JP2012036750A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2012036750A
JP2012036750A JP2010175007A JP2010175007A JP2012036750A JP 2012036750 A JP2012036750 A JP 2012036750A JP 2010175007 A JP2010175007 A JP 2010175007A JP 2010175007 A JP2010175007 A JP 2010175007A JP 2012036750 A JP2012036750 A JP 2012036750A
Authority
JP
Japan
Prior art keywords
suction
pipe
refrigerant
compressor
compressor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175007A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kono
博之 河野
Yoshiyuki Nikami
義幸 二上
Akira Iwashida
鶸田  晃
Atsushi Sakuta
作田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010175007A priority Critical patent/JP2012036750A/en
Priority to CN201110181250.6A priority patent/CN102374170B/en
Publication of JP2012036750A publication Critical patent/JP2012036750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve volume efficiency by enhancing a heat insulating effect while reducing pressure loss at the suction part of a compressor.SOLUTION: A suction inner pipe 17 is provided inside a suction pipe 14, the suction pipe 14 is connected to a suction connection pipe 15 to be connected to a refrigerating cycle, the inner diameter of the suction inner pipe 17 is set larger than the inner diameter of the suction connection pipe 15, and a clearance is provided between an inlet end 17a of the suction inner pipe 17 and an outlet end 15a of the suction connection pipe 15. Refrigerant is introduced into a heat insulating space 18 between the suction inner pipe 17 and the suction pipe 14 to reduce pressure loss due to a flow path resistance without reducing a flow path cross section, thus suppressing the degradation of volume efficiency due to suction heating.

Description

本発明は流体の吸入、圧縮、吐出を繰り返し行う圧縮機に関するものである。   The present invention relates to a compressor that repeatedly sucks, compresses and discharges fluid.

従来、この種の圧縮機は、吸入室に冷媒を導入するように吸入管を設け、その吸入管を周囲の熱から断熱するため、その周囲に空間部を形成している。空間部は吸入管と吸入管の外側を囲むように配される外側管との間に形成され、外側管は冷媒が流れてくる配管に接続されている(例えば、特許文献1参照)。   Conventionally, this type of compressor is provided with a suction pipe so as to introduce a refrigerant into the suction chamber, and in order to insulate the suction pipe from ambient heat, a space is formed around the suction pipe. The space portion is formed between the suction pipe and an outer pipe disposed so as to surround the outside of the suction pipe, and the outer pipe is connected to a pipe through which the refrigerant flows (see, for example, Patent Document 1).

図3は、特許文献1に記載された従来の圧縮機を示すものである。図に示すように、吸入管21と吸入管21の外側を囲むように配される外側管22との間に空間部23が形成され、外側管22は冷媒が流れてくる配管24に接続されている。   FIG. 3 shows a conventional compressor described in Patent Document 1. As shown in FIG. As shown in the figure, a space 23 is formed between the suction pipe 21 and the outer pipe 22 arranged so as to surround the outside of the suction pipe 21, and the outer pipe 22 is connected to a pipe 24 through which the refrigerant flows. ing.

特開2008−169816号公報JP 2008-169816 A

しかしながら、前記従来の構成では、吸入管入口部では配管に対して断面積が縮小され、圧損が生じる。また、吸入管が配管に接続されている場合には、空間部に冷媒が導かれないため、断熱効果が低下するという課題を有していた。   However, in the conventional configuration, the cross-sectional area is reduced with respect to the piping at the suction pipe inlet, and pressure loss occurs. Further, when the suction pipe is connected to the pipe, the refrigerant is not guided to the space portion, so that there is a problem that the heat insulating effect is lowered.

本発明は、前記従来の課題を解決するもので、吸入部での圧損を低減し、空間部に冷媒を導き、断熱効果を高め、体積効率を向上させることで、高効率な圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a highly efficient compressor by reducing pressure loss at the suction portion, guiding refrigerant to the space, enhancing the heat insulation effect, and improving volumetric efficiency. The purpose is to do.

