plurality of membrane-electrode assemblies are arranged at high density along the surface direction can be simplified. Can be produced.

本発明においては、前記複数の膜・電極接合体が配置されてなる電気化学デバイスを有利な平坦形状とするために、前記複数の膜・電極接合体が同一面上に配置され、前記接着層の両面が平坦になっているのが好ましい。   In the present invention, in order to make an electrochemical device in which the plurality of membrane-electrode assemblies are arranged in an advantageous flat shape, the plurality of membrane-electrode assemblies are arranged on the same surface, and the adhesive layer It is preferable that both sides of the surface are flat.

或いは、前記複数の膜・電極接合体が厚み方向にずれた位置に配置された状態(即ち、前記電解質膜の露出部が前記接着層を介して重なった位置に配列された状態)で前記接着層の両面が平坦になっていても、電解質間における短絡無しで、デバイスをほぼ平坦形状とすることができる。   Alternatively, the bonding is performed in a state where the plurality of membrane / electrode assemblies are arranged at positions shifted in the thickness direction (that is, a state where the exposed portions of the electrolyte membrane are overlapped via the adhesive layer). Even if both sides of the layer are flat, the device can be substantially flat without a short circuit between the electrolytes.

また、前記電解質膜と前記接着層との接着性を良好にするために、フィルム状樹脂が少なくとも2層接着されることにより、前記接着層が形成されるのが好ましいが、この場合に、前記フィルム状樹脂が熱可塑性樹脂からなり、前記フィルム状樹脂が加熱されることにより前記電解質膜の露出部と前記接着層とが接着されるのが望ましい。   Further, in order to improve the adhesion between the electrolyte membrane and the adhesive layer, it is preferable that the adhesive layer is formed by adhering at least two layers of film-like resin. It is desirable that the film-like resin is made of a thermoplastic resin, and the exposed portion of the electrolyte membrane and the adhesive layer are bonded by heating the film-like resin.

或いは、前記電解質膜と前記接着層との接着性を良好にするために、前記フィルム状樹脂が、前記電解質膜の露出部との接着面において、酸、酸無水物、酸エステル、メタロセン及び水酸基(又はそのエステル化物)などからなる群から選ばれた少なくとも1種により変性されているのが好ましい。   Alternatively, in order to improve the adhesion between the electrolyte membrane and the adhesive layer, the film-like resin has an acid, an acid anhydride, an acid ester, a metallocene, and a hydroxyl group on the adhesive surface with the exposed portion of the electrolyte membrane. It is preferably modified with at least one selected from the group consisting of (or esterified products thereof) and the like.

また、前記電解質膜の露出部と前記接着層との接着性を良好にするために、前記フィルム状樹脂が、電解質のスルホン酸基と静電相互作用などの相互作用によって結合可能な水酸基やイミダゾール、ピリジン、アミン等の塩基性置換基を有する分子が重合されてなるものがよい。   In addition, in order to improve the adhesion between the exposed portion of the electrolyte membrane and the adhesive layer, the film-like resin can be bonded with a hydroxyl group or imidazole that can be bound by an interaction such as electrostatic interaction with a sulfonic acid group of the electrolyte. It is preferable to polymerize molecules having a basic substituent such as pyridine, amine and the like.

なお、本発明の電気化学デバイスは、負極又は燃料極(アノード)、電解質層、及び正極又は酸素極(カソード)からなる燃料電池として構成されているのが好ましい。   The electrochemical device of the present invention is preferably configured as a fuel cell comprising a negative electrode or a fuel electrode (anode), an electrolyte layer, and a positive electrode or an oxygen electrode (cathode).

以下、本発明の好ましい実施の形態を図面参照下に具体的かつ詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described specifically and in detail with reference to the drawings.

第1の実施の形態
図1〜図5に、本発明の第1の実施の形態を示す。
First Embodiment FIGS. 1 to 5 show a first embodiment of the present invention.

本実施の形態による電気化学デバイスとしての燃料電池セル11Aを図1の断面図及び図2の斜視図に示す製造工程に基づいて説明する。   A fuel cell 11A as an electrochemical device according to the present embodiment will be described based on the manufacturing process shown in the cross-sectional view of FIG. 1 and the perspective view of FIG.

まず、図1(a)に示すように、個々の発電部1を複数箇所(図では断面内3箇所、2列:以下、同様)でそれぞれ嵌めこんで収容するための開口部13aを熱可塑性樹脂シート2a(フィルム状樹脂)に形成する。これらの開口部は切り取りによって形成可能である(以下、同様)。   First, as shown in FIG. 1 (a), the openings 13a for accommodating the individual power generation units 1 by being fitted at a plurality of locations (three locations in the cross section, two rows: the same applies hereinafter) are thermoplastic. It forms in the resin sheet 2a (film-like resin). These openings can be formed by cutting (hereinafter the same).

次に、図1(b)に示すように、各開口部13aに、電解質膜3、正極4(ガス拡散電極)及び負極5(ガス拡散電極)からなる膜・電極接合体1をそれぞれ嵌めこむが、発電部としての接合体1(MEA)は電解質膜3の一部3aが各電極の周囲に突出して露出しており、この露出部を開口部13aの周囲で受けると共に、開口部13a内に負極5を嵌め入れる。   Next, as shown in FIG. 1B, the membrane / electrode assembly 1 including the electrolyte membrane 3, the positive electrode 4 (gas diffusion electrode), and the negative electrode 5 (gas diffusion electrode) is fitted into each opening 13a. However, in the joined body 1 (MEA) as the power generation part, a part 3a of the electrolyte membrane 3 is exposed to protrude around each electrode, and the exposed part is received around the opening part 13a, and in the opening part 13a. The negative electrode 5 is fitted into the.

こうして、各発電部1を各開口部13aに収容保持した後、図1(c)及び図2に示すように、正極4の側でシート2aの上から、電解質膜3の上記の突出した露出部3aを被覆し、正極4を嵌め込むための開口部13bを有する熱可塑性樹脂シート2b(フィルム状樹脂)を被せ、上記シート2aとの間に電解質膜3の露出部3aを挟み込む。この時に、複数の発電部1が同一面上に配置され、シート2a及び2bの両面は平坦になっている。   Thus, after each power generation unit 1 is accommodated and held in each opening 13a, as shown in FIG. 1C and FIG. 2, the above-described protruding exposure of the electrolyte membrane 3 from the top of the sheet 2a on the positive electrode 4 side. The thermoplastic resin sheet 2b (film-like resin) covering the portion 3a and having an opening 13b for fitting the positive electrode 4 is covered, and the exposed portion 3a of the electrolyte membrane 3 is sandwiched between the sheet 2a. At this time, the plurality of power generation units 1 are arranged on the same surface, and both surfaces of the sheets 2a and 2b are flat.

