JP2014081321A - 流路デバイス及び分析方法 - Google Patents

流路デバイス及び分析方法 Download PDF

Info

Publication number
JP2014081321A
JP2014081321A JP2012230751A JP2012230751A JP2014081321A JP 2014081321 A JP2014081321 A JP 2014081321A JP 2012230751 A JP2012230751 A JP 2012230751A JP 2012230751 A JP2012230751 A JP 2012230751A JP 2014081321 A JP2014081321 A JP 2014081321A
Authority
JP
Japan
Prior art keywords
optical waveguide
flow path
section
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230751A
Other languages
English (en)
Inventor
Osamu Nukaga
理 額賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012230751A priority Critical patent/JP2014081321A/ja
Publication of JP2014081321A publication Critical patent/JP2014081321A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Optical Measuring Cells (AREA)

Abstract

【課題】光シグナルを容易に検出可能であり、他のデバイスとともに集積化することが可能な流路デバイス及びその流路デバイスを使用した分析方法を提供する。
【解決手段】基板1に、流路3と、第一光導波路4及び第二光導波路5とが備えられ、流路と第一光導波路とが接するように、少なくとも一部の区間において平行に設けられ、平行に設けられた区間において、第二光導波路の第一端部5aが第一光導波路に交差して配置されている。第一光導波路が第二光導波路によって区切られた二つの区間のうち、第一の区間の幅が第二の区間の幅よりも小さい。
【選択図】図1