前記従来の課題を解決するために、本発明の圧縮機は、吸入管の内部に吸入内管を設け、吸入管を冷凍サイクルと接続するための吸接管に接続し、吸入内管の内径を吸接管の内径より大きくし、吸入内管の入口端と吸接管の出口端に隙間を設け、吸入内管と吸入管との間の空間部に冷媒が導いたものである。   In order to solve the above-described conventional problems, the compressor of the present invention is provided with a suction inner pipe inside the suction pipe, connected to the suction suction pipe for connecting the suction pipe to the refrigeration cycle, and the inner diameter of the suction inner pipe is reduced. It is larger than the inner diameter of the suction pipe, a gap is provided between the inlet end of the suction inner pipe and the outlet end of the suction suction pipe, and the refrigerant is guided to the space between the suction inner pipe and the suction pipe.

これによって、断面積縮小による圧損がなく、空間部へ冷媒を導くことができる。   Thereby, there is no pressure loss due to the reduction in the cross-sectional area, and the refrigerant can be guided to the space.

本発明の圧縮機は、流路抵抗による圧損を低減し、吸入加熱による体積効率の低下を抑えることができる。   The compressor of the present invention can reduce pressure loss due to flow path resistance, and can suppress a decrease in volumetric efficiency due to suction heating.

本発明の実施の形態1における圧縮機の吸入部縦断面図1 is a longitudinal sectional view of a suction portion of a compressor according to Embodiment 1 of the present invention. 本発明の実施の形態2における圧縮機の吸入部縦断面図Fig. 8 is a longitudinal sectional view of a suction portion of a compressor according to Embodiment 2 of the present invention 従来の圧縮機の縦断面図Vertical section of a conventional compressor

第1の発明は、ハウジング内に設けられた冷媒を圧縮するための圧縮機構と、圧縮機構に設けられた吸入室と、吸入室に外部から冷媒を導入する吸入管と、吸入管とに冷凍サイ
クルとを接続するための吸接管と、を備えた圧縮機であって、ハウジングに固定されるとともに、吸入管の外周に設けられた吸入外管と、吸入管の内部に設けられた吸入内管と、をさらに備え、吸入内管の内径は、吸接管の内径より大きいとしたことで、流路断面積の縮小がなく、流路抵抗による圧損を低減し、吸入加熱による体積効率の低下を抑えることができる。
According to a first aspect of the present invention, there is provided a compression mechanism for compressing the refrigerant provided in the housing, a suction chamber provided in the compression mechanism, a suction pipe for introducing the refrigerant from the outside into the suction chamber, and a suction pipe. A compressor having a suction pipe for connecting to a cycle, the suction pipe being fixed to the housing, provided on the outer periphery of the suction pipe, and an intake pipe provided inside the suction pipe And the inner diameter of the suction inner pipe is larger than the inner diameter of the suction tube, so that there is no reduction in the cross-sectional area of the flow path, pressure loss due to flow path resistance is reduced, and volumetric efficiency is reduced due to suction heating. Can be suppressed.

第2の発明は、吸入内管の入口端と吸接管の出口端に隙間を形成したことにより、吸入内管と吸入管との間の空間部に冷媒が導かれ、周囲の熱から断熱され、吸入加熱による体積効率の低下を抑えることができる。   According to the second aspect of the present invention, a gap is formed between the inlet end of the suction inner pipe and the outlet end of the suction pipe, so that the refrigerant is guided to the space between the suction inner pipe and the suction pipe and insulated from the surrounding heat. In addition, it is possible to suppress a decrease in volume efficiency due to suction heating.

第3の発明は、特に、第1または第2の発明の吸入内管の入口端をハウジングの外周より外側に位置することにより、高温であるハウジング内の部分が2重管構造になるため、吸入加熱による体積効率の低下を抑えることができる。   In the third aspect of the invention, in particular, since the inlet end of the suction inner pipe of the first or second aspect of the invention is positioned outside the outer periphery of the housing, the high temperature portion in the housing has a double pipe structure. A decrease in volumetric efficiency due to suction heating can be suppressed.

