JP2012036751A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2012036751A
JP2012036751A JP2010175008A JP2010175008A JP2012036751A JP 2012036751 A JP2012036751 A JP 2012036751A JP 2010175008 A JP2010175008 A JP 2010175008A JP 2010175008 A JP2010175008 A JP 2010175008A JP 2012036751 A JP2012036751 A JP 2012036751A
Authority
JP
Japan
Prior art keywords
suction
pipe
suction pipe
compressor
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175008A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kono
博之 河野
Yoshiyuki Nikami
義幸 二上
Akira Iwashida
鶸田  晃
Atsushi Sakuta
作田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010175008A priority Critical patent/JP2012036751A/en
Priority to CN201110181250.6A priority patent/CN102374170B/en
Publication of JP2012036751A publication Critical patent/JP2012036751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve volume efficiency by enhancing a heat insulating effect at a suction part, while improving assemblability and reliability by simplifying the shape of a pipe at the suction part of a compressor and inhibiting strength poverty at the connection part of the pipe.SOLUTION: A suction inner pipe 17 is provided inside a suction pipe 14 connected to a suction chamber 13, a heat insulating space 18 is formed between the suction pipe 14 and the suction inner pipe 17, the suction pipe 14 is connected to a suction connection pipe 15 to be connected to a refrigerating cycle, and the suction connection pipe 15 is positioned by the suction inner pipe 17. Thus, there is no need to do stepping or pipe enlarging work for both the suction pipe and the suction connection pipe which are not used for positioning, and the suction connection pipe connected to the suction pipe connected to the suction chamber secures its strength.

Description

本発明は流体の吸入、圧縮、吐出を繰り返し行う圧縮機に関するものである。   The present invention relates to a compressor that repeatedly sucks, compresses and discharges fluid.

従来、この種の圧縮機は、吸入室に冷媒を導入するように吸入管を設け、その吸入管を周囲の熱から断熱するため、その周囲に空間部を形成している。空間部は吸入管と吸入管の外側を囲むように配される外側管との間に形成され、吸入管または外側管は冷媒が流れてくる配管に接続され、配管の位置決めのため、吸入管または外側管または配管が段付きもしくは拡管加工されている(例えば、特許文献1参照)。   Conventionally, this type of compressor is provided with a suction pipe so as to introduce a refrigerant into the suction chamber, and in order to insulate the suction pipe from ambient heat, a space is formed around the suction pipe. The space portion is formed between the suction pipe and an outer pipe arranged so as to surround the outside of the suction pipe. The suction pipe or the outer pipe is connected to a pipe through which the refrigerant flows, and the suction pipe is used for positioning the pipe. Alternatively, the outer pipe or the pipe is stepped or expanded (for example, see Patent Document 1).

図2は、特許文献1に記載された従来の圧縮機を示すものである。図2に示すように、吸入管21と吸入管21の外側を囲むように配される外側管22との間に空間部23が形成され、吸入管21は冷媒が流れてくる配管24に接続され、配管24は位置決めのため段付き加工されている。   FIG. 2 shows a conventional compressor described in Patent Document 1. As shown in FIG. As shown in FIG. 2, a space 23 is formed between the suction pipe 21 and the outer pipe 22 arranged so as to surround the outside of the suction pipe 21, and the suction pipe 21 is connected to a pipe 24 through which the refrigerant flows. The piping 24 is stepped for positioning.

特開2008−169816号公報JP 2008-169816 A

しかしながら、前記従来の構成では、配管の位置決めのため配管に段付き加工が必要となる。また、配管が接続される吸入管は、吸入室に直接接続されず片持ち状態で固定されているため強度不足による曲げが生じるという課題を有していた。   However, the conventional configuration requires a stepped process on the pipe for positioning the pipe. Moreover, since the suction pipe to which the pipe is connected is not directly connected to the suction chamber and is fixed in a cantilever state, it has a problem that bending due to insufficient strength occurs.

本発明は、前記従来の課題を解決するもので、管の形状を簡素化し、管の接続部での強度不足を抑えることで組み立て性と信頼性を向上させながら、吸入部での断熱効果を高め体積効率を向上させることで、生産性がよく、信頼性に優れた高効率な圧縮機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and simplifies the shape of the tube and suppresses the lack of strength at the connecting portion of the tube, thereby improving the assemblability and reliability, and the heat insulating effect at the suction portion. An object is to provide a highly efficient compressor with high productivity and high reliability by increasing the volumetric efficiency.