次に、図1(d)に示すように、シート2a及び2bのみを加熱して互いに熱圧着して一体化させ、これによってガスバリア性の十分な接着層2(即ち、シール)を形成する。この接着層2は、電極から露出した電解質膜3及び電極の一部に被着することにより、電解質膜3の突出した露出部3aを埋設すると共に、複数の発電部1間を強固に連結した平面形の平面配列構造体11Aを作製する。   Next, as shown in FIG. 1 (d), only the sheets 2a and 2b are heated and bonded together by thermocompression, thereby forming an adhesive layer 2 (that is, a seal) having sufficient gas barrier properties. The adhesive layer 2 is attached to the electrolyte membrane 3 exposed from the electrode and a part of the electrode, thereby burying the exposed exposed portion 3a of the electrolyte membrane 3 and firmly connecting the plurality of power generation units 1 to each other. A planar planar array structure 11A is produced.

次に、図1(e)に示すように、平面配列構造体11Aを、集電体6又は7と絶縁層8からなるカソードプレート及びアノードプレートに挟み込み、メタノール9を例えば水溶液として収容するメタノールタンク10を設けて燃料電池12を完成する。ここで、集電体6及び7には金メッキしたSUS等のパンチングメタルやメッシュを用いることができ、絶縁層8にはPPS(ポリフェニレンスルフィド)やPEEK(ポリエーテルエーテルケトン)等の強度及び耐熱性に優れた硬質プラスチックやセラミックスを用いることができる。燃料電池12として実際に用いる場合には、各発電部1は直列に接続されてよいが、ここではその結線状態は図示省略する。   Next, as shown in FIG. 1 (e), a planar tank 11A is sandwiched between a cathode plate and an anode plate made of a current collector 6 or 7 and an insulating layer 8, and methanol 9 is stored as an aqueous solution, for example. 10 is provided to complete the fuel cell 12. Here, the current collectors 6 and 7 can be made of a punched metal such as gold-plated SUS or mesh, and the insulating layer 8 can have strength and heat resistance such as PPS (polyphenylene sulfide) or PEEK (polyetheretherketone). It is possible to use hard plastics and ceramics excellent in the above. When actually used as the fuel cell 12, the power generation units 1 may be connected in series, but the connection state is not shown here.

なお、本実施の形態においては、発電部1が6箇所に配置された状態を図示したが、その個数や配置パターンは必要に応じて変化させてよいことは勿論である。   In the present embodiment, the state in which the power generation units 1 are arranged at six locations is illustrated, but it goes without saying that the number and arrangement pattern may be changed as necessary.

上述のシート2a及び2bの材質は、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル及びPETなどのポリエステル等の熱可塑性樹脂を用いることができる。   As the material of the above-described sheets 2a and 2b, for example, a thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyvinyl acetate, and polyester such as PET can be used.

そして、これらのシート2a及び2bは、電解質膜3との接着面において、酸、酸無水物、酸エステル、メタロセン及び水酸基(又はそのエステル化物)などからなる群から選ばれた少なくとも1種により変性(表面処理)されたものを用いると、接着性が良好となる。   These sheets 2 a and 2 b are modified with at least one selected from the group consisting of acids, acid anhydrides, acid esters, metallocenes and hydroxyl groups (or esterified products thereof) on the adhesive surface with the electrolyte membrane 3. Adhesiveness will be good if what was (surface-treated) is used.

また、シート2a及び2bは、電解質のスルホン酸基と静電相互作用によって結合可能な水酸基やイミダゾール、ピリジン、アミン等の塩基性置換基を共重合体として有すると、接着性が良好となる。   Sheets 2a and 2b have good adhesion when they have a hydroxyl group or a basic substituent such as imidazole, pyridine or amine that can be bonded to the sulfonic acid group of the electrolyte by electrostatic interaction.

図3には、シート2a及び2bが電解質膜3と接着するメカニズムの1例が示されている。   FIG. 3 shows an example of a mechanism by which the sheets 2 a and 2 b adhere to the electrolyte membrane 3.

例えば、水酸基を共重合させたビニル系熱可塑性樹脂からなるシート2aと、スルホン酸基を有する固体電界質膜3とを接触させ、熱を加えることにより、シート2a及び2bの水酸基が電解質膜3のスルホン酸基と反応して、両者間がエステル結合によって強固に結合すると推察される。これは、後述のシート2c、2d及び2eの接着においても同様である。   For example, the sheet 2a made of a vinyl-based thermoplastic resin copolymerized with a hydroxyl group is brought into contact with the solid electrolyte membrane 3 having a sulfonic acid group, and heat is applied, whereby the hydroxyl groups of the sheets 2a and 2b are converted into the electrolyte membrane 3. It is presumed that the two groups react strongly with each other by an ester bond. The same applies to the adhesion of sheets 2c, 2d, and 2e described later.

次に、図4に示した表について、上述のシート(又はフィルム)2a及び2bの材質として、例えば、酸素遮断性が良好なポリビニルアルコール(ポバール:PVA)系の各種樹脂を用いたときの接着特性等を説明する。この表は、各樹脂の低温接着性、水浸漬時、MeOH(メタノール)浸漬時及び熱水浸漬時の接着性、及び寸法安定性についてのフィルム引き剥がし時の状況を示し、◎はフィルム破断:接着性非常に良好、○は接着面の剥離:接着性良好、△は接着面の剥離:接着性不十分、及び×は非接着又は剥離:接着不良、をそれぞれ意味する。   Next, with respect to the table shown in FIG. 4, as a material for the above-described sheets (or films) 2 a and 2 b, for example, adhesion when using various types of polyvinyl alcohol (Poval: PVA) resins having good oxygen barrier properties. The characteristics and the like will be described. This table shows the low-temperature adhesiveness of each resin, the adhesiveness when immersed in water, MeOH (methanol) and when immersed in hot water, and the dimensional stability at the time of film peeling. Very good adhesion, ○ means peeling of the adhesive surface: good adhesion, Δ means peeling of the adhesive surface: insufficient adhesion, and x means non-adhesion or peeling: poor adhesion.