Description

本発明は、流路および光導波路を有する流路デバイス、及びその流路デバイスを使用する分析方法に関する。
従来、基板に配置されたコア及びクラッドからなる光導波路と、分析用の試料が流通する流路とを備え、コアの一部が流路に接する位置関係で配置されたマイクロチップが知られている。その流路はコアの屈折率より小さい屈折率の媒質によって満たされ、コアと流路が接した箇所において、コア中を伝搬してきた測定用の光線が全反射するという特徴がある(特許文献1)。
特開2005−172666号公報
特許文献1に開示されたマイクロチップは、入射光を伝搬する第一の光導波路及び反射光を伝搬する第二の光導波路が、流路の一箇所(照射部)に接続されている。照射部において入射光は全反射されて反射光として第二の光導波路へ導かれる。一方、照射部の流路の内側を構成する側面に発生したエバネッセント波により、流路内の測定対象物質(蛍光物質、量子ドット及びナノ粒子)が励起されて測定対象物質から光シグナルが発生する。この光シグナルは第二の光導波路から検出器へ導かれる。
特許文献1のマイクロチップが有する問題は、光シグナルと反射光とが、同じ第二の光導波路へ導かれることである。つまり、光シグナルを検出する際に反射光がノイズとして重なるため、検出の感度又は精度が落ちてしまう問題がある。また、ナノ粒子が測定対象物質である場合では、ナノ粒子からの光シグナルは入射光と同一の波長となる。したがって、入射光と検出光とが分離されにくく、検出の感度又は精度が悪いという問題がある。
本発明は、上記事情に鑑みてなされたものであり、光シグナルを容易に検出可能であり、他のデバイスとともに集積化することが可能な流路デバイス及びその流路デバイスを使用した分析方法の提供を課題とする。
(1) 基板に、流路と、第一光導波路及び第二光導波路とが備えられ、前記流路と前記第一光導波路とが接するように、少なくとも一部の区間において平行に設けられ、前記平行に設けられた区間において、前記第二光導波路の第一端部が、前記第一光導波路に交差して配置されていることを特徴とする流路デバイス。
前記(1)の流路デバイスによれば、入射光を伝播する第一光導波路とは別に設けた第二光導波路へ、流路内で発生した光シグナルを導くことにより、第二光導波路に接続された検出器により光シグナルを検出することができる。入射光の影響を受けずに光シグナルを検出できるため、検出の感度及び精度を向上させることができる。また、入射光を流路内に入射させてもよいし、入射光を流路の側面に全反射させることにより当該流路内にエバネッセント光を発生させてもよい。どちらの場合であっても、流路内の測定対象物質を光照射して励起することが可能である。したがって、(1)の流路デバイスの流路に流す流体の屈折率は、光導波路の屈折率に依存しないため、どのような屈折率を有する流体であっても測定することができる。
(2) 前記第一光導波路が前記第二光導波路によって区切られた二つの区間のうち、第一の区間の幅が第二の区間の幅よりも小さいことを特徴とする前記(1)に記載の流路デバイス。
前記(2)の流路デバイスによれば、第一の区間を伝搬する入射光が第二の区間に容易に伝搬することが可能となり、第一の区間を伝搬する入射光が第二光導波路へ導かれることをより確実に防止することができる。よって、入射光の影響を排除し、光シグナルを高感度及び高精度に検出することができる。
(3) 前記第一の区間における伝搬光の最大角がθであり、
前記第一の区間の幅が、下記式(1)で表されることを特徴とする前記(2)に記載の流路デバイス。
Figure 2014081321
[式中、D1は第一の区間の幅であり、D2は第二の区間の幅であり、Lは第二光導波路の幅であり、θは第一光導波路を伝搬する光の最大角を表す。]
前記(3)の流路デバイスによれば、第一の区間を伝搬する入射光が第二の区間により容易に伝搬することが可能となり、第一の区間を伝搬する入射光が第二光導波路へ導かれることをより一層確実に防止することができる。よって、入射光の影響を排除し、光シグナルをより高感度及びより高精度に検出することができる。
(4) 前記流路と前記第一光導波路とが平行に設けられた前記区間において、第三光導波路が、前記流路を挟んで前記第一光導波路の反対側に配置され、前記第三光導波路と前記流路とが接するように平行に配置されていることを特徴とする前記(1)〜(3)のいずれか一に記載の流路デバイス。
前記(4)の流路デバイスによれば、第一光導波路から流路内に入射した入射光を、流路を挟んで第一光導波路と反対側に設けられた第三光導波路へ入射させることができる。この結果、入射光を第三光導波路から回収することができるため、入射光が第二光導波路へ導かれることを一層防止することができる。また、流路を透過した光が迷光となることを抑制することができる。よって、入射光の影響を排除し、光シグナルをより高感度及びより高精度に検出することができる。
(5) 前記(1)〜(4)のいずれか一の流路デバイスを使用する分析方法であって、前記流路に測定対象物質を含む分析試料を注入し、前記第一光導波路の第一端部から第二端部へ励起光を入射することにより前記流路内において前記測定対象物質を励起し、前記測定対象物質から発生する光シグナルを前記第二光導波路へ導くことによって、前記光シグナルを検出する分析方法である。
前記(5)の分析方法によれば、まず、入射光が流路内に入射して前記測定対象物質を直接励起するか、又は入射光が流路内の側面で発生させたエバネッセント光によって前記測定対象物質を励起することにより、流路内で光シグナルを発生させる。この光シグナルを第二光導波路へ導くとともに、入射光が第二光導波路へ導かれることを抑制しているため、前記光シグナルの検出におけるシグナル/ノイズ比(S/N比)が高くなり、分析試料中の測定対象物質を高感度及び高精度で検出することができる。
本発明にかかる流路デバイスによれば、入射光を伝播する光導波路とは別に、流路内で発生する光シグナルを伝搬する光導波路を設置している。この結果、光シグナルを入射光から分離して検出できるため、検出の感度及び精度を向上させることができる。また、第一光導波路と平行にされた流路内に、第一光導波路から入射光を入射させることにより、前記平行にされた区間において、流路内を通過する分析試料を入射光によって直接励起することができるので、エバネッセント光を発生させなくても容易に測定対象物質を検出することができる。また、各光導波路に光源や検出器を接続し、流路にポンプ等を接続することにより、本発明の流路デバイスと他の装置を集積化することも可能である。
本発明にかかる分析方法によれば、光シグナルを第二光導波路へ導くとともに、入射光が第二光導波路へ導かれることを抑制しているため、光シグナルの検出におけるS/N比が高くなり、分析試料中の測定対象物質を高感度及び高精度で検出することができる。また、第一光導波路と平行にされた流路内に入射光を直接入射させることにより、前記平行にされた区間において、流路内を通過する分析試料を入射光によって直接励起することができるので、エバネッセント光を発生させなくても前記測定対象物質を容易に検出することができる。
第一実施形態の流路デバイスの斜視図である。 第一実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 第二実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 第三実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 第四実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 第五実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 第六実施形態の流路デバイスの流路及び光導波路を上方から見た模式図である。 本発明に係る流路デバイスを製造する方法の一例を示す断面図である。 本発明に係る流路デバイスを製造する方法の別の一例を示す断面図である。 レーザー照射方法の一例を示した斜視図である。 レーザー照射強度と形成される改質部(酸素欠乏部)との関係を示す模式図である。 レーザー照射強度と形成される改質部(酸素欠乏部)との関係を示す模式図である。
以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。本発明は以下の実施形態に限定されない。
<流路デバイス>
《第一実施形態》
本発明の第一実施形態である流路デバイス10を図1に例示する。
流路デバイス10は、基材である基板1内に、流路3と、第一光導波路4及び第二光導波路5とが少なくとも備えられている。流路3と第一光導波路4とは、互いに接するように、少なくとも一部の区間において平行に設けられている。これにより、流路3と第一光導波路4とは、光学的に結合されている。ここで前記一部の区間は、第一光導波路4の第一端部4aから第一光導波路4の第二端部4bの区間である。流路デバイス10においては、第一光導波路4の全体が流路3と平行に配置され、且つ第一光導波路4の側面が流路3の側面を構成することにより、両者が光学的に結合している。変形例として、第一光導波路4の両端部と流路3とが平行ではなく、互いに離間した構成であっても構わない。
前記平行に設けられた区間、即ち第一光導波路4と流路3とが接することで光学的に結合し且つ平行に配置された区間において、第二光導波路5の第一端部5aが第一光導波路4に交差して配置されている。流路デバイス10においては、流路3の手前に配置された第一光導波路4に対して、第二光導波路5の中心を通り且つその延設方向に沿う線(中心線)が略垂直に交差している。第二光導波路5の前記中心線が第一光導波路の中心線に交差する角度は垂直に限られず、例えば前記交差の鋭角が20°以上90°未満になるように配置することができる。
第一光導波路4は第二光導波路5によって二つの区間に区切られている。図1の上方から見た流路及び光導波路の構成を示す図2において、第一光導波路4は、第一光導波路の第一端部4aから点Aまでの第一の区間と、点Bから第一光導波路の第二端部4bまでの第二の区間とに分けられる。