第4の発明は、特に、第1〜3の発明の吸接管の出口端を拡管し、吸入内管の入口端が吸接管の拡管部の内部にオーバーラップしていることにより、吸入管がすべて2重管構造になるため、より吸入加熱による体積効率の低下を抑えることができる。   In the fourth invention, in particular, the outlet end of the suction tube of the first to third inventions is expanded, and the inlet end of the suction inner tube overlaps the inside of the expanded portion of the suction tube. Since all have a double-pipe structure, it is possible to suppress a decrease in volumetric efficiency due to suction heating.

第5の発明は、特に、第1〜4の発明の吸入管の外側端と吸入外管の外側端がほぼ同じ位置に存在することにより、吸入管と吸入外管との固定と、吸入管と吸接管の固定を、ロウ付け等で同時に行うことができ、製造が容易になる。   In particular, the fifth aspect of the invention is characterized in that the outer end of the suction pipe of the first to fourth aspects of the invention and the outer end of the suction outer pipe are located at substantially the same position, thereby fixing the suction pipe and the suction outer pipe, And the suction tube can be fixed simultaneously by brazing or the like, which facilitates manufacture.

第6の発明は、特に、第1〜5の発明の吸入内管の出口端が拡管されていることにより、吸入管と吸入内管の固定を容易に行うことができる。また、吸入内管と吸入管の間に導かれた冷媒が吸入室へ流入しないため、周囲から温められた冷媒による吸入加熱が抑えられる。   In the sixth aspect of the invention, in particular, since the outlet end of the suction inner pipe of the first to fifth inventions is expanded, the suction pipe and the suction inner pipe can be easily fixed. Further, since the refrigerant guided between the suction inner pipe and the suction pipe does not flow into the suction chamber, suction heating by the refrigerant warmed from the surroundings can be suppressed.

第7の発明は、特に、第1〜6のいずれか1つの発明の冷媒ガスがCO2であることにより、吐出温度が高いため、より断熱による効果が顕著である。   In the seventh invention, in particular, the refrigerant gas according to any one of the first to sixth inventions is CO2, so that the discharge temperature is high, and thus the effect of heat insulation is more remarkable.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における圧縮機の吸入部縦断面図を示すものである。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a suction portion of a compressor according to a first embodiment of the present invention.

図1において、ハウジング11内に圧縮機構12が収容されている。圧縮機構12には吸入室13が設けられ、吸入室13には外部から冷媒を導入するための吸入管14が設けられている。さらに、吸入管14に冷凍サイクルと接続するための吸接管15が接続されている。吸入管14の外周には吸入外管16が設けられ、吸入外管16がハウジング11に固定されている。また、吸入管14が吸入外管16に固定されている。さらに、吸入管14の内部に吸入内管17が設けられている。   In FIG. 1, a compression mechanism 12 is accommodated in a housing 11. The compression mechanism 12 is provided with a suction chamber 13, and the suction chamber 13 is provided with a suction pipe 14 for introducing a refrigerant from the outside. Further, a suction pipe 15 for connecting to the refrigeration cycle is connected to the suction pipe 14. A suction outer pipe 16 is provided on the outer periphery of the suction pipe 14, and the suction outer pipe 16 is fixed to the housing 11. Further, the suction pipe 14 is fixed to the suction outer pipe 16. Further, an inner suction pipe 17 is provided inside the suction pipe 14.

なお、吸入内管17の内径は、吸接管15の内径より大きく、吸入内管17の入口端17aと吸接管15の出口端15aには隙間がある。   The inner diameter of the suction inner tube 17 is larger than the inner diameter of the suction tube 15, and there is a gap between the inlet end 17 a of the suction inner tube 17 and the outlet end 15 a of the suction tube 15.

以上のように構成された圧縮機について、以下その動作、作用を説明する。   About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷凍サイクルから戻ってきた冷媒ガスが吸接管15を通って吸入管14へ到達す
る。吸入管14に到達した冷媒ガスは、大部分が吸入内管17の内部を通り、吸入室13に導かれ、残りの一部が吸入管14と吸入内管17の間の断熱空間18へ導かれる。
First, the refrigerant gas that has returned from the refrigeration cycle reaches the suction pipe 14 through the suction pipe 15. Most of the refrigerant gas that has reached the suction pipe 14 passes through the inside of the suction inner pipe 17, is led to the suction chamber 13, and the remaining part is led to the heat insulating space 18 between the suction pipe 14 and the suction inner pipe 17. It is burned.