前記従来の課題を解決するために、本発明の圧縮機は、吸入室に接続された吸入管の内部に吸入内管を設け、吸入管と吸入内管との間に断熱空間を形成し、吸入管を冷凍サイクルと接続するための吸接管に接続し、吸入内管の入口端と吸接管の出口端を接触させて位置決めを行うものである。   In order to solve the above-described conventional problems, the compressor of the present invention is provided with a suction inner pipe inside a suction pipe connected to the suction chamber, and forms a heat insulating space between the suction pipe and the suction inner pipe. The suction pipe is connected to a suction pipe for connecting to the refrigeration cycle, and positioning is performed by bringing the inlet end of the suction inner pipe into contact with the outlet end of the suction pipe.

これによって、吸入管・吸接管とも位置決めに用いないため、段付きや拡管加工の必要がなく、吸接管は吸入室に接続された吸入管に接続するため、強度不足の問題もない。   As a result, since neither the suction pipe nor the suction pipe is used for positioning, there is no need for stepping or expansion, and the suction pipe is connected to the suction pipe connected to the suction chamber, so there is no problem of insufficient strength.

本発明の圧縮機は、管の形状を簡素化し、管の接続部での強度不足を抑え、組み立て性と信頼性を向上させながら、吸入部での断熱効果を高め、吸入加熱による体積効率の低下を抑えることができる。   The compressor of the present invention simplifies the shape of the tube, suppresses insufficient strength at the connection portion of the tube, improves the assembly and reliability, enhances the heat insulating effect at the suction portion, and improves the volume efficiency by suction heating. The decrease can be suppressed.

本発明の実施の形態1における圧縮機の吸入部縦断面図1 is a longitudinal sectional view of a suction portion of a compressor according to Embodiment 1 of the present invention. 従来の圧縮機の縦断面図Vertical section of a conventional compressor

第1の発明は、ハウジング内に設けられた冷媒を圧縮するための圧縮機構と、圧縮機構に設けられた吸入室と、吸入室に外部から冷媒を導入する吸入管と、吸入管とに冷凍サイクルとを接続するための吸接管と、を備えた圧縮機であって、ハウジングに固定されるとともに、吸入管の外周に設けられた吸入外管と、吸入管の内部に設けられた吸入内管と、をさらに備え、吸入内管入口端と吸接管の出口端を接触させることで、吸接管の位置決めを行うことにより、吸入管・吸接管とも位置決めに用いないため、段付きや拡管加工の必要がなく、吸接管は吸入室に接続された吸入管に接続するため、強度も確保される。   According to a first aspect of the present invention, there is provided a compression mechanism for compressing the refrigerant provided in the housing, a suction chamber provided in the compression mechanism, a suction pipe for introducing the refrigerant from the outside into the suction chamber, and a suction pipe. A compressor having a suction pipe for connecting to a cycle, the suction pipe being fixed to the housing, provided on the outer periphery of the suction pipe, and an intake pipe provided inside the suction pipe And positioning the suction pipe by bringing the inlet end of the suction pipe and the outlet end of the suction pipe into contact with each other, so that neither the suction pipe nor the suction pipe is used for positioning. Therefore, the suction connection pipe is connected to the suction pipe connected to the suction chamber, so that the strength is ensured.

第2の発明は、特に、第1の発明の吸入内管の入口端が拡管されていることにより、吸入管と吸入内管の固定を容易に行うことができる。   In the second invention, in particular, since the inlet end of the suction inner pipe of the first invention is expanded, the suction pipe and the suction inner pipe can be easily fixed.

第3の発明は、特に、第2の発明の吸入内管の肉厚を、吸入管および吸接管の肉厚よりも薄くすることにより、拡管加工を容易に行うことができる。   In the third aspect of the invention, in particular, by making the thickness of the suction inner pipe of the second invention thinner than the thickness of the suction pipe and the suction pipe, the pipe expansion process can be easily performed.

第4の発明は、特に、第2または第3の発明の吸入内管の拡管部がハウジングの外周より外側に位置することにより、高温であるハウジング内の部分に断熱空間が形成されるため、吸入加熱による体積効率の低下を抑えることができる。   In the fourth aspect of the invention, in particular, since the expanded portion of the suction inner pipe of the second or third aspect is located outside the outer periphery of the housing, a heat insulating space is formed in a portion in the housing that is at a high temperature. A decrease in volumetric efficiency due to suction heating can be suppressed.