流路デバイス10においては、点Aにおける第一の区間の径D1(幅D1)が、点Bにおける第二の区間の径D2(幅D2)よりも小さくなっている。ここで、径D1及び径D2は、基板1の上面1aと平行な方向の長さ(幅)(最短の径)である。径D1>径D2であることにより、第一光導波路4の第一端部4aから入射させた入射光を、第二光導波路2に導かず、第一光導波路4の第二端部4bへ容易に導くことができる。
流路デバイス10において、第一光導波路4の点Aにおける第一の区間の径D1は、第一端部4aから見て、第二光導波路5が交差する直前の第一光導波路4の径(幅)である。 流路デバイス10において、第一光導波路4の点Bにおける第二の区間の径D2は、第一端部4aから見て、第二光導波路5が交差した直後の第一光導波路4の径(幅)である。
流路デバイス10において、第一の区間における伝搬光の最大角がθであり、第一の区間の径D1(幅D1)と第二の区間の径D2(幅D2)が、下記式(1)の関係を満たすこと好ましい。
Figure 2014081321
[式中、D1は第一の区間の径(幅)であり、D2は第二の区間の径(幅)であり、Lは第二光導波路の点Bにおける径(基板1の上面1aと平行な方向の長さ(幅)(最短の径))であり、θは第一光導波路を伝搬する光の最大角を表す。]
式(1)について、図2を参照して説明する。径D2−径D1の差は、図2の直角三角形ABCの辺ACに等しい。Lは第二光導波路5が第一光導波路4に交差する直前の点Bにおける第二光導波路5の径である。また、辺ACは三角関数によりL×tanθの積で表される。前記差(左辺)が前記積(右辺)と等しいとき、第一の区間において最大角θを有する伝搬光Arは、点Aを通過した後、点Bを通過し、第二の区間へ導かれる。したがって、前記差が前記積以上であることにより、第一の区間を伝搬する入射光を第二の区間へ確実に導き、前記入射光が第二光導波路5へ導かれることを抑制することができる。一方、流路3の点Pで発生した光シグナルは、第二光導波路5へ容易に導かれ、第一端部5aを通過して第二端部5bへ伝搬する。
伝搬光Arが点A及び点Bを通過した後で、より確実に第一光導波路4の第二の区間へ導かれるためには、式(1)は、D2−D1>L×tanθ…(1’)であることが好ましい。
第一光導波路を伝搬する入射光の波長は特に制限されないが、例えば170〜3700nmの波長の入射光が挙げられる。第一光導波路4の第一の区間を伝搬する入射光の最大角θは、光導波路のコアとクラッドの屈折率によって決定される。たとえばコアの屈折率がn1、クラッドの屈折率がn2の場合、最大角θはcos−1(n2/n1)となる。このとき、それぞれの屈折率は波長によって異なるため、入射光の波長によって最大角θの値は異なる。
流路デバイス10においては、流路3と第一光導波路4とが平行に設けられた前記第一の区間及び第二の区間において、第三光導波路6が、流路3を挟んで第一光導波路4の反対側に配置され、第三光導波路6と流路3とが接することで光学的に結合し、平行に配置されている。第三光導波路6が設けられていることにより、第一光導波路4から流路3内に入射した入射光を第三光導波路6へ入射させることができる。この結果、入射光を第三光導波路6の端部から回収することができるため、入射光が第二光導波路5へ導かれることを一層防止することができる。よって、入射光の影響を排除し、光シグナルをより高感度及びより高精度に検出することができる。
第一実施形態の変形例として、流路デバイス10から第三光導波路6を除いた構成も採用することができる。この場合、第三光導波路6の代わりに基板1が流路3の側面を構成してもよい。この変形例においても、流路デバイス10と同様の効果が奏される。
本発明にかかる流路デバイスに設けられた各光導波路は、従来公知の光導波路の構成、すなわちコアの周囲をクラッドが覆う構成を備えられる。図1に例示する流路デバイス10において、矩形で示した光導波路4,5,6はコアであり、基板1が前記コアの下面及び側面を覆うクラッドであり、基板1の上面1aを覆う層2が前記コアの上面を覆うクラッドである。
流路3は、第一の基材1を構成する基板1の上面1aに形成された溝であり、その断面形状は凹型である。流路3の上方は、第2の基材2(前記層2)が覆っている。
第一光導波路4を構成するコアは、基板1の上面1aに掘られた溝をコア材料が充填することによって形成されている。また、第二光導波路5及び第三導波路6を構成するコアも、基板1の上面1aに同様に形成されている。
第一光導波路4、流路3及び第三光導波路6は、互いの側面が接触することにより光学的に結合している。つまり、第一光導波路4の側面及び第三光導波路6の側面が流路3の両側面をそれぞれ構成している。また、第二光導波路5の第一端部5aは第一光導波路4の側面にシームレスに接続され、両者が一体化されている。
[流路デバイスを用いた測定方法]
流路デバイス10を使用した試料の測定の一例として、次の方法が挙げられる。まず、流路3に蛍光物質を有する測定対象物質を含む流体を流通させる。つぎに、第一光導波路4の第一端部4aから第二端部4bに向けて所定の波長を有する入射光を伝搬させると、第一光導波路4が流路3に接する側面から流路3内に、入射光の少なくとも一部が励起光として入射する。その際、流路3内に測定対象である蛍光物質が存在した場合、前記励起光によって励起された前記蛍光物質から蛍光シグナルが放射される。前記蛍光シグナルの少なくとも一部は第一光導波路4を透過して、さらに第二光導波路5の第一端部5aを通過し、第二光導波路5の第二端部5bへ伝搬する。第二光導波路5の第二端部5bに検出器を接続しておくことにより、流路3から放射された蛍光シグナルを検出することができる。このように蛍光シグナルを検出することにより、測定対象物質が流路3の例えば点P(図2参照)を通過したことを知ることができる。蛍光シグナルの蛍光強度と蛍光物質の量は、一般に相関関係を有するため、検出された蛍光強度から蛍光物質の量を知ることもできる。
流路3の側面において、第一光導波路4から入射された入射光のうち流路3内に励起光として入射しない残部は、そのまま第一光導波路4の第二端部4bへ伝搬する。一方、流路3内で放射された蛍光シグナルは、基本的には指向性を有さないため、各光導波路4,5,6へ向けて伝搬する。このうち第二光導波路5を伝搬する蛍光シグナルを検出する。前記残部は、第二光導波路5には殆ど伝搬しないため、第二光導波路5の第二端部5bにおける蛍光シグナルの検出時に、前記残部がノイズになることは殆どない。
このように、本発明にかかる流路デバイス10によれば、流路3内を流通させる流体に含まれる蛍光標識された分子等を、エバネッセント光を使用せずに、容易に検出することができる。
一方、流路デバイス10を用いた流体の分析において、エバネッセント光を利用しても構わない。例えば、流路3に流通させる流体の屈折率が第一光導波路4のコアの屈折率よりも小さい場合、第一光導波路4を伝搬する光は殆ど流路3内に入射せず、全反射されながら第一光導波路4を伝搬する。その際、第一光導波路4が構成する流路3内の側面にエバネッセント光が発生する。このエバネッセント光によって流路3内の蛍光物質が励起され、蛍光シグナルが発生する。この蛍光シグナルは、前述のように、第二光導波路5の第二端部5bに接続された検出器により検出される。この場合にも、第一光導波路4を伝搬する入射光は第二光導波路5へ導入され難いため、高感度および高精度に蛍光シグナルを検出することができる。
上記のようにエバネッセント光を利用する場合、第一光導波路4の第一端部4aから入射光を入射させるとともに、第三光導波路6の第一端部から入射光を入射させてもよい。第三光導波路6の側面で入射光が全反射されることにより、第三光導波路6が構成する流路3の側面にエバネッセント光を発生させることができる。
第一光導波路4および第三光導波路6の第二端部には光回収材(光吸収材)を設置するか又は開放端にしても構わない。あるいは、検出器を配置し入射光の強度をモニタすることも可能である。また、流路3の端部にマイクロ流体ポンプ等の他のデバイスを接続することにより、種々の装置を集積化したマイクロチップ或いはナノチップとして本発明にかかる流路デバイスを使用することも可能である。
図1に示した流路デバイス10の各光導波路の第二端部は、第一の基材1(基板1)の側面に露呈しているが、必ずしも基板1の側面に露呈させる必要はない。各光導波路の端部に接続されるデバイス等との組み合わせにより適宜調整することができる。
以上は、測定対象として蛍光物質を用いた場合の測定方法であるが、本発明は蛍光物質に限らず、他のラベルに対しても適用することができる。例えば、ナノ粒子、量子ドットなどのラベルにも適用することができる。
[光導波路のコア径]
各光導波路4,5,6のコアの断面形状は特に制限されず、例えば矩形、多角形、楕円形及び円形が挙げられる。該断面において、縦の長さ(基板厚み方向の長さ)と横の長さ(基板上面と平行な方向の長さ)とは同じであっても異なっていてもよい。前記縦の長さおよび横の長さは特に制限されないが、各々独立して、好ましくは1μm〜300μmであり、より好ましくは3μm〜200μmであり、さらに好ましくは5μm〜100μmである。縦の長さと横の長さの比(縦/横)は。光がマルチモードあるいはシングルモードとして導波する限りにおいて限定されない。
各光導波路4,5,6のコアの縦の長さは、各光導波路が互いに光学的に結合された又は互いに平行に配置された前記区間において、同じ長さであってもよい。それ以外の領域における、各光導波路4,5,6のコアの相対的な縦の長さは特に制限されず、同じであってもよいし異なっていてもよいが、通常は同じに長さにして構わない。また、各光導波路4,5,6が流路3と光学的に結合した領域において、各光導波路4,5,6のコアの縦の長さが、流路3の断面の縦の長さ(基板厚み方向の長さ)と同じ又はそれ以上の長さであることが好ましい。この構造であると、入射光が流路3の内部を余すことなく照射することが可能であり、さらに流路3内で発生したシグナル光を第二光導波路5へ回収する際のシグナル光の損失を低減できる。この結果、測定および蛍光シグナルの検出をより容易に高精度に行うことができる。
[流路の内径]