この表によれば、PVA樹脂シート(30μm厚)、PVA樹脂シート(50μm厚)、PVA樹脂シート(40μm厚)(以上、いずれもクラレ社製)は、低温接着性が良好であり、また水浸漬、MeOH浸漬及び熱水浸漬においてはフィルム破断が生じる程に接着強度が十分であるが、吸湿によって寸法安定性が不十分となり易い。   According to this table, PVA resin sheet (30 μm thickness), PVA resin sheet (50 μm thickness), PVA resin sheet (40 μm thickness) (all of which are manufactured by Kuraray Co., Ltd.) have good low-temperature adhesiveness, In dipping, MeOH dipping and hot water dipping, the adhesive strength is sufficient to cause film breakage, but dimensional stability tends to be insufficient due to moisture absorption.

これに対し、エチレン−ポリビニルアルコール共重合樹脂シート(エチレン含有量約30モル%又は約45モル%)(いずれもクラレ社製)は、低温接着性が非常に良好であり、また水浸漬、MeOH浸漬及び熱水浸漬においても接着強度が十分であり、更に寸法安定性も良好である。   On the other hand, the ethylene-polyvinyl alcohol copolymer resin sheet (ethylene content of about 30 mol% or about 45 mol%) (both manufactured by Kuraray Co., Ltd.) has very good low-temperature adhesion, and is also immersed in water and MeOH. Adhesive strength is sufficient in immersion and hot water immersion, and dimensional stability is also good.

また、出光LLフィルム(出光興産社製)は、低温接着性においては接着強度が良好であり、寸法安定性も非常に良いが、水浸漬において接着強度が低下し、MeOH浸漬及び熱水浸漬において接着強度が不良となって非接着又は剥離状態となる。   In addition, Idemitsu LL film (made by Idemitsu Kosan Co., Ltd.) has good adhesive strength at low temperature adhesion and very good dimensional stability. However, the adhesive strength decreases in water immersion, and in MeOH immersion and hot water immersion. Adhesive strength is poor, and it becomes non-adhered or peeled.

これらの結果から、PVA系接着剤は、全体的に接着強度が概ね高い材質であるといえる。但し、ポバールは、吸湿により寸法安定性が乏しくなるのに対し、エバール樹脂又はエバール樹脂の複合膜(例えばポリプロピレンフィルムとの複合膜)は、低温接着性、水浸漬、MeOH浸漬及び熱水浸漬、更には寸法安定性のいずれもが優れていてシート2a及び2bの材質として好ましいといえる。   From these results, it can be said that the PVA adhesive is a material having a generally high adhesive strength as a whole. However, Poval has poor dimensional stability due to moisture absorption, whereas Eval resin or a composite film of Eval resin (for example, a composite film with polypropylene film) has low-temperature adhesion, water immersion, MeOH immersion and hot water immersion, Further, both of the dimensional stability are excellent, and it can be said that it is preferable as the material of the sheets 2a and 2b.

上記したPVA系樹脂やポリアクリロニトリルなどはガス透過速度が樹脂フィルムの中では比較的小さく、高いガスシール性を有しているので、上記のシート2a、2bの材質として優れている。   The above-described PVA-based resin, polyacrylonitrile, and the like have a relatively low gas permeation rate in the resin film and have high gas sealing properties, so that they are excellent as materials for the sheets 2a and 2b.

上記した如き、電解質膜3と密着性の高い樹脂をシート2a及び2bに用いることにより、電解質膜3とシートa及び2bによる接着層2との接着性が向上し、吸湿によっても両者間に隙間が生じ難くなり、ガス漏れが激減し、ガスシール性を向上させることができる。   As described above, by using a resin having high adhesion to the electrolyte membrane 3 for the sheets 2a and 2b, the adhesion between the electrolyte membrane 3 and the adhesive layer 2 by the sheets a and 2b is improved, and a gap is formed between the two even by moisture absorption. Is less likely to occur, gas leakage is drastically reduced, and gas sealability can be improved.

上記したように、本実施の形態によれば、互いに隣接する複数の発電部1間で正極4及び負極5から対向して突出した電解質膜3の露出部3aが、熱可塑性樹脂シート2a及び2bの熱圧着体からなるガスバリア性の接着層2に埋設され、複数の発電部1が連結されているために、電解質膜3の突出した露出部3aと接着層2との接着面におけるガスシール性(即ち、メタノール等の燃料や酸素の透過の防止性)が良好となると同時に、隣り合う電解質膜3間の不所望なイオン等の移動もなく、デバイスとしての信頼性が高く、燃費の向上と共に発電効率の向上を実現した平面配列構造体11Aを得ることができる。   As described above, according to the present embodiment, the exposed portions 3a of the electrolyte membrane 3 projecting from the positive electrode 4 and the negative electrode 5 between the plurality of power generation units 1 adjacent to each other are the thermoplastic resin sheets 2a and 2b. Embedded in a gas-barrier adhesive layer 2 made of a thermocompression bonding body, and a plurality of power generation units 1 are connected, so that the gas sealing property on the adhesive surface between the exposed exposed portion 3a of the electrolyte membrane 3 and the adhesive layer 2 (In other words, the fuel and oxygen permeation prevention properties such as methanol are improved), and at the same time, there is no movement of undesired ions between the adjacent electrolyte membranes 3, so that the reliability as a device is high and the fuel efficiency is improved. It is possible to obtain a planar array structure 11A that realizes improvement in power generation efficiency.

しかも、対向した電解質膜3の露出部3aを接着層2で連結することによって、複数の発電部1を面方向に沿って同一面上に高密度に配置した高出力で薄型の構造を簡易に作製することができる。   In addition, by connecting the exposed portions 3a of the facing electrolyte membrane 3 with the adhesive layer 2, a high-power and thin structure in which a plurality of power generation portions 1 are arranged at high density on the same surface along the surface direction can be easily achieved. Can be produced.

第2の実施の形態
図5〜図6に、本発明の第2の実施の形態を示す。
Second Embodiment FIGS. 5 to 6 show a second embodiment of the present invention.

本実施の形態による燃料電池では、図5に示すように、3枚の熱可塑性樹脂シート2c、2d及び2eを積層して熱圧着により接着層2を形成すると共に、隣接し合う発電部1A及び1Bを厚み方向に僅かにずらして配置し、かつそれぞれの発電部1A及び1Bの電解質膜3の露出部3aを厚さ方向で部分的に重なるように各発電部間の間隔を詰めて配置していること以外は、上述した第1の実施の形態と同様である。   In the fuel cell according to the present embodiment, as shown in FIG. 5, the thermoplastic resin sheets 2c, 2d and 2e are laminated to form the adhesive layer 2 by thermocompression bonding, and the adjacent power generation unit 1A and 1B is arranged with a slight shift in the thickness direction, and the exposed portions 3a of the electrolyte membranes 3 of the respective power generation units 1A and 1B are arranged close to each other so as to partially overlap in the thickness direction. Except for this, it is the same as the first embodiment described above.