第5の発明は、特に、第1〜4のいずれか1つの発明の吸入管の内側端と吸入内管の出口端がほぼ同じ位置に存在することで吸入内管の位置決めが容易にでき、生産性を向上することができる。   In the fifth invention, in particular, since the inner end of the suction pipe of any one of the first to fourth inventions and the outlet end of the suction inner pipe exist at substantially the same position, the positioning of the suction inner pipe can be facilitated. Productivity can be improved.

第6の発明は、特に、第1〜5のいずれか1つの発明の冷媒ガスがCO2であることにより、吐出温度が高いため、より断熱による効果が顕著である。   In the sixth aspect of the invention, in particular, since the refrigerant gas of any one of the first to fifth aspects is CO2, the discharge temperature is high, so the effect of heat insulation is more remarkable.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における圧縮機の吸入部縦断面図を示すものである。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a suction portion of a compressor according to a first embodiment of the present invention.

図1において、ハウジング11内に圧縮機構12が収容され、圧縮機構12には吸入室13が設けられている。また、吸入室13には外部から冷媒を導入するための吸入管14が接続され、吸入管14に冷凍サイクルと接続するための吸接管15が接続されている。さらに、吸入管14の外周には吸入外管16が設けられ、吸入外管16がハウジング11に固定されている。また、吸入管14は吸入外管16に固定され、吸入管14の内部に吸入内管17が固定されている。ここで、吸入管14と吸入内管17との間に断熱空間18が形成されている。また、吸入内管17の入口端17aと吸接管15の出口端15aが接触するように吸接管15が挿入されている。   In FIG. 1, a compression mechanism 12 is accommodated in a housing 11, and a suction chamber 13 is provided in the compression mechanism 12. In addition, a suction pipe 14 for introducing a refrigerant from the outside is connected to the suction chamber 13, and a suction pipe 15 for connecting to the refrigeration cycle is connected to the suction pipe 14. Further, a suction outer tube 16 is provided on the outer periphery of the suction tube 14, and the suction outer tube 16 is fixed to the housing 11. The suction pipe 14 is fixed to the suction outer pipe 16, and the suction inner pipe 17 is fixed inside the suction pipe 14. Here, a heat insulating space 18 is formed between the suction pipe 14 and the suction inner pipe 17. Further, the suction pipe 15 is inserted so that the inlet end 17a of the suction inner pipe 17 and the outlet end 15a of the suction pipe 15 are in contact with each other.

次に、組立工程について、説明する。   Next, the assembly process will be described.

まず、ハウジング11に吸入外管16をロウ付け等により固定し、ハウジング11内に圧縮機構12を溶接等により固定する。吸入管14の内部に吸入内管17を圧入等により固定し、吸入管14を吸入外管16の中を通って圧縮機構12の吸入室13に接続する。吸接管15を吸入管14の内側に、吸入内管17の入口端17aと吸接管15の出口端15aが接触するように挿入し、吸入外管16と吸入管14と同時にロウ付け等で固定する
First, the suction outer pipe 16 is fixed to the housing 11 by brazing or the like, and the compression mechanism 12 is fixed in the housing 11 by welding or the like. The suction inner pipe 17 is fixed inside the suction pipe 14 by press fitting or the like, and the suction pipe 14 passes through the suction outer pipe 16 and is connected to the suction chamber 13 of the compression mechanism 12. The suction tube 15 is inserted inside the suction tube 14 so that the inlet end 17a of the suction inner tube 17 and the outlet end 15a of the suction tube 15 are in contact with each other, and fixed together with the outer suction tube 16 and the suction tube 14 by brazing or the like. To do.

ここで、吸接管15を吸入内管17の入口端17aで位置決めしているため、吸入管14と吸接管15の接続部で位置決めをする必要がなくなることにより、段差加工や拡管加工等が不要となるため形状が簡素化でき、部品の低コスト化が図れる。   Here, since the suction pipe 15 is positioned at the inlet end 17a of the suction inner pipe 17, there is no need for positioning at the connection portion between the suction pipe 14 and the suction pipe 15, so that step processing or pipe expansion processing is not required. Therefore, the shape can be simplified and the cost of parts can be reduced.

また、吸接管15が接続される吸入管14は吸入室13と吸入外管16に固定されるため強度不足の問題もない。   Further, since the suction pipe 14 to which the suction pipe 15 is connected is fixed to the suction chamber 13 and the suction outer pipe 16, there is no problem of insufficient strength.