流路3の内径の断面形状は特に制限されず、例えば矩形、多角形、楕円形及び円形が挙げられる。その断面において、縦の長さ(基板厚み方向の長さ)と横の長さ(基板上面と平行な方向の長さ)とは同じであっても異なっていてもよい。流路3の内径のうち長径は基板厚方向であっても良いし、基板上面と平行の方向であっても良い。本発明に係る流路デバイスの製造をより容易にする観点から、流路3の長径が基板の厚み方向に形成され、流路の短径が基板上面と平行方向に形成された構成を採用することができる。前記縦の長さが流路3の長径である場合、前記縦の長さとしては、0.1μm〜200μmであることが好ましく、0.5μm〜100μmであることがより好ましく、0.9μm〜50μmであることがさらに好ましい。また、前記横の長さが流路3の短径である場合、前記横の長さは1μm未満であることが好ましく、10nm〜900nmであることがより好ましく、50nm〜800nmであることがさらに好ましく、100nm〜700nmであることが特に好ましい。また、前記縦の長さと横の長さの比(縦/横)は特に限定されない。
流路3の短径が上記範囲の上限値未満(即ち1μm未満)である場合、流路3を流れる分析対象の蛍光物質を励起光によって容易に照射することができる。また、上記範囲の下限値以上(即ち10nm以上)であると、蛍光物質を含む流体をナノ流路に容易に流通させることができる。一方、短径が1μm以上であると、分析試料である流体に含まれる溶質の濃度が濃い又は前記流体が有色である場合には、測定対象である蛍光物質に励起光が充分に届かない可能性がある。また、短径が10nm未満であると、分析試料である前記流体の粘度が高い場合には、流路3内を流通させるために過度に高い圧力をかける必要が生じる可能性がある。
実施形態の一例として、流路3の前記縦の長さが第一光導波路4のコアの前記縦の長さと同じ又はそれ以下である構造が挙げられる。この構造であると、流路3内を流通する試料を余すことなく、第一光導波路4を伝搬してくる励起光によって照射することができる。第二光導波路5及び第三光導波路6の前記縦の長さは第一光導波路4の前記縦の長さと等しくても異なっていてもよい。
図1に示した実施形態とは異なる、別の実施形態の一例として、流路3の両端には流路3よりも太い径を有する別の流路が接続された構造が挙げられる。つまり、第二光導波路5が交差する点P(図2参照)から離れた位置の流路3の内径が、前記点Pを構成する流路3の内径よりも太くなっていてもよい。具体的には、前記点Pを構成する流路3の内径が1μm未満であり、前記点Pから遠く離れた位置の流路3の内径が1μm以上である構造が例示できる。流路3の少なくとも一部又は流路3に接続される別の流路の内径を太くすることにより、流路3へ分析試料を容易に流通させることができる。
前述したように、流路3内にエバネッセント光を発生させる場合には、流路3は流路幅(基板上面と平行な方向の長さ)がナノメートルサイズ(ナノスケール)のナノ流路であることが好ましい。
[ナノ流路の長径および短径について]
ナノ流路の孔径の断面は矩形、多角形、楕円形、円形の何れであってもよい。ナノ流路の孔径における長径は膜厚方向であってもよいし、基板上面と平行の方向であってもよい。本明細書においては、ナノ流路の長径(縦の長さ)が基板の厚み方向に形成され、ナノ流路の短径(横の長さ)(幅)が基板上面と平行方向に形成されている場合を説明している。
ナノ流路の幅は少なくとも、第一光導波路4と光学的に接続される部位において、入射光が第一光導波路4の側面で全反射された場合にナノ流路の内側面に発生するエバネッセント光の侵入長Dp以下であることが好ましい。
前記エバネッセント光の侵入長Dpは、ナノ流路内を流れる分析試料の屈折率n、ナノ流路に光学的に結合した第一光導波路4のコアの屈折率n、入射光の波長λ、第一光導波路4を伝搬する入射光の最大角θを用いて、下記(式G1)で表される。
Figure 2014081321
前記(式G1)に具体的な数値を代入した例を次に挙げる。
前記(式G1)によれば、ナノ流路を流れる試料の屈折率nが水の屈折率1.33であると近似され、コアの屈折率nが1.453であり、入射光の最大角θ=3°であり、励起波長λが0.5μmである場合、エバネッセント光の侵入光Dpは、約140nmであることが算出される。
また、前記(式G1)によれば、ナノ流路3を流れる試料の屈折率nが空気の屈折率1.00と同じであり、コアの屈折率nが1.453であり、入射光の最大角θが3°であり、励起波長λが0.5μmである場合、エバネッセント光の侵入光Dpは、約
75nmであることが算出される。
上記例においては、コアの屈折率>試料の屈折率であるため、ナノ流路の側面を構成するコアの側面において入射光を全反射させることが可能である。全反射させた場合、ナノ流路内に侵入するエバネッセント光は、全反射が起こる側面から、励起光の波長の1/10〜1程度の距離まで到達する。よって、ナノ流路の幅(短径)を励起光の波長の1/10程度に設定すれば、当該ナノ流路を流通する試料を余すことなく当該エバネッセント光により照射することが可能になる。つまり、ナノ流路の径をナノメートル単位で形成することにより、試料の測定精度を向上させることができる。
一方、コアの屈折率<試料の屈折率である場合は、ナノ流路の側面を構成するコアの側面において、入射光の一部はそのまま第一光導波路を伝搬し、残りの入射光はナノ流路内に侵入して、ナノ流路を透過する。この場合、エバネッセント光を使用することなく、ナノ流路内の試料を励起光によって励起することができる。入射光がナノ流路を透過可能である場合、ナノ流路の幅(短径)が1μm以上であったとしても、当該ナノ流路を流通する試料を余すことなく励起光により照射することができる。つまり、コアの屈折率<試料の屈折率である場合は、流路の幅(短径)は1μm以上であってもよい。
よって、本発明にかかる流路デバイスにおいては、流路の側面において入射光を全反射させてもよいし、全反射させずに透過させてもよい。何れの場合においても、流路内の試料を余すことなく励起光により充分に照射することができる。
ナノ流路の長径(基板厚み方向の長さ)は、第一光導波路4のコアの長径(基板厚み方向の長さ)以下であることが好ましい。この構成であると、ナノ流路内を流通する試料を余すことなく、第一光導波路を伝搬してくる励起光によって照射することができる。第二光導波路5、第三光導波路6および、後述する第四光導波路7、第五光導波路8、第六光導波路9の長径(ここでは、便宜的に、長径はいずれも基板厚み方向の長さであるとする。)は第一光導波路4の長径と等しいことが好ましいが、異なっていてもよい。
[材料の屈折率]
各光導波路4,5,6のコア材料は、各光導波路が光を充分に伝搬できる材料であれば公知の材料を限定なく使用することができる。
各光導波路4,5,6及び流路3を上方から覆う第二の基材2(層2)の材料は特に制限されず、公知の材料を使用できる。第二の基材2を各光導波路4,5,6のクラッドとして機能させる場合には、前記コア材料の屈折率nと前記クラッド材料の屈折率nとが、n>nの関係を有するように前記コア材料及び前記クラッド材料を公知の材料から選定することが好ましい。同様に、第一の基材1である基板1を各光導波路4,5,6のクラッドとして機能させる場合には、前記コア材料の屈折率nと基板1の屈折率nとが、n>nの関係を有するように前記コア材料及び基板1の材料を公知の材料から選定することが好ましい。クラッド、コア及び基板の各材料の屈折率は、必要に応じて、部位ごとに異なっていても構わない。
《第二の実施形態》
本発明の第二実施形態である流路デバイス20を上方から見たときの流路及び光導波路を図3に例示する。図3において、第一実施形態である流路デバイス10と同じ構成には同じ符号を付してある。
流路デバイス20は、第一光導波路4、第二光導波路5、第三光導波路6および第四光導波路7を備えている。第四光導波路7の説明は前述した第二光導波路5の説明と同様である。第四光導波路7の幅は第二光導波路5の幅Lと同じであってもよいし、異なっていてもよい。流路3の点P’において発生したシグナル光は第四光導波路7の第一端部7aを通過して第二端部7bへ伝搬する。よって、第四光導波路7を設けることにより、流路3内のシグナル光をより確実に検出できる。
《第三の実施形態》
本発明の第三実施形態である流路デバイス30を上方から見たときの流路及び光導波路を図4に例示する。図4において、第一実施形態である流路デバイス10と同じ構成には同じ符号を付してある。
流路デバイス30は、第一光導波路4、第二光導波路5、第三光導波路6および第五光導波路8を備えている。第五光導波路8の説明は前述した第二光導波路5の説明と同様である。流路3の点P”において発生したシグナル光は第五光導波路8の第一端部8aを通過して第二端部8bへ伝搬する。また第二の実施形態よりも確実に入射光とシグナル光を分離することができる。よって、第五光導波路8を設けることにより、流路3内のシグナル光をより確実に検出できる。
流路デバイス30の第一光導波路4は、第二光導波路5によって二つの区間に区切られている。図4において、第一光導波路4は、第一光導波路の第一端部4aから点Aまでの第一の区間と、点Bから第一光導波路の第二端部4bまでの第二の区間とに分けられる。
流路デバイス30においては、点Aにおける第一の区間の径D1が、点Eにおける第二の区間の径D2よりも小さくなっている。さらに、径D2は長さD4と長さD5の和である。点B又は点Dを通る長さD4は流路3から辺BDまでの長さである。長さD5は径D2−長さD4であり、辺DFと等しい。ここで、径D1、径D2、長さD4及び長さD5は、基板1の上面1aと平行な方向の長さ(幅)である。
流路デバイス30の第二光導波路5においても、前述した式(1)の関係が満たされている。つまり、D4−D1≧L×tanθである。
さらに、第五光導波路8においても同様の関係が成立している。すなわち、D2−D4≧L”×tanθの関係が成立している。これらの関係により、第一光導波路4の第一端部4aから入射した伝搬光(最大角θ)が、第二光導波路5及び第五光導波路8に導かれることを防ぎ、第一光導波路4の第二端部4bへ確実に導かれる。