本実施の形態による平面配列構造体11Bを図5の断面図及び図6の斜視図に示す製造工程に基づいて説明する。   The planar array structure 11B according to the present embodiment will be described based on the manufacturing process shown in the cross-sectional view of FIG. 5 and the perspective view of FIG.

まず、図5(a)に示すように、各発電部1A及び1Bをそれぞれ収容するための開口部13c及び13dを熱可塑性樹脂シート2cに形成する。   First, as shown to Fig.5 (a), the opening parts 13c and 13d for accommodating each electric power generation part 1A and 1B, respectively are formed in the thermoplastic resin sheet 2c.

次に、図5(b)に示すように、これらの開口部のうち開口部13cに、電解質膜3、正極4及び負極5からなる発電部(MEA)1Aの負極5を嵌め込み、電解質膜3の露出部3aがシート2cと同一面をなすように密着させる。   Next, as shown in FIG. 5B, the negative electrode 5 of the power generation unit (MEA) 1A composed of the electrolyte membrane 3, the positive electrode 4, and the negative electrode 5 is fitted into the opening 13c among these openings, and the electrolyte membrane 3 The exposed portion 3a is in close contact with the sheet 2c.

次に、図5(c)及び図6に示すように、各発電部1Bを収容するための開口部13eと開口部13fを有する熱可塑性樹脂シート2dを配置し、その開口部13eに、発電部1Bの負極5を嵌め込むと共に電解質膜3の露出部3aを載置し、かつ発電部1Aの正極4を開口部13fに嵌め込む。   Next, as shown in FIGS. 5C and 6, a thermoplastic resin sheet 2d having an opening 13e and an opening 13f for accommodating each power generation unit 1B is disposed, and power generation is performed in the opening 13e. The negative electrode 5 of the part 1B is fitted, the exposed part 3a of the electrolyte membrane 3 is placed, and the positive electrode 4 of the power generation part 1A is fitted into the opening 13f.

次に、図5(d)に示すように、発電部1Aの正極4と、発電部1Bの正極4及び電解質膜3の露出部3aとをそれぞれ嵌め込む開口部13g及び開口部13hを有する熱可塑性樹脂シート2eを被せる。   Next, as shown in FIG. 5D, heat having an opening 13g and an opening 13h into which the positive electrode 4 of the power generation unit 1A and the positive electrode 4 of the power generation unit 1B and the exposed part 3a of the electrolyte membrane 3 are fitted, respectively. The plastic resin sheet 2e is covered.

次に、図56(e)に示すように、各シート2c、2d及び2eのみを加熱し、熱圧着して一体化し、両面が平坦な接着層2を形成する。これによって、接着層2が電解質膜3の露出部3aを埋設して互いに接着してなる平面配列構造体11Bを作製する。   Next, as shown in FIG. 56 (e), only the sheets 2c, 2d, and 2e are heated and thermocompression-bonded to form an adhesive layer 2 having flat surfaces. As a result, the planar array structure 11 </ b> B in which the adhesive layer 2 is embedded in the exposed portion 3 a of the electrolyte membrane 3 and bonded to each other is manufactured.

最後に、図1(e)に示した構造と同様に、平面配列構造体11Bに、集電体、絶縁層、メタノール収容のメタノールタンクを設けて燃料電池を完成する。   Finally, similarly to the structure shown in FIG. 1E, the planar array structure 11B is provided with a current collector, an insulating layer, and a methanol tank containing methanol to complete a fuel cell.

本実施の形態によれば、隣接する発電部1A及び1Bが厚み方向に僅かにずれて配置され、かつそれぞれの発電部1A及び1Bの電解質膜3の露出部3aが厚さ方向で部分的に重なるようにして接着層2に埋設されているために、平面配列構造体11Bの全体の大きさを縮小することができ、かつ部分的に重なる電解質膜2の露出部3a間での連結強度も大きくなって平面配列構造体自体の強度が向上する。   According to the present embodiment, the adjacent power generation units 1A and 1B are arranged slightly shifted in the thickness direction, and the exposed portion 3a of the electrolyte membrane 3 of each power generation unit 1A and 1B is partially in the thickness direction. Since it is embedded in the adhesive layer 2 so as to overlap, the overall size of the planar array structure 11B can be reduced, and the coupling strength between the exposed portions 3a of the electrolyte membrane 2 that partially overlaps is also improved. It becomes larger and the strength of the planar array structure itself is improved.

なお、図5(e)において、隣接し合う電極同士の高さが異なるように図示されているが、実際には、シール部分を加熱してシールするため、電解質膜が曲がってその厚みを補正し、これによって隣接し合う電極同士はフラットになる。   In FIG. 5 (e), the adjacent electrodes are illustrated so that their heights are different from each other, but in actuality, the sealing portion is heated and sealed, so that the electrolyte membrane is bent and the thickness thereof is corrected. As a result, the adjacent electrodes become flat.

その他、本実施の形態においては、上述した第1の実施の形態で述べたのと同様の作用及び効果が得られる。   In addition, in the present embodiment, the same operations and effects as described in the first embodiment described above can be obtained.

以下、本発明の実施例を比較例と共に具体的に説明する。   Examples of the present invention will be specifically described below together with comparative examples.

実施例1
図1(d)に示した平面配列構造体11Aを作製するために、まず、電解質膜3(サイズ:14mm×14mm、厚さ25μm)に対して、触媒インクをカーボンペーパーに塗布して形成したガス拡散電極(正極4及び負極5)(それぞれのサイズ:10mm×10mm)を、130℃で15分間、0.5kNの圧力で接合して、各発電部(MEA)1を作製した。
Example 1
In order to produce the planar array structure 11A shown in FIG. 1D, first, catalyst ink was applied to carbon paper on the electrolyte membrane 3 (size: 14 mm × 14 mm, thickness 25 μm). Gas diffusion electrodes (positive electrode 4 and negative electrode 5) (each size: 10 mm × 10 mm) were joined at 130 ° C. for 15 minutes at a pressure of 0.5 kN to produce each power generation unit (MEA) 1.