吸入内管17の内部を通る冷媒ガスは、吸接管15の内径より吸入内管17の内径が大きいので、圧損が生じず、また、断熱空間18へ導かれた冷媒ガスにより、吸入管14の外周からの熱伝達を抑えることができ、吸入加熱を低減し、体積効率を向上することができる。   The refrigerant gas passing through the inside of the suction inner pipe 17 has a larger inner diameter of the suction inner pipe 17 than the inner diameter of the suction contact pipe 15, so that pressure loss does not occur. Heat transfer from the outer periphery can be suppressed, suction heating can be reduced, and volumetric efficiency can be improved.

また、図1のように、吸入内管17の入口端17aが、ハウジング11の外周より外側に位置することにより、断熱空間18がハウジング11の外周より外側まで形成されるため、ハウジング11内の高温の冷媒ガスにさらされる部分が断熱されるため、吸入加熱の低減が大きく、体積効率が向上する。   Further, as shown in FIG. 1, since the inlet end 17 a of the suction inner pipe 17 is positioned outside the outer periphery of the housing 11, the heat insulating space 18 is formed outside the outer periphery of the housing 11. Since the portion exposed to the high-temperature refrigerant gas is insulated, the reduction in suction heating is large, and the volume efficiency is improved.

(実施の形態2)
図2は、本発明の第2の実施の形態における圧縮機の吸入部縦断面図を示すものである。
(Embodiment 2)
FIG. 2 is a longitudinal sectional view of the suction portion of the compressor according to the second embodiment of the present invention.

図2において、ハウジング11内に圧縮機構12が収容され、圧縮機構12には吸入室13が設けられている。吸入室13には外部から冷媒を導入するための吸入管14が設けられ、吸入管14に冷凍サイクルと接続するための吸接管15が接続されている。吸入管14の外周には吸入外管16を設け、吸入外管16がハウジング11に固定され、吸入管14が吸入外管16に固定されている。吸入管14の内部に吸入内管17を設け、吸入内管17の内径は、吸接管15の内径より大きく、吸入内管17の入口端17aと吸接管15の出口端15aには隙間がある。   In FIG. 2, a compression mechanism 12 is accommodated in a housing 11, and a suction chamber 13 is provided in the compression mechanism 12. The suction chamber 13 is provided with a suction pipe 14 for introducing a refrigerant from the outside, and a suction pipe 15 for connecting to the refrigeration cycle is connected to the suction pipe 14. A suction outer pipe 16 is provided on the outer periphery of the suction pipe 14, the suction outer pipe 16 is fixed to the housing 11, and the suction pipe 14 is fixed to the suction outer pipe 16. A suction inner pipe 17 is provided inside the suction pipe 14, and the inner diameter of the suction inner pipe 17 is larger than the inner diameter of the suction contact pipe 15, and there is a gap between the inlet end 17 a of the suction inner pipe 17 and the outlet end 15 a of the suction contact pipe 15. .

ここで、本実施の形態の圧縮機では、吸接管15の出口端15aは拡管され、吸入内管17の入口端17aが吸接管15の拡管部15bの内部にオーバーラップしている。   Here, in the compressor of the present embodiment, the outlet end 15 a of the suction tube 15 is expanded, and the inlet end 17 a of the suction inner tube 17 overlaps the inside of the expanded portion 15 b of the suction tube 15.

以上のように構成された圧縮機について、以下その動作、作用を説明する。   About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷凍サイクルから戻ってきた冷媒ガスの大部分が吸接管15を通って、吸接管15の拡管部15bの内部にオーバーラップしている吸入内管17の内部を通って吸入室13に導かれる。残りの一部が吸入管14と吸入内管17の間の断熱空間18へ吸接管15から直接導かれ、断熱空間18は吸入管14の全体に形成される。   First, most of the refrigerant gas returned from the refrigeration cycle passes through the suction pipe 15 and is introduced into the suction chamber 13 through the inside of the suction inner pipe 17 overlapping the inside of the expanded portion 15b of the suction pipe 15. It is burned. The remaining part is directly led from the suction pipe 15 to the heat insulation space 18 between the suction pipe 14 and the suction inner pipe 17, and the heat insulation space 18 is formed in the entire suction pipe 14.