ここで、第一光導波路4の第一の区間を伝搬する光の最大角θは角ABC及び角DEFと等しくてもよい。また、L”は第五光導波路8が第一光導波路4に交差する点Eにおける第五光導波路8の径である。
第二光導波路5が第一光導波路4を区切る基準であると捉えた場合には、第一端部4aから点Aまでが第一の区間であり、点Bから第二端部4bまでが第二の区間であると考えることができる。一方、第五光導波路8が第一光導波路4を区切る基準であると捉えた場合には、第一端部4aから点Dまでが第一の区間であり、点Eから第二端部4bまでが第二の区間であると考えることができる。どちらの考え方も可能であり、同時に成立しうる。
流路デバイス30においては、第一光導波路4に交差して、第一光導波路4を区切る基準となる2つの光導波路、第二光導波路5及び第五光導波路8が備えられている。この基準になる光導波路の数は1つ又は2つに限定されることはなく、任意の数(例えば10以上でもよい)の光導波路を設けることができる。
《第四実施形態》
本発明の第四実施形態である流路デバイス40を上方から見たときの流路及び光導波路を図5に例示する。流路デバイス40は、基本的には流路デバイス30の構成から第五光導波路8を除いた構成である。
《第五実施形態》
本発明の第五実施形態である流路デバイス50を上方から見たときの流路及び光導波路を図6に例示する。流路デバイス50は、基本的には流路デバイス40の構成から第三光導波路6の端部を短縮した構成である。
前述した他の実施形態においても第三光導波路6の端部を短縮することが可能である。尚、第三光導波路6の端部が省略されていない場合には、第三光導波路6の図面左側(例えば図2の第一端部6a)から入射光を入れることも可能である。第三光導波路から入射光を入れる場合には、第一光導波路の第一端部4aを短縮することも可能である。これらの効果は他の実施形態においても適用される。
《第六実施形態》
本発明の第六実施形態である流路デバイス60を上方から見たときの流路及び光導波路を図7に例示する。流路デバイス60は、流路デバイス10の構成に加えて第六光導波路9を備えている。また、第三光導波路6と第六光導波路9との関係は、第一光導波路4と第二光導波路5との関係と同じである。流路デバイス60は、流路3を対称軸とする線対称の構成を有する。つまり、流路3で折り曲げた場合、第一光導波路4と第三光導波路6が重なり、第二光導波路5と第五光導波路9とが重なる。
また、第六実施形態の変形例として、流路3で折り曲げた場合に、第二光導波路5と第五光導波路9とが重ならず、流路3の長手方向にスライドしてずれた構成も挙げられる。
流路デバイス60のように流路3の両側にシグナル検出用の光導波路5,9を備えることにより、シグナル光の検出効率を向上させることができる。流路デバイス60において、第一光導波路の第一端部4aから入射光を入射させるだけでなく、第三光導波路6の第一端部6aからも入射光を入射させてもよい。
第六実施形態の変形例として、第六光導波路9を所望の位置へ、流路3に沿う方向へスライドさせた位置に設けてもよい。第六実施形態のように線対称でなくてもよい。流路3の両側に検出用の光導波路を設けることにより、光シグナルの検出効率を向上させることができる。
以上で説明した第二実施形態から第六実施形態の流路デバイスを使用することにより、第一実施形態の流路デバイス10と同様に、流体の分析を行うことができる。
<流路デバイスの製造方法>
本発明にかかる流路デバイスは、公知の材料を使用して、感光性レジストを用いたフォトリソグラフィーやレーザー照射により、基材のエッチング耐性を変化させる公知方法などを利用して製造することができる。以下、図を参照して、製造方法の具体例を示す。
[製造方法1:流路をウェットエッチングにより形成する方法]
第一の基材1としてガラス基板を使用する。まず、第一の基材の上面1aに、光導波路及び流路3を形成する領域を反映したパターンを有する感光性レジスト31を形成する(図8(a))。つぎに、第一の基材1をエッチング可能なガス、例えばフロロ力ーボン系、SF系ガス、CHF、フッ素ガス、塩素ガス等を用いて公知の方法でドライエッチングを行い、第一の基材の上面1aに、凹状の溝32によって構成された所定パターンを形成する(図8(b))。つづいて、レジスト31を除去し、CVD法等により、溝32の中に光導波路のコアとなる材料33を堆積し(図8(c))、第一の基材の上面1aが露出するまで研磨することによって、溝32の中にだけコア材料33を残す(図8(d))。その後、CVD法等により、第一の基材の上面1a及び溝中のコア材料の上にクラッド材料を堆積させる(図8(e))。この堆積したクラッド材料は、第二の基材2を構成する。この工程が終了したとき、光導波路が完成するとともに、流路3を形成する領域についても、光導波路と同様に、溝中にコア材料が充填され、上面1aの全体がクラッド材料で覆われた状態になっている。
つぎに、流路3を形成する領域に充填されたコア材料33に対して、レーザー光又は電子ビームを照射し、形成するナノ流路3の経路をなぞるように、その焦点を走査することにより、コア材料内の流路3が形成される部位を改質する(図8(f))。このレーザー照射の方法および条件については、後述する。
改質された部位(改質部)34は、エッチング選択比が高くなっている(エッチング耐性が低くなっている)ため、例えばフッ酸(HF)を主成分とする溶液やフッ酸に硝酸等を適量添加したフッ硝酸系の混酸、水酸化カリウム水溶液等の公知のエッチャントを用いることにより、改質部34を選択的に若しくは優先的にウェットエッチングして除去することができる(図8(g))。このエッチングによって流路3を形成し、ナノ流路デバイスを得ることができる。
ウェットエッチングの処理時間を調整することによって、改質部34と流路3とのサイズ差を小さくしたり大きくしたりすることが可能である。
前記処理時間を短くすることによって、流路3の短径を数nm〜数十nmにすることも理論的には可能である。これとは逆に、前記処理時間を長くすることによって、流路3の短径を1μm〜2μm程度に、その長径を5μm〜10μm程度に形成することも可能である。
本発明にかかる流路デバイスに、ナノサイズの流路3(ナノ流路)以外の流路を形成する場合、第一の基材1の任意の領域をレーザー等で改質して、改質部をエッチングする方法を採用してもよいし、従来公知のフォトリソグラフィーにより、ナノ流路とは別に形成してもよい。
[製造方法2:流路をドライエッチングにより形成する方法]
第一の基材1としてガラス基板を使用する。まず、第一の基材の上面1aに、光導波路及び流路3を形成する領域を反映したパターンを有する感光性レジスト31を形成する(図9(a))。つぎに、第一の基材1をエッチング可能なガス、例えばフロロ力ーボン系、SF系ガス、CHF、フッ素ガス、塩素ガス等を用いて公知の方法でドライエッチングを行い、第一の基材の上面1aに、凹状の溝32によって構成された所定パターンを形成する(図9(b))。つづいて、レジスト31を除去し、CVD法等により、溝32の中に光導波路のコアとなる材料33を堆積し(図9(c))、第一の基材の上面1aが露出するまで研磨することによって、溝32の中にだけコア材料33を残す(図9(d))。ここまでは、前述の製造方法1と同様である。
つぎに、流路3を形成する領域に充填されたコア材料33に対して、レーザー光、形成する流路3の経路をなぞるように、その焦点を走査することにより、コア材料内の流路3が形成される部位を改質する(図9(e))。このレーザー照射の方法および条件については、後述する。
改質された部位(改質部)34は、エッチング選択比が高くなっている(エッチング耐性が低くなっている)ため、例えばフロロ力ーボン系、SF系ガス、CHF、フッ素ガス、塩素ガス等を用いて公知方法により、改質部34を選択的に若しくは優先的にドライエッチングして除去することができる。このエッチングによって流路3を構成する凹状の溝35を形成できる(図9(f))。この際、流路の短径をナノオーダーの長さで容易に形成できることから、ドライエッチングの方式としては、異方性ドライエッチング法を採用することが好ましい。また、ウェットエッチングによっても改質部を選択的にエッチングすることが出来る。
あるいは、基材1上に、電子ビーム(EB)レジストを塗布し、電子線を照射することで、マスクを形成し、その後ドライエッチング、マスク除去を順次行うことで同様な凹状の流路を形成することができる。
その後、CVD法等により、第一の基材の上面1a及び溝中のコア材料33の上にクラッド材料を堆積させる(図9(g))。この際、流路幅が1μm未満である場合には、凹状の溝35内部には殆ど堆積しない。流路幅が1μm以上である場合には、例えば、流路内にレジスト等の樹脂を一時的に充填しておき、前記クラッド材料の堆積後に、有機溶剤等で流路内から当該樹脂を除去する方法が可能である。
前記堆積したクラッド材料は、第一の基板の上面1a全体を覆う第二の基材2を構成する。この工程が終了したとき、光導波路および流路3が完成し、流路デバイスが得られる。
ここでは、基材の材料の一例としてガラスの例を示しているが、インプリント、モールドなどの公知の手法を用いれば、樹脂を基材として使用することも可能である。この際、流路となる凹部を形成する方法として、インプリント、電子ビーム照射、レーザー加工など公知の手法を用いることができる。
[流路を形成するためのレーザー照射方法]
1μm未満の短径を有するナノ流路を形成する際に使用するレーザー光としては、パルス時間幅がピコ秒オーダー又はそれ以下のパルス幅を有するレーザー光Lを用いることが好ましい。例えば、公知のピコ秒レーザーー、フェムト秒レーザー、チタンサファイアレーザー(レーザー媒質としてサファイアにチタンをドープした結晶を使用したレーザー)又は1fs以上10ピコ秒未満のパルス時間幅を有するパルスレーザー若しくはファイバーレーザーを用いることができる。ここで、「ピコ秒オーダー又はそれ以下のパルス時間幅」は、1fs以上1ナノ秒未満のパルス時間幅であることが好ましく、1fs以上10ピコ秒未満のパルス時間幅であることがより好ましく、1fs以上3ピコ秒未満のパルス時間幅であることが更に好ましく、1fs以上2ピコ秒未満のパルス時間幅であることが特に好ましい。