次に、以上のように組立、構成された圧縮機について、以下その動作、作用を説明する。   Next, the operation and action of the compressor assembled and configured as described above will be described below.

まず、冷凍サイクルから戻ってきた冷媒ガスが吸接管15を通って吸入内管17の内部を通り、吸入室13に到達する。吸入室13に到達した冷媒の一部は吸入管14と吸入内管17の間の断熱空間18へ導かれる。   First, the refrigerant gas returned from the refrigeration cycle passes through the suction pipe 15, passes through the suction inner pipe 17, and reaches the suction chamber 13. A part of the refrigerant reaching the suction chamber 13 is guided to the heat insulating space 18 between the suction pipe 14 and the suction inner pipe 17.

吸入内管17の内部を通る冷媒ガスは、断熱空間18へ導かれた冷媒ガスにより、吸入管14の外周からの熱伝達を抑えることができ、吸入加熱を低減し、体積効率を向上することができる。   The refrigerant gas passing through the inside of the suction inner pipe 17 can suppress heat transfer from the outer periphery of the suction pipe 14 by the refrigerant gas guided to the heat insulating space 18, reduce suction heating, and improve volumetric efficiency. Can do.

なお、図1のように、吸入内管17の入口端17aが拡管され、吸入管14に圧入されているので、吸入管14と吸入内管17の固定が容易にできる。   As shown in FIG. 1, since the inlet end 17a of the suction inner pipe 17 is expanded and press-fitted into the suction pipe 14, the suction pipe 14 and the suction inner pipe 17 can be easily fixed.

なお、図1のように、吸入内管17の肉厚を吸入管14や吸接管15の肉厚より薄くすることで、より拡管が容易になる。   As shown in FIG. 1, the expansion of the inner pipe 17 is facilitated by making the thickness of the suction inner pipe 17 thinner than the thickness of the suction pipe 14 or the suction contact pipe 15.

なお、図1のように、吸入内管17の拡管部17bが、ハウジング11の外周より外側に位置しているので、高温にさらされる部分に断熱空間18が形成されるため、断熱効果が向上する。   As shown in FIG. 1, since the expanded portion 17b of the suction inner pipe 17 is located outside the outer periphery of the housing 11, a heat insulation space 18 is formed in a portion exposed to a high temperature, so that the heat insulation effect is improved. To do.

なお、図1のように、吸入管14の内側端14aと吸入内管17の出口端17cがほぼ同じ位置に存在しているので、吸入内管17の位置決めが容易にできる。   As shown in FIG. 1, since the inner end 14a of the suction pipe 14 and the outlet end 17c of the suction inner pipe 17 are located at substantially the same position, the positioning of the suction inner pipe 17 can be facilitated.

また、冷媒ガスとして、CO2を用いた場合、吐出温度が高いため、断熱の効果がより顕著である。   Moreover, when CO2 is used as the refrigerant gas, since the discharge temperature is high, the effect of heat insulation is more remarkable.

以上のように、本発明にかかる圧縮機は、管の形状を簡素化し、管の接続部での強度不足を抑え、組み立て性と信頼性を向上させながら、吸入部での断熱効果を高め、吸入加熱による体積効率の低下を抑えることができるので、生産性がよく、信頼性に優れた高効率な圧縮機を提供することができる。さらに、製品であるルームエアコン等の空調機やヒートポンプ式給湯機として、より省エネで環境に優しい快適な製品とすることが可能である。   As described above, the compressor according to the present invention simplifies the shape of the tube, suppresses insufficient strength at the connection portion of the tube, improves the assembly and reliability, and enhances the heat insulating effect at the suction portion, Since a decrease in volumetric efficiency due to suction heating can be suppressed, a highly efficient compressor with high productivity and excellent reliability can be provided. Furthermore, it is possible to make the product more comfortable and environmentally friendly as an air conditioner such as a room air conditioner or a heat pump water heater.