吸入内管17の内部を通る冷媒ガスは、吸接管15の内径より吸入内管17の内径が大きいので、圧損が生じず、また、断熱空間18へ導かれた冷媒ガスにより、吸入管14の外周からの熱伝達を吸入管14の全長にわたって抑えることができ、吸入加熱を低減し、体積効率を向上することができる。   The refrigerant gas passing through the inside of the suction inner pipe 17 has a larger inner diameter of the suction inner pipe 17 than the inner diameter of the suction contact pipe 15, so that pressure loss does not occur. Heat transfer from the outer periphery can be suppressed over the entire length of the suction pipe 14, so that suction heating can be reduced and volumetric efficiency can be improved.

なお、図1、図2のように、吸入管14の外側端14aと吸入外管16の外側端16aがほぼ同じ位置に存在しているので、吸入管14と吸入外管16の固定と、吸入管14と吸接管15の固定を同時にロウ付けすることで行うことができるため、製造工程を容易にすることができる。   1 and 2, since the outer end 14a of the suction pipe 14 and the outer end 16a of the suction outer pipe 16 exist at substantially the same position, the fixing of the suction pipe 14 and the suction outer pipe 16; Since the suction pipe 14 and the suction pipe 15 can be fixed simultaneously by brazing, the manufacturing process can be facilitated.

なお、図1、図2のように、吸入内管17の出口端17bが拡管され、吸入管14の出口端14bに圧入されている。そのため、吸入管14と吸入内管17の固定が容易にでき、また、断熱空間18へ導かれた冷媒ガスは、断熱空間18内に滞留し、吸入室13に流入しないため、周囲から温められた断熱空間18内の冷媒による吸入加熱が抑えられる。   As shown in FIGS. 1 and 2, the outlet end 17 b of the suction inner pipe 17 is expanded and press-fitted into the outlet end 14 b of the suction pipe 14. Therefore, the suction pipe 14 and the suction inner pipe 17 can be easily fixed, and the refrigerant gas guided to the heat insulation space 18 stays in the heat insulation space 18 and does not flow into the suction chamber 13, and is thus warmed from the surroundings. Inhalation heating by the refrigerant in the heat insulation space 18 is suppressed.

なお、冷媒ガスとして、CO2を用いた場合、吐出温度が高いため、断熱の効果がより顕著である。   In addition, when CO2 is used as the refrigerant gas, since the discharge temperature is high, the effect of heat insulation is more remarkable.

以上のように、本発明にかかる圧縮機は、流路断面積縮小による圧損が低減でき、断熱空間での吸入加熱低減により、体積効率の低下を抑えることができるので、高効率な圧縮機を提供することができる。さらに、製品であるルームエアコン等の空調機やヒートポンプ式給湯機として、より省エネで環境に優しい快適な製品とすることが可能である。   As described above, the compressor according to the present invention can reduce the pressure loss due to the reduction in the cross-sectional area of the flow path, and can suppress the decrease in volumetric efficiency by reducing the suction heating in the heat insulating space. Can be provided. Furthermore, it is possible to make the product more comfortable and environmentally friendly as an air conditioner such as a room air conditioner or a heat pump water heater.