前記パルス時間幅がピコ秒オーダー又はそれ以下であることで、集光部における基材の電子温度とイオン温度とが非平衡状態となり加熱され、いわゆる非熱過程での加工が進行する。そして、熱拡散長が極限まで抑えられる。さらには多光子吸収に始まる非線形加工が支配的となる。このため、加工後に得られる流路の大きさを、ナノスケールからマイクロオーダースケールにすることが可能である。
一方、10ピコ秒以上のパルス時間幅を有するレーザー光を用いた場合では、集光部における基材の電子温度とイオン温度とが平衡状態となる熱的加工が支配的となる。熱的加工においては熱拡散長が大きくなり、ナノからマイクロオーダースケールの加工を行うことが困難になることがある。このように、パルス時間幅が約1〜10ピコ秒付近を境にして、全く異なる反応メカニズムとなる。
照射するレーザー光の波長としては、加工用レーザーとして使用される一般的な波長領域(例えば0.1μm〜10μm)を適用することができる。この波長域のうち、照射対象である材料を充分に透過することが可能な波長を選択することが好ましい。例えば、材料に対する透過率が60%以上のレーザー光を用いることが好ましい。
レーザー光の照射条件の具体例として、照射対象を構成する材料がガラスである場合、例えば、パルス幅300fs、波長800nm、繰返周波数200kHzのレーザー光を使用し、レーザー走査速度1mm/秒、パルスエネルギー90nJ/pulse程度、照射強度600kW/cm程度、1パルスあたりのレーザーフルエンス3J/cm程度に設定し、その焦点を照射対象内において走査する条件が挙げられる。なお、ここで例示した波長、繰返周波数、走査速度の値は一例であり、この条件に限定されず、任意に変えることが可能である。
流路3の短径をナノオーダー(例えば1nm以上1μm未満)の長さに形成するために、レーザー光の照射強度を、照射対象である部材の「加工上限閾値」の近傍又は加工上限閾値の近傍且つ加工上限閾値未満にすることが好ましい。さらに、レーザー光の偏波方向(電場方向)を走査方向に対して垂直にすることが好ましい。このレーザー照射方法を、以下ではレーザー照射方法Sと呼ぶ。
レーザー照射方法Sを、図10を参照して説明する。レーザー光Lの伝播方向は矢印Zであり、該レーザー光Lの偏波方向(電場方向)は矢印E1である。レーザー照射方法Sでは、レーザー光Lの照射領域を、該レーザー光の伝播方向と、該レーザー光の偏波方向に対して垂直な方向とによって構成される平面33a内にすることが好ましい。これと共に、レーザー照射強度を、後述する「加工上限閾値」の近傍又は加工上限閾値の近傍且つ加工上限閾値未満とすることが好ましい。
このレーザー照射方法Sによって、コア材料33内にナノオーダーの短径を有する改質部34を形成することができる。例えば、改質部34の孔径の断面が略楕円形状であり、その短径が20nm程度、長径が0.2μm〜5μm程度である改質部34が得られる。この略楕円形状は、レーザーの伝播方向Zに沿った方向が長径で、レーザーの電場方向E1に沿った方向が短径となる。レーザー照射の具合によっては、該断面は矩形に近い形状になることもある。
一方、レーザー照射強度を照射対象である部材の加工上限閾値以上に設定した場合、得られる改質部34は周期構造を伴って形成されることがある。すなわち、ピコ秒オーダー又はそれ以下のパルスレーザーを加工上限閾値以上の照射強度で集光照射させることにっよって、集光部で電子プラズマ波と入射光の干渉が起こり、レーザーの偏波に対して垂直であり、偏波方向に沿って周期性をもつ周期構造が自己形成的に形成されることがある。
形成された周期構造はエッチング耐性の弱い層、即ち選択的にエッチングされ易い層、となる。例えば照射対象の部材が石英である場合、酸素が欠乏した層と酸素が増えた層が周期的に配列される(図11)。酸素欠乏部のエッチング耐性が弱くなっているため、エッチングを行うことにより、選択的にエッチングされた領域とエッチングされずに残った領域とが、周期的に並んだ構造が形成可能である。このような周期構造は、ナノオーダーの短径の流路を1本だけ形成する場合においては不要である。
前述した流路3を形成する場合には、前述のレーザー照射方法Sを適用することが好ましい。すなわち、レーザー照射強度を照射対象の部材の加工上限値未満、且つ前記部材を改質してエッチング耐性を低下させることが可能なレーザー照射強度の下限値以上に設定し、前記周期構造を形成せず、レーザー照射によって一つの酸素欠乏部(エッチング耐性の弱い層)を形成することが好ましい(図12)。この単一の酸素欠乏部は極めてエッチング選択性が高い層であるため、そのエッチングを行うことにより、1μm未満の短径を有する単一の流路を形成することができる。このことは、本発明者らの鋭意検討によって見出された。
前記レーザー照射方法Sによれば、流路3が延設された長手方向に直交する断面の形状を楕円、略楕円又は略矩形にすることができる。また、その断面形状の短径(短辺)をナノオーダー(1nm以上1μm未満)のスケールで形成することが可能である。また、長径を1μm以上のスケールで形成することにより、流路3に流入する流体の圧力損失を小さくすることができる。前記長径の上限値は例えば1mmである。
流路3の短径が1μm未満である場合、その流路3を「ナノ流路」と呼ぶことができる。
[レーザー照射強度について]
本明細書及び特許請求の範囲において、「加工上限閾値」とは、レーザー照射する部材内に集光させたレーザー光の焦点(集光域)において、部材とレーザー光との相互作用によって生じる電子プラズマ波と入射するレーザー光との干渉が起こり、前記干渉によって前記部材に縞状の改質部が自己形成的に形成されうるレーザー照射強度の下限値を意味する。
また、「加工下限閾値」とは、レーザー照射する部材内に集光させたレーザー光の焦点(集光域)において、部材を改質した改質部を形成し、後段のエッチング処理によって選択的又は優先的にエッチングされることが可能な程度に、前記改質部のエッチング耐性を低下させることが可能なレーザーの照射強度の下限値を意味する。
加工下限閾値よりも低いレーザー照射強度によってレーザー照射された領域は、後段のエッチング処理において選択的又は優先的にエッチングされ難い。このため、エッチング後に除去されて流路となる改質部を形成するためには、レーザー照射強度を加工下限閾値以上に設定することが好ましい。
加工上限閾値及び加工下限閾値は、レーザー光のパルス時間幅、波長、レーザー照射の対象である部材の材料(材質)、及びレーザーの照射条件によって概ね決定される。しかし、レーザー光の偏波方向と走査方向との相対的な向きが異なると、加工上限閾値及び加工下限閾値も多少異なる場合がある。例えば、偏波方向に対して走査方向が垂直の場合と、偏波方向に対して走査方向が平行の場合とでは、加工上限閾値及び加工下限閾値が異なる場合がある。したがって、使用するレーザー光と照射する部材の組み合わせにおいて、レーザー光の偏波方向と走査方向との相対関係を変化させた場合の、それぞれの加工上限閾値及び加工下限閾値を、予め調べておくことが好ましい。
前記偏波としては直線偏波に関して詳細に説明したが、多少の楕円偏波成分を持つレーザーパルスであっても同様な構造(改質部)が形成されることが容易に想像できる。
レーザー光Lの焦点を走査する方法は特に限定されない。通常、一度の連続走査によって形成できる改質部34は偏波方向(矢印Y方向)に対して垂直な1次元方向と、レーザー光Lの伝搬方向(矢印Z方向)の2次元方向(平面33a)内になる。この2次元方向内に任意の形状で改質部を形成することができる。
図10では、レーザー光Lの伝播方向Zは、コア材料33の上面に対して垂直である場合を示したが、必ずしも垂直である必要はない。前記上面に対して所望の入射角で、レーザーLを照射してもよい。
レーザー光Lの伝搬方向と改質部34の長手方向に直交する断面形状が前記楕円である場合、その楕円の長軸方向とレーザー光Lの伝搬方向とは概ね一致する。
レーザー照射により改質された部分のレーザーの透過率は、改質されていない部分のレーザーの透過率とは異なるため、改質された部分を透過させたレーザー光の焦点位置を制御することは通常困難である。したがって、レーザー照射する側の面から見て、奥に位置する領域を先に改質することが望ましい。
レーザー照射対象である部材内に、3次元方向に任意形状を有する改質部を形成する場合には、レーザーの偏波方向(矢印Y方向)を適宜変更することによって行うことができる。
また、図10で示すように、レーザー光Lをレンズによって集光して、前述の様に照射することによって改質部34を形成してもよい。
前記レンズとしては、例えば屈折式の対物レンズや屈折式のレンズを使用することができるが、他にも例えばフレネル、反射式、油浸、水浸式で照射することも可能である。また、例えばシリンドリカルレンズを用いれば、一度に部材の広範囲にレーザー照射することが可能になる。また、例えばコニカルレンズを用いれば部材の垂直方向に広範囲に一度にレーザー照射することができる。ただしシリンドリカルレンズを用いた場合には、レーザー光Lの偏波はレンズが曲率を持つ方向に対して水平である必要がある。
集光に用いるレンズとしては、例えばN.A.<0.7未満の対物レンズを用いることが好ましい。ガラス製の部材に微小な流路を形成する場合のパルス強度としては、例えば、加工上限閾値近傍である80nJ/pulse程度又はそれ以下のパワーで照射することが好ましい。それよりも大きなパワーであると周期構造を有する改質部が形成され、エッチングによってそれらが繋がり、ナノオーダーの口径を有するナノ流路を形成することが困難となり、ミクロンオーダーの口径になるか又は周期構造が形成されてしまうことがある。また、N.A.≧0.7であるレンズを用いても加工は可能であるが、スポットサイズがより小さくなり、レーザーフルエンスが大きくなるため、より小さなパルス強度でのレーザー照射が求められる。
以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
1…第一の基材(基板)、2…第二の基材(クラッド層)、3…流路、4…第一光導波路、5…第二光導波路、6…第三光導波路、7…第四光導波路、8…第五光導波路、9…第六光導波路、10…流路デバイス