11 ハウジング
12 圧縮機構
13 吸入室
14 吸入管
14a 内側端
15 吸接管
16 吸入外管
17 吸入内管
17a 入口端
17b 拡管部
17c 出口端
18 断熱空間
DESCRIPTION OF SYMBOLS 11 Housing 12 Compression mechanism 13 Suction chamber 14 Suction pipe 14a Inner end 15 Suction contact pipe 16 Suction outer pipe 17 Suction inner pipe 17a Inlet end 17b Expanded part 17c Outlet end 18 Thermal insulation space

Claims (6)

ハウジング内に設けられた冷媒を圧縮するための圧縮機構と、前記圧縮機構に設けられた吸入室と、前記吸入室に外部から冷媒を導入する吸入管と、前記吸入管とに冷凍サイクルとを接続するための吸接管と、を備えた圧縮機であって、
前記ハウジングに固定されるとともに、前記吸入管の外周に設けられた吸入外管と、
前記吸入管の内部に設けられた吸入内管と、をさらに備え、
前記吸入内管の入口端と前記吸接管の出口端が接触することを特徴とする圧縮機。
A compression mechanism for compressing a refrigerant provided in the housing, a suction chamber provided in the compression mechanism, a suction pipe for introducing a refrigerant into the suction chamber from the outside, and a refrigeration cycle in the suction pipe A compressor having a suction pipe for connection,
A suction outer pipe fixed to the housing and provided on an outer periphery of the suction pipe;
A suction inner pipe provided inside the suction pipe, and
The compressor characterized in that an inlet end of the suction inner pipe and an outlet end of the suction contact pipe are in contact with each other.
前記吸入内管の入口端が拡管されていることを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein an inlet end of the suction inner pipe is expanded. 前記吸入内管の肉厚が、前記吸入管および前記吸接管の肉厚よりも薄いことを特徴とする請求項2に記載の圧縮機。 The compressor according to claim 2, wherein a thickness of the suction inner pipe is smaller than a thickness of the suction pipe and the suction contact pipe. 前記吸入内管の拡管部が前記ハウジングの外周より外側に位置することを特徴とする請求項2または3に記載の圧縮機。 The compressor according to claim 2 or 3, wherein the expanded portion of the suction inner pipe is located outside the outer periphery of the housing. 前記吸入管の内側端と前記吸入内管の出口端がほぼ同じ位置に存在することを特徴とする請求項1〜4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein an inner end of the suction pipe and an outlet end of the suction inner pipe exist at substantially the same position. 冷媒ガスがCO2であることを特徴とする請求項1〜5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein the refrigerant gas is CO2.
JP2010175008A 2010-08-04 2010-08-04 Compressor Pending JP2012036751A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010175008A JP2012036751A (en) 2010-08-04 2010-08-04 Compressor
CN201110181250.6A CN102374170B (en) 2010-08-04 2011-06-23 Hermetic type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175008A JP2012036751A (en) 2010-08-04 2010-08-04 Compressor

Publications (1)

Publication Number Publication Date
JP2012036751A true JP2012036751A (en) 2012-02-23

Family

ID=45849010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175008A Pending JP2012036751A (en) 2010-08-04 2010-08-04 Compressor

Country Status (1)

Country Link
JP (1) JP2012036751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106122028A (en) * 2016-07-27 2016-11-16 广东美芝制冷设备有限公司 Compressor
CN106224243A (en) * 2016-07-27 2016-12-14 广东美芝制冷设备有限公司 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106122028A (en) * 2016-07-27 2016-11-16 广东美芝制冷设备有限公司 Compressor
CN106224243A (en) * 2016-07-27 2016-12-14 广东美芝制冷设备有限公司 Compressor

Similar Documents

Publication Publication Date Title
JP2012036750A (en) Compressor
US20130108493A1 (en) Valve plate for a compressor
KR20080063150A (en) Heat exchanger
JP2008232548A (en) Heat exchanger
CN103822411A (en) Dual pipe for heat exchange
JP2016095132A (en) Method for manufacturing double pipe
JP2011117710A (en) Liquid supercooling system
JP2013164007A (en) Hermetic compressor
JP2012036751A (en) Compressor
JP6102200B2 (en) Air conditioner outdoor unit
JP5217945B2 (en) Refrigeration cycle equipment
JP2006342676A (en) Hermetic compressor
WO2019116413A1 (en) Finless heat exchanger and refrigeration cycle device
CN207454272U (en) Compressor and refrigeration system
JP2005265269A (en) Heat exchange pipe for refrigerating cycle
JP2014240626A (en) Hermetic electric compressor
JP4356568B2 (en) Hermetic compressor
JP6131762B2 (en) Air conditioner outdoor unit
US20230082318A1 (en) Pressure vessel and refrigeration apparatus
JP2008267770A (en) Capillary tube embracing heat exchanger
JP2012154213A (en) Scroll compressor
KR20080038784A (en) Muffler for air conditioner of vehicles
WO2019077978A1 (en) Compressor
JP2010002060A (en) Heat exchanger
JP5056399B2 (en) Hermetic compressor