11 ハウジング
12 圧縮機構
13 吸入室
14 吸入管
14a 外側端
14b 出口端
15 吸接管
15a 出口端
15b 拡管部
16 吸入外管
16a 外側端
17 吸入内管
17a 入口端
17b 出口端
18 断熱空間
DESCRIPTION OF SYMBOLS 11 Housing 12 Compression mechanism 13 Suction chamber 14 Suction pipe 14a Outer end 14b Outlet end 15 Suction tube 15a Outlet end 15b Expanded part 16 Suction outer pipe 16a Outer end 17 Suction inner pipe 17a Inlet end 17b Outlet end 18 Thermal insulation space

Claims (7)

ハウジング内に設けられた冷媒を圧縮するための圧縮機構と、前記圧縮機構に設けられた吸入室と、前記吸入室に外部から冷媒を導入する吸入管と、前記吸入管とに冷凍サイクルとを接続するための吸接管と、を備えた圧縮機であって、
前記ハウジングに固定されるとともに、前記吸入管の外周に設けられた吸入外管と、
前記吸入管の内部に設けられた吸入内管と、をさらに備え、
前記吸入内管の内径は、前記吸接管の内径より大きいことを特徴とする圧縮機。
A compression mechanism for compressing a refrigerant provided in the housing, a suction chamber provided in the compression mechanism, a suction pipe for introducing a refrigerant into the suction chamber from the outside, and a refrigeration cycle in the suction pipe A compressor having a suction pipe for connection,
A suction outer pipe fixed to the housing and provided on an outer periphery of the suction pipe;
A suction inner pipe provided inside the suction pipe, and
The compressor according to claim 1, wherein an inner diameter of the suction inner pipe is larger than an inner diameter of the suction contact pipe.
前記吸入内管の入口端と前記吸接管の出口端には隙間があることを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein there is a gap between an inlet end of the suction inner pipe and an outlet end of the suction contact pipe. 前記吸入内管の入口端が前記ハウジングの外周より外側に位置することを特徴とする請求項1または2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein an inlet end of the suction inner pipe is located outside an outer periphery of the housing. 前記吸接管の出口端は拡管され、前記吸入内管の入口端が前記吸接管の拡管部の内部にオーバーラップしていることを特徴とする請求項1〜3のいずれか1項に記載の圧縮機。 The outlet end of the suction tube is expanded, and the inlet end of the suction inner tube overlaps the inside of the expanded portion of the suction tube. Compressor. 前記吸入管の外側端と前記吸入外管の外側端がほぼ同じ位置に存在することを特徴とする請求項1〜4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein an outer end of the suction pipe and an outer end of the suction outer pipe exist at substantially the same position. 前記吸入内管の出口端が拡管されていることを特徴とする請求項1〜5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein an outlet end of the suction inner pipe is expanded. 冷媒ガスがCO2であることを特徴とする請求項1〜6のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 6, wherein the refrigerant gas is CO2.
JP2010175007A 2010-08-04 2010-08-04 Compressor Pending JP2012036750A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010175007A JP2012036750A (en) 2010-08-04 2010-08-04 Compressor
CN201110181250.6A CN102374170B (en) 2010-08-04 2011-06-23 Hermetic type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175007A JP2012036750A (en) 2010-08-04 2010-08-04 Compressor

Publications (1)

Publication Number Publication Date
JP2012036750A true JP2012036750A (en) 2012-02-23

Family

ID=45849009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175007A Pending JP2012036750A (en) 2010-08-04 2010-08-04 Compressor

Country Status (1)

Country Link
JP (1) JP2012036750A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748298A (en) * 2012-06-13 2012-10-24 珠海格力电器股份有限公司 Rotary compressor inspiration structure
CN103244385A (en) * 2013-04-19 2013-08-14 广州万宝集团压缩机有限公司 Refrigerating compressor with adiabatic air suction tube
JP2014240626A (en) * 2013-06-12 2014-12-25 日立アプライアンス株式会社 Hermetic electric compressor
US9175404B2 (en) 2011-09-30 2015-11-03 Advanced Technology Materials, Inc. Etching agent for copper or copper alloy
CN105221435A (en) * 2015-10-22 2016-01-06 广东美芝制冷设备有限公司 Compressor assembly
US9546321B2 (en) 2011-12-28 2017-01-17 Advanced Technology Materials, Inc. Compositions and methods for selectively etching titanium nitride
US9678430B2 (en) 2012-05-18 2017-06-13 Entegris, Inc. Composition and process for stripping photoresist from a surface including titanium nitride
CN106884777A (en) * 2017-04-28 2017-06-23 广东美芝制冷设备有限公司 Compressor and the refrigeration plant with it
US9765288B2 (en) 2012-12-05 2017-09-19 Entegris, Inc. Compositions for cleaning III-V semiconductor materials and methods of using same
US10176979B2 (en) 2012-02-15 2019-01-08 Entegris, Inc. Post-CMP removal using compositions and method of use
US10347504B2 (en) 2013-12-20 2019-07-09 Entegris, Inc. Use of non-oxidizing strong acids for the removal of ion-implanted resist
US10472567B2 (en) 2013-03-04 2019-11-12 Entegris, Inc. Compositions and methods for selectively etching titanium nitride

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790600B2 (en) 2011-09-30 2017-10-17 Entegris, Inc. Etching agent for copper or copper alloy
US9175404B2 (en) 2011-09-30 2015-11-03 Advanced Technology Materials, Inc. Etching agent for copper or copper alloy
US9546321B2 (en) 2011-12-28 2017-01-17 Advanced Technology Materials, Inc. Compositions and methods for selectively etching titanium nitride
US10392560B2 (en) 2011-12-28 2019-08-27 Entegris, Inc. Compositions and methods for selectively etching titanium nitride
US10176979B2 (en) 2012-02-15 2019-01-08 Entegris, Inc. Post-CMP removal using compositions and method of use
US9678430B2 (en) 2012-05-18 2017-06-13 Entegris, Inc. Composition and process for stripping photoresist from a surface including titanium nitride
CN102748298B (en) * 2012-06-13 2015-05-20 珠海格力电器股份有限公司 Rotary compressor inspiration structure
CN102748298A (en) * 2012-06-13 2012-10-24 珠海格力电器股份有限公司 Rotary compressor inspiration structure
US9765288B2 (en) 2012-12-05 2017-09-19 Entegris, Inc. Compositions for cleaning III-V semiconductor materials and methods of using same
US10472567B2 (en) 2013-03-04 2019-11-12 Entegris, Inc. Compositions and methods for selectively etching titanium nitride
CN103244385A (en) * 2013-04-19 2013-08-14 广州万宝集团压缩机有限公司 Refrigerating compressor with adiabatic air suction tube
JP2014240626A (en) * 2013-06-12 2014-12-25 日立アプライアンス株式会社 Hermetic electric compressor
US10347504B2 (en) 2013-12-20 2019-07-09 Entegris, Inc. Use of non-oxidizing strong acids for the removal of ion-implanted resist
CN105221435A (en) * 2015-10-22 2016-01-06 广东美芝制冷设备有限公司 Compressor assembly
CN106884777A (en) * 2017-04-28 2017-06-23 广东美芝制冷设备有限公司 Compressor and the refrigeration plant with it

Similar Documents

Publication Publication Date Title
JP2012036750A (en) Compressor
CN101331320B (en) Hermetic compressor with internal thermal insulation
KR20110104141A (en) Internal heat exchanger of cross spiral
JP2011117710A (en) Liquid supercooling system
JP2013164007A (en) Hermetic compressor
JP6573210B2 (en) Double tube heat exchanger and heat pump heat source machine equipped with the same
WO2018072512A1 (en) Multi-stage centrifugal compressor
JP6286364B2 (en) Hermetic compressor and refrigeration system
US20090155114A1 (en) Compressor structure for a refrigeration system
CN105221435A (en) Compressor assembly
JP5217945B2 (en) Refrigeration cycle equipment
CN104763612A (en) Exhaust muffler and refrigerating compressor
CN202560516U (en) Refrigeration compressor and air-conditioner using the same
JP2012036751A (en) Compressor
JP2014240626A5 (en)
JP2012107791A (en) Heat pump water heating outdoor unit
CN207454272U (en) Compressor and refrigeration system
TWI452248B (en) A coolant compressor module
CN106884777A (en) Compressor and the refrigeration plant with it
JP2012154213A (en) Scroll compressor
EP1853822B1 (en) A compressor
CN103244385A (en) Refrigerating compressor with adiabatic air suction tube
CN205089631U (en) Compressor assembly
JP2014015912A (en) Compressor
CN218882464U (en) Silencer for refrigeration compressor