Claims (5)

  1. 基板に、流路と、第一光導波路及び第二光導波路とが備えられ、
    前記流路と前記第一光導波路とが接するように、少なくとも一部の区間において平行に設けられ、
    前記平行に設けられた区間において、前記第二光導波路の第一端部が、前記第一光導波路に交差して配置されていることを特徴とする流路デバイス。
  2. 前記第一光導波路が前記第二光導波路によって区切られた二つの区間のうち、第一の区間の幅が第二の区間の幅よりも小さいことを特徴とする請求項1に記載の流路デバイス。
  3. 前記第一の区間における伝搬光の最大角がθであり、
    前記第一の区間の幅が、下記式(1)で表されることを特徴とする請求項2に記載の流路デバイス。
    Figure 2014081321
    [式中、D1は第一の区間の幅であり、D2は第二の区間の幅であり、Lは第二光導波路の幅であり、θは第一光導波路を伝搬する光の最大角を表す。]
  4. 前記流路と前記第一光導波路とが平行に設けられた前記区間において、
    第三光導波路が、前記流路を挟んで前記第一光導波路の反対側に配置され、前記第三光導波路と前記流路とが接するように平行に配置されていることを特徴とする請求項1〜3のいずれか一項に記載の流路デバイス。
  5. 請求項1〜4のいずれか一項に記載の流路デバイスを使用する分析方法であって、
    前記流路に測定対象物質を含む分析試料を注入し、前記第一光導波路の第一端部から第二端部へ励起光を入射することにより前記流路内において前記測定対象物質を励起し、前記測定対象物質から発生する光シグナルを前記第二光導波路へ導くことによって、前記光シグナルを検出することを特徴とする分析方法。
JP2012230751A 2012-10-18 2012-10-18 流路デバイス及び分析方法 Pending JP2014081321A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230751A JP2014081321A (ja) 2012-10-18 2012-10-18 流路デバイス及び分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230751A JP2014081321A (ja) 2012-10-18 2012-10-18 流路デバイス及び分析方法