他方、上記の各ガス拡散電極のサイズ:10mm×10mmと同等サイズの各開口部13aを、5mm間隔で直列数(例えば6箇所)切り取りによりポリエチレン−ポリビニルアルコール共重合樹脂シート(厚さ:30μm)2aに形成した。これらの各開口部に各電極5を嵌め込み、更に、同サイズのポリエチレン−ポリビニルアルコール共重合樹脂シート2bで挟み込んだ。   On the other hand, polyethylene-polyvinyl alcohol copolymer resin sheet (thickness: 30 μm) is obtained by cutting each opening 13a having the same size as each of the above gas diffusion electrodes: 10 mm × 10 mm in series (for example, 6 locations) at intervals of 5 mm. Formed in 2a. Each electrode 5 was fitted into each of these openings, and further sandwiched between polyethylene-polyvinyl alcohol copolymer resin sheets 2b of the same size.

次に、各電極4及び5の電極面を水平に保ちながら、ポリエチレン−ポリビニルアルコール共重合樹脂シート2a及び2bの部分のみを、150℃で1分間、1kNの圧力で熱圧着させ、シート2a及び2bの一体化による接着層(シール)2を形成した。これによって、図1(d)及び図2に示したような平面配置で、各MEA1の電解質膜3の露出部3aが接着層2に埋設され、各MEA1間がプロトン絶縁された平面配列構造体11Aを得た。   Next, while keeping the electrode surfaces of the electrodes 4 and 5 horizontal, only the portions of the polyethylene-polyvinyl alcohol copolymer resin sheets 2a and 2b were thermocompression bonded at 150 ° C. for 1 minute at a pressure of 1 kN, and the sheets 2a and 2b An adhesive layer (seal) 2 was formed by integrating 2b. Thereby, in the planar arrangement as shown in FIG. 1 (d) and FIG. 2, a planar array structure in which the exposed portion 3a of the electrolyte membrane 3 of each MEA 1 is embedded in the adhesive layer 2 and proton insulation is provided between the MEAs 1. 11A was obtained.

この実施例1では、電解質膜3をシールしたポリエチレン−ポリビニルアルコール共重合樹脂シート2は全体として、6箇所に電極4及び5の組を配置したものであり、全体のサイズは50mm×35mmとなった。   In Example 1, the polyethylene-polyvinyl alcohol copolymer resin sheet 2 with the electrolyte membrane 3 sealed is a set of electrodes 4 and 5 arranged at six locations as a whole, and the overall size is 50 mm × 35 mm. It was.

実施例2
図5(e)に示した平面配列構造体11Bを作製するために、まず、各電極4及び5のサイズ:10mm×10mmと同等サイズの開口部13c及び13dを3mm間隔で直列数(例えば6箇所)切り取りによりポリエチレン−ポリビニルアルコール共重合樹脂シート(厚さ:30μm)2cに形成した。これらの各開口部のうち開口部13cに発電部1Aの電極5を嵌め込んだ。
Example 2
In order to produce the planar array structure 11B shown in FIG. 5 (e), first, the openings 4c and 13d having the same size as each electrode 4 and 5: 10 mm × 10 mm are arranged in series at intervals of 3 mm (for example, 6 Part) A polyethylene-polyvinyl alcohol copolymer resin sheet (thickness: 30 μm) 2c was formed by cutting. Among these openings, the electrode 5 of the power generation section 1A was fitted into the opening 13c.

次に、同サイズの変性ポリエチレン−ポリビニルアルコール共重合樹脂シート2dに切り取りにより形成した開口部13eに発電部1Bの電極5を嵌め込み、更にこれをシート2cの開口部13dに嵌め込んだ。しかる後に、同サイズのポリエチレン−ポリビニルアルコール共重合樹脂シート2eに切り取りにより形成した開口部13g及び13hに各電極を嵌め込んだ。   Next, the electrode 5 of the power generation unit 1B was fitted into the opening 13e formed by cutting the modified polyethylene-polyvinyl alcohol copolymer resin sheet 2d of the same size, and this was further fitted into the opening 13d of the sheet 2c. Thereafter, each electrode was fitted into the openings 13g and 13h formed by cutting the polyethylene-polyvinyl alcohol copolymer resin sheet 2e of the same size.

次に、各電極4及び5の電極面を水平に保ちながら、ポリエチレン−ポリビニルアルコール共重合樹脂シート2c、2d及び2eの部分のみを、150℃で1分間、1kNの圧力で熱圧着させ、シート2c、2d及び2eの一体化による接着層(シール)2を形成した。これによって、図5(e)及び図6に示したような平面配置で、各MEA1A、1Bの電解質膜3の露出部3aが接着層2に埋設され、各MEA間がプロトン絶縁された平面配列構造体11Bを得た。   Next, while keeping the electrode surfaces of the electrodes 4 and 5 horizontal, only the portions of the polyethylene-polyvinyl alcohol copolymer resin sheets 2c, 2d, and 2e are thermocompression bonded at 150 ° C. for 1 minute at a pressure of 1 kN, An adhesive layer (seal) 2 was formed by integrating 2c, 2d and 2e. Thereby, in the planar arrangement as shown in FIGS. 5 (e) and 6, the exposed portion 3a of the electrolyte membrane 3 of each MEA 1A, 1B is embedded in the adhesive layer 2, and the planar arrangement in which the MEAs are proton-insulated A structure 11B was obtained.

この実施例2では、電解質膜3をシールしたポリエチレン−ポリビニルアルコール共重合樹脂シート2は全体として、6箇所に電極4及び5の組を配置したものであり、全体のサイズは42mm×29mmとなった。   In Example 2, the polyethylene-polyvinyl alcohol copolymer resin sheet 2 with the electrolyte membrane 3 sealed is a set of electrodes 4 and 5 arranged at six locations as a whole, and the overall size is 42 mm × 29 mm. It was.

実施例3
実施例1で述べたと同様にして各MEAを作製した後、各電極4及び5のサイズ:10mm×10mmと同等の開口部を3mm間隔で直列数切り取りによりポリエチレン−ポリビニルアルコール共重合樹脂フィルムとポリプロピレンフィルムとの多層フィルム(厚さ:50μm)に形成した。これらの開口部に各電極を嵌め込み、更に、同サイズのポリエチレン−ポリビニルアルコール共重合樹脂フィルムとポリプロピレンフィルムとの多層フィルムで挟み込んだ。そして、実施例2で述べたと同様に各フィルム間を熱圧着して全体のサイズが42mm×29mmの平面配列構造体を作製した。
Example 3
After each MEA was produced in the same manner as described in Example 1, the openings equivalent to the size of each electrode 4 and 5: 10 mm × 10 mm were cut in series at intervals of 3 mm to obtain a polyethylene-polyvinyl alcohol copolymer resin film and polypropylene. The film was formed into a multilayer film (thickness: 50 μm). Each electrode was fitted into these openings, and further sandwiched between multilayer films of polyethylene-polyvinyl alcohol copolymer resin film and polypropylene film of the same size. Then, as described in Example 2, the films were thermocompression bonded to produce a planar array structure having an overall size of 42 mm × 29 mm.

比較例1
発電部(MEA)は、電解質膜のサイズが16mm×16mmであり、シール性を高めるために、樹脂シートに挟み込まれる電解質膜の厚さを3mmとした発電部(MEA)を作製した。各電極サイズと同等の10mm×10mmの開口部を7mm間隔で直列数テフロン(登録商標)のガスケット(厚さ:400μm)に形成し、これらの開口部に各電極を嵌め込み、更に、同サイズのテフロン(登録商標)のガスケットで挟み込み、全体のサイズが58mm×41mmの平面配列構造体を作製した。しかしながら、このセルでは、ガスケットでシールしているだけであるため、各発電部が位置ずれし易く、作業性が悪かった。
Comparative Example 1
The power generation unit (MEA) has an electrolyte membrane size of 16 mm × 16 mm, and a power generation unit (MEA) in which the thickness of the electrolyte membrane sandwiched between the resin sheets is 3 mm is manufactured in order to improve sealing performance. Openings of 10 mm × 10 mm equivalent to each electrode size are formed in a series of Teflon (registered trademark) gaskets (thickness: 400 μm) at intervals of 7 mm, and each electrode is fitted into these openings. A planar array structure having a total size of 58 mm × 41 mm was prepared by sandwiching with a Teflon (registered trademark) gasket. However, in this cell, since it is only sealed with a gasket, each power generation part is easily displaced, and workability is poor.

上述の実施例1〜3及び比較例1で作製した各平面配列構造体を、集電体、絶縁層、メタノールを収容したメタノールタンクを含む図1(e)に示した如き構造物に組み込み、各発電部間を直列に接続した。この時、実施例1〜3の各発電部は一体化(連結)構造をとっているため、組み込みが非常に容易であった。また、内部で各MEAの電解質膜がシールされているため、特に平面配列構造体の周辺部分を重点的にシールするのが望ましいが、ここでは簡易的にシリコンゴムで周辺部をシールした。比較例1では、テフロン(登録商標)のガスケットがそのまま周辺シールを兼ねるため、各発電部が位置ずれしないように慎重に組み込んだ。   Each planar array structure produced in Examples 1 to 3 and Comparative Example 1 described above is incorporated into a structure as shown in FIG. 1 (e) including a current collector, an insulating layer, and a methanol tank containing methanol, Each power generation unit was connected in series. At this time, since each power generation part of Examples 1 to 3 had an integrated (connected) structure, it was very easy to incorporate. Further, since the electrolyte membrane of each MEA is sealed inside, it is desirable to seal the peripheral portion of the planar array structure with emphasis, but here the peripheral portion is simply sealed with silicon rubber. In Comparative Example 1, since the Teflon (registered trademark) gasket also serves as a peripheral seal as it is, each power generation unit was carefully incorporated so as not to be displaced.

そして、実施例1〜3及び比較例1の平面配列構造体を用いた燃料電池について性能評価を行った。   And performance evaluation was performed about the fuel cell using the planar array structure of Examples 1-3 and the comparative example 1. FIG.

具体的には、80重量%のメタノール水溶液を燃料として用いた時の1時間後の開回路電圧(OCV:オープンサーキットボルテージ)と各燃料電池セルの温度とを測定した。結果を下記の表1に示す。また、燃料を3cc用いて、200mWの定電力で発電した場合の各燃料電池セルの温度と発電時間とを測定した。結果を下記の表2に示す。   Specifically, the open circuit voltage (OCV: open circuit voltage) and the temperature of each fuel cell after 1 hour when an 80 wt% aqueous methanol solution was used as the fuel were measured. The results are shown in Table 1 below. Moreover, the temperature and power generation time of each fuel cell when generating power with a constant power of 200 mW using 3 cc of fuel were measured. The results are shown in Table 2 below.

Figure 2007324012
Figure 2007324012

Figure 2007324012
Figure 2007324012

表1に示す結果から明らかなように、実施例1〜3の各燃料電池において、開回路電圧(OCV)が3V程度得られ、電解質膜間のプロトン絶縁部が接着層(樹脂)により正常に作製されていることが確認された。   As is clear from the results shown in Table 1, in each fuel cell of Examples 1 to 3, an open circuit voltage (OCV) of about 3 V was obtained, and the proton insulating portion between the electrolyte membranes was normally formed by the adhesive layer (resin). It was confirmed that it was produced.

また、開回路状態での発熱は、シール不良の目安と考えられるが、実施例1〜3の各燃料電池セルにおいては40℃程度であって、比較例1の燃料電池においては53℃であった。これも通常のシール方法(比較例1)における温度と比較して低い温度であることから、シール性も良好であることが明らかであった。   In addition, although heat generation in the open circuit state is considered to be an indication of poor sealing, it is about 40 ° C. in each fuel cell of Examples 1 to 3, and 53 ° C. in the fuel cell of Comparative Example 1. It was. Since this is also a temperature lower than the temperature in the normal sealing method (Comparative Example 1), it was clear that the sealing performance was also good.

また、表2に示す結果から明らかなように、発電1時間後の温度は、実施例1〜3の各燃料電池セルにおいては45℃程度であって、比較例1の燃料電池においては57℃であった。発電1時間後の温度が低いことが確認された。   Further, as is apparent from the results shown in Table 2, the temperature after 1 hour of power generation is about 45 ° C. in each of the fuel cells of Examples 1 to 3, and 57 ° C. in the fuel cell of Comparative Example 1. Met. It was confirmed that the temperature after 1 hour of power generation was low.

また、発電時間は、実施例1〜3においては6時間程度であって、比較例1の4時間よりも長くなり、発電時においてもシール性が高いために、燃料漏洩による燃料消費が減り、発電時間も延びた。   In addition, the power generation time is about 6 hours in Examples 1 to 3, which is longer than 4 hours of Comparative Example 1, and since the sealing performance is high even during power generation, fuel consumption due to fuel leakage is reduced. Power generation time has also been extended.

以上、本発明を実施の形態及び実施例に基づいて説明したが、本発明はこれらの例に何ら限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。   As mentioned above, although this invention was demonstrated based on embodiment and an Example, this invention is not limited to these examples at all, and it cannot be overemphasized that it can change suitably in the range which does not deviate from the main point of invention. .

例えば、上述の樹脂シート又は接着層、更には周辺シール材の材質として、上述したもの以外の熱可塑性樹脂を用いてよく、或いは、エポキシ樹脂、尿素樹脂、メラミン樹脂及びウレタン樹脂等の熱硬化性樹脂、シリコンゴム並びにゴム状の液体シール材等を用いることができる。   For example, a thermoplastic resin other than those described above may be used as the material for the above-described resin sheet or adhesive layer, and further the peripheral sealing material, or thermosetting such as epoxy resin, urea resin, melamine resin, and urethane resin. Resin, silicon rubber, rubber-like liquid sealing material, and the like can be used.

また、上述の接着層の形成方法は、各シートの積層後の熱圧着だけでなく、接着材料のポッティング方法、塗布方法、又は型枠を用いた注入方法としてもよい。   In addition, the above-described method for forming the adhesive layer is not limited to thermocompression bonding after the sheets are laminated, and may be a potting method for an adhesive material, a coating method, or an injection method using a mold.

また、必要に応じて、各発電部の配置は、面方向だけでなく発電部の厚み方向にも積層されていてもよい。各発電部は直列に接続するのが高出力化の点で望ましいが、並列接続でもよく、直並列が混在してもよい。   Moreover, the arrangement | positioning of each electric power generation part may be laminated | stacked not only on the surface direction but the thickness direction of the electric power generation part as needed. Each power generation unit is preferably connected in series from the viewpoint of high output, but may be connected in parallel or may be mixed in series and parallel.

また、燃料としてメタノールガスを直接供給してもよいが、この場合には電池の動作開始時に水を適量添加して負極側の反応を促進させるようにしてもよい。燃料電池として、水素型燃料電池等、メタノール型以外の他の燃料を用いる燃料電池であってよい。   In addition, methanol gas may be directly supplied as fuel. In this case, an appropriate amount of water may be added at the start of battery operation to promote the reaction on the negative electrode side. The fuel cell may be a fuel cell using a fuel other than the methanol type, such as a hydrogen type fuel cell.

また、上述の第1の実施の形態と第2の実施の形態とを統合した構成の燃料電池とすることもできる。   Moreover, it can also be set as the fuel cell of the structure which integrated the above-mentioned 1st Embodiment and 2nd Embodiment.

本発明の電気化学デバイスは、高発電効率で作製容易な燃料電池等に適用することができる。   The electrochemical device of the present invention can be applied to a fuel cell or the like that can be easily manufactured with high power generation efficiency.

本発明の第1の実施の形態による燃料電池の作製工程を順次示す断面図である。It is sectional drawing which shows the manufacturing process of the fuel cell by the 1st Embodiment of this invention sequentially. 同、燃料電池の作製工程を示す斜視図である。It is a perspective view which shows the same manufacturing process of a fuel cell. 同、接着メカニズムを示す化学式である。It is a chemical formula showing the adhesion mechanism. 同、各種樹脂の接着性能を示す表である。It is a table | surface which shows the adhesive performance of various resin similarly. 本発明の第2の実施の形態による燃料電池の作製工程を順次示す断面図である。It is sectional drawing which shows the manufacturing process of the fuel cell by the 2nd Embodiment of this invention sequentially. 同、燃料電池の作製工程を示す斜視図である。It is a perspective view which shows the same manufacturing process of a fuel cell. 従来例による燃料電池の概略断面図。The schematic sectional drawing of the fuel cell by a prior art example. 同、別の燃料電池の断面図である。It is sectional drawing of another fuel cell same as the above.

符号の説明Explanation of symbols

1A、1B…発電部(MEA)、2…接着層(シール)、
2a、2b、2c、2d、2e…熱可塑性樹脂シート、3…電解質膜、
4…正極(カソード)、5…負極(アノード)、6、7…集電体、8…絶縁層、
9…メタノール、10…メタノールタンク、11A、11B…平面配列構造体、
12…燃料電池、
13a、13b、13c、13d、13e、13f、13g、13h…開口部
1A, 1B ... power generation part (MEA), 2 ... adhesive layer (seal),
2a, 2b, 2c, 2d, 2e ... thermoplastic resin sheet, 3 ... electrolyte membrane,
4 ... Positive electrode (cathode), 5 ... Negative electrode (anode), 6, 7 ... Current collector, 8 ... Insulating layer,
9 ... methanol, 10 ... methanol tank, 11A, 11B ... planar array structure,
12. Fuel cell,
13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h ... opening

Claims (8)

電解質膜と、この電解質膜を挟持する第1極及び第2極電極とからなる膜・電極接合体の複数個が、所定の間隔を置いて面方向に沿って配置されている電気化学デバイスにおいて、互いに隣接する複数の前記膜・電極接合体間で前記第1極及び第2極電極から対向して突出した前記電解質膜の露出部がガスバリア性の接着層に埋設され、これによって複数の前記膜・電極接合体が連結されていることを特徴とする電気化学デバイス。   In an electrochemical device in which a plurality of membrane / electrode assemblies including an electrolyte membrane and a first electrode and a second electrode sandwiching the electrolyte membrane are arranged along a plane direction at a predetermined interval The exposed portion of the electrolyte membrane protruding from the first electrode and the second electrode between a plurality of adjacent membrane / electrode assemblies is embedded in a gas barrier adhesive layer, thereby An electrochemical device characterized in that membrane-electrode assemblies are linked. 前記複数の膜・電極接合体が同一面上に配置され、前記接着層の両面が平坦になっている、請求項1に記載した電気化学デバイス。   The electrochemical device according to claim 1, wherein the plurality of membrane / electrode assemblies are arranged on the same surface, and both surfaces of the adhesive layer are flat. 前記複数の膜・電極接合体の第1極及び第2極電極から対向して突出した前記電解質膜の露出部が前記接着層を介して重なった位置に配列された状態で前記接着層の両面が平坦になっている、請求項1に記載した電気化学デバイス。   Both surfaces of the adhesive layer in a state in which the exposed portions of the electrolyte membrane protruding opposite to the first electrode and the second electrode of the plurality of membrane / electrode assemblies are arranged at positions overlapping with the adhesive layer. The electrochemical device according to claim 1, wherein is flat. フィルム状樹脂が少なくとも2層接合されることにより、前記接着層が形成される、請求項1に記載した電気化学デバイス。   The electrochemical device according to claim 1, wherein the adhesive layer is formed by bonding at least two layers of film-like resin. 前記フィルム状樹脂が熱可塑性樹脂からなり、前記フィルム状樹脂が加熱されることにより前記電解質膜の露出部と前記接着層とが接着される、請求項4に記載した電気化学デバイス。   The electrochemical device according to claim 4, wherein the film-like resin is made of a thermoplastic resin, and the exposed portion of the electrolyte membrane and the adhesive layer are bonded by heating the film-like resin. 前記フィルム状樹脂が、前記電解質膜の露出部との接着面において、酸、酸無水物、酸エステル、メタロセン及び水酸基(又はそのエステル化物)からなる群から選ばれた少なくとも1種により変性されている、請求項4に記載した電気化学デバイス。   The film-like resin is modified with at least one selected from the group consisting of an acid, an acid anhydride, an acid ester, a metallocene, and a hydroxyl group (or esterified product thereof) on the adhesive surface with the exposed portion of the electrolyte membrane. The electrochemical device according to claim 4. 前記フィルム状樹脂が、電解質のスルホン酸基と相互作用によって結合可能な水酸基またはイミダゾール、ピリジン、アミン等の塩基性の置換基を有する分子が重合されてなる、請求項4に記載した電気化学デバイス。   5. The electrochemical device according to claim 4, wherein the film-like resin is obtained by polymerizing a hydroxyl group that can be bonded to an electrolyte sulfonic acid group by interaction or a molecule having a basic substituent such as imidazole, pyridine, or amine. . 燃料電池として構成された、請求項1に記載した電気化学デバイス。   The electrochemical device according to claim 1 configured as a fuel cell.
JP2006154237A 2006-06-02 2006-06-02 Electrochemical devices Expired - Fee Related JP5145657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154237A JP5145657B2 (en) 2006-06-02 2006-06-02 Electrochemical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154237A JP5145657B2 (en) 2006-06-02 2006-06-02 Electrochemical devices

Publications (2)

Publication Number Publication Date
JP2007324012A true JP2007324012A (en) 2007-12-13
JP5145657B2 JP5145657B2 (en) 2013-02-20

Family

ID=38856628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154237A Expired - Fee Related JP5145657B2 (en) 2006-06-02 2006-06-02 Electrochemical devices

Country Status (1)

Country Link
JP (1) JP5145657B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245660A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010231892A (en) * 2009-03-25 2010-10-14 Sanyo Electric Co Ltd Fuel cell
JP2010257943A (en) * 2009-03-30 2010-11-11 Sanyo Electric Co Ltd Composite film, fuel cell, and method of manufacturing composite film
JP2012109073A (en) * 2010-11-16 2012-06-07 Fuji Electric Co Ltd Cell structure of fuel cell
CN112751042A (en) * 2019-10-30 2021-05-04 现代自动车株式会社 Method for manufacturing membrane-electrode assembly capable of reducing electrolyte membrane consumption
JP2023530396A (en) * 2020-12-31 2023-07-18 コーロン インダストリーズ インク MEMBRANE ELECTRODE ASSEMBLY AND MANUFACTURING METHOD THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015127A (en) * 1999-06-28 2001-01-19 Fuji Electric Co Ltd Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2002280048A (en) * 2001-03-16 2002-09-27 Toyota Motor Corp Fuel cell
JP2004119185A (en) * 2002-09-26 2004-04-15 Nitto Denko Corp Fuel cell
JP2004146092A (en) * 2002-10-22 2004-05-20 Hitachi Ltd Sheet-like chemical cell, its manufacturing method, fuel cell, its manufacturing method, electrolyte sheet, and wiring sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015127A (en) * 1999-06-28 2001-01-19 Fuji Electric Co Ltd Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP2002280048A (en) * 2001-03-16 2002-09-27 Toyota Motor Corp Fuel cell
JP2002280049A (en) * 2001-03-19 2002-09-27 Hitachi Cable Ltd Integrated type fuel cell
JP2004119185A (en) * 2002-09-26 2004-04-15 Nitto Denko Corp Fuel cell
JP2004146092A (en) * 2002-10-22 2004-05-20 Hitachi Ltd Sheet-like chemical cell, its manufacturing method, fuel cell, its manufacturing method, electrolyte sheet, and wiring sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245660A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010231892A (en) * 2009-03-25 2010-10-14 Sanyo Electric Co Ltd Fuel cell
JP2010257943A (en) * 2009-03-30 2010-11-11 Sanyo Electric Co Ltd Composite film, fuel cell, and method of manufacturing composite film
JP2012109073A (en) * 2010-11-16 2012-06-07 Fuji Electric Co Ltd Cell structure of fuel cell
CN112751042A (en) * 2019-10-30 2021-05-04 现代自动车株式会社 Method for manufacturing membrane-electrode assembly capable of reducing electrolyte membrane consumption
JP2023530396A (en) * 2020-12-31 2023-07-18 コーロン インダストリーズ インク MEMBRANE ELECTRODE ASSEMBLY AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP5145657B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US20070020502A1 (en) High temperature fuel cell system
JP5145657B2 (en) Electrochemical devices
JP5251062B2 (en) Composite current collector plate for fuel cell and fuel cell
JP2012212678A (en) Fuel cell
KR101387451B1 (en) Electrochemical device
US20070231668A1 (en) Fuel cell device
EP2112705A1 (en) Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
CN112582636B (en) Fuel cell unit cell
JP5062392B2 (en) Polymer electrolyte fuel cell
WO2014007182A1 (en) Fuel cell stack
US20050191517A1 (en) Separator and direct methanol type fuel cell therewith
US7914944B2 (en) Atmosphere open type fuel cell
JP2005100970A (en) Polymer electrolyte fuel cell
CN115117407B (en) Membrane electrode assembly with gas diffusion layer and method for manufacturing same
JP5235581B2 (en) Fuel cell separator
US7862954B2 (en) Fuel cell
CN101432138A (en) Graphite/metal foil/polymer substrate laminate for low contact resistance bipolar plate application
CN113675422B (en) fuel cell stack
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
KR101009621B1 (en) Stack for fuel cell and fuel cell system having the same
JP2008034156A (en) Fuel cell
JP2008277135A (en) Fuel container and fuel cell
JP2006344586A (en) Fuel cell
JP2023142598A (en) Fuel cell
JP2023161180A (en) Fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees