JP2012037389A - マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置 - Google Patents

マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置 Download PDF

Info

Publication number
JP2012037389A
JP2012037389A JP2010177948A JP2010177948A JP2012037389A JP 2012037389 A JP2012037389 A JP 2012037389A JP 2010177948 A JP2010177948 A JP 2010177948A JP 2010177948 A JP2010177948 A JP 2010177948A JP 2012037389 A JP2012037389 A JP 2012037389A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
microfluidic chip
periodic structure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010177948A
Other languages
English (en)
Inventor
Satoshi Yamamoto
敏 山本
Tatsuo Suemasu
龍夫 末益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010177948A priority Critical patent/JP2012037389A/ja
Priority to EP11814531.7A priority patent/EP2602610A4/en
Priority to PCT/JP2011/067204 priority patent/WO2012017904A1/ja
Publication of JP2012037389A publication Critical patent/JP2012037389A/ja
Priority to US13/758,450 priority patent/US8652419B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00063Trenches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/005Bulk micromachining
    • B81C1/00515Bulk micromachining techniques not provided for in B81C1/00507
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/033Trenches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/0143Focussed beam, i.e. laser, ion or e-beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Measuring Cells (AREA)
  • Micromachines (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】周期構造に対応する周期的パターンを有するレジストを形成する必要がなく、周期的パターン及び周期構造を基板表面に直接形成できる、マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置の提供。
【解決手段】基板表面の凹部を設ける領域に、ピコ秒オーダー以下のパルス時間幅を有するレーザー光Lを照射して、該レーザー光Lの集光域Fに、自己組織的に形成される周期的パターン14を有する改質部11を形成する工程Aと、エッチング処理を行い、該改質部11の少なくとも一部を除去して前記凹部を設けると共に、周期的パターン14に基づく表面プロファイルを有する、一方向に沿った複数の溝部を含む周期構造を、該凹部の底面に、形成する工程Bと、前記底面の周期構造を覆う金属層を形成する工程Cと、を含むことを特徴とするマイクロ流体チップの製造方法。
【選択図】図1

Description

本発明は、マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置に関する。
従来、金属表面に光を照射して誘起される表面プラズモン共鳴を利用した、分子間相互作用検出装置が知られている。例えば、特許文献1には、生体分子を含む溶液を流す流路の検出部に金属薄膜が形成され、該金属薄膜表面に蛍光分子で修飾された抗体を固定し、該抗体と検出対象との間で分子間相互作用(結合)が起こった際に、該蛍光分子からの蛍光シグナルの変化を検出できる装置が開示されている。
特許文献1に記載の装置では、通常、金属薄膜表面に特定の入射角でレーザー光を照射するためのプリズムが必要である。レーザー照射角の制限等から、当該装置の大型化が避けられない問題があった。
これに対して、特許文献2に記載のマイクロプレート及びそれを用いた表面プラズモン励起増強蛍光顕微鏡では、検出部の金属表面に規則的な周期構造(グレーティング)を形成することによって、前記レーザー照射角の制限を緩和できる。このため、プリズムを必要とせず、装置の小型化、及び光学系の単純化を図れることが開示されている。
前記周期構造を形成する一般的な従来方法は、SiO等からなる基板上に、周期構造に対応する周期的パターンを有するレジストマスクを形成して、基板をエッチングする方法である。例えば、ポジ型レジストに対して、二束干渉法によりHe−Cdレーザーを照射して、グレーティング状のレジストマスクを形成する方法がある(非特許文献1)。
また、SiO基板に形成した流路上にネガ型レジストを塗布し、フェムト秒レーザーを用いた二光子吸収法によって、該レジストをグレーティングに加工する方法が知られる(非特許文献2)。
しかしながら、上記方法はいずれも、周期構造に対応する形状を有する、超微細加工が施されたレジストを基板上に形成する必要がある。つまり、該周期構造の加工精度は、レジストの加工精度に依存してしまう問題がある。レジストの加工精度は、レジスト組成物の化学的組成、基板とレジストとの密着性、レジストパターン形成後のエッチング特性、及びレーザー照射条件等、複雑な要因に影響される。また、基板上のマイクロ流路内等の微細構造内に、パターニング前のレジストを均一に成膜することさえ困難な場合が多い。
本発明は上記事情に鑑みてなされたものであり、周期構造に対応する周期的パターンを有するレジストを形成する必要がなく、周期的パターン及び周期構造を基板表面に直接形成できる、マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴分析装置の提供を課題とする。
本発明の請求項1に記載のマイクロ流体チップの製造方法は、基板表面において、液体を内在させるための凹部を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射して、該レーザー光の集光域に、自己組織的に形成される周期的パターンを有する改質部を形成する工程Aと、前記改質部が形成された前記基板に対してエッチング処理を行い、該改質部の少なくとも一部を除去して前記凹部を設けると共に、前記周期的パターンに基づく表面プロファイルを有する、一方向に沿った複数の溝部を含む周期構造を、該凹部の少なくとも底面に、形成する工程Bと、前記底面の周期構造を覆う金属層を形成する工程Cと、を含むことを特徴とする。
本発明の請求項2に記載のマイクロ流体チップの製造方法は、請求項1において、前記自己組織的に形成される周期的パターンは、前記基板に入射した前記レーザー光によって発生した該基板表面近傍におけるプラズモンと、入射する前記レーザー光との、干渉波が強め合って改質される部位、および該干渉波の強め合いが弱くなって改質される部位、を含むことを特徴とする。
本発明の請求項3に記載のマイクロ流体チップの製造方法は、請求項1又は2において、前記レーザー光として直線偏光レーザーを使用し、該直線偏光の偏波方向に対して垂直方向に、該レーザー光の集光域を走査することによって、前記走査の方向と、前記周期構造をなす複数の溝部が延伸する方向と、を平行にすることを特徴とする。
本発明の請求項4に記載のマイクロ流体チップの製造方法は、請求項1又は2において、 前記レーザー光として直線偏光レーザーを使用し、該直線偏光の偏波方向に対して平行な方向に、該レーザー光の集光域を走査することによって、前記走査の方向に対して、前記周期構造をなす複数の溝部が延伸する方向を、垂直にすることを特徴とする。
本発明の請求項5に記載のマイクロ流体チップの製造方法は、請求項1〜4のいずれか一項において、前記エッチング処理において、等方性ドライエッチング法を用いることを特徴とする。
本発明の請求項6に記載のマイクロ流体チップの製造方法は、請求項1〜5のいずれか一項において、前記基板表面に設けた凹部が、流路を成すことを特徴とする。
本発明の請求項7に記載のマイクロ流体チップの製造方法は、請求項6において、前記基板表面の前記流路を覆うように、該基板表面に部材を貼り付ける工程をさらに含むことを特徴とする。
本発明の請求項8に記載のマイクロ流体チップの製造方法は、請求項1〜5のいずれか一項において、前記基板表面に設けた凹部が、ウェルを成すことを特徴とする。
本発明の請求項9に記載のマイクロ流体チップの製造方法は、請求項1〜8のいずれか一項において、前記金属層上に、保護層を形成する工程をさらに含むことを特徴とする。
本発明の請求項10に記載のマイクロ流体チップは、請求項1〜9のいずれか一項に記載の製造方法によって得られたものである。
本発明の請求項11に記載の表面プラズモン共鳴光の発生装置は、前記マイクロ流体チップを用いたものである。
本発明のマイクロ流体チップの製造方法によれば、前記凹部と前記周期構造とを共に、同じ工程プロセスによって形成することができるので、製造効率に優れる。また、レーザー照射による基板の改質及びエッチング処理によって、前記周期構造を前記凹部内に形成しているので、周期構造の加工精度に優れる。ナノオーダーの周期構造を形成することも可能である。
また、本発明のマイクロ流体チップの製造方法によれば、所望の経路及び形状を有する流路、及び/又は所望の形状を有するウェルを基板に配することができる。さらに、該流路又はウェルにおける所望の底面部位に、ナノオーダーの周期構造(グレーティング)を形成できる。
さらに、前記周期構造を金属層で覆うことによって、前記周期構造を反映した表面プロファイルを有する金属層を形成できる。このような金属層に対して外部から光を照射することによって、該金属層の近傍に表面プラズモン共鳴光を誘起することができる。該表面プラズモン共鳴光を利用することにより、金属層近傍における分子間相互作用の検出や、金属層近傍にある観測対象の蛍光シグナルによる観察等の応用が可能である。
レーザー照射によって、基板表面に周期的パターンを含む改質部を形成する様子を示す、基板の模式的な断面図である。 照射レーザー光の走査方向(改質部の延伸方向)と周期的パターンの方向との関係を示す、基板の模式的な上面図の一例である。 照射レーザー光の走査方向(改質部の延伸方向)と周期的パターンの方向との関係を示す、基板の模式的な上面図の別の一例である。 基板表面に凹部を形成し、該凹部の底面に周期構造を形成する様子を示す、基板の模式的な断面図である。 流路をなす凹部の延伸方向と、該凹部の底面に形成された周期構造における、溝部及び凸部の延伸方向との関係を示す、基板の模式的な上面図の一例である。 流路をなす凹部の延伸方向と、該凹部の底面に形成された周期構造における、溝部及び凸部の延伸方向との関係を示す、基板の模式的な上面図の別の一例である。 基板表面に凹部が形成されなかった場合を示す、基板の模式的な断面図である。 周期構造を覆うように金属層を形成した場合を示す、基板の模式的な断面図である。 本発明にかかるマイクロ流体チップの一例を示す模式的な斜視図である。 本発明にかかるマイクロ流体チップの別の一例を示す模式的な斜視図である。 本発明にかかるマイクロ流体チップの別の一例を示す模式的な斜視図である。
以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
<マイクロ流体チップの製造方法>
本発明にかかるマイクロ流体チップの製造方法は、基板表面において、液体を内在させるための凹部を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射して、該レーザー光の集光域に、自己組織的に形成される周期的パターンを有する改質部を形成する工程Aと、前記改質部が形成された前記基板に対してエッチング処理を行い、該改質部の少なくとも一部を除去して前記凹部を設けると共に、前記周期的パターンに基づく表面プロファイルを有する、一方向に沿った複数の溝部を含む周期構造を、該凹部の少なくとも底面に、形成する工程Bと、前記底面の周期構造を覆う金属層を形成する工程Cと、を含む。
[工程A]
図1に示すように、前記工程Aは、基板表面において、液体を内在させるための凹部を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射して、該レーザー光の集光域に、自己組織的に形成される周期的パターンを有する改質部を形成する工程である。
図1の概略断面図では、基板10に対してレーザー光Lを照射している。レーザー光Lはレンズ20により基板表面近傍に集光されている。
基板10におけるレーザー光Lの集光域Fに、改質部11が形成される。レーザー光Lの焦点は、集光域F内にある。また、図1では、レーザー光Lとして直線偏光レーザーを使用しており、その偏波方向(電場方向)は、紙面と平行な方向(両方矢印Eで示す)である。
改質部11は、複数の第一改質部11a及び複数の第二改質部11bを含む。紙面と平行な方向である前記偏波方向に見ると、改質部11内には、第一改質部11aと第二改質部11bとが交互に形成された周期的パターン14が存在する。
第一改質部11aは、基板10に入射したレーザー光Lによって発生した基板表面近傍におけるプラズモン(電子プラズマ波)と、入射するレーザー光Lと、の干渉波が強め合った結果改質される部位である。一方、第二改質部11bは、前記干渉波の強め合いが比較的弱い部位に形成される。
改質部11は、エッチング耐性が弱くなっている(エッチング速度が速い)ので、後述の工程Bにおけるエッチング処理において、優先的に除去されるが、さらに第一改質部11aと第二改質部11bとではその構造が異なるため、一方が他方よりエッチングレートが速くなる(ここでは便宜的に、第一改質部11aの方が速いとする)。
周期的パターン14は、前記干渉波の影響を受けて自己組織的に形成される。つまり、前記干渉波が生じるようにレーザー光Lの照射強度を制御することによって、レジストマスク等を使用することなく、基板10に対して直接に、周期的パターン14を伴う改質部11を形成することができる。
これを言い換えると、本発明にかかるマイクロ流体チップの製造方法では、自己組織的に形成される周期的パターン14は、基板10に入射したレーザー光Lによって発生した該基板表面近傍におけるプラズモンと、入射するレーザー光Lとの、干渉波が強め合って改質される部位(第一改質部11a)、および該干渉波の強め合いが弱くなって改質される部位(第二改質部11b)、を含むことが好ましい。
前記照射強度は、基板10を構成する材料の加工閾値近傍又は加工閾値以上、且つアブレーション閾値以下であることが好ましい。この照射強度とすることにより、レーザー光Lの集光域近傍に、周期的パターン14を自己組織的に形成できる。
ここで、前記加工閾値は、周期構造14を形成させるためのレーザーパルスパワーの下限値と定義される。また、アブレーション閾値とは、アブレーションを発生させるためのレーザーパルスパワーの下限値であり、前記加工閾値とは異なる。一般的に加工閾値はアブレーション閾値よりも小さな値をとる。
前記照射強度を適宜調整することによって、ナノオーダーの周期的パターン14を形成できる。ここで、ナノオーダーとは、隣り合う改質部11a同士の間隔又は隣り合う改質部11b同士の間隔が、ナノメートル(nm)単位であることをいう。例えば、前記間隔が10〜800nmである周期的パターン14を形成できる。
基板10を構成する材料としては、工程Aによって基板10の表面に周期的パターン14が自己組織的に形成され、かつレーザー光Lに対して透過率の高い材料が好ましい。例えば、加工性に優れる合成石英が最も好適であるが、その他にも、例えばホウ珪酸ガラスなどのガラス材料や、石英、サファイア、ダイヤモンドなどの結晶性材料も好適である。
レーザー光Lとしては、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光であれば特に制限はなく、例えばチタンサファイアレーザー、ピコ秒オーダー以下のパルス幅を有するファイバーレーザーなどを用いることができる。
レーザー光Lを集光するレンズ20としては、例えば屈折式の対物レンズや屈折式のレンズを使用できる。また、フレネル、反射式、油浸、水浸式の対物レンズを使用してもよい。シリンドリカルレンズを用いると、一度に基板10の表面の広範囲にレーザー照射することが可能になる。また、ホログラフィックマスクや干渉などを用いても広範囲な領域を一度に加工することができる。
レーザー光Lの照射方法は特に限定されない。例えば、基板10の表面に対して水平方向にレーザー光Lを移動させながら照射すると、該レーザー光Lの集光域が走査する範囲が広くなり、広範囲に周期的パターン14を有する改質部11を形成できる。また、例えばレーザー伝搬方向に対して水平方向(基板厚み方向)に照射部が重なるようにレーザー光Lを照射すると、基板厚み方向に、周期的パターン14がずれることなく形成できる。
レーザー光Lの照射例としては、例えばTiサファイアレーザを使用した場合が挙げられる。照射条件としては、例えば波長800nm、繰返周波数200kHz、レーザー走査速度1mm/秒に設定して、レーザー光Lを合成石英製の基板10に集光照射する、照射条件が挙げられる。なお、ここで例示した波長、繰返周波数、走査速度の値は一例であり、本発明はこれに限定されず任意に変えることが可能である。
集光に用いるレンズ20としては、N.A<0.7未満の対物レンズを用いることが好ましい。パルス強度(レーザー照射強度)は、基板表面近傍に照射する際にはアブレーション閾値以下、例えば100nJ/pulse程度以下のパワーで照射することが好ましい。
基板10にレーザー光Lの焦点を結びつつ、該レーザー光の集光域を走査することにより、基板10内に改質部11を所望の形状で形成できる。その後、改質部11の少なくとも一部は、後段の工程Bにおけるエッチング処理によって除去されて、基板表面に凹部を設けられる。すなわち、基板10の表面において、液体(試料溶液)を内在させるための凹部を設ける領域に、レーザー光Lを照射して、該領域に改質部11を形成し、該改質部11の一部をエッチング処理で除去することによって、基板10の表面に前記凹部を形成することができる。この際、後で詳述するが、該凹部の底面には周期的パターン14に基づく表面プロファイルを有する、一方向に沿った複数の溝部を含む周期構造を形成できる。
改質部11に形成される周期的パターン14の方向(第一改質部11aと第二改質部11bとが交互に現れる方向)と、レーザー光Lの集光域の走査方向に沿う、改質部11の延伸方向と、の関係は、レーザー光Lの偏波方向(偏光)を制御することによって調整することができる。
図2に、改質部11の延伸方向とレーザー光Lの偏波方向との関係の一例を示す。
図2は基板10の模式的な上面図である。レーザー光Lとして直線偏光レーザーを使用し、基板表面(紙面)に対して垂直方向から基板10に照射して、その集光域を改質部11の延伸方向に沿って、α、β、γの順に一筆書きの要領で走査することによって、改質部11が形成されている。このときのレーザー光Lの偏波方向E(電場方向)は、両方矢印Eで示してある。
図2の例では、α〜γの各領域において、レーザー光Lの走査方向(改質部11の延伸方向)と、偏波方向Eとが垂直となるように、偏波方向Eを制御しつつレーザー光Lを走査している。この結果、第一改質部11a及び第二改質部11bが改質部11の延伸方向に沿って平行に形成されている。また、図から明らかなように、周期的パターン14の方向は、改質部11の延伸方向に対して直交するように形成される。
なお、図2の例では、第一改質部11aは2本の太線で描いているが、これは紙面の都合で便宜的に2本線で描いているだけであって、実際に改質部11における第一改質部11aが2本であることは意味しない。
図3に、改質部11の延伸方向とレーザー光Lの偏波方向との関係の別の一例を示す。
図3は基板10の模式的な上面図である。レーザー光Lとして直線偏光レーザーを使用し、基板表面(紙面)に対して垂直方向から基板10に照射して、その集光域を改質部11の延伸方向に沿って、α、β、γの順に一筆書きの要領で走査することによって、改質部11が形成されている。このときのレーザー光Lの偏波方向E(電場方向)は、両方矢印Eで示してある。
図3の例では、α〜γの各領域において、レーザー光Lの走査方向(改質部11の延伸方向)と、偏波方向Eとが平行となるように、偏波方向Eを制御しつつレーザー光Lを走査している。この結果、第一改質部11a及び第二改質部11bが改質部11の延伸方向に対して直交するように形成されている。また図から明らかなように、周期的パターン14の方向は、改質部11の延伸方向に対して平行に形成される。
図2及び図3の例において、改質部11の両端の第三改質部11cでは、周期的パターン14を形成していない。これは、レーザー光Lの照射強度を制御して、自己組織的に周期的パターンが形成されるよりも強いパルスパワーによって、第三改質部11cを形成したためである。
このように、周期的パターン14を形成するか否かは、レーザー照射強度を制御することによって行うことができる。例えば、前記領域α〜γの少なくとも一部において、周期的パターン14を形成しないことも可能である。
また、図2及び図3の例では、改質部11の形状はクランク形状で形成している。この場合、工程Bにおけるエッチング処理を経た後では、前記クランク形状の改質部11が基板10表面から除去されて、クランク形状の凹部となる。言うまでもないが、改質部11の形状はクランク形状に限られず、本発明にかかるマイクロ流体チップにおける流路又はウェルの形状に応じて、レーザー光Lの走査を制御することにより、所望の形状で形成できる。
[工程B]
図4に示すように、前記工程Bは、改質部11が形成された基板10(例えば図1)に対してエッチング処理を行い、該改質部11の少なくとも一部を除去して、基板表面10に凹部15を設けると共に、周期的パターン14に基づく表面プロファイルを有する、一方向に沿った複数の溝部12aを含む周期構造16を、該凹部15の少なくとも底面に形成する工程である。
改質部11が形成された基板10の表面に対してエッチング処理を行うと、第一改質部11aが、第二改質部11bよりも優先的に(選択的に)エッチングされることにより、凹部15が形成される。この際、凹部15の底面には、第二改質部11bの一部が残ることによって、凸部12bが複数形成される。
第一改質部11aが優先的にエッチングされる理由は、第一改質部11aがエッチング耐性に低いためである。例えば、基板10が石英製である場合、第一改質部11aは、酸素が欠乏してエッチング耐性が低下した領域となる。
溝部12aと凸部12bとが交互に形成されてなる周期構造16の表面プロファイル(凹凸の形状)は、改質部11における周期的パターン14に基づいて形成されている。つまり、周期構造16において隣り合う溝部12aの中心同士の間隔は、周期的パターン14において隣り合う改質部11aの中心同士の間隔に対応している。同様に、周期構造16において隣り合う凸部12bの中心同士の間隔は、周期的パターン14において隣り合う改質部11bの中心同士の間隔に対応している。
したがって、周期的パターン14を前記ナノオーダーで形成した場合、周期構造16を同様にナノオーダーで形成することができる。
周期構造16における複数の溝部12a及び凸部12bは一方向に沿って形成される。該一方向は、周期的パターン14における第一改質部11a及び第二改質部11bが延伸する方向と同一である。このことを、図5及び図6で示す。
図5は、図2に示す基板10をエッチング処理して得られた基板であり、エッチング処理後に形成された流路18の延伸方向に沿った一方向に、溝部12a及び凸部12bが延伸している。一方、図6は、図3に示す基板10をエッチング処理して得られた基板であり、エッチング処理後に形成された流路18の延伸方向に対して垂直の一方向に溝部12a及び凸部12bが延伸している。
前記エッチング耐性は、基板10の材質と、エッチング液或いはエッチングガスとの組合せによって変化するものである。このため、両者の組合せによっては第二改質部11bの方が、より選択的にエッチングされ凹部を形成する場合もあり得る。この場合であっても、周期的パターン14に基づく周期構造16は形成されるので、本発明にかかるマイクロ流体チップとして機能する場合があり得る。
エッチングの方法としては、ウェットエッチング又はドライエッチングのいずれの方法を用いてもよいが、後述するように周期構造16の形状をダイナミックに制御でき、精度の良い加工が可能なドライエッチングの方が好ましい。ウェットエッチングでは、ダイナミックな形状制御が難しく、所望の周期構造を得られない場合がある。
ドライエッチング法としては、異方性ドライエッチング法又は等方性ドライエッチング法のいずれの方法を用いてもよいが、基板10の表面に凹部15を形成する観点から、等方性ドライエッチング法が好ましい。
等方性ドライエッチング法を用いることにより、第一改質部11aを優先的に除去して溝部12aを形成することができ、さらに第二改質部11bのエッチングもある程度行って凸部12bを形成すると共に、基板10表面に凹部15を形成することができる。
一方、異方性ドライエッチング法を用いると、第一改質部11aを選択的に除去して溝部12aを形成することができるが、第二改質部11bのエッチングはほとんど行われずに、基板10表面に凹部15が形成されない場合がある(図7参照)。
このような特性を踏まえた上で、異方性エッチング法及び等方性エッチング法を適宜組み合わせて使用すればよい。例えば、溝部12aを深く掘り下げる場合には、異方性エッチング法を用いることが有効である。
異方性ドライエッチング法としては、例えば反応性イオンエッチング(以下RIE)が挙げられる。より具体的には、平行平板型RIE、マグネトロン型RIE、ICP型RIE、NLD型RIE等が適用可能である。また、中性粒子ビームを用いたエッチングも適用可能である。
エッチングガスとしては、例えばフロロ力ーボン系、SF系ガス、CHF、フッ素ガス、塩素ガス等が挙げられる。適宜その他のガス、例えば酸素、アルゴン、ヘリウムなどを混合し使用することが可能である。
異方性ドライエッチング法を用いる場合、エッチング時のプロセス圧力(エッチングチャンバ内の圧力)を変えることによって、凹部15の構造を制御することが可能である。エッチング時のRFパワー、チャンバ内の圧力は加工形状を決めるパラメータとなるが、特にエッチング圧力を変化させることが、周期構造16のエッチング後の形状(表面プロファイル)を最も制御しやすいパラメータである。
前記圧力が低い場合には、イオンの材料への引き込みが強いため、より異方性が高まり、周期構造16のうちエッチング選択性が高い領域(凹部12a)のみをより選択的にエッチングすることが可能である。そのため、周期構造16をなす改質部11a間に位置する改質部11b及び近傍の材料はほとんどエッチングされず、改質部11aが選択的にエッチングされる。この場合、図7に示すように、凹部15がほとんど形成されず、溝部12aが選択的に形成される。
前記圧力が高い場合には、イオンの材料への引き込みが弱くなり、より等方性のエッチングになるため、周期構造16を成し、エッチング選択性が高い領域である改質部11aが横方向にもエッチングされる。即ち、改質部11aとともに、その近傍の材料(改質部11b)もエッチングされる。これにより図4に示すように、基板10表面には凹部15が形成され、さらに該凹部15の底面には、複数の溝部12a及び複数の凸部12bからなる周期構造16が形成される。
また、異方性ドライエッチング及び等方性ドライエッチングにおいて、溝部12a及び凸部12bのアスペクト比を高めるためにはRFパワーを小さくするなどしてプラズマ密度をできる限り小さくすることが好ましい。逆に、RFパワーを大きくするなどしてプラズマ密度を大きくすると、溝部12a及び凸部12bのアスペクト比が小さくなる傾向になる。
ドライエッチング法として等方性ドライエッチング法を用いると、その等方性が強い場合、エッチング耐性の弱い層(第一改質部11a)がよりエッチングされて溝部12aが形成されやすく、同時に、溝部12aの横方向へのエッチングが進行する。このため、上部から徐々に隣り合う凹部12a及び凸部12bを繋ぐことができる。これにより、図4に示すように、基板10表面には凹部15が形成され、さらに該凹部15の底面には、複数の溝部12a及び複数の凸部12bからなる周期構造16が形成される。
等方性エッチング法としては、例えばバレル型プラズマエッチング、平行平板型プラズマエッチング、ダウンフロー型ケミカルドライエッチング、等が挙げられる。
以上の工程A及び工程Bによって形成した凹部15の少なくとも底面に形成される、周期構造16をなす溝部12a及び凸部12bの形状は、工程Aのレーザー照射強度、工程Bにおけるエッチング方法によって、所望の大きさ、高さ、幅、及び長さで形成することが可能である。
例えば、周期構造16の形状を特許文献2に記載の形状とすることによって、本発明にかかるマイクロ流体チップを、特許文献2に記載のマイクロプレートとして利用できる。この場合、周期構造16における溝部12a及び凸部12bの断面形状は、矩形状、鋸波状、又は正弦波状であり、隣り合う溝部12aの間隔は、測定用レーザー光の波長以下であって例えば10〜800nmとし、溝部12aの深さ(凸部12bの高さ)は4〜400nmとすればよいとされる。このような周期構造16であると、外部から測定用レーザー光を照射することにより、当該周期構造16近傍に表面プラズモン共鳴光を発生し、該近傍における分子間相互作用を検出することができるとされる。
また、以上の工程A及び工程Bによって形成した凹部15の形状は、工程Aのレーザー光Lの集光域が走査する範囲を調整することによって、所望の深さ、幅、及び長さで自在に形成することが可能である。
例えば、凹部15を、図2及び図3で示すようなクランク状の流路18を成すように設けてもよいし、図9で示すような直線状の流路18を成すように設けてもよい。また、凹部15を、図11で示すような矩形状のウェル21を成すように設けてもよい。
[工程C]
図8に示すように、前記工程Cは、凹部15の底面の周期構造16を覆う金属層19を形成する工程である。
金属層19の材料としては、外部から光を照射した際に表面プラズモン共鳴光を発生できる金属であることが好ましい。例えば金、銀、銅、プラチナ、ニッケル等の遷移金属であることが好ましい。金属層19の膜厚としては、10〜500nmが好ましい。
金属層19の成膜方法は特に制限されず、例えば蒸着法、スパッタ法、CVD法、めっき法等の公知の成膜方法を採用できる。
金属層19の表面プロファイル(表面の凹凸形状)は、周期構造16の表面プロファイルを反映したものであることが好ましい。周期構造16の表面プロファイルに沿って実質的に同一の表面プロファイルであってもよいし、周期構造16の角部を埋める様に、多少平滑化した形状であってもよい。具体的には、例えば特許文献2に記載の金属層の形状が参考になる。
本発明のマイクロ流体チップの製造方法は、以上で説明した工程A〜C以外の工程を含んでいてもよい。
金属層19が形成された凹部15に、測定試料を含む液体を流入させた場合、金属層19が該液体によって化学的な浸食を受ける場合がある。また、特許文献2に記載されているように、検出すべき測定対象物からの蛍光シグナルが、金属層19によって消光される場合がある。これらを防ぐために、金属層19の上に、さらに保護層(不図示)を形成してもよい。すなわち、本発明にかかる製造方法は、金属層19上に、保護層を形成する工程をさらに含むことが好ましい。
前記保護層の材料としては、表面プラズモンを発生させるための外部光(測定用レーザー光)や、前記蛍光シグナルの吸収が低いものであれば特に制限されない。例えばポリカーボネートやポリメタクリル酸メチルのような有機高分子やシリカ(SiO)等が挙げられる。
前記保護層の膜厚は、発生する表面プラズモン共鳴光及び蛍光シグナルの波長(エネルギー)に応じて決めればよく、通常10nm〜100nmの範囲であればよい。
また、必要に応じて、周期構造16の表面と金属層19との間、及び金属層19と前記保護層との間に、さらに接着層を設けてもよい。これにより各層の接着性を高めることができる。
前記接着層の材料としては、クロム、アルミニウム、チタン、パラジウム等が例示できる。前記接着層の膜厚としては、0.1nm〜3nm程度が好ましい。
前記保護層及び前記接着層の形成方法は特に制限されず、公知の成膜方法が適用できる。
<マイクロ流体チップ>
図9に、本発明にかかるマイクロ流体チップの第一実施形態を示す。
第一実施形態のマイクロ流体チップ30Aは、前述の本発明にかかる製造方法によって得られたものである。
マイクロ流体チップ30Aには、基板10の表面に流路18が形成され、該流路18の底面には金属層19で覆われた周期構造16が形成されている。周期構造16に向けて測定用レーザー光Sを照射することによって、流路18の底面近傍に表面プラズモン共鳴光を発生することができる。
測定用レーザー光Sは、p偏光の光であることが好ましい。該p偏光は、周期構造16の方向(流路18の延伸方向)の成分を含むことが好ましい。
流路18の一端側F1から他端側F2へ、測定試料溶液(不図示)を流入させ、さらに測定用レーザー光Sを照射して表面プラズモン共鳴光を発生させることによって、測定試料溶液中の測定対象の状態を観察することができる。このような測定の具体的な方法は、例えば特許文献2に記載の方法が参考になる。
また、図10に示すマイクロ流体チップ30Bのように、第一実施形態の変形例として、基板10の表面に、流路18を覆うように部材22を貼り付けた構成としてもよい。
流路18を覆うことにより、流路18内を流通させる試料溶液が、流路18外へ溢れることを防止できる。さらに、試料溶液に圧力をかけて、流路18内を流通させることも可能となる。
したがって、前述の本発明にかかる製造方法では、基板10表面の流路18を覆うように、該基板10表面に部材22を貼り付ける工程をさらに含むことが好ましい。
部材22の材料としては、測定用レーザー光Sや前記蛍光シグナルを吸収する程度が少ないものであれば特に制限されず、例えば石英ガラス製の基板が挙げられる。
基板10と部材22の貼り合わせ方法は特に制限されず、公知の方法で行えばよい。
図11に、本発明にかかるマイクロ流体チップの第二実施形態を示す。
第二実施形態のマイクロ流体チップ30Cは、前述の本発明にかかる製造方法によって得られたものである。
マイクロ流体チップ30Cには、基板10の表面にウェル21が形成され、該ウェル21の底面には金属層19で覆われた周期構造16が形成されている。周期構造16に向けて測定用レーザー光Sを照射することによって、ウェル21の底面近傍に表面プラズモン共鳴光を発生することができる。
したがって、測定試料溶液(不図示)をウェル21内に内在(流入)させて、さらに測定用レーザー光Sを照射して表面プラズモン共鳴光を発生させることによって、測定試料溶液中の測定対象の状態を観察することができる。このような測定の具体的な方法は、例えば特許文献2に記載の方法が参考になる。
<表面プラズモン共鳴光の発生装置>
本発明にかかる表面プラズモン共鳴光の発生装置は、前述の本発明にかかるマイクロ流体チップ用いたものである。該マイクロ流体チップの基板表面に設けた凹部の底面には、前述の金属層で覆われた周期構造が形成されている。該周期構造に外部から光を照射することによって、該周期構造近傍に表面プラズモン共鳴光を発生させることができる。
前記凹部は、前記基板表面において液体を内在させられる形状である。したがって、該凹部内に試料溶液を内在させることによって、前記表面プラズモン共鳴光を該試料溶液に放射することができる。よって、別途、顕微鏡等の観測手段を設けることによって、前記試料溶液中の測定対象に対する、前記表面プラズモン共鳴光が与える影響を観測することが可能である。
本発明のマイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置は、表面プラズモン共鳴光を利用した分子間相互作用検出装置や、表面プラズモン励起蛍光増強蛍光顕微鏡、蛍光マイクロプレートリーダー等の使用及び製造に広く利用することができる。
10…基板、11…改質部、11a…第一改質部、11b…第二改質部、11c…第三改質部、12a…溝部、12b…凸部、14…周期的パターン、15…凹部、16…周期構造、18…流路、19…金属層、レンズ20、22…部材、30A…マイクロ流路チップ、30B…マイクロ流路チップ、30C…マイクロ流路チップ、E…偏波方向、F…集光域、L…加工用レーザー光、S…測定用レーザー光。

Claims (11)

  1. 基板表面において、液体を内在させるための凹部を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射して、該レーザー光の集光域に、自己組織的に形成される周期的パターンを有する改質部を形成する工程Aと、
    前記改質部が形成された前記基板に対してエッチング処理を行い、該改質部の少なくとも一部を除去して前記凹部を設けると共に、前記周期的パターンに基づく表面プロファイルを有する、一方向に沿った複数の溝部を含む周期構造を、該凹部の少なくとも底面に、形成する工程Bと、
    前記底面の周期構造を覆う金属層を形成する工程Cと、
    を含むことを特徴とするマイクロ流体チップの製造方法。
  2. 前記自己組織的に形成される周期的パターンは、前記基板に入射した前記レーザー光によって発生した該基板表面近傍におけるプラズモンと、入射する前記レーザー光との、干渉波が強め合って改質される部位、および該干渉波の強め合いが弱くなって改質される部位、を含むことを特徴とする請求項1に記載のマイクロ流体チップの製造方法。
  3. 前記レーザー光として直線偏光レーザーを使用し、該直線偏光の偏波方向に対して垂直方向に、該レーザー光の集光域を走査することによって、
    前記走査の方向と、前記周期構造をなす複数の溝部が延伸する方向と、を平行にすることを特徴とする請求項1又は2に記載のマイクロ流体チップの製造方法。
  4. 前記レーザー光として直線偏光レーザーを使用し、該直線偏光の偏波方向に対して平行な方向に、該レーザー光の集光域を走査することによって、
    前記走査の方向に対して、前記周期構造をなす複数の溝部が延伸する方向を、垂直にすることを特徴とする請求項1又は2に記載のマイクロ流体チップの製造方法。
  5. 前記エッチング処理において、等方性ドライエッチング法を用いることを特徴とする請求項1〜4のいずれか一項に記載のマイクロ流体チップの製造方法。
  6. 前記基板表面に設けた凹部が、流路を成すことを特徴とする請求項1〜5のいずれか一項に記載のマイクロ流体チップの製造方法。
  7. 前記基板表面の前記流路を覆うように、該基板表面に部材を貼り付ける工程をさらに含むことを特徴とする請求項6に記載のマイクロ流体チップの製造方法。
  8. 前記基板表面に設けた凹部が、ウェルを成すことを特徴とする請求項1〜5のいずれか一項に記載のマイクロ流体チップの製造方法。
  9. 前記金属層上に、保護層を形成する工程をさらに含むことを特徴とする請求項1〜8のいずれか一項に記載のマイクロ流体チップの製造方法。
  10. 請求項1〜9のいずれか一項に記載の製造方法によって得られたマイクロ流体チップ。
  11. 前記マイクロ流体チップを用いた表面プラズモン共鳴光の発生装置。
JP2010177948A 2010-08-06 2010-08-06 マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置 Pending JP2012037389A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010177948A JP2012037389A (ja) 2010-08-06 2010-08-06 マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置
EP11814531.7A EP2602610A4 (en) 2010-08-06 2011-07-28 MICROFLUIDIC CHIP AND METHOD FOR MANUFACTURING THE SAME, AND SURFACE PLASMON RESONANCE LIGHT GENERATION DEVICE
PCT/JP2011/067204 WO2012017904A1 (ja) 2010-08-06 2011-07-28 マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置
US13/758,450 US8652419B2 (en) 2010-08-06 2013-02-04 Method of manufacturing microfluidic chip, microfluidic chip, and apparatus for generating surface plasmon resonant light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177948A JP2012037389A (ja) 2010-08-06 2010-08-06 マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置

Publications (1)

Publication Number Publication Date
JP2012037389A true JP2012037389A (ja) 2012-02-23

Family

ID=45559405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177948A Pending JP2012037389A (ja) 2010-08-06 2010-08-06 マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置

Country Status (4)

Country Link
US (1) US8652419B2 (ja)
EP (1) EP2602610A4 (ja)
JP (1) JP2012037389A (ja)
WO (1) WO2012017904A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084533A1 (ja) * 2014-11-28 2016-06-02 デクセリアルズ株式会社 マイクロ流路作製用原盤、転写物、およびマイクロ流路作製用原盤の製造方法
JP2017140667A (ja) * 2016-02-09 2017-08-17 ローランドディー.ジー.株式会社 マイクロ流路デバイスの作製方法およびマイクロ流路デバイス
CN113058668A (zh) * 2021-03-20 2021-07-02 山东大学 一种基于电容性超材料结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324768B (zh) * 2014-10-24 2016-06-01 武汉友芝友医疗科技股份有限公司 一种微小三维结构沟道微流芯片的制备方法
DE102017206968B4 (de) * 2017-04-26 2019-10-10 4Jet Microtech Gmbh & Co. Kg Verfahren und Vorrichtung zum Herstellen von Riblets
CN108204965A (zh) * 2018-04-13 2018-06-26 中国人民解放军63908部队 一种ners-sers基底微流控光量子物质指纹靶标
DE102020211883A1 (de) 2020-09-23 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Trägerplatte für eine mikrofluidische Analysekartusche, Analysekartusche mit Trägerplatte und Verfahren zum Herstellen einer Trägerplatte
CN112570053A (zh) * 2020-12-07 2021-03-30 北京航空航天大学 一种用于葡萄糖检测的sers-sef双模式微流控芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353576A (ja) * 2004-03-24 2005-12-22 Mitsubishi Electric Corp 電界放出表示装置の製造方法及び製造装置並びに設計方法
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2010050138A (ja) * 2008-08-19 2010-03-04 Canon Machinery Inc 微細周期構造形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130164A2 (en) * 2004-08-19 2006-12-07 University Of Pittsburgh Chip-scale optical spectrum analyzers with enhanced resolution
JP4370383B2 (ja) 2005-01-26 2009-11-25 独立行政法人産業技術総合研究所 プラズモン共鳴蛍光を用いた生体分子相互作用検出装置及び検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353576A (ja) * 2004-03-24 2005-12-22 Mitsubishi Electric Corp 電界放出表示装置の製造方法及び製造装置並びに設計方法
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2010050138A (ja) * 2008-08-19 2010-03-04 Canon Machinery Inc 微細周期構造形成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011056112; Simova E , et.al.: 'Femtosecond laser-induced long-range self-organized periodic planar nanocracks for applications in b' Proceedings of SPIE Vol.6458, 20070517, pp.64581B.1-64581B.14 *
JPN6011056114; 下間靖彦: '超短パルスレーザーによるナノ構造の形成とその応用' Optronics 第26巻、第2号, 20070210, 第114頁-第117頁 *
JPN7011003899; Tawa K , et.al.: 'Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonanc' Optics Express Vol.16, No.13, 20080623, pp.9781-9790 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084533A1 (ja) * 2014-11-28 2016-06-02 デクセリアルズ株式会社 マイクロ流路作製用原盤、転写物、およびマイクロ流路作製用原盤の製造方法
JP2016101629A (ja) * 2014-11-28 2016-06-02 デクセリアルズ株式会社 マイクロ流路作製用原盤、転写物、およびマイクロ流路作製用原盤の製造方法
GB2550694A (en) * 2014-11-28 2017-11-29 Dexerials Corp Master disc for manufacturing microflow channel, transfer product, and method for producing master disc for manufacturing microflow channel
US10850273B2 (en) 2014-11-28 2020-12-01 Dexerials Corporation Master for micro flow path creation, transfer copy, and method for producing master for micro flow path creation
GB2550694B (en) * 2014-11-28 2021-03-10 Dexerials Corp Master for micro flow path creation, transfer copy, and method for producing master for micro flow path creation
JP2017140667A (ja) * 2016-02-09 2017-08-17 ローランドディー.ジー.株式会社 マイクロ流路デバイスの作製方法およびマイクロ流路デバイス
CN113058668A (zh) * 2021-03-20 2021-07-02 山东大学 一种基于电容性超材料结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法
CN113058668B (zh) * 2021-03-20 2022-05-27 山东大学 一种基于电容性超材料结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法

Also Published As

Publication number Publication date
EP2602610A1 (en) 2013-06-12
US8652419B2 (en) 2014-02-18
US20130140976A1 (en) 2013-06-06
WO2012017904A1 (ja) 2012-02-09
EP2602610A4 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2012017904A1 (ja) マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置
Chen et al. Microsphere enhanced optical imaging and patterning: From physics to applications
Sugioka et al. Femtosecond laser processing for optofluidic fabrication
Sugioka et al. Ultrafast lasers—reliable tools for advanced materials processing
Ahsan et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses
WO2011096353A1 (ja) 微細構造の形成方法および微細構造を有する基体
JP6012006B2 (ja) 表面微細構造の形成方法
KR101355898B1 (ko) 라만 분광용 디바이스 및 라만 분광 장치
US20150146180A1 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
KR100723401B1 (ko) 나노 크기의 다공성 재료를 이용한 표면 플라즈몬 공명소자 및 그 제조방법
Seet et al. Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm
JP2002522780A5 (ja)
JP2005257458A (ja) 表面プラズモン共鳴装置
Kumar et al. Laser surface structuring of diamond with ultrashort Bessel beams
CN103926707A (zh) 一种波导共振耦合表面等离子体光场的激发和调控方法
JP2008232806A (ja) 光学素子の製造方法
CN115598936A (zh) 基于混合表面等离子体波导曝光结构的纳米光刻方法及装置
Suzuki et al. Spatial characteristics of optical fields near a gold nanorod revealed by three-dimensional scanning near-field optical microscopy
JP2020521146A (ja) 光学顕微鏡の画像コントラスト増強
Sokuler et al. Tailored polymer microlenses on treated glass surfaces
JP2014081321A (ja) 流路デバイス及び分析方法
JP2003020258A (ja) 光を用いた透明誘電体物体への微細空洞加工方法及びその装置
RU2788031C1 (ru) Система оптического обнаружения и визуализации нанообъектов с субдифракционным разрешением в микроканале
CN116381849A (zh) 基于全介质鱼骨型超表面的窄带滤波器及其制作方法
JP3767734B2 (ja) 表面プラズモンを利用した顕微鏡システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610