Publications (1)

Publication Number Publication Date
JP2014081321A true JP2014081321A (ja) 2014-05-08

Family

ID=50785625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230751A Pending JP2014081321A (ja) 2012-10-18 2012-10-18 流路デバイス及び分析方法

Country Status (1)

Country Link
JP (1) JP2014081321A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535604A (ja) * 2012-11-27 2015-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ナノチャネルを備えた光導波路および当該光導波路を使用する光学流体センサ
JP2021524911A (ja) * 2018-05-25 2021-09-16 ファイブ プライム セラピューティクス, インコーポレイテッド 組織の特性評価とスクリーニングのために改善したサイトメトリー

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535604A (ja) * 2012-11-27 2015-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ナノチャネルを備えた光導波路および当該光導波路を使用する光学流体センサ
JP2021524911A (ja) * 2018-05-25 2021-09-16 ファイブ プライム セラピューティクス, インコーポレイテッド 組織の特性評価とスクリーニングのために改善したサイトメトリー
JP7489326B2 (ja) 2018-05-25 2024-05-23 ファイヴ プライム セラピューティクス インク 組織の特性評価とスクリーニングのために改善したサイトメトリー

Similar Documents

Publication Publication Date Title
Sugioka et al. Femtosecond laser processing for optofluidic fabrication
JP5080186B2 (ja) 分子分析光検出方法およびそれに用いられる分子分析光検出装置、並びにサンプルプレート
Hawkins et al. Optofluidic waveguides: II. Fabrication and structures
US7149396B2 (en) Apparatus for optical measurements on low-index non-solid materials based on arrow waveguides
Schmidt et al. Optofluidic waveguides: I. Concepts and implementations
Zhang et al. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing
Fujiwara et al. Highly efficient coupling of photons from nanoemitters into single-mode optical fibers
US20120281957A1 (en) Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
JP2008536129A (ja) 液体コア導波路内における光学的分類のための装置
EP2749866A1 (en) Molecular analysis device
JP2007538274A (ja) サブ波長光導波路としてのナノワイヤ及びナノリボン並びに、これらナノ構造の光学回路及び光学素子の構成要素への利用
JP4237665B2 (ja) 光導波路型センサ及びその製造方法
US10184888B2 (en) Device and method for determining a refractive index
WO2012017904A1 (ja) マイクロ流体チップの製造方法、マイクロ流体チップ、及び表面プラズモン共鳴光の発生装置
JP2014081321A (ja) 流路デバイス及び分析方法
JP2010223610A (ja) 自己形成光導波路型センサ
Maia et al. Real-time optical monitoring of etching reaction of microfluidic channel fabricated by femtosecond laser direct writing
JP6462251B2 (ja) 機能性デバイス、分析システムおよび分析方法
Roth et al. Control of femtosecond laser generated microfluidic channels inside poly (methyl methacrylate)
Schmidt et al. Integrated ARROW waveguides for gas/liquid sensing
Ren et al. A fiber SPR sensor with high comprehensive evaluation indicator based on core mismatched U-Shaped and tapered arm
JP2014085279A (ja) 流路デバイス及び分析方法
JP2010054392A (ja) 導波型微少量液体分光測定装置
US20060127931A1 (en) Particle detector with waveguide light confinement
Liu et al. Expanded-core waveguides written by femtosecond laser irradiation in bulk optical